差热热重分析

仪器信息网差热热重分析专题为您提供2024年最新差热热重分析价格报价、厂家品牌的相关信息, 包括差热热重分析参数、型号等,不管是国产,还是进口品牌的差热热重分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合差热热重分析相关的耗材配件、试剂标物,还有差热热重分析相关的最新资讯、资料,以及差热热重分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

差热热重分析相关的厂商

  • 400-601-1369
    德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,我们都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃...2000℃,导热率范围为0.005...1500W/(m*k)。作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。德国耐驰仪器制造公司以其雄厚的实力和可靠的品质,愿与您共创美好的前程。
    留言咨询
  • 400-860-5168转0539
    北京中惠普分析技术研究所成立于1994年,是目前国内规模最大的气相色谱仪器配套气源发生器的生产厂家之一,产品涵盖高纯度氢气、高纯度氮气、低噪音空气源等各种流量单体机及各种相关组合机。产品系列多,品种全,有多种流量和纯度可供选择。经过多年的不懈努力,我们研制生产了多种大流量制氮、制空设备,可满足液质联用、蒸发光散射、氮吹、原子荧光和原子吸收等仪器的使用要求。目前国内外同行所有的实验室气源技术和产品,我们都已掌握并有同类产品生产和销售。 自2005年来,我们在样品前处理装置的研究和应用上也取得了长足的进步。在热解析(热解吸)、顶空进样及吹扫捕集领域,推出了多种产品,包括半自动和全自动的仪器,基本涵盖全部应用,获得广泛的应用和好评。我们坚持质量第一、用户至上的服务准则,产品遍及全国,并出口日本、德国、法国、阿根廷、俄罗斯、韩国、印度、新加坡等十多个国家和地区。 Beijing BCHP Analytical Technology Institute was founded in 1994. It is famous for its tremendous technology force, advanced manufacturing technic and flexible marketing strategy. BCHP specializes in producing gas generators for gas chromatograph, including high-purity nitrogen generator, high-purity hydrogen generator and low-noise air generator. It is the domestic leader in its industry. The products of BCHP have been sold throughout China and exported to Pakistan, Ukraine, Singapore, Thailand, Argentina, Algeria, Norway and many other countries.
    留言咨询
  • 400-860-5168转4334
    我们的产品会帮您解决更多的问题,提供更多的分析方案如果水质分析是您的责任,那么您的首次分析就应该以凯迈自充试剂安瓿瓶开始。这些特别简单的快速阅读测试工具包每套的价格实际上要比你现在可能正在使用的劳动密集型方法更低。无论是仪器法还是目视比色法测量,您都可以在仅仅2分钟甚至更短的时间内分析45种样品,同时得到精确、可靠以及定量的结果。无需混合、测量,即可轻松检测传统的测量方法经常要准备样品和试剂,步骤繁琐,最后还需清理。有了凯迈系统,您只需简单地将安瓿瓶浸没在样品中,折断顶端并快速记录可靠的结果即可。方法步骤更简单,误差更小由于几乎没有测试准备步骤,所以我们的产品减少了潜在的操作误差。此外,凯迈测试工具真空密封性帮助您避免了因为试剂不新鲜或不稳定而导致的结果不精确问题。测试更安全使用凯迈自充式安瓿瓶能够显著减少处理过程中的化学物质和样品暴露在外。每一套测试工具都包含一个单位剂量的预先按配方制备好的试剂,试剂装在密封玻璃杯中,以便使其和化学物质的直接接触程度达到最小化。便携性和可二次填充性凯迈产品十分便于携带,您只须把进行30次测试所需的所有物品装入包装袋中,即可在实验室或现场都能快速测得可靠的分析数据。通过一个简单的电话或是网上订购就能够重新填充30个安瓿瓶包。我们的信誉是您最大的保证凯迈公司因产品质量好而出名,我们的名誉建立在客户服务基础上。我们的技术服务和销售部门的专家会以温馨的提示和支持助您顺利完成检测实验。严格的质量保障体系确保了我们产品的使用效果跟您预想一样。我们的创新研究和研发团队不断研发新产品以满足新型水质分析的需要,我们会对产品提供100%全方位服务。保质期凯迈公司水质分析产品使用真空包装以确保拥有尽可能最长的保质期。为保证产品保质期,产品存放应避光、室温保存。对于特殊产品的保存,还要依据个别的产品包装说明而定。所有产品的保质期至少为2年,除非产品另有说明。
    留言咨询

