测量评定

仪器信息网测量评定专题为您提供2024年最新测量评定价格报价、厂家品牌的相关信息, 包括测量评定参数、型号等,不管是国产,还是进口品牌的测量评定您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测量评定相关的耗材配件、试剂标物,还有测量评定相关的最新资讯、资料,以及测量评定相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

测量评定相关的厂商

  • 公司创立于2002年,早期从事逆向工程设计服务。2010年3月8日更名为苏州卓尔测量技术有限公司,主要从事于第三方尺寸检测服务和逆向工程设计,同时研发、设计、生产计量器具,创立了“衡固” 品牌 ,广泛应用在国内各大计量机构和军工企业,得到一致好评!2013年8月公司获得中国合格评定国家认可委员会实验室认可证书,成为一家拥有专业资质的检测机构。公司凭借优良的检测环境,积极的服务意识,专业的检测技术,致力于为客户提供科、严谨、准确的第三方全尺寸检测验证和数据处理服务。目前,公司拥有一支具备丰富检测经验和管理经验的团队,同时与中国科学计量研究院、辽宁省计量科学研究院等多家科研院所建立了长期的合作关系,为公司不断提高检测服务,新产品研发和技术升级提供了坚强后盾。成为中国顶级的第三方全尺寸检测机构是卓尔追求的目标,依托资深的行业背景和强大的专业技术团队,我们的目标终将会从理想变为现实。
    留言咨询
  • 肯措测量技术(上海)有限公司成立于上海市嘉定区。提供便携式三维激光扫描仪,便携式三坐标测量机,桥式三坐标测量机,齿轮测量中心,光学跟踪仪,振动及位移分析系统,快速成型机等设备及软件的销售。基于15年以上的行业应用经验,以及对各种测量设备、测量软件的深刻理解,可为客户提供三维几何特征及曲面测量检测、三维扫描、逆向工程与设计、快速成型等服务。
    留言咨询
  • 上海博众测量技术有限公司致力于为制药、生命科学、微电子、锂电池、航空航天、钢铁、交通、电力、烟草、空分、净化、除湿干燥等行业的客户提供受控环境、过程气体以及大气环境监测所需的温湿度、露点、压力、二氧化碳及其他气体浓度分析、风速风向等关键控制参数的测量、记录、监测、验证解决方案。我们还可以为客户提供从测量方案设计、测量产品的选型推荐、销售、成套、系统集成、软件编制、IQOQ验证等软硬件产品,并可为所供产品或系统提供在生命周期的内的维保及计量校准服务。因为我们专业、诚信所以值得您的信赖!品牌及合作伙伴:l 芬兰VAISALA : 温湿度、露点、二氧化碳、油中水分、 大气压、风速风向等气象测量产品l 英国MICHELL : 湿度发生器、镜面露点仪、碳氢露点及氧气测量、干燥等标准设备l 美国GE DRUCK : 压力测量传感器及变送器、压力及电信号校验设备l 美国SETRA: 微差压测量变送器、微差压开关、微差压校验仪l 美国TSI: 便携式室内空气参数测试仪器、便携式粉尘仪、质量流量计等l 加拿大VERITEQ :高精度温湿度一体记录仪 、高精度温度度记录仪、热电偶记录仪 模拟 信号记录仪、EMS监测系统、GMP/FDA/GSP温湿度分布、验证l 德国TESTO : 持式多功能测量仪表l Airmonic :温湿度、露点、结露预警、二氧化碳、气象、IAQ、烟气排放、压 力等环境及过程流体的数据测量、传输、监测、记录、分析的方案 提供和系统集成,以及成套业务l Bodhi: 露点测量变送器、二次显示仪表、一体化监测处理系统、一体化测量变送器、便携式采样系统、温湿度监测系统、室内空气品质测量变送器等
    留言咨询

