精密旋光仪

仪器信息网精密旋光仪专题为您提供2024年最新精密旋光仪价格报价、厂家品牌的相关信息, 包括精密旋光仪参数、型号等,不管是国产,还是进口品牌的精密旋光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密旋光仪相关的耗材配件、试剂标物,还有精密旋光仪相关的最新资讯、资料,以及精密旋光仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

精密旋光仪相关的厂商

  • 广州市广精精密仪器有限公司(简称广州精密YDYQ)是一家专业从事开发设计、生产及销售光、机、电、算结合的综合型超精密计量仪器的高新技术型企业。是目前国内最专业的材料试验、形位公差类超精密仪器生产制造厂家之一。 广精精密致力于研发、生产先进的长度类几何量计量、形位公差类超精密测量设备,公司拥有高素质的研发、管理和生产队伍,依托数十年深厚的技术积淀、与各知名高等院校的紧密合作、科学严谨的管理,完善的生产体系和严格的质量体系,通过整合制造开发经验和众多社会资源,不仅致力于为不同领域的用户提供高质量的产品,而且更着重于为客户提供整套的性价比最优的最专业的产品及精密计量仪器设备解决方案。 广精精密可提供的产品有:圆度仪,圆柱度仪,轮廓仪,三坐标测量机,便携式三坐标测量臂,三坐标测量划线机,材料试验机,齿轮测量仪,对刀仪,硬度计,测高仪,表面粗糙度仪,影像测量仪,万能测长仪,测量投影仪,显微镜,万能工具显微镜,涂层测厚仪,超声波测厚仪,激光测径仪,测振仪,凸轮轴测量仪,三维激光扫描机(抄数机),万能试验机,拉力试验机,压力试验机,齿轮测量中心,三维激光扫描系统,激光跟踪仪等精密计量仪器、量具刃具。 公司的系列产品广泛应用于机械加工、汽摩配、轴承、电机、电动工具、精密工具、精密五金、刀具、模具、光学元件等行业及科研院所、大专院校、计量机构和企业计量室车间;同时还服务于航空航天部军工企业。本公司坚持以“诚信为本、质量第一、价格合理”的经营理念,坚持“客户第一”的原则为广大客户提供优质的服务。热诚欢迎各界朋友前来洽谈业务!广州市广精精密仪器有限公司Guangzhou YDYQ Precision Instruments Co.,LTD.电话:020-22927661联系人:邝先生 13570408618传真:020-87684676http://www.cnydyq.comhttp://www.cnydyq.net http://www.02017.nethttp://www.tesa17.cn E-mail:gj806@cnydyq.com地址:广州市先烈中路100号中科院内
    留言咨询
  • 广纳精密科技(广东)有限公司是省科学院旗下公司广科产业之事业部之一,依托省科学院各院士技术为基础,一家专注于科研精密仪器设备、制药工艺设备自主技术研发创新和生产,销售的创新型企业。公司为全国AAA级信用企业。企业通过ISO9001:2015质量体系认证,ISO14001:2015认证,第二类医疗器械经营备案凭证。公司主营科研精密仪器设备、制药工艺设备两大方向,专注精密智造,致力于智慧工艺与设备整体解决方案。客户群体面向生物制药企业、高等院校、研究机构等。公司秉承“严谨智造、技术革新”的精神,汲取行业前沿智慧,汇聚科技力量,博揽英才,追求更高质量,更高安全性,更高效的理念,为客户提供有竞争力、安全可信赖的产品和解决方案。广纳精密旗下拥有自主品牌kerayda、beilaituo,以客户需求为核心,在实验室耗材、仪器设备等方面为客户提供一站式供应链解决方案。kerayda深耕实验室及生命科学通用仪器,已经上市的产品有荧光定量PCR、全自动核酸提取仪、高速离心机、移液枪、磁力搅拌器、生物安全柜、低温恒温器等。beilaituo专注于实验室生命科学耗材类产品,已上市的产品包括细胞培养系列、细菌学产品、分子生物学产品、液体处理类等。
    留言咨询
  • 武汉聚光隔振精密设备有限公司是一家专业从事精密隔振光学平台研发、制造、销售于一体的高新技术企业,依托于航空工业人员背景致力为国防科技工业及科研院校提供高精密基础实验装备。公司研制的ZPT系列精密隔振光学平台在现代光学、激光技术、光谱全息、生物技术、精密检测、航空航天等领域得到广泛应用,台面均采用高导磁不锈钢及优质中碳钢相结合钢质蜂窝式的台体,着重体现其高强度、低重量及优异的模态感应和隔振性能,用于支撑的各不同系列型号的隔振支撑均能给平台台体提供优异的减振性能,以满足用户进行不同要求的高精度光学实验。公司现在生产的光学平台平面精度高、隔振性能强、也是全部执行德国FESTO元器件的平台生产厂家,保证光学平台的灵敏度和精度,已成为国内专业的光学平台研发中心及生产基地。 公司依托技术员工的优势,与中航工业集团公司、长春光机所、清华大学、华中科技大学、香港理工大学等国内外科研院所有着紧密而广泛的合作;同时公司拥有一批经验丰富、技术过硬、态度严谨的高素质专业研发团队和生产人员。
    留言咨询

