光斩波器

仪器信息网光斩波器专题为您提供2024年最新光斩波器价格报价、厂家品牌的相关信息, 包括光斩波器参数、型号等,不管是国产,还是进口品牌的光斩波器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光斩波器相关的耗材配件、试剂标物,还有光斩波器相关的最新资讯、资料,以及光斩波器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光斩波器相关的厂商

  • 广州神科光电有限公司广州神科光电科技有限公司主要从事国内外各知名品牌激光、光电子、光纤、光学仪器和光纤通讯等高校/研究所以及企业所需产品的设计、引进、咨询和经销。我们以品种齐全,交货快捷,价格合理,服务周到,逐渐得到广大科研用户的认可和支持。经过数年的勤奋拼搏,目前已经成为中国最大的光电子产品供应商之一。公司自主研发产品:分布式光纤温度感温器——被大量的应用到智能建筑的防火监控;未来数字家电产品的相关温度/湿度/压力等的传感;消防/隧道/大坝/科研/石油勘探等各个行业领域 锁相放大器——微弱信号检测,在科研和工业领域有大量应用 公司主营产品:各种超快光纤激光器(如大功率光纤激光器、纳秒/皮秒/飞秒光纤激光器,窄线宽光纤激光器等)半导体激光器(连续/脉冲激光器)光纤放大器(EDFA)特种光纤(掺铒光纤,非线性光纤,保偏光纤,聚酰亚胺涂层光纤等)光无源器件(光纤合束器MFPC,光纤耦合器,波分复用器WDM,隔离器,法拉第镜,环形器,谐振腔等)光测量产品(光纤识别仪,可视故障仪,TIA光电转换器,光时域发射仪OTDR,光学斩波器,光纤激光转计,模拟数字光纤链接机,光谱仪等)光纤传感器(Snkoo分布式光纤感温系统)光纤通信器件(数字可调/手动可调衰减器,录波器,偏正控制器,光纤延迟线,保偏耦合器,偏振旋转片,光纤光电探测器,偏振合束器/分束器。其他光电应用解决方案与产品DTS 分布式光纤感温系统/FBG 光纤光栅温度/FBG 光纤光栅应变系统光学精密位移台/光学机械附件/光学实验仪器/光纤调节架等应用光学/近代物理光学等实验室课程解决方案OTDR 光纤测量系统/锁相放大器系统实验室用各种SOI 硅/Si/Ge/GaAs/GaSb/蓝宝石/InAs 片激光防护镜,各种光学用滤光片如需深入了解可联系:13760786617 联系人:罗先生 QQ:1284920222公司网页:www.snkoo.com
    留言咨询
  • 上海隽撷科学仪器有限公司,坐落于人工智能创新示范区的上海市闵行区马桥镇,毗邻上海交通大学、华东师范大学和中国航天科技集团公司第八研究院,专业从事激光与光电子产品的代理和销售。团队成员具有十余年丰富从业经验,秉承专业、专心、专注理念,致力于为光电行业提供先进的仪器和设备。主要产品:Excelitas(原AXSUN)高速扫频激光器,AlazarTech高速数据采集卡,SLD/SLED宽带光源、半导体激光器、固体激光器、光纤激光器、光纤放大器、空间光调制器、波前传感器、激光功率/能量计、光电探测器、激光观察镜、光学斩波器、光无源器件等等。
    留言咨询
  • 400-860-5168转4929
    广州赛恩科学仪器有限公司(原中大科仪)始创于2001年,是全球范围内技术领先的一家专业从事微弱信号检测技术、研发微弱信号检测仪器仪表及配套设备的高科技企业。赛恩科仪专注微弱信号检测近二十年,拥有国际一流水平的先进技术,以及自主核心的知识产权,已获得数十项专利,发表近百篇学术论文及期刊,填补了国家在微弱信号检测领域的技术空白。 赛恩科仪推出了多种类型的锁相放大器,涵盖低频到高频的各个频段,产品全面覆盖国际同行,同时还推出了光学斩波器、前置放大器、微弱信号检测教学实验箱等一系列产品,为国内众多高校及企业解决各类问题,同时产品远销海外(多伦多大学、斯坦福大学、麻省大学等),深受国内外客户的一致好评。我们致力为用户提供全面的技术支持和解决方案,满足用户特殊定制需求。未来几年,我们将推出可定制通道数的锁相放大器,阻抗分析仪,太阳能IV测试仪等一系列产品。 每一款产品从定义、设计阶段起即进行严格规范,每个环节均进行全面测试;产品原料在采购、存运、SMT等环节均按国际标准进行严格把控,每台出厂的仪器均有独立的校准及老化测试,以保障产品质量。 赛恩科仪的研发团队源于中山大学的广东省集成电路工程技术研究中心,与中山大学电力电子及控制技术研究所、中山大学太阳能系统研究所、中山大学光电材料与技术国家重点实验室等众多单位联合研发,与国内外众多高校、高新企业有着紧密的合作关系。公司拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,同时具有微电子、物理、光学等综合应用背景及十多年的积累。 赛恩科仪的企业口号是“做高性能的科学仪器,提供专业可靠的技术服务!”。我们目标是打破国外企业对微弱信号检测等高新技术的垄断,超越国外同行,成为微弱信号检测领域的领军企业!

