2017/11/08 18:43
阅读:188
分享:方案摘要:
产品配置单:
天津兰力科电化学工作站LK98BII
型号: LK98B II型
产地: 天津
品牌: 兰力科
面议
参考报价
联系电话
下载本篇解决方案:
更多
天津兰力科:罐头中铅检测(电化学工作站)
利用不除氧电位溶出分析法成功地测定了溶出电位相近的铅、锡两元素。以0. 05mol·L - 1草酸为介质,调节溶液pH 1. 0 ,以溶解氧作氧化剂,静止溶出,两元素均有分离清晰的平台出现。铅、锡的线性范围分别为2. 0 ×10 - 9~2. 0 ×10 - 7mol·L - 1和2. 0 ×10 - 8~2. 0 ×10 - 6mol·L - 1 。 当富集时间为4min 时,铅、锡的检出限分别为5. 0 ×10 - 10mol·L - 1和5. 0 ×10 - 9mol·L - 1 。此法已成功地应用于测定罐头食品中痕量铅和锡。
食品/农产品
2017/11/18
天津兰力科:直接甲醇燃料电池(DMFC)阳极催化材料的研究
直接甲醇燃料电池(DMFC)以廉价的液体甲醇为燃料,不需要燃料重整设备,运行温度较低,燃料来源丰富,易携带和储存,是便携式电子设备、电动汽车的理想动力源。但其阳极催化剂采用贵金属Pt及PtRu合金,成本高,催化活性低,难以商业化。因此,降低贵金属Pt用量、提高Pt催化剂的活性和利用率,是重要的研究课题。本文采用微乳液法,以聚苯胺-石墨复合材料为载体,成功制备了具有纳米分散性的Pt/PANI-G、Pt-Ni-Zr/PANI-G阳极催化剂。 (1)通过微乳液法成功合成了聚苯胺-石墨导电高分子催化剂载体,并应用FT-IR、TG、XRD、TEM、导电性和电化学性能测试表征了结构与性能。结果表明石墨含量为10wt%时载体具有较好的导电性能,石墨与聚苯胺之间存在键合作用,聚苯胺-石墨复合材料比聚苯胺具有更大的比表面积。 (2)通过A to B和A+B两种微乳液法成功制备了Pt(20wt%)/PANI-G和Pt-Ni-Zr/ PANI-G电催化剂,采用XRD、TEM、XPS等手段对催化剂进行表征。结果表明A+B 微乳液法制得的催化剂具有更好的结构和性能。微乳液的ω、前驱体的浓度对催化剂粒径存在显著的影响,当ω=8.71、前驱体浓度为0.0192mol/L时制得的催化剂Pt粒径4.0nm,以0、+2和+4氧化态存在,电化学活性面积15.99 m2/g,对甲醇的电化学氧化峰电流为282.04μA·㎝-2、氧化峰电位为0.603V。Pt-Ni-Zr/PANI-G催化剂中金属之间形成较好合金结构,催化剂金属以0、+2等多种氧化态形式存在,Pt粒径大小在3nm左右;Pt11Ni6Zr3/PANI-G催化剂中Pt具有较大的电化学活性面积和较高的热稳定性,对甲醇也有较高的电催化活性且随甲醇浓度和温度的升高而增强,常温时Pt11Ni6Zr3/PANI-G催化剂在1mol/L甲醇+0.5mol/L硫酸溶液中的氧化峰电流为440.94μA·㎝-2、氧化峰电位0.539V。
能源/新能源
2017/11/08
天津兰力科:直接甲醇燃料电池有序功能铂基合金阳极催化剂的研究
能源的短缺和人类对能源的不合理运用,给人类自身的生存条件和自然环境造成了极大的破坏。燃料电池作为一种不经过燃烧直接以电化学方式将燃料的化学能转化为电能的发电装置,有望成为21世纪首选的洁净、高效的发电技术。直接甲醇燃料电池(DirectMethanol Fuel Cell)是燃料电池的一个重要的分支,以甲醇为燃料,具有无污染、能量转化率高、储存和运输方便等优点,有望在便携式电源、电动机车和野外电站等方面得到应用,但是目前阻碍DMFC发展的主要问题是甲醇氧化的电极材料活性不高且对甲醇吸附能力较好的铂的价格昂贵,本文的主要目的是制备出高催化活性且成本较低的甲醇电催化氧化的阳极催化剂。本论文采用了电化学方法,如循环伏安法,常规脉冲伏安法及X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线能量色散谱(EDS)表征等技术手段研究了铂基功能性系列阳极阵列催化剂的制备方法及对甲醇电催化氧化性能,并讨论了甲醇在催化剂上的催化氧化机理。所制备出来的普通铂基合金修饰玻碳电极、铂基多元纳米线阵列电极、铂基多元空心球和Nafion试剂修饰的玻碳电极对甲醇的电催化氧化性能有了很大的提高,且所用的电极材料(贵金属)相比普通铂电极成本明显降低,得到的实验结果对 甲醇燃料电池的商业化有一定的指导意义。 本论文综述了燃料电池的发展历史及其分类,重点介绍了直接甲醇燃料电池的工作原理及研究进展和应用前景,尤其是直接甲醇燃料电池的阳极催化剂研究进展以及对纳米电催化材料在甲醇燃料电池阳极催化剂中的应用前景进行了详细说明,由此得出本文的选题 依据,主要研究内容和结论如下:
能源/新能源
2017/11/08
天津兰力科:综合电化学工作站硬件设计与实现
随着电池行业的迅猛发展,人们对电池检测技术提出了更高的要求,迫 切需要一种高效,能测量体现电池反应过程参数的检测设备。本课题目的在 于研发一种综合电化学工作站满足上述需求。 综合电化学工作站是一套完整的、数字化的、电化学体系的检测分析设 备。它把恒电位仪,恒电流仪和电化学交流阻抗分析仪有机地结合到一起, 既可以做常规的基本测试如动电位扫描、动电流扫描试验和电化学交流阻抗 测量,也可以做基于这三种基本试验的程式化试验,如恒电流充电-电化学 交流阻抗测量,电池寿命循环试验-电化学交流阻抗测量试验,从而完成多 种状态下电化学体系的参数跟踪和分析。它可以快捷、精确的检测电池的容 量、测量体现电池反应机理的交流阻抗参数。 本文以交流阻抗谱为理论依据,在既定电位范围、精度、分辨率和响应 速度等性能指标的要求下构建出上下位机多层次硬件体系结构,有针对性地 设计了下位机的接口电路板和测量电路板,并在此设计方案下进行了大量的 硬件功能调试,达到了预期的性能指标。本文的主要内容可概括为以下三点: (1)电化学工作站的功能原理研究与硬件系统设计。介绍了电化学工作 站的三种基本功能和性能指标,电化学交流阻抗测量的原理,并进而提出了 电化学工作站的硬件系统结构,构建了电化学工作站的硬件结构设计; (2)下位机的接口电路板和测量电路板设计,在设计中力图提高系统精 度、灵活性。实现对电池电压和电流的测量和控制功能,使工作站测量和控 制功能达到了功能多样化精确化,为电化学交流阻抗测量等功能实现打下基 础; (3)实验及误差分析。对电化学工作站的硬件测量和控制功能进行了实 验验证,分析了误差产生得原因,对固有误差进行了补偿,对不同幅值直流 信号和不同幅值、频率的交流信号进行测量,达到了精确测量的性能指标。
其他
2017/11/08