精密旋光仪相关的仪器

  • 擎轩科技布儒斯特精密窗口片的详细信息品牌:其他型号:QXBULST材质:?UV熔融石英基底适用范围:本窗口片成为从紫外到近红外的理想选择用途:非常适合在激光腔内使用装箱数:1000加工定制:加工定制外形尺寸:25mm重量:0.01㎏Wavelength Range:185 nm - 2.1 μm UncoatedTransmitted Wavefront Errora: λ/10Clear Aperture:90% of Minor AxisBrewster Angle:55° 32' @ 633 nm擎轩科技布儒斯特精密窗口片布儒斯特窗口片 特性 激光腔的理想选择 UV熔融石英基底 小直径尺寸:6 mm、8 mm、13 mm、16 mm、20 mm和25 mm P偏振光透过,无反射损耗 提供布儒斯特窗口片安装座布儒斯特窗口片的基底不镀膜,可串联用作偏振片,或用来提纯部分偏振光。以布儒斯特角放置时,光束的P偏振分量通过窗口片时无损耗,而S偏振分量将通过布儒斯特窗口片时会部分反射。右图显示的是633 nm的光通过UVF熔融石英时S和P偏振的反射率。我们布鲁斯特窗口片的表面质量为10-5划痕-麻点,λ/10的透过波前误差,非常适合在激光腔内使用。这些布儒斯特窗口片是用紫外熔融石英制作的,这使得激光经过它的时候几乎不能诱发出荧光(在193 nm下测量),从而让本窗口片成为从紫外到近红外的理想选择。欲知紫外熔融石英的透射率曲线,请见上面的曲线图标签。由于紫外熔融石英的折射率随波长变化,布鲁斯特角取决于波长,曲线标签包含了对应的变化关系。我们提供可以安装8 mm、13 mm、16 mm、20 mm和25 mm小直径布儒斯特窗口片的安装座。这些安装座有55° 32’的安装角(633 nm下的布鲁斯特角),并带有一个出射s偏振反射光的端口,以便在任一方向都可以使用安装座。Minor Diameter 6.0 mm8.0 mm8.0 mm13.0 mm16.0 mm20.0 mm25.0 mmMinor Diameter Tolerance+0.00 / -0.10 mmThickness1.0 mm2.0 mmThickness Tolerance±0.1 mm±0.2 mm±0.1 mmBrewster Angle55° 32' @ 633 nmClear Aperture90% of Minor AxisParallelism≤5 arcsecTransmitted Wavefront Errora λ/10Surface Quality10-5 Scratch-DigWavelength Range185 nm - 2.1 μm (Uncoated)
    留言咨询
  • 精密激光调阻机 厚膜电路激光修调设备激光调阻在汽车电子行业典型应用:  1、油位传感器一般是几个点位的阻值调整  2、要求一段电阻区间每刀长度尽量一致  3、节气门位置传感器要求电阻之间的比例关系一致  4、角度线性修调——汽车空调,音量等带旋扭的电路基板   与传统的人工调阻相比,激光调阻具有以下优势:  1、采用进口激光器与平面电机,整机性能稳定。  2、调阻精度对比同行其他激光调阻设备高出4-10倍。  3、具有强大的软件编程功能,多种功能集于一机,可满足各种应用领域调阻需求,可轻松实现客户的特殊定制,实现高效自动化运行。    激光调阻机具有修调阻功能,多被用于厚膜、薄膜电路,由于厚薄膜电路的制造工艺局限,其电阻阻值误差较大,为了更好适用电路需要,就需要应用到激光调阻机进行修调,其精密调节包括:  无源修调(电阻力本身调整):将原始厚膜或薄膜电阻阻值修调至目标阻值。  有源修调(电路功能调整)----将电路模块修调至需要的输出信号。测量修调对象除了电阻外,还可是电压、电流、频率、反转等信号。 LT5110激光调阻机设备特点  高性价比机型,适用厚膜电路调阻,电子模块功能修调  半导体端面泵浦光纤藕合固体激光器  步进或伺服电机、丝杠XY平台分步重复  消色差成像技术  强大软件编程功能,满足各种不同应用  大理石台面,机台稳定性好 LT5110激光调阻机应用行业  适用于厚膜电阻的激光调阻,电子电路的功能修调、输出信号的修调。广泛应用于厚膜电路、汽车电子、传感器等领域。设备功能强,性价比高。LT5110激光调阻机技术参数表 三工精密激光调阻机设备亮点介绍  调阻效率高:调阻速度相对国内其它激光调阻产品高出4-10倍,产能大大提升,单位成本下降。  调阻精度高:独特的测控技术,测量控制系统精度的一致性好,提升产品附加值 成品率高,单位成本下降。  软件可编程:可轻松实现客户的不同需求以及高自动化运行,也可作为专门的测试平台,适应性广。  使用成本低:采用了先进的激光器,无耗材,使用成本低,长期使用节约大量的费用。  多功能:可实现陶瓷基片的激光划线、打标,减少设备的再投入。  专业大理石基座,可有效减小工作台启动、停止和加速过程中产生的震动,同时保持机台温度的稳定性,可靠性高。  可定制:在电路功能修调方面由于应用行业多样化,相对要求也多样化,对设备的整体要求要高些,有时标准型激光调阻机不能直接满足使用要求,但武汉三工精密的激光调阻机产品属于自主开发,特别是核心的测控系统,能为各种不同的客户提供定制化服务,满足不同客户的需求。温馨提示:本产品不支持网上订购,产品均以实际配置计价为准,网上标价均为统一虚价,给您造成的不便还请谅解!具体价格请沟通后计算配置而定,谢谢!
    留言咨询
  • 产品介绍TLPH系列精密型光电测试探针台是基于TLRH系列升级激光显微镜而来,实现高分辨率成像的同时兼顾外引激光光路,实现光电流与IV的双功能检测,是光电芯片/器件测试的理想之选。技术优势. 模块化设计,可以搭配不同构件完成不同测试;. 最大可用于12英寸以内样品测试 . 探针台整体位移精度高达3μm,样品台精密四维调节;. 激光显微镜,5档物镜转盘,可引入激光完成光电流测试;. 满足1μm以上电极/PAD使用 . 漏电精度可达10pA/100fA(屏蔽箱内) . 探针座采用进口交叉滚珠导轨,线性移动,无回程差设计 . 加宽探针放置架,可放置6个DC探针座/4个RF探针座;. 配显微镜三维精密调节功能,且可选配多种行程及驱动方式。模块介绍详细模块介绍及参数说明选型表相关配件多种精度,多种夹具类型探针座同轴线缆,三同轴线缆各种类型探针真空泵电磁屏蔽箱应用领域半导体材料光电检测、功率器件测试、MEMS测试、PCB测试、液晶面板测试、测量表面电阻率测试、精密仪器生产检测、航空航天实验等。
    留言咨询