差热热重分析相关的仪器

  • 高灵敏度的水平差动式天平设计及先进的数字化控制技术,使得TG基线的稳定性得到提高。能够准确地检测出μg级变化的TG/DTA。特点:1. 实现了基线稳定性的提高与噪声水平的降低新开发的“数字化水平差动式”技术,除实现了基线稳定性的大幅度提高和噪声水平的降低外,还对仪器固有的特性进行自动校正,确保得到稳定的测量数据。 ● TG/DTA结构图 ●基线稳定性2. 温度追随性与加热冷却速度的提高新开发的温度控制和新冷却方式“FRONT STREAM结构”技术、通过低热容量,大幅度提高了温度追随性和加热冷却速率的高效化。 ●加热冷却速度的提高3. 自动进样器可追加新型自动进样器和质量流量计。自动进样器可以对应50个样品的自动测定。如果同事使用自动分析软件,还可实现从测定到分析,数据输出环节的自动化。4. 「Real View TG/DTA」样品实时观察系统STA72000RV,最*高可在1000 °C下进行Real View测定(样品观察测定)。RV-3TG样品观察系统可与自动进样器同时使用,实现自动测量。RV系统装载了高像素的摄像头,可以指定测量画面并放大,由此获得微小的变化。另外,使用测量工具可以明确尺寸变化。5.TG联用开发出TG-MS专用接口,装卸容易,易于TG/DTA单机或联用使用状态的切换;新传输系统,最*高可保持350℃的endurance,可将样品产生的气体高效传输到离子化部,从而提高检测灵敏度;使用于氧气气氛,可在惰性气体,氧气气氛中进行TG-MS测定。注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • 高灵敏度的水平差动式天平设计及先进的数字化控制技术,使得TG基线的稳定性得到提高。能够准确地检测出μg级变化的TG/DTA。特点:1. 实现了基线稳定性的提高与噪声水平的降低新开发的“数字化水平差动式”技术,除实现了基线稳定性的大幅度提高和噪声水平的降低外,还对仪器固有的特性进行自动校正,确保得到稳定的测量数据。 ● TG/DTA结构图 ●基线稳定性2. 温度追随性与加热冷却速度的提高 新开发的温度控制和新冷却方式“FRONT STREAM结构”技术、通过低热容量,大幅度提高了温度追随性和加热冷却速率的高效化。 ●加热冷却速度的提高3. 自动进样器可追加新型自动进样器和质量流量计。自动进样器可以对应50个样品的自动测定。如果同事使用自动分析软件,还可实现从测定到分析,数据输出环节的自动化。 4. 「Real View TG/DTA」样品实时观察系统STA72000RV,最*高可在1000 °C下进行Real View测定(样品观察测定)。RV-3TG样品观察系统可与自动进样器同时使用,实现自动测量。RV系统装载了高像素的摄像头,可以指定测量画面并放大,由此获得微小的变化。另外,使用测量工具可以明确尺寸变化。5.TG联用 开发出TG-MS专用接口,装卸容易,易于TG/DTA单机或联用使用状态的切换;新传输系统,最*高可保持350℃的endurance,可将样品产生的气体高效传输到离子化部,从而提高检测灵敏度;使用于氧气气氛,可在惰性气体,氧气气氛中进行TG-MS测定。注:该仪器未取得中华人民共和国医疗器械注册证,不可用于临床诊断或治疗等相关用途
    留言咨询
  • 仪器简介:FP900是一套具有多种功能的测量仪器,由中央控制器FP90连接不同的测量单元构成。根据所连接的测量单元的功能,该系统能测量熔点、沸点、滴点、软化点等物理参数直到差热分析和显微热台测量,是研究开发和质量控不可缺少的工具。FP900热值分析系统包括几个测量单元,用来测定各种热值和TOA应用,中央控制器FP90则作为一个通讯和控制设备。FP900热值分析系统由FP90中央控制器连接FP81HT,FP82HT,FP83HT,FP84HT,FP85HT等不同的测量单元构成,用毛细管法自动测量熔点、沸点、浊点(FP81HT),样品杯法自动测量滴点,软化点(FP83HT),热台显微和差热热台显微法自动测量结晶,熔融过程等并可观察、照像、摄像(FP82HT、FP84HT)、差热法自动测量玻璃化转变、结晶、熔融、固化过程等(FP85HT),测量符合ASTM,DIN等国际标准。技术参数:温度测量输入范围 -100&hellip 600º C温度显示 º C, º F,K加热/冷却速率控制 0&hellip 20º C/分,冷却速率视特殊的测量单元而定温度记录 PT100传感器测量方法 对话式输入样品数据,测量条件、分析方法及结果记录方法存储 15种标准方法和35种自定义方法主要测量值 熔程、熔点、浊点、沸点、滴点和软化点,%透光率,终点测定,玻化点,统计功能 平均值,相对标准偏差显示 液晶图形,60x256,6行分行36个字符菜单和命令行操作日期 内置时钟环境温度 20&hellip 32º C测量单元连接 64针,可连接FP800HT系列测量台单元打印机/电脑连接 RS232C接口主要特点:从2009年6月1日起,FP81HT产品退市,由MP超越系列熔点仪取代。FP90+FP81HT:测量熔点、沸点、浊点等指标。FP90+FP82HT:配上显微镜后成为显微热台分析系统,可观察融熔、熔化、晶格转换、结晶等,是液晶材料研究必不可少的工具。FP90+FP83HT:测量滴点、软化点等指标。FP90+FP84HT:进行显微差热分析。在观察样品热行为时,同时有DSC讯号输出,是研究液晶、多晶现象的理想工具。FP90+FP85:测量非晶材料玻璃化转变点及进行常规的差热扫描量热分析。查看更多信息:
    留言咨询