测量评定相关的仪器

  • ZEISSMICURA特点工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,蔡司MICURA正是针对这一全新需求定制的解决方案。小型化与高精度工业生产中的零部件日趋小型化,同时对测量精度的要求也在不断提高,MICURA正是针对这一全新需求定制的解决方案。MICURA采用蔡司VASTXTgold扫描探头与navigator技术,可在主动式扫描时获得微米级的测量精度。它尤其适于测量用于光学和电子产品的结构复杂的小型工件。尽管采用紧凑型设计,系统却具备500x500x500毫米的测量能力——性能远超同类产品。精准的高速扫描蔡司VASTXTgold探头具有高速扫描功能,除可在极短时间测定几何特征外,还可精准测量及评定形状误差如圆度、平面度等特性。探针最小直径仅为0.3毫米。自动测量速度蔡司MICURA采用VASTnavigator技术。该技术可在确保测量精度的前提下自动调节理想的测量速度,从而显著缩短测量时间。在测量精度要求较高的区域,蔡司MICURA的移动速度放缓。当轮廓简单或精度需求较低时,移动的速度更快。VASTnavigator技术还通过切线逼近扫描、螺旋扫描和测针快速动态校准等功能进一步缩短测量时间。操作与人体工学蔡司MICURA的控制面板进行了全新设计。用户可在不使用计算机的情况下,借助一台显示器和两个摇杆进行控制和编程。系统操作简便,即使没有丰富测量机使用经验的用户也可迅速上手。花岗岩台面前侧的台架可将控制面板和工具与测量区域隔离。计算机辅助精度修正:由动态惯性效应引起的测量误差会自动得到补偿工业陶瓷导轨和大型轴承座可将外界环境的影响降低四面环抱的蔡司气浮轴承确保更好的稳定性和测量精度蔡司MICURA同时配备两个工件温度传感器可实现测量力的高效控制,适用于敏感材料控制柜、软件、探头和其他组件均来自蔡司,彼此完美适配
    留言咨询
  • 德国APL 测量/评定 400-860-5168转1921
    测量/评定Climated geometrical measurement lab with&bull 3-D coordinates machine Zeiss Prismo&bull roughness, surface and profile measurement systems&bull cam waer measurement machine&bull valve spring force measurement machine&bull timing chain elongation measuring system&bull SOT and EOT measurements&bull wear evaluation&bull ratings according to national and international standards&bull documentation&bull determination of causes of failure
    留言咨询
  • 广州ISO 3834认证丨焊接工艺评定-专业/快捷焊接工艺评定(Welding Procedure Qualification,简称WPQ) 为验证所拟定的焊件焊接工艺的正确性而进行的试验过程及结果评价。焊接工艺评定是保证质量的重要措施,为正式制定焊接工艺指导书或焊接工艺卡提供可靠依据。目的1.评定施焊单位是否有能力焊出符合相关国家或行业标准、技术规范所要求的焊接接头;2.验证施焊单位所拟订的焊接工艺规程(WPS或pWPS)是否正确。3.为制定正式的焊接工艺指导书或焊接工艺卡提供可靠的技术依据。焊接工艺是保证焊接质量的重要措施,它能确认为各种焊接接头编制的焊接工艺指导书的正确性和合理性。通过焊接工艺评定,检验按拟订的焊接工艺指导书焊制的焊接接头的使用性能是否符合设计要求,并为正式制定焊接工艺指导书或焊接工艺卡提供可靠的依据。适用范围1、适用于锅炉,压力容器,压力管道,桥梁,船舶,航天器,核能以及承重钢结构等钢制设备的制造、安装、检修工作。2、适用于气焊,焊条电弧焊,钨极氩弧焊,熔化极气体保护焊,埋弧焊,等离子弧焊,电渣焊等焊接方法 流程1、焊接工艺评定2、提出焊接工艺评定的项目3、草拟焊接工艺方案4、焊接工艺评定试验5、编制焊接工艺评定报告6、编制焊接工艺规程(工艺卡 工艺过程卡作业指导书) 评定过程1、拟定预备焊接工艺指导书 (preliminary Welding Procedure Specification,简称pWPS)2、施焊试件和制取试样3、检验试件和试样4、测定焊接接头是否满足标准所要求的使用性能5、提出焊接工艺评定报告对拟定的焊接工艺指导书进行评定 评定标准工艺评定的标准国内标准1 NB/T47014-2011 《承压设备用焊接工艺评定》2 GB50236-98 《现场设备,工业管道焊接工程施工及压力管道工艺评定》3《蒸汽锅炉安全技术监察规程(1996)》注:起重行业工艺评定借用此标准4 SY∕T0452-2002《石油输气管道焊接工艺评定方法》(注:供石油,化工工艺评定)5 GB50661-2001 《钢结构焊接规范》(注:公路桥梁工艺评定可参照执行)6 SY∕T4103-2006《钢质管道焊接及验收》7.JB4708-2000《钢制压力容器焊接工艺评定》.欧洲标准EN 288 或ISO 15607 - ISO 15614系列标准ISO15614-1钢的电弧焊和气焊∕镍和镍合金的电弧焊ISO15614-2铝和铝合金的电弧焊ISO15614-3铸铁电弧ISO15614-4铸铝的修补焊ISO15614-5钛和钛合金的电弧焊∕锆和锆合金的电弧焊ISO15614-6铜和铜合金的电弧焊ISO15614-7堆焊ISO15614-8管接头和管板接头的焊接美国标准1.AWSD1.1∕D1.1M:2005 钢结构焊接规程D1.2∕D1.2M:2003 铝结构焊接规程D1.3-98 薄板钢结构焊接规程D1.5∕D1.5M:2002 桥梁焊接D1.6:1999 不锈钢焊接D14.3∕D14.3M:2005 起重机械焊接规程
    留言咨询