光斩波器相关的仪器

  • 光学斩波器的主要作用是将连续光调制成为有固定频率的光,同时输出调制频率。通常是与锁相放大器配合使用。光学斩波器一般由如下几个部件构成 :控制单元、斩波装置、斩波片和连接线等。Model-300CD 型光学斩波器主要特性■ 5 Hz~3k Hz标准频率范围,可扩展到15m Hz~40k Hz范围■ 开放式的斩波装置■ 频率稳定性:±0.1%■ 斩波片直径:102mm■ 斩波片经光化学腐蚀(发黑)和消磁处理Model-310CD 高速型光学斩波器主要特性■ 100 Hz~120k Hz频率范围■ 频率稳定性:±0.1%■ 斩波片直径:102mm■ 斩波片经光化学腐蚀(发黑)和消磁处理Model-340CD 大盘型光学斩波器主要特性■ 5 Hz~220 Hz频率范围■ 频率稳定性:±0.1%■ 斩波片直径:200mm■ 斩波片经光化学腐蚀(发黑)和消磁处理■ 可选开放式或封闭式结构Model-350CD /360CD 超小型光学斩波器主要特性■ 5 Hz~14kHz频率范围■ 频率稳定性:±0.1%■ 斩波片直径:30mm■ 斩波片经光化学腐蚀(发黑)和消磁处理■ Model-360CD为OEM模块SR540 型光学斩波器SR540 型光学斩波器是美国 SRS 公司的产品,该产品采用内外孔双频设计,并可实现双频按指定模式工作,非常方便应用在双光束光学实验中。SR540 型光学斩波器主要特性■ 频率范围:4Hz~3.7kHz(5/6孔:4Hz-400Hz;25/30孔: 400Hz-3.7kHz)■ 频率输出精度:2%■ 相位稳定度:0.2°-0.5°■ 开放型斩波装置■ 斩波片经光化学腐蚀(发黑)和消磁处理Model-C995 型光学斩波器主要特性■ 带有外控触发功能,TTL,4Hz~5kHz■ 频率范围:4Hz~5kHz(内孔:4Hz-500Hz;外孔:500-5kHz)■ 频率输出精度:0.0025%■ 相位稳定度:0.1-1%■ 紧凑型、开放型两种斩波装置可选■ 斩波片经光化学腐蚀(发黑)和消磁处理■ RS-232计算机控制接口
    留言咨询
  • 光学斩波器 400-628-5299
    ■ Model-300CD型光学斩波器 Model 300CD型斩波器是Scitec Instruments公司的一款高性能的多频光学斩波器。它的基本系统由一下几个部件构成:控制单元(300CDU)、斩波装置(300H)、连接线(300I)、斩波片(300D);可以提供5~3k Hz的频率范围,经扩展后频率范围更可达到15m Hz~40k Hz,从而也能满足更多试用需求。该型号斩波器可与Model 420锁相斩波器完美搭配。主要特性5 Hz~3k Hz标准频率范围,可扩展到15m Hz~40k Hz范围控制单元的选择紧凑型斩波装置低噪声、低摇摆斩波片经光化学腐蚀(发黑)和消磁处理不同孔径斩波片可供选择 控制单元(300CDU)输出电压:最大15V交流电稳定性:± 0.01%/º C频率控制:内控10档分压计手动控制 外控0~15V BNC连接头频率读出:5位LED数字显示(提供0.1Hz和1Hz两种读出分辨率供选择)频率稳定性:最大频率的± 0.1%参考信号输出:通过BNC连接头输出5V HCT TTL信号外形尺寸:254(W)*76(H)*178(D)mm自重:2.6 kg 斩波装置(300H)电机:11极直流电机、袖珍轴承、超过6000小时使用寿命、转速0~6000rpm参考频率提取:红外LED和双稳态触发的光敏管对外形尺寸:73.0(H)*74.7(L)*32.0(W)mm(不含斩波片)斩波片装置(300D)型号:提供2、5、10和30孔四种型号材质:半硬度的黄铜制品,0.5mm厚度直径:102mm表面处理:化学发黑Mark-Space比:1﹕1频率范围表型号频率(Hz)孔径(mm)最大相位跳动rabd300D25-20032.077.026.732.0± 0.2º 300D512.5-50032.030.810.723.1± 0.5º 300D1025-100032.015.45.413.2± 1º 300D3075-300032.05.11.84.8± 3º ■ Model-C995型光学斩波器Model-C995型光学斩波器是英国Scitec公司的一款带有外控触发功能的光学斩波器。主要功能参数:◆ 带有外控触发功能,TTL,4Hz~5KHz◆ 频率范围:4Hz~5KHz(内孔:4Hz~500Hz;外孔:500~5KHz)◆ 频率输出精度:0.0025%◆ 相位稳定度:0.1~1%◆ 紧凑型、开放型两种斩波装置可选◆ 斩波片经光化学腐蚀(发黑)和消磁处理◆ RS-232计算机控制接口 ■ SR540型光学斩波器 SR540型光学斩波器是美国SRS公司的产品,该产品采用内外孔双频设计,并可实现双频按指定模式工作,非常方便应用在双光束光学实验中。主要功能参数:◆ 频率范围:4Hz~3.7KHz(内孔:4Hz~400Hz;外孔:400~3.7KHz)◆ 频率输出精度:2%◆ 相位稳定度:0.2° ~ 0.5° ◆ 开放型斩波装置◆ 斩波片经光化学腐蚀(发黑)和消磁处理
    留言咨询
  • 光学镜头光谱透过率检测系统■ 该系统测量光学镜头的光谱透过率(光学镜头透过率10%)■ 可测镜头口径:&Phi 8~&Phi 150mm(通过光阑变化选择),最大长度600mm■ 300mm焦距三光栅单色仪,自动扫描和光栅切换■ 光谱范围:380~2500nm■ 自动控制电移台,调节被测光学系统沿光轴移动到合适位置■ 溴钨灯光源,带斩波器和高稳定稳流电源■ 透过率准确度:± 2% (光学镜头透过率10%)■ 谱仪控制软件和滤光片轮控制软件、输出数据的采集和分析计算软件、测量参数自动保存,并可直接打印
    留言咨询