差热热重分析相关的资讯

  • 应用案例|锂金属固态电池绝热热失控特性测试
    本期预览 本文利用BAC-420A大型电池绝热量热仪对锂金属负极固态电池进行绝热热失控实验,评估该电芯的热稳定性和热失控危害。前言随着电动汽车的大规模发展,现有锂离子电池体系已不能满足日益增长的续航里程需求,亟须发展更高能量密度的电池体系。在众多的电池材料体系中,层状过渡金属氧化物-石墨负极体系的理论能量密度极限约为300Wh/kg。将纯石墨负极替代为硅基合金,则能量密度理论上限可提升至约400Wh/kg。而金属锂负极具有最低的电位和最高的理论比容量,被认为是电池负极材料的终极选择,锂金属电池能量密度的理论上限可达500Wh/kg以上。然而锂金属负极在传统液态电池体系中难以实现,金属锂和电解液界面副反应多,且负极容易产生锂枝晶,不满足电池循环寿命和安全性要求。将液态电池的电解液与隔膜替换成固态电解质所组成的全固态电池,被认为是解决锂金属负极应用的有效途径。固态电解质稳定性高、不挥发、不泄漏,并对金属锂具有良好的兼容性,因此锂金属全固态电池有望在实现高能量密度的同时解决锂电池本质安全问题,并且还具有成组效率高和模组结构简单等优势,因此中国在国家层面已明确提出了对固态电池的研发和产业化进程要求。图1 液态和全固态锂离子电池结构差异虽然目前固态电池仍然处于商业化早期阶段,但国内许多厂商的产品已接近量产状态。本文利用BAC-420A大型电池绝热量热仪对某厂商提供的锂金属固态电池样品进行绝热热失控实验,以评估固态电池的安全性。实验部分1. 样品准备电池样品: 锂金属全固态锂电池(20Ah),满电。2. 实验条件实验仪器:BAC-420A大型电池绝热量热仪、电池充放电设备;实验模式:HWS-R模式、温差基线模式;记录频率:1~100Hz;自放热检测阈值:0.02℃/min;热电偶固定位置:电池大面中心点(样品热电偶)、正负极耳。实验结果1. 绝热热失控曲线图2 锂电池热失控温升曲线及温升速率-温度曲线锂金属固态电池的绝热热失控曲线如图2所示,可以发现该电芯的热稳定性与常规的液态高镍三元电芯类似,但热失控剧烈程度明显更高。锂金属固态电池的热失控过程表现出如下的特征:1. 自放热起始温度Tonset低:Tonset温度为74.42℃,与常规三元电芯相当甚至略低。通常认为固态电解质与正负极界面的热力学稳定性要优于液态电池内的SEI膜,因此固态电池的Tonset温度理应较高。上述现象有待明确电池体系后进行进一步探究。2. 热失控起始温度接近锂金属熔点:热失控起始温度TTR约为180℃,该温度下锂金属负极熔化,电解质与熔融锂金属发生界面反应,产生的氧气会诱发锂金属发生剧烈氧化反应,导致热失控发生[1]。根据图2b,到达TTR之前电芯升温速率出现明显下降,与负极熔化过程相对应。3. 热失控剧烈程度显著高于液态电池:该电芯的热失控最高温度Tmax无法有效测定。这是由于热失控瞬间,用于温度采样的N型热电偶迅速发生熔断。考虑到采用的N型热电偶的熔点为1330℃,因此该电芯的Tmax明显超过三元9系液态电池的数值(1100-1200℃)。针对该电芯的检测需求,后续需更换熔点更高的铂基热电偶。同时,估算该电芯热失控瞬间的温升速率达到50000℃/min以上,超过目前已知的所有液态锂电池。图3 样品锂电池热失控过程监控视频另外,从热失控瞬间的监控画面可以看到,该固态电池的热失控爆燃持续时间短,爆炸冲击威力大。随着能量密度的提高,电芯热失控能量释放速率也显著增大。实验结论本次实验利用BAC-420A大型电池绝热量热仪对某型号的锂金属负极固态电池进行了绝热热失控特性评估,相关实验数据表明该电芯的热稳定性与液态高镍三元电芯相当甚至略低,同时热失控剧烈程度明显高于已知液态电池,因此针对该电芯应制定更为严苛的热管理策略。引用文献[1] Vishnugopi B S , Hasan M T , Zhou H , et al. Interphases and Electrode Crosstalk Dictate the Thermal Stability of Solid-State Batteries[J]. 2022..
  • 检查飞机是否进“水”的利器—热成像仪