测量评定相关的资讯

  • 关于开展首期 “全国学会专业技术人员专业水平评价,分析仪器专业领域工程师级别评定”培训班及考核评定工作的通知
    pimg src="http://img1.17img.cn/17img/images/201710/insimg/80fff129-d8af-4f9a-b067-8aea8c2765bf.jpg" title="1.png"/br//pp相关分析化学检验检测机构、实验室、仪器设备厂家及从业人员:/pp  2015年7月,中共中央办公厅 国务院办公厅印发了《中国科协所属学会有序承接政府转移职能扩大试点工作实施方案》。同年,中国科协发布关于贯彻落实《中共中央办公厅国务院办公厅关于印发 中国科协所属学会有序承接政府转移职能扩大试点工作实施方案 的通知》的意见。中国仪器仪表学会(以下简称学会)于2015年向中国科协提交《关于开展测量控制与仪器仪表工程师资格认证工作的申请报告》,并于同年获批复同意。/pp  学会现定于2017年10-11月开展首期“全国学会专业技术人员专业水平评价,分析仪器专业领域,工程师级别评定”试点工作。经学会授权,由分析仪器分会组织分析仪器工程师培训相关工作。/pp  为更好服务会员,提升分析仪器行业的专业水平,满足会员对职称的现实需求,分析仪器分会定于2017年11月16日在北京举办首期“全国学会专业技术人员专业水平评价,分析仪器专业领域工程师级别评定”培训班。并由学会相关考核评定负责人就考核评定材料填写和辅证材料准备等相关问题进行现场指导。/pp  一、培训内容/pp  1、“全国学会专业技术人员专业水平评价,分析仪器专业领域,工程师级别评定”考核大纲。/pp  2、分析化学专业知识:化学分析基本操作,滴定、重量法、紫外分光光度法,样品前处理及常用设备。/pp  3、数理统计与测量不确定度分析。/pp  4、资质认定及CNAS实验室认可最新进展,实验室运作管理、质量控制。/pp  5、仪器分析光谱专题:原子吸收、原子荧光、电感耦合等离子体发射光谱、分子光谱。仪器分析色谱专题:气相色谱、液相色谱、离子色谱、质谱。根据个人情况光谱或色谱专题二选一。/pp  6、“全国学会专业技术人员专业水平评价,分析仪器专业领域,工程师级别评定”考核评定表填写、考核评定流程介绍、申报材料审核。/pp  二、培训对象/pp  分析化学相关检验检测机构、实验室、仪器设备厂家从业人员,要求分析化学相关专业背景。/pp  三、培训安排/pp  培训时间:2017年11月16日-20日,15日下午报道。/pp  培训地点:北京市工业技师学院北校区北八楼二层会议室(北京市朝阳区化工路甲1号)/pp  四、培训师资/pp  分析仪器工程师专业技术资格认证考核委员会成员,考核大纲编写组成员 资质认定和实验室认可资深评审员 光谱、色谱专业领域资深专家。/pp  五、培训及考核评定费用/pp  1、本次培训收取每人次3000元人民币(含培训费、教材资料费、午餐费)。/pp  2、考核评定收取每人次1500元人民币(含考核评定费、证书费)。/pp  3、其他食宿学员自理。/pp  六、培训证书:/pp  经培训考试合格、通过评审,颁发“分析仪器工程师”资格认证书。/pp  七、培训、考核评定联系/pp  联系人:朱凌云(13901070538,zcpd@fxxh.org.cn)/pp  账户名称:精信益佰质检技术服务(北京)有限公司/pp  开户银行:工商银行石景山区北新安支行/pp  银行账号:0200005809200094370/pp /pp  特此通知。/pp style="text-align: right "img src="http://img1.17img.cn/17img/images/201710/insimg/28117a8b-8ee9-4cb9-bb3f-aabe7f79b41f.jpg" title="2.png"//pp style="text-align: left "附:/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/6be81e09-20a2-4674-a55f-2792493af631.pdf"分析仪器工程师培训及考核评定通知20171026.pdf/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/55f9c9db-e6e1-49ce-982a-8985e4604a81.docx"分析仪器工程师培训课程安排.docx/a/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/d4211bb2-20eb-4011-8fec-e79dff8defea.docx"中国仪器仪表学会专业技术人员专业水平评价申请表.docx/a/pp style="text-align: left "br//p
  • 百特研发中心被评定为省级企业技术中心