精密旋光仪相关的资讯

  • 中科院精密测量院研制出相位锁定的涡旋物质波干涉仪
    近日,精密测量院江开军研究团队研制出基于超冷原子气体的涡旋物质波干涉仪,并观察到两自旋分量上干涉条纹的相位锁定现象,相关研究成果 6月30日发表在学术期刊《npj Quantum Information》上。   干涉是经典波动力学和量子力学中的基本现象,以此为基础的干涉仪可以通过测量不同路径或通道间的相位移动对物理量进行精确测量。超冷原子气体具有组分纯净、相干性好且内外态精确可控的特点,基于该体系的物质波干涉仪近年来成为精密测量和基础物理研究的重要工具。目前在超冷原子气体中实现的物质波干涉主要是通过操控物质波的平动自由度实现分束,观测具有不同线动量的物质波干涉条纹进行相位测量。而另一方面,由角动量表征的转动是体系另一个重要自由度,并且超冷量子气体中的角动量与体系的涡旋、超流等量子现象具有密切的联系。在超冷原子气体中可以基于不同的角动量态实现一类新型的涡旋物质波干涉,有望用于测量体系的外部磁场、转动、粒子间相互作用和几何相位等物理量。实现涡旋物质波干涉的前提是在超冷原子气体中可控的制备和操控涡旋态。近年来携带角动量的拉盖尔-高斯光与冷原子相互作用研究的进展,为建立涡旋物质波干涉仪奠定了基础。   研究团队近年来对超冷原子气体的涡旋光场调控开展了研究,掌握了利用涡旋光场驱动双光子拉曼跃迁实现超冷原子涡旋态的制备、操控与测量方法,测量了自旋-角动量耦合超冷原子气体的量子相变[Physical Review Letters 122, 110402 (2019)]。 涡旋物质波干涉仪的实验构型   在前期工作的基础上,研究团队利用偏置磁场在铷87原子F=1超精细能级的三个磁子能级间产生较大的二阶塞曼频移。团队利用一对具有不同角动量的拉曼光束诱导双光子跃迁,获得干涉仪的第一个分束器,干涉仪的两臂具有不同的自旋和角动量(涡旋态);随后利用射频脉冲作为第二个分束器,在两个自旋态(对应分束器的两个输出端口)上都实现涡旋物质波的干涉。通过选择合适的拉曼光和射频脉冲的失谐量,确保原子只布居在两个磁子能级,产生无损耗的分束器。不同于线动量干涉产生的线向干涉条纹,实验上观察到角向干涉条纹。通过对干涉图样的分析,发现两自旋态上的干条纹具有反相位关系(π 相位差),该相位关系不受两涡旋态的角动量差、拉曼光的组成和超冷原子自由膨胀时间等实验参数的影响。提出了利用涡旋物质波干涉仪测量磁场的方案,并对磁场测量的灵敏度进行了评估,指出该方案可以测量有限大小的磁场,并且测量灵敏度不受原子数波动的影响。该工作为构建基于涡旋物质波干涉的新型量子传感器提供了实验基础。 两自旋态干涉条纹相位关系的实验测量   相关研究成果以“相位锁定的涡旋物质波干涉仪(Phase-locking matter-wave interferometer of vortex states)”为题,发表在学术期刊《npj Quantum Information》上。精密测量院博士生孔令冉为论文第一作者,特别研究助理高天佑和研究员江开军为通讯作者。   该工作获得科技部重点研发计划、国家自然科学基金、中科院国际团队以及湖北省创新群体项目等的资助。
  • 精密测量院研制出相位锁定的涡旋物质波干涉仪