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp FLIR公司研制了一种新型热成像仪,或可改观飞机中复合材料湿气检测问题。 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/a06fa3cb-1eeb-45d6-b8aa-6e236e7fbf77.jpg" title=" 1-9-2.jpg" width=" 450" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 450px height: 268px " / /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 对于一架飞机来说,由于质量和强度要求,其机身结构大多使用碳纤维等复合材料。使用这些复合材料的飞机结构基本都保持了一种“蜂窝”状,一旦水蒸气等湿气进入这种结构,飞机将变得十分危险,但这种情况又是难以避免的。当飞机飞行到一定高度时,遇到高空中的冷空气,这些湿气会凝结成冰。这样一来,材料会被张裂,原本稳定的“蜂窝”结构变得脆弱。而如果这个过程反复的发生,材料结构遭到破坏,会严重影响飞机飞行的稳定性。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 由于湿气的危害,检查飞机中的湿气就变得尤为重要。众所周知,热成像仪是检查飞机结构是否进入湿气的一个重要的工具。通常,进行这项检测最好的时间段是飞机降落后的一小时以内,因为在这个时间段中,飞机部件材料与冷冻液之间的温度差达到最大值,会在成像仪中形成足够明显的对比度。但当一架飞机停放在机场几天之后,没有办法得到完美的成像效果时,又该如何进行检查呢?答案是:FLIR公司研制的新型热成像仪。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong & nbsp 热成像仪检查的优势 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp Thermografisch Adviesbureau BV是一家在检测湿气是否进入飞机结构方面具有多年经验的公司。这家公司的老板Ralf Grispen表示:“热成像仪进行检测是一种高效快速的检测方式,而传统的检测方法,例如通过锤子敲击材料表面,通过听声音的差别进行检测等与之相比准确度较差且受时间影响。此外,热成像仪可以通过温度差来展示飞机结构的全貌,并且可以清晰的展示出水分的分布。最重要的是,热成像仪可以报告、分析并且解释可能隐藏的大量湿气”。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong & nbsp 热量差的挑战 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp Ralf Grispen先生接下来补充道:“使用热成像仪来检测的最佳时间是飞机降落后的一个小时之内,这是你可以得到复合材料和湿气之间差别效果最好的热量图像”。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 由于湿气和复合材料具有不同的热性能。当加热或冷却达到热平衡后,可以观察到湿气和材料之间的不同。通过热成像仪,可以清晰的观察到材料表面热量分布。然而,要想一直得到好的热分析效果仍然是困难的。在2015年,Thermografisch Adviesbureau BV的团队受邀来到波音公司进行一家飞机机翼的检测,这架飞机在几天前已经停放在飞机库中。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp “在这种情况下,由于飞机库的密闭环境,湿气和飞机结构材料之间的热量差并不明显。因此在飞机降落后检测才是最佳的。我们想挑战这个热量差的难题,于是我们通过各种方法来增加热量差,一种方法是进行加热让被检测的材料达到一个恒定的温度,这种方法通常也叫做加热热成像。但其缺点是通过加热后会发生短暂的热传导效应而使图像不稳定。尽管加热热成像是一种精确度高的检测方法,但是实际情况下却应用较少。