    日前,经辽宁省经济和信息化委员会、财政厅、教育厅和地方税务局四部门联合评定,丹东百特仪器有限公司研发中心被评定为辽宁省省级企业技术中心。 丹东百特创立二十多年来,专注于粒度测试技术创新研究、粒度仪器制造和推广应用工作。早在2005年就成立了研发中心,先后获得了43项专利,14项软件著作权,100多项仪器制造及应用的专有技术。目前,百特研发中心面积达1200平方米,20多位研发工程师,技术门类涵盖移动端、软件、图像处理、静态与动态激光散射、光学、粉体物性测试、机械设计等技术以及工艺和应用研究等。其中激光粒度仪双镜头技术、激光/图像二合一技术、粉体材料折射率测量技术、正反傅里叶结合技术、超声波防干烧技术、精密自动对中技术等为世界首创,它们使百特粒度仪达到世界先进水平。 在自主创新的同时,百特研发中心还加大与国内外高校的合作力度,先后与华南师范大学、华南理工大学、东南大学、上海理工大学、天津大学、辽东学院等国内外著名高校进行了多种形式的合作。其中百特与华南师范大学的“动态光散射技术”、“环境空气监测系统”、“Zeta电位测试技术”等合作项目已经实现产业化,与其他高校的合作成果也都得到了广泛的应用。合作不仅加快了科学技术转化为生产力的步伐,也为百特研发中心提供了源源不断的动力。 创新成就发展,创新拥抱未来!百特研发中心将一如既往,开动脑筋想办法,撸起袖子加油干,不负省级技术中心的使命,为百特创国际知名粒度仪品牌提供更多的技术支撑,为广大用户提供更专业的技术支持与服务。
  • 首期分析仪器工程师级别评定培训及考核工作即将开启
    p  日前,中国仪器仪表学会分析仪器分会发布“全国学会专业技术人员专业水平评价,分析仪器专业领域工程师级别评定”培训班及考核评定工作的通知。/pp  根据通知内容,2015 年7 月,中共中央办公厅 国务院办公厅印发了《中国科协所属学会有序承接政府转移职能扩大试点工作实施方案》。同年,中国科协发布关于贯彻落实《中共中央办公厅 国务院办公厅关于印发 中国科协所属学会有序承接政府转移职能扩大试点工作实施方案 的通知》的意见。中国仪器仪表学会(以下简称学会)于2015 年向中国科协提交《关于开展测量控制与仪器仪表工程师资格认证工作的申请报告》,并于同年获批复同意。/pp  学会现定于2017 年10~11 月开展首期“全国学会专业技术人员专业水平评价,分析仪器专业领域,工程师级别评定”试点工作。经学会授权,由分析仪器分会组织分析仪器工程师培训相关工作。/pp  为更好服务会员,提升分析仪器行业的专业水平,满足会员对职称的现实需求,分析仪器分会定于2017 年11 月16 日在北京举办首期“全国学会专业技术人员专业水平评价,分析仪器专业领域工程师级别评定”培训班。并由学会相关考核评定负责人就考核评定材料填写和辅证材料准备等相关问题进行现场指导。/ppstrong  培训内容/strong/pp  1、“全国学会专业技术人员专业水平评价,分析仪器专业领域,工程师级别评定”考核大纲。/pp  2、分析化学专业知识:化学分析基本操作,滴定、重量法、紫外分光光度法,样品前处理及常用设备。/pp  3、数理统计与测量不确定度分析。/pp  4、资质认定及CNAS 实验室认可最新进展,实验室运作管理、质量控制。/pp  5、仪器分析光谱专题:原子吸收、原子荧光、电感耦合等离子体发射光谱、分子光谱。仪器分析色谱专题:气相色谱、液相色谱、离子色谱、质谱。根据个人情况光谱或色谱专题二选一。/pp  6、“全国学会专业技术人员专业水平评价,分析仪器专业领域,工程师级别评定”考核评定表填写、考核评定流程介绍、申报材料审核。/ppstrong  培训对象/strong/pp  分析化学相关检验检测机构、实验室、仪器设备厂家从业人员,要求分析化学相关专业背景。/ppstrong  培训安排/strong/pp  培训时间:2017年11月16日-20日,15日下午报道。/pp  培训地点:北京市工业技师学院北校区北八楼二层会议室(北京市朝阳区化工路甲1号)/ppstrong  培训师资/strong/pp  分析仪器工程师专业技术资格认证考核委员会成员,考核大纲编写组成员 资质认定和实验室认可资深评审员 光谱、色谱专业领域资深专家。/ppstrong  培训及考核评定费用/strong/pp  1、本次培训收取每人次3000元人民币(含培训费、教材资料费、午餐费)。/pp  2、考核评定收取每人次1500元人民币(含考核评定费、证书费)。/pp  3、其他食宿学员自理。/ppstrong  培训证书:/strong/pp  经培训考试合格、通过评审,颁发“分析仪器工程师”资格认证书。/ppstrong  培训、考核评定联系/strong/pp  联系人:朱凌云(13901070538,zcpd@fxxh.org.cn)/pp  账户名称:精信益佰质检技术服务(北京)有限公司/pp  开户银行:工商银行石景山区北新安支行/pp  银行账号:0200005809200094370/pp  更多详情请参见附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201710/ueattachment/76316c83-65e4-47f6-b9cd-4c552c021641.pdf"strong分析仪器工程师培训及考核评定通知20171026.pdf/strong/a/p