    近日,精密测量院江开军研究团队研制出基于超冷原子气体的涡旋物质波干涉仪,并观察到两自旋分量上干涉条纹的相位锁定现象,相关研究成果 6月30日发表在学术期刊《npj Quantum Information》上。干涉是经典波动力学和量子力学中的基本现象,以此为基础的干涉仪可以通过测量不同路径或通道间的相位移动对物理量进行精确测量。超冷原子气体具有组分纯净、相干性好且内外态精确可控的特点,基于该体系的物质波干涉仪近年来成为精密测量和基础物理研究的重要工具。目前在超冷原子气体中实现的物质波干涉主要是通过操控物质波的平动自由度实现分束,观测具有不同线动量的物质波干涉条纹进行相位测量。而另一方面,由角动量表征的转动是体系另一个重要自由度,并且超冷量子气体中的角动量与体系的涡旋、超流等量子现象具有密切的联系。在超冷原子气体中可以基于不同的角动量态实现一类新型的涡旋物质波干涉,有望用于测量体系的外部磁场、转动、粒子间相互作用和几何相位等物理量。实现涡旋物质波干涉的前提是在超冷原子气体中可控的制备和操控涡旋态。近年来携带角动量的拉盖尔-高斯光与冷原子相互作用研究的进展,为建立涡旋物质波干涉仪奠定了基础。研究团队近年来对超冷原子气体的涡旋光场调控开展了研究,掌握了利用涡旋光场驱动双光子拉曼跃迁实现超冷原子涡旋态的制备、操控与测量方法,测量了自旋-角动量耦合超冷原子气体的量子相变[Physical Review Letters 122, 110402 (2019)]。涡旋物质波干涉仪的实验构型  在前期工作的基础上,研究团队利用偏置磁场在铷87原子F=1超精细能级的三个磁子能级间产生较大的二阶塞曼频移。团队利用一对具有不同角动量的拉曼光束诱导双光子跃迁,获得干涉仪的第一个分束器,干涉仪的两臂具有不同的自旋和角动量(涡旋态);随后利用射频脉冲作为第二个分束器,在两个自旋态(对应分束器的两个输出端口)上都实现涡旋物质波的干涉。通过选择合适的拉曼光和射频脉冲的失谐量,确保原子只布居在两个磁子能级,产生无损耗的分束器。不同于线动量干涉产生的线向干涉条纹,实验上观察到角向干涉条纹。通过对干涉图样的分析,发现两自旋态上的干条纹具有反相位关系(π 相位差),该相位关系不受两涡旋态的角动量差、拉曼光的组成和超冷原子自由膨胀时间等实验参数的影响。提出了利用涡旋物质波干涉仪测量磁场的方案,并对磁场测量的灵敏度进行了评估,指出该方案可以测量有限大小的磁场,并且测量灵敏度不受原子数波动的影响。该工作为构建基于涡旋物质波干涉的新型量子传感器提供了实验基础。两自旋态干涉条纹相位关系的实验测量  相关研究成果以“相位锁定的涡旋物质波干涉仪(Phase-locking matter-wave interferometer of vortex states)”为题,发表在学术期刊《npj Quantum Information》上。精密测量院博士生孔令冉为论文第一作者,特别研究助理高天佑和研究员江开军为通讯作者。  该工作获得科技部重点研发计划、国家自然科学基金、中科院国际团队以及湖北省创新群体项目等的资助。  论文链接:https://www.nature.com/articles/s41534-022-00585-5
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf

精密旋光仪相关的方案

精密旋光仪相关的资料

精密旋光仪相关的试剂

精密旋光仪相关的论坛

  • 光谱分析仪精密度差产生的原因

    在光谱分析仪测定过程中,精密度是重要指标之一,与光谱仪本身、方法设置、分析测试人员水平有关系,没有高精密度的方法,就无法保证数据的准确性。操作者在工作中会经常碰到测试数据波动大,常量分析ESD%大于2%等故障现象。这种现象就是数据精密度差的表现,也就是专业上所说的信号噪声大。上面阐述了等离子炬形成的条件,下面[url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]小编从环境因素、光源系统。试样引入系统和光学系统详细分析数据光谱分析仪精密度差产生的原因。  在环境因素中,环境温度没有在规定范围内时会发生谱峰偏移;排风量不稳定会使“火焰”跳跃。例如,排风口与阵风方向相对或者快速开关实验室推拉门,容易导致排风量忽大忽小。ICP光谱仪巨力振动源(如车间)、强磁场(光电直读光谱仪)接近,会导致数据不稳定。可以采取控制环境因素的办法来保证,它是保证光谱分析仪数据精密度的必要条件之一。  光谱分析仪开机后,光室温度变化应小于±1°C,若光谱分析仪温度未稳定在该值,光室内光学元素由于受温度影响,各光学元件的相对位移产生变化,导致待分析谱线位置漂移和分析数据失真。因此仪器主要应充分预热,在光室温度稳定在其仪器额定值时才可以进行测定。  在光源系统中,等离子炬温度也会影响其精密度变化,影响因素有载气流量。载气夜里、频率和输入功率和低点离电位的释放及。载气流量增大,中心部位温度下降;温度随载气气压的降低而增加;频率和输入功率的增大激发温度随之增高;引入低点离电位的释放剂的等离子体,其温度将增加。RF功率不稳定会影响数据精密度,如果RF功率有1%的漂移,元素强度值就能发生1%的变化,其原因是因为氩气不纯或者循环水温度突然发生变化造成的,可以用氩线的稳定性来检测。  在光谱仪试样引入系统中,首先要检测样品溶液是否均匀,比如容量瓶定容是否摇匀;查看仪器登记记录,检查等离子气的流量和压力、雾化气体的流速和压力及试液提升量等指标是否和上次一致,这是因为气体压力和流量的变化会影响到原子化效率和基态原子的分布导致数据精密度变差;由于仪器长时间进行检测工作,蠕动泵管弹性变差。蠕动泵管的经常挤压部位颜色变暗时,蠕动泵管则需要更换。上节所述进样系统毛细管、泵管、雾化器和中心管发生堵塞或者炬管太脏,会使雾化效率降低导致数据精密度表差,可采用延长冲洗时间,试样盒硝酸溶液(1+5)间隔进样等两种方式来解决,有机样品用煤油解决。泵夹优化不好,或者泵管泵夹松动,致使进样不均匀导致光谱强度值发生改变,可重新设置泵速,调节泵管,并且经常要给泵柱和轴承上油保持其润滑。  影响光谱分析仪的其他方面,分析谱线的选择不合适,多数靠近CID边缘20个像素的谱线强度通过较低也会导致数据精密度变差,尽管它们有的谱线没有光谱干扰,但是位于紫外区波长190nm元素谱线以下的建议少用,如果要用,应用99.999%的氩气吹扫检测器8h以上。快门故障或者狭缝积灰导致部分元素数据精密度变差,其特点是长波谱线、短波谱线要么分别变差要么同时变差。此故障可以采取延长积分时间来应急,等待维修人员维护。谱线积分时间不会增加信号的强度,但可以改善精密度与检出限。不过太长的积分时间将影响的分析速度。  对于用光电倍增管做检测器的光谱分析仪,还应该注意曝光很差也会影响数据的精密度,故障现象可以分为全部元素差和部分元素差。如果发生全部元素差的现象,操作者可以通过一次检查高压电源输出是否稳定,实验灯是否接触不了,高压插头是否没有插牢和积分箱输出控制芯片是否失效。光电倍增管座是否损坏,高压衰减器拔盘开关是否完好以及该元素的积分拨盘是否完好等方面确认故障。