因为为了得到这样一个热量成像图是非常消耗时间的,而且性价比比较低,所以这并不是一个很好的选择。Ralf Grispen先生向我们讲述了他们的主要思路。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp strong 热成像仪的成功 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 为了满足热量差的需求,Thermografisch Adviesbureau BV的团队需要进一步的探究。他们首先决定在飞机库中使用移动冷库以及干冰直接冷却机翼,通过这种方法来尽可能模拟飞机的飞行环境和飞机降落后的热量差。此外,通过操纵起重机来移动机翼保证了每个结构可以得到仔细的检查。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp “我们希望可以向客户也同时向自己证明研发的热成像仪的效果。我们准备了一个小的测试样本,该样本具有和波音客机上机翼相同的材料,向其中注入水分,之后进行下一步的检测。通过FLIR P660型热成像仪我们成功的进行飞机复合材料的进水检测,通过所得到的热成像图和原图进行比对,清晰的发现了这些水分的存在“。Ralf Grispen先生补充道。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong & nbsp 保证检测的质量 /strong /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 针对上述情况,Ralf Grispen先生推荐了一款FLIR P660型的热成像仪。“通过多年的使用证明FLIR P660型的热成像仪是一台可靠的热成像仪,可以提供清晰度较高的分析图片以及详细的数据。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 最后他表达了自己对于热分析仪的看法,“未来热成像仪在飞机工业上会扮演更为重要的角色,尤其是随着越来越多的复合材料在飞机上得到应用,这种重要性会进一步放大。热成像仪作为飞机进水检测的主要方法,拥有着其他方法无法比拟的性价比,对于保证飞机结构和乘客安全,选择热分析仪是必须的”。 /p p br/ /p
  • 美国康塔仪器成功中标中科院能源所材料物性分析测试平台
    2011年5月,美国康塔仪器公司(Quantachrome Instruments)在中科院广州能源研究所材料物性分析测试平台项目中标,与英国马尔文公司联合成为该分析测试平台的唯一供应商,该平台涵盖了多孔材料的比表面,密度,大孔、介孔和微孔分析,静态化学吸附和动态化学吸附分析以及从1000微米到1纳米的粒度分析能力,包括代表性取样装置。 中国科学院广州能源研究所是从事清洁能源工程科学领域的高技术研究与发展的研究所。目前形成了以太阳能、海洋能、生物质能、地热能、固体废物能及天然气水合物,能源战略为重点方向的学科布局,建立了中国科学院可再生能源与天然气水合物重点实验室和广东省新能源与可再生能源研究开发重点实验室。国内已与广东、湖南、北京、江苏等地开展院地合作,大力推广应用生物质气化发电、地热热泵新技术、太阳能光热利用技术及城市垃圾处理系统等,并形成产业化。 美国康塔仪器公司是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累。美国康塔仪器公司研制出世界第一台商用气体膨胀法真密度分析仪,第一次将连续扫描注汞技术应用到压汞仪中,发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前 唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 美国康塔仪器公司一直非常重视新技术的推广和新理论的开发普及和应用, 本次有幸中标该项目,也是该公司一直专注材料物性分析市场,紧跟技术发展前沿,不断提升技术服务水平的必然结果。 中科院广州能源所材料物性分析测试平台将建设成为华南地区首屈一指的公共分析测试平台,也将成为Quantachrome Instruments在华南地区最全面的材料物性分析仪器展示基地。