测量评定相关的方案

  • 纺织品中农药残留量测量不确定度评定
    依据GB/T 18412.1-20066纺织品农药残留量的测定第1部分:77种农药》,采用超声波萃取和气相色谱-质谱(GC-MS)联用法对纺织品中农药残留量进行测量,分析和评定测定过程中影响结果的各个不确定度分量。试验结果表明,纺织品中α -六六六的扩展不确定度为U=1.54(μ g/g),相对扩展不确定度为19%。该试验表明,该测量过程所产生的不确定度主要来源于重复性、标准曲线和萃取液体积三方面。
  • 泰林生物:薄膜—电导率法总有机碳分析仪测量结果不确定度的评定
    摘要 目的:建立薄膜—电导率法总有机碳分析仪测量结果不确定度的评定方法。方法:分析了测量过程中不确定度的主要来源,即工作曲线的不确定度、测量仪器读数分辨率导致的不确定度、测量不重复性引起的不确定度、标准溶液引起的不确定度等,分别量化后合成标准不确定度,得到总有机碳测量的扩展不确定度。结果:通过对HTY-2500总有机碳分析仪在2000μg• L-1测量点测量结果不确定度的评定,其扩展不确定度为U95 = 49(μg• L-1)(k=2)。结论:本方法所建立的测量结果不确定度评定方法准确、可靠,可为薄膜-电导率法总有机碳分析仪的测量结果不确定度评定提供较为准确简便的方法。关键词:总有机碳;测量不确定度;薄膜—电导率法中图分类号:R917 文献标识码:A 文章编号:0254-1793(2008)12-0-0Evaluation of Measurement Uncertainty for the Total Organic Carbon Analyzer with Membrane Conductmetric Detection Technology YAN Xiang-qing1,WU Xu-mei2(1.Zhejiang Province Institute of Metrology, Hangzhou, 310013, China 2. Hangzhou Tailin Bioengineering Equipments Co. LTD, Hangzhou, 310052, China)Abstract: Purpose: The article set up an evaluation method of measurement uncertainty for the total organic carbon analyzer with membrane conductmetric detection technology. Method: The article analyzed the main resources of the uncertainty of the measurement, which include uncertainty of the working curve, uncertainty of the resolution ratio of the instrument, uncertainty of measure unrepeatability, uncertainty of standard solution, etc. It quantified these uncertainties respectively and composed them to a standard uncertainty. Finally it got the expanded uncertainty of the total organic carbon measurement. Result: It evaluated the measurement uncertainty of the total organic carbon analyzer at 2000μg• L-1 and got the expanded uncertainty which is U95 = 49(μg• L-1)(k=2). Conclusion: The evaluation method of measurement uncertainty set up by the article is accurate, reliable, and it can offer comparatively exact and convenient method for measurement uncertainty evaluation of the total organic carbon analyzer with membrane conductmetric detection technology. Key words: total organic carbon uncertainty of a measurement membrane-conductometric detection technology
  • AQUALAB水活度仪法不确定度评定
    一、 评定对象水活度仪法测试结果的不确定度评定 。 二、测量方法 1.测量过程 用AquaLab水活度仪按SZAS一340一A0—2oo6(食品中水活度(A )检测方法——Aqualab水活度仪法》分别对氯化 锂 、氯化镁 、碳酸钾 、硝酸镁 、氯化钠 、氯化钾 、硫酸钾7种盐 饱和溶液读数测量水活度‰值。读数测量结果见表 1。

