视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

三代测序技术相关仪器工艺创新概述

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2023/10/25 11:30:20
导读: 本文主要介绍了三代测序仪在技术上的工艺创新,例如自动毛细管电泳、荧光标记、测序反应小型化、光学/化学检测方法、零模波导、纳米孔、人工智能等。

  DNA 测序是一种确定 DNA 分子中碱基(A、T、C 和 G)顺序的技术,在生物学、医学、法医学和其他领域有着广泛的应用,例如基因组学、遗传学、分子生物学、疾病诊断和个性化医疗。 DNA 测序技术自 1970 年代以来经历了多次革命性的发展,从第一代测序到第二代测序,再到第三代测序。这些测序技术在原理、方法、优势和局限性方面有着显著的差异。本文将对基于这三代测序技术的相关仪器工艺创新进行概述,并比较其特点和应用。

  一、第一代测序仪

  基于桑格测序方法,该方法使用链终止双脱氧核