差热热重分析相关的方案

差热热重分析相关的资料

差热热重分析相关的论坛

  • 【原创】国产热分析仪到低价值多少钱

    去年十一月想买一台差热热重分析仪,询价的结果让我一头雾水,有的厂家报价10万元左右,也有的报价4-5万元,最低的一家报价才2万元,而且是全套配置,真不知道国产的热分析仪到底值多少钱,这么低的价位质量有保证吗

  • 【原创大赛】DSC-100测量煤油与磷钼酸反应的放热热焓

    【原创大赛】DSC-100测量煤油与磷钼酸反应的放热热焓

    看到了南京大展的活动奖品,就忍不住赶紧来参赛了 \(≧▽≦)/。正好手上有一台南京大展的差示扫描量热仪DSC-100,目前也正在使用这台仪器做实验,今天就把我做的实验过程发上来,和大家一起讨论讨论 O(∩_∩)O。我们实验室的差热托盘及传感器是铂铑合金,灵敏度还是非常好的。这个实验之前在论坛里也和大家讨论过,就是用DSC测定磷钼酸与煤油反应放出的热量。听上去很简单吧、、But!!这实验可耗了我不少精力!!_ 最难解决的一个问题就是煤油与磷钼酸常温下一接触便反应,因此必须在将这两个物质放进炉子之前隔离。这点是最令人头疼的啊!!_ 但最终,功夫不负有心人,还是想到了一个办法,考虑到石蜡与煤油结构相似,石蜡是固体,可以用它将两个物质隔离开!石蜡的熔点在50~60℃左右,只要加热到石蜡熔化的温度,煤油就可以掉下去与磷钼酸反应啦(刚开始是考虑石蜡与煤油可以相似相溶,试了一下发现,需要的时间太长,而且石蜡与煤油相溶之后的流动性会变的非常差,最后还是用加热的方法了)。这是个很大的突破啊!!\(≧▽≦)/ 找到了隔离的物质,下面就好办啦~~(*^__^*) …下面先来隆重介绍下这个实验所用的铝坩埚,当当当当::::::图1 http://ng1.17img.cn/bbsfiles/images/2013/09/201309071627_462982_2692547_3.jpg图2 http://ng1.17img.cn/bbsfiles/images/2013/09/201309071627_462981_2692547_3.jpg图3 http://ng1.17img.cn/bbsfiles/images/2013/09/201309071628_462983_2692547_3.jpg图4 http://ng1.17img.cn/bbsfiles/images/2013/09/201309071628_462985_2692547_3.jpg图5 http://ng1.17img.cn/bbsfiles/images/2013/09/201309071628_462984_2692547_3.jpg石蜡与煤油性质相似,石蜡也可能会跟磷钼酸反应,因此,石蜡跟煤油一样,在放进炉子之前也不能碰到磷钼酸,这样我就想到了做如图1、2所示的坩埚,下层大坩埚放磷钼酸口部收紧刚好能夹紧上层小坩埚,上层小坩埚底部中央开孔,再用石蜡封住孔,然后放上煤油。\(≧▽≦)/很聪明吧!多不容易啊~~可是实际测量过程中发现,下面的大坩埚口会松掉,导致上层坩埚底部的石蜡与磷钼酸直接接触,还有一个问题就是由于上层坩埚较小,石蜡熔化后任粘在孔上,煤油掉不下去无法与磷钼酸反应。于是把坩埚改进了一下,如图3、4、5,上层为大坩埚,底部开孔封蜡,然后放上煤油,下层坩埚放磷钼酸。问题是接踵而至啊~~~刚解决了坩埚的问题,下面的问题更复杂呢~~~~~~俗话说,有利就有弊,石蜡隔离了两个物质,同时也带入了新的误差因素。石蜡会与磷钼酸反应的话,那么他们也会放出热量,最终测得的放热热焓要减去石蜡与磷钼酸反应的热焓。另外石蜡、煤油、磷钼酸加热时都会吸热,一正一负会相互抵消╮(╯0╰)╭。这是要麻烦死人的节凑嘛(⊙_⊙)!?为了消除各组分的吸热,为了能更准确的算出煤油与磷钼酸的放热热焓,我制定了这样的方案,一组实验包括:a.石蜡+煤油+磷钼酸用图5所示的坩埚测量(上层坩埚打孔);f.石蜡+煤油+磷钼酸用上层坩埚底部不打孔,其他与图5所示一样的双层坩埚测量(也就是说,让煤油、石蜡不接触磷钼酸,这样可以消除三个物质的吸热总量);c.石蜡+磷钼酸反应测[font