测量评定相关的资料

测量评定相关的论坛

  • 测量不确定度的评定

    [align=center][b]测量不确定度的评定[/b][/align][align=center] [/align] 测量不确定度的评定,是科学处理实验数据的有效方法,虽然比较难以理解和繁琐,但却能提高实验室检测数据的可靠性和准确度。[b]一 、测量不确定度有关概念[/b] 测量不确定度的专业技术性比较强,评定测量不确定度用到的相关术语有:真值、量值、量纲、偏差、相对误差、随机误差、系统误差、修正值、修正因子、置信概率、包含因子、扩展不确定度、标准不确定度、合成标准不确定度等。[b]二 、测量不确定度的基础知识[/b] 为了能统一地评价测量结果的质量,1963年原美国标准局专家埃森哈特首次提出不确定度概念引起国际上轰动,经过多年探讨发展,1986年由国际七大组织(国际计量局、国际电工委员会、国际标准化组织、国际法制计量组织、国际理论和应用物理联合会、国际理论和应用化学联合会、国际临床化学联合会)成立工作组共同起草测量不确定度文件,于1993年发布实施。我国于1999年发布JJF1059-1999《测量不确定度评定与表示》,近年又发布一系列新标准,例如《测量不确定度评定与表示》(JJF1059.1-2012)、《用蒙特卡洛法评定测量不确定度》(JJF1059.2-2012)、《检测实验室中常用不确定度评定方法与表示》(GB/T27411-2012)。评定测量不确定度主要运用到统计学、概率、微积分、对数、几何等进行计算。[b]三、 测量不确定度的评定程序[/b] 由于测量不确定度会受到许多因素的影响,因此通常不确定度是由多个分量组成,对一个分量都要评定标准不确定度,它们的评定方法可分A、B两类,其标准不确定度均以标准偏差表示。我们实验室采用A类评定和B类评定的情况都存在。评定程序可分为:(一)找出所有影响测量不确定度的来源(二)建立满足测量不确定度评定所需的数学模型(三)确定各输入量的标准不确定度(四)列出不确定度分量汇总表(五)计算合成标准不确定度(六)确定被测量可能值的分布的包含因子(灵敏系数)(七)确定扩展不确定度(八)给出测量不确定度报告[b]四 、测量不确定度的应用范围[/b] 测量不确定度是对测量结果可能产生误差的怀疑,一个完整的测量结果除了应给出被测量的最佳估计值外,还应同时给出测量结果的不确定度。其主要应用领域是:(一)建立国家基准、计量标准、及其国际比对(二)标准物质、标准参考数据(三)测量方法、检定规程、检定系统、和校准规范(四)科学研究和工程领域的测量(五)计量认证、计量确认、质量认证以及实验室认可(六)测量仪器的校准和检定(七)生产过程的质量保证以及产品检验和测试(八)贸易结算、医疗卫生、安全防护、环境检测及资源测量[b]五、总结[/b] 不确定度评定与表示,牵涉到实验室的很多方面,比如仪器、器皿、方法等,最后计算出一个合成不确定度,要考虑到方方面面,计算复杂。不确定度,既代表了一个实验室数据表达水平,也让实验室出具的报告数据更符合法律法规要求。

  • 【资料】测量误差与不确定度评定(范例:常用玻璃量器比对测量结果不确定度评定)

    请各位同仁到资料中心下载 http://www.instrument.com.cn/download/shtml/062569.shtml测量误差与不确定度评定一、测量误差1、测量误差和相对误差(1)、测量误差(2)、相对误差2、随机误差和系统误差(1)、随机误差(2)、系统误差3、修正值和偏差(1)、修正值和修正因子(2)、偏差二、测量不确定度的评定与表示1、测量不确定度(1)测量不确定度来源(2)标准不确定度和标准[偏]差2.不确定度的A类、B类评定及合成 (1) 不确定度的A类评定 (2) 不确定度的B类评定 (3) 合成标准不确定度3.扩展不确定度和包含因子 (1)扩展不确定度 (2)包含因子和自由度4.测量不确定度的评定和报告 (1)测量不确定度的评定流程三、测量误差与测量不确定度范例:常用玻璃量器比对测量结果不确定度评定