精密旋光仪相关的耗材

  • 全自动旋光仪配件
    全自动旋光仪配件是领先的全自动旋光计,用于测量旋转角,样品旋光,通过计算进而得到浓度,纯度等物理量,全自动旋光仪配件非常适合在医药,科研,制药和化妆品研发领域使用。 全自动旋光仪配件特点 包括内置peltier精密温度控制系统,自动光电检测技术 和Windows系统, 具有超高精度和可靠性,方便操作使用。 通过检测偏振态旋转,可以分析获得密度,含量和纯度等物质特性。 广泛用于医药,石化,食品,化学,制糖业等各种工业,也适合大学和研究所使用。全自动旋光仪配件特色大尺寸触摸屏显示,Windows界面,方便操作 高亮度LED灯寿命达到5000小时 极大的存储能力,可存储超过1000组数据信息 农业应用:农业抗生素,农用激素,微生物农业,农药的分析; 医药应用:抗生素,葡萄糖,维生素和制药的检测; 食品应用:糖,味精,酱油等的糖度检测; 石化应用:石油或石油发酵过程中的测量; 健康:糖尿病患者的尿液分析; 全自动旋光仪配件参数 测量范围: +/-89.99度; 精度: 0.001度; 重复精度:0.0002度; 测量样品最小透过率:1% 工作波长:589.3nm 光源:钠灯; 控制温度:15~30摄氏度 温度控制精度:0.1摄氏度 接口:USB或RS232 数据存储能力:1000条 显示:5.6' ' 显示屏,触摸屏 电源:220V/50Hz 尺寸:L708xW330xH287mm 重量:26kg 自动旋光仪用于测量旋转角,样品旋光,通过计算进而得到浓度,纯度等物理量.非常适合在医药,科研,制药和化妆品研发领域使用.尺寸小,高灵敏度,适合所有的有机化学领域应用,并且无人工误差。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有折光仪,折光计,refractometer在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于全自动旋光仪价格,全自动旋光仪参数等诸多消息,孚光精仪将在官网更新并呈现出来,想了解更多,请关注孚光精仪官方网站哦!
  • 精密楔形研磨抛光具
    精密抛光具可用于光学显微镜,扫描电子显微镜及原子力显微镜样品的常规制备,也可通过有角度的研磨抛光得到楔形样品进行透射电镜表征观察和聚焦离子束微纳加工,再研磨抛光的过程中可适时在光镜下观察样品的状态。
  • EMS生物学精密镊子
    EMS生物学精密镊子EMS镊子进入中国市场十年来,逐渐得到了实验室科研工作者的接纳和认可,并获得了不少赞誉。EMS 镊子瑞士制造,材料选择无磁性、抗酸蚀不锈钢(镍铬锰合金),防炫目的缎面设计,高品质和革新是EMS镊子的一直追求!EMS生物学精密镊子,手指拿取部位均带有防滑齿。l Style 3精密尖头,外观光滑,长度:4?" (120mm)订购信息:货号产品描述尖部mm材质78325-3SAEMS 3#0.04T*0.08WSAl Style 4订购信息:货号产品描述尖部mm材质78325-4SAEMS 4#0.03T*0.06WSAl Style 5非常精密的镊尖,表面抛光,长110mm订购信息: 货号产品描述尖部mm材质78325-5SAEMS 5#0.02T*0.05WSAl Style 7订购信息: 货号产品描述尖部mm材质78325-7SAEMS 7#0.03T*0.07WSA
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制