差热热重分析相关的耗材

  • TA PE DSC 热重 差热 热分析铝坩埚
    TA PE DSC 热重 差热 热分析铝坩埚 适配于德国林塞斯Linseis、美国PE、美国TA、德国Netzsch、瑞士Mettler、法国塞塔拉姆Setaram、日本岛津Shimadzu、日本理学Rigaku、日本精工SII、德国布鲁克AXS等公司生产的热分析仪器。介绍:名称规格单价(元)TA PE DSC 热重 差热 热分析铝坩埚梅特勒 平底 40ul 6*1.77TA PE DSC 热重 差热 热分析铝坩埚梅特勒定位 40ul 6*1.77TA PE DSC 热重 差热 热分析铝坩埚梅特勒70ul 6*49TA PE DSC 热重 差热 热分析铝坩埚耐驰 平底 8*2.17TA PE DSC 热重 差热 热分析铝坩埚耐驰 平底 6.7*47TA PE DSC 热重 差热 热分析铝坩埚TA Q20 固体 7.3/5.4*2.67TA PE DSC 热重 差热 热分析铝坩埚TA Q20 液体 5.4*27TA PE DSC 热重 差热 热分析铝坩埚TA Q10固体 6.65*1.77TA PE DSC 热重 差热 热分析铝坩埚TA Q10固体 6.8*2.77TA PE DSC 热重 差热 热分析铝坩埚 美国PE固体 6.65*1.77TA PE DSC 热重 差热 热分析铝坩埚 美国PE固体 6.3/4.7*1.37TA PE DSC 热重 差热 热分析铝坩埚美国PE大液体 10/8*28TA PE DSC 热重 差热 热分析铝坩埚岛津 固体 5.7*1.78TA PE DSC 热重 差热 热分析铝坩埚日本岛津6*2.58TA PE DSC 热重 差热 热分析铝坩埚岛津液体5.75*1.78TA PE DSC 热重 差热 热分析铝坩埚日本精工 5*2.5 7TA PE DSC 热重 差热 热分析铝坩埚塞塔拉姆 6.7*38
  • 红茶多农残液质质分析方法FaPEx-bkt红茶茶叶专用柱
    红茶中380项农药残留检测的液质质和气质质分析方法红茶属于全发酵茶,为世界受欢迎的茶品之一。经过采摘、萎凋、揉捻、发酵、干燥等步骤生产出来,与绿茶相比,红茶增加了发酵工序,让茶叶完全发酵 ,其茶叶呈黑色 ,或黑色中参杂橙黄色;茶汤呈深红色。目前红茶产区以中国、印度、斯里兰卡较多。发酵工序使得茶叶中的茶多酚和鞣质酸减少,产生茶黄素、茶红素等新成分并含有许多不同化学物质的复合式基质 (如:醇类、醛类、酮类、酯类等芳香物质),红茶基质变得复杂。针对红茶基质开发的FaPEx-bkt快速萃取净化柱,不仅可以去除大部分基质干扰,而且操作步骤简单,节省溶剂和设备,并大多数农药的回收率与再现性符合标准要求。本研究以FaPEx-bkt快速净化萃取套组 ,分析红茶样品中之农药残留,其农药种类包含有机磷、有机氯、杀虫剂、除草剂、杀菌剂等,项目列表详见表1。本研究中检测添加浓度为10ng/g和50ng/g之红茶样品。将2g 红茶样品与2 mL超纯水进行覆水水化后,再加入10mL酸化乙腈萃取液,高速震荡后,以滴加方式推入FaPEx-bkt,以获得样品检液。总处理时间平均不到15分钟/每个样品。即可对检液进行气相串联质谱仪(GC-MS/MS)和液相串联质谱仪分析(LC-MS/MS)。结果显示:超过280种农药平均回收率,范围在70至120%之间,RSD低于20%。应用解决方案及数据,私信索取。(1)仪器分析方法一:气质质层析分析参考条件(2)仪器分析方法二:液质质层析分析参考条件(3)前处理操作步骤(4)表1:红茶样品中380项农药之基质匹配检量线相关系数及回收率和变异系数
  • 7000 三重四极杆后部分析器室
    7000 三重四极杆后部分析器室7000 三重四极杆后部分析器室项目说明单位部件号1高真空润滑脂25 g6040-02892电子倍增器角管—G7000-80103低噪声电子倍增器角管—G3170-80103
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制