  • 原创:测量不确定度的评定方法

    稿件来源:《新三思通讯》特邀顾问:周兆丰鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。(一) 测量不确定度的概念《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。关于测量不确定度的定义,过去曾用过:① 由测量结果给出的被测量估计的可能误差的度量;② 表征被测量的真值所处范围的评定。第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。 现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。(二) 不确定度的来源在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面:① 对被测量的定义不完善;② 实现被测量的定义的方法不理想;③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量;④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;⑤ 对模拟仪器的读数存在人为偏移;⑥ 测量仪器的分辨力或鉴别力不够;⑦ 赋予计量标准的值或标准物质的值不准;⑧ 引用于数据计算的常量和其他参量不准;⑨ 测量方法和测量程序的近似性和假定性;⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本身概念不明确。(三) 测量不确定度的分类尽管测量不确定的有许多来源,但按评定方法可将其分为二类:(1) 不确定度的A类评定用对测量列进行统计分析的方法来评定的标准不确定度,称为不确定度的A类评定,也称A类不确定度评定,有时可用 表示。(2) 不确定度的B类评定用不同于对测量列进行统计分析的方法来评定的标准不确定度,称为不确定度的B类评定,也称B类不确定度评定,有时可用 表示。实践中,可以简单地说,测量不确定度按其评定方法可分为两类:A类——用统计方法评定的分量;B类——用非统计方法评定的分量。用统计方法评定的A类不确定度,相应于传统的随机误差;而用非统计方法评定的B类不确定度,则并不相应于传统的系统误差。故不宜采用“随机不确定度”和“系统不确定度”的提法。(四) 测量不确定的评定方法 1. 技术依据(1) JJF1059—1999《测量不确定度评定与表示》;(2) GJB3756—1999《测量不确定度的表示及评定》;(3) 七个国际组织(BIPM、IEC、ISO、OIML、IUPAC、IUPAP、IFCC)于1993年制定的测量不确定度表示指南。2. 评定步骤为评定测量结果的不确定度或提供测量不确定度评定的报告,一般可按下列步骤进行。(1) [测量过程]概述;(2) 建立数学模型;(3) 输入量的标准不确定度评定; 标准不确定度的A类评定 标准不确定度的B类评定(4) 合成标准不确定度的评定;(5) 扩展不确定度的评定;(6) 测量不确定度的报告与表示。3. [测量过程]概述这部分可简单说明下列一些测量条件和情况:(a) 测量依据;(b) 测量环境条件;(c) 测量标准及其主要计量特性;(d) 被量对象及其主要性能;(e) 测量参数(项目)与简明测量方法;(f) 其他有关说明,包括评定结果的使用。如在规范化的常规测量中,本测量不确定度评定结果可直接用于重复性条件下或复现性条件下的测量结果。4. 建立数学模型所谓建立数学模型,就是根据被测量的定义和测量方案,确立被测量与有关量之间的函数关系。通常,一个被测量可能要依赖若干个有关量,只有确定了所依赖的各有关量的值才能得出被测量的值;只有评定了所依赖各量的不确定度,才能得出被测量值的不确定度。也可以说,数学模型实际上给出了被测量测得值不确定度的主要来源量。(1) 根据测量方法和测量程序建立数学模型,即确定被测量Y(输出量)与其它量(输入量) , ,..., 间的函数关系:Y=f( , ,..., )           (1)输入量通常是一些直接可测的量,物理量或有关其它量(如修正量)。表示不确定度或误差区间的量不能作为输入量,它们只是有关输入量的不确定度来源。   ……………………这是周兆丰前辈专为《新三思通讯》所撰写的文章。曾经令无数试验机行业人士无限感激,也帮助过很多人。茱茱愿意再次在此奉献出来,希望能帮助在这里的各位网友。文章很长,因专业求语无法粘贴,故请需求者来信索取:sans_tongxun@sans.com.cn 谢谢!请支持民族工业!