光斩波器相关的资讯

  • HEPS首台X射线热负载斩波器完成出厂验收
    6月26日,中国科学院高能物理所高能同步辐射光源(HEPS)结构动力学线站X射线热负载斩波器完成了出厂测试,斩波器工作转速10~50Hz,静态极限真空度优于1×10-5Pa@10Hz,振动烈度0.05mm/s@10Hz,相位控制精度优于±0.018°(±5μs@10Hz),标志着自主研制的国内首台X射线热负载斩波器达到了出厂验收要求。   HEPS结构动力学线站专注于动态非可逆过程的超快时间分辨探测,需要极高强度的X射线束流,同时也带来极高的热功率密度,最高可达644W/mm2(热功率1.1kW)。热负载斩波器可从时间尺度上对束流进行调控,是结构动力学线站等高热负载白光/粉光束线所不可缺少的关键设备,主要用于降低X射线高热功率对光学元件和样品的损伤,目前仅国外极少数厂家可以提供,价格昂贵且不利于长期运行维护。高热负荷对机械式斩波器是巨大的挑战,在HEPS团队协助下,高能所东莞研究部王平、蔡伟亮等研究人员带领斩波器团队,通过三年的关键技术攻关,解决了转动体冷却、旋转流体和真空动密封、动平衡和机械振动、高精度同步运动控制等技术难题。   HEPS结构动力学线站负责人张兵兵表示,自主研制X射线热负载斩波器的成功,为HEPS超快时间分辨探测实验奠定了基础,也为应对第四代同步辐射光源高热功率问题发挥重要作用。图1 静态真空度和相位控制精度测试结果图2 验收现场
  • 基于步进扫描的光调制反射光谱方法及装置获国家专利授权
    近日,一种“基于步进扫描的光调制反射光谱方法及装置”近日获得国家知识产权局专利授权。该专利由中科院上海技术物理研究所邵军、陆卫等科研人员发明。该装置包括傅立叶变换红外光谱测量系统、作为泵浦光源的激光器、以及联结傅立叶变换红外光谱仪中探测器与电路控制板的锁相放大器和低通滤波器,置于样品与激光器之间光路上的斩波器,从而使连续泵浦激光变为调制激光,并馈入锁相放大器的输入参考端来控制锁相。该方法使用上述装置进行光调制反射光谱测量,包括消除泵浦光的漫反射信号以及泵浦光产生的光致发光信号的干扰;消除傅立叶频率和增强中、远红外波段微弱光信号的探测能力三个功能。经过对分子束外延生长GaNxAs1-x/GaAs 单量子阱样品和Ga1-xInxP/AlGaInP多量子阱材料的光调制反射光谱实际测试。表明本发明显著提高探测灵敏度和光谱信噪比,并具有快速、便捷的优点,特别适用于中、远红外光电材料微弱光特性的检测。
  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁

光斩波器相关的方案

光斩波器相关的资料

光斩波器相关的论坛

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 【原创】近红外波长瓦斯浓度检测技术

    近红外波长瓦斯浓度检测技术 检测在煤炭、化工、石油和其它工业,尤其在矿物质的开采中极为重要。瓦斯气体是一种可燃、可爆性气体,其爆炸上限为15Vol%,下限为5Vol%。 其引发的事故在矿山开采历史上造成了极大的危害。很久以来各国科学工作者对瓦斯浓度的测量作了不懈的努力。现已研制出的干式、湿式气敏元件、热电阻瓦斯传感器、半导体气敏元件等都在瓦斯浓度检测中起到了良好的作用,大大降低了瓦斯事故发生率。 近几年来,光导纤维传感技术在世界上逐渐兴起。光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高,响应速度快,动态范围大,防电磁干扰,超高绝缘,无源性,防燃防爆,适于远距离遥测,体积小,可灵活柔性挠曲等,很适于在恶劣和危险环境中应用,因而得到广泛重视。光纤瓦斯传感器的研究起步较晚,直到上世纪八十年代才有人报导了光纤瓦斯检测的实验。现在瓦斯检测的方法主要有两种,一是利用瓦斯气体的光谱吸收检测浓度;二是利用瓦斯浓度和折射率的关系用干涉法测折射率。 单波长吸收比较型 吸收法的基本原理均是基于光谱吸收,不同的物质具有不同特征吸收谱线。单波长吸收比较型属吸收光谱型传感器,根据Lambert定律:I=I0e-μcL 其中I,I0为吸收后和吸收前射线强度 μ为吸收系数 L为介质厚度 c为介质的浓度 从上式可以看出,根据透射和人射光强之比,可以得知气体的浓度。单波长吸收比较型的原理图见图1。 选择合适波长的光源。脉冲发生器使激光器发出脉冲光,或采用快速斩波器将连续光转变成脉冲光(斩波频率为数KHz),经透镜耦合进入光纤,并传输到远处放置的待测气体吸收盒,由气体吸收盒输出的光经接收光纤传回。干涉滤光片选取瓦斯吸收率最强的谱线,由检测器接收,经锁相放大器后送入计算机处理,根据强度的变化测量瓦斯浓度。 窄带谱线吸收型 瓦斯传感系统中,检测器所检测的光,其谱线宽度一般为0.02μm-0.1μm,而瓦斯气体的吸收谱线远窄于0.02μm。瓦斯在波长1.6μm-1.7μm的吸收谱线如下图所示。 由于检测谱线宽度远大于吸收谱线,即光谱中被吸收的成份很小,不利于高灵敏度检测。如果选择瓦斯吸收峰的窄带波长,则可获得大的检测对比度。但是选择单一波长则会由于模式噪声造成严重的干涉噪声,为了避免这个问题可以采用梳状滤波器来选择多个瓦斯峰位谱线,以降低光源的相干性,降低模式噪声。

  • 【转帖】近红外波长瓦斯浓度检测技术

    瓦斯气体浓度的检测在煤炭、化工、石油和其它工业,尤其在矿物质的开采中极为重要。瓦斯气体是一种可燃、可爆性气体,其爆炸上限为15Vol%,下限为 5Vol%。 其引发的事故在矿山开采历史上造成了极大的危害。很久以来各国科学工作者对瓦斯浓度的测量作了不懈的努力。现已研制出的干式、湿式气敏元件、热电阻瓦斯传 感器、半导体气敏元件等都在瓦斯浓度检测中起到了良好的作用,大大降低了瓦斯事故发生率。 近几年来,光导纤维传感技术在世界上逐渐兴起。光纤传感器具有一些常规传感器无可比拟的优点,如灵敏度高,响应速度快,动态范围大,防电磁干扰,超高绝 缘,无源性,防燃防爆,适于远距离遥测,体积小,可灵活柔性挠曲等,很适于在恶劣和危险环境中应用,因而得到广泛重视。光纤瓦斯传感器的研究起步较晚,直 到上世纪八十年代才有人报导了光纤瓦斯检测的实验。现在瓦斯检测的方法主要有两种,一是利用瓦斯气体的光谱吸收检测浓度;二是利用瓦斯浓度和折射率的关系 用干涉法测折射率。 单波长吸收比较型 吸收法的基本原理均是基于光谱吸收,不同的物质具有不同特征吸收谱线。单波长吸收比较型属吸收光谱型传感器,根据Lambert定律:I=I0e-μcL 其中I,I0为吸收后和吸收前射线强度 μ为吸收系数 L为介质厚度 c为介质的浓度 从上式可以看出,根据透射和人射光强之比,可以得知气体的浓度。单波长吸收比较型的原理图见图1。 选择合适波长的光源。脉冲发生器使激光器发出脉冲光,或采用快速斩波器将连续光转变成脉冲光(斩波频率为数KHz),经透镜耦合进入光纤,并传输到远处放 置的待测气体吸收盒,由气体吸收盒输出的光经接收光纤传回。干涉滤光片选取瓦斯吸收率最强的谱线,由检测器接收,经锁相放大器后送入计算机处理,根据强度 的变化测量瓦斯浓度。 窄带谱线吸收型 瓦斯传感系统中,检测器所检测的光,其谱线宽度一般为0.02μm-0.1μm,而瓦斯气体的吸收谱线远窄于0.02μm。瓦斯在波长1.6μm-1.7μm的吸收谱线如下图所示。 由于检测谱线宽度远大于吸收谱线,即光谱中被吸收的成份很小,不利于高灵敏度检测。如果选择瓦斯吸收峰的窄带波长,则可获得大的检测对比度。但是选择单一 波长则会由于模式噪声造成严重的干涉噪声,为了避免这个问题可以采用梳状滤波器来选择多个瓦斯峰位谱线,以降低光源的相干性,降低模式噪声。

光斩波器相关的耗材

  • 光学斩波器
    光学斩波器,进口光学斩光器,optical chopper由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院,哈尔滨工业大学等单位进口光学斩波器.这款光学斩波器,进口光学斩光器,optical chopper用于机械调制光束。光学斩波器,进口光学斩光器,使用高精密的电机带动开缝机械圆盘稳定高速旋转,该圆盘式的光束通过或被调制。精密控制器通过电缆连接斩光器头部进而控制旋转。该光学斩波器使用能够BLDC马达,以较大范围的调制/旋转速度和超低抖动完成斩波而不需要额外的激光快门。斩光器的调制或斩光速度可通过控制器调节。该光学斩波器,斩光器,optical chopper产生超低噪音,而斩光器头部尺寸较小,适合多种应用。该光学斩波器具有同步输出,可与锁相放大器一起使用。光学斩波器特色调制速度:0.1-3000Hz速度控制:数字化控制(嵌入型控制面板)稳定性:+/-0.1%孔径:18mm接口:USB或RS232同步输出:BNC,5V,TTLDiameter of the disc (outermost) – 120 mmThickness of the head with a disc – 27 mm Width of the slot (for disks with 2,4,8 slots) – 15 mmWidth of the slot (for disk with 16 slots) – 9.8 mm Range of frequencies:Disk with 2 slots: 0 Hz-150 HzDisk with 4 slots: 0 Hz-300 HzDisk with 8 slots: 0 Hz-600 HzDisk with 16 slots: 0 Hz-1000 Hz
  • SR540光斩波器资料new
    SR540光斩波器资料new
  • C-995光学斩波器new
    C-995光学斩波器new
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制