测量评定相关的耗材

  • AdlOptica πShaper 平顶光束整形器
    AdlOpticaπShaper平顶光束整形器将高斯光束轮廓转换为平顶轮廓近100%的效率无内对焦,可实现高功率激光输入另外提供AdlOpticaFocal-πShaperQ对焦平顶光束整形器通用规格安装螺纹:M27x1AdlOpticaπShaper平顶光束整形器是一种折射型光场映射光学系统,可使准直高斯输入光束转换为一个拥有均匀光强分布的平顶光束。采用这种光场映射光学设计,经转换后的光束拥有平坦的光强分布,在很远的距离上都能保持稳定,非常适用于全息摄影,显微镜和系统集成。设备不带内部对焦功能,它还适用于材料微加工,焊接和高功率激光器雕刻等应用。这款平顶光束整形器拥有多种设计波长,可用于YAG激光,光纤激光和CO2激光源。在一定波长范围内,整形器具有消色差功能,适用于激光调谐和多激光源。产品信息波长范围(nm)类型产品编码250-275BeamShaper#34-255330-380BeamShaper#34-256405-680BeamShaper#12-644510-550BeamShaper#34-257700-900BeamShaper#36-649700-900BeamShaper#14-2791020-1100BeamShaper#34-2581100-1700BeamShaper#12-6911500-1600BeamShaper#37-7001900-2160BeamShaper#12-24210000-11000BeamShaper#34-25910000-11000BeamShaper#34-260技术数据
  • WA5810D型测量放大器
    概述:采用数字真有效值检波专利技术的数显声频传声器放大器,包含A、C和Z频率计权特性,符合GB3785.1标准对1级声级计的要求。测量频率范围可延伸到40 kHz或80 kHz。通过前面板LEMO 7芯插座,可连接到传声器前置放大器和1/2英寸或1英寸测试电容传声器,组成1级声级计用于声学测量。还有直接输入插孔,可连接到加速度计前置放大器,也可用作一般高灵敏度声频电子电压表,测量真有效值(RMS)电压。是一种用途广泛的实验室用声学、振动、电压测量仪器,可以代替进口测量放大器作为声学计量使用。特点:1:动态范围大(110 dB),测量时不需更换量程;2:精度高,稳定性好,数字显示电压5位数,声压级读数至0.01 dB,不需另加数字电压表提高读数精度;3:可以将某一测量值设置为参考0 dB,直接读出其它测量值与它相比的增益或衰减dB数;主要性能指标执行标准:IEC61672:2002Class1,GB/T3785-20101级频率计权:A,C,Z时间计权:16ms、F、S、8秒量程:316mV,1V,3.16V,10V窗函数(选配功能):矩形窗、汉宁窗、平顶窗、布莱克曼窗参考量程:10V参考量程级线性范围:110dB电压测量范围:15μV到10V信号输入:直接输入(BNC插座),前置输入(LEMO7芯插座), ICP前置输入(BNC插座)信号输入阻抗:1MΩ输入保护:±18V恒流源供电:18V、2mA信号输出:交流输出(BNC插座),直流输出(BNC插座),RS-232C(DB9M插座)内部参考信号:1kHz,50mV,失真小于1%。内部电池:免维护铅酸充电电池,插入外接电源即开始充电。充满电后可连续使用20小时以上。外接电源:220V或110V,50Hz或60Hz功耗:小于10W。工作温度:0℃~40℃相对湿度:20%~90%
  • AdlOptica Focal-πShaper Q对焦平顶光束整形器
    AdlOptica Focal-πShaper Q对焦平顶光束整形器AdlOptica Focal-πShaper Q Flat Top Beam Shapers将高斯光束整形为艾里斑轮廓平顶或圆环形输出光束轮廓效率接近 100%另外提供AdlOpticaπShaper 平顶光束整形器通用规格透射率 (%) :99Input Beam Mode:TEM00Typical Input Beam Mode Quality, M2:Input Beam Divergence (mrad):±20AdlOpticaFocal-πShaper Q 对焦平顶光束整形器用于将高斯光束转换成艾里斑轮廓,从而控制激光光斑的强度分布。输出光束几乎 100% 有效整形为一个平顶或圆环形光束轮廓。在平顶光束整形器之后聚焦光束会导致平顶廓形丢失。 对焦平顶光束整形器通过生成艾里斑光束轮廓,为获得平顶光束提供了另一种解决方案。这些光束整形器设计紧凑,并带有内螺纹和外螺纹,便于集成到设备中。AdlOpticaFocal-πShaper Q 对焦平顶光束整形器适用于微机械加工(包括划线和 PCB 钻孔)应用以及微焊接应用中的光束整形。Nd:YAG波长有多种型号,输入光束直径最小可达 3mm,最大可达 23mm。产品信息波长范围 (nm)类型CA (mm)产品编码335 - 560Beam Shaper20#12-238335 - 560Beam Shaper20#12-239335 - 560Beam Shaper20#12-2401020 - 1100Beam Shaper20#12-2301020 - 1100Beam Shaper20#12-2311020 - 1100Beam Shaper20#12-2321020 - 1100Beam Shaper20#12-2331020 - 1100Beam Shaper38#12-2361020 - 1100Beam Shaper38#12-237技术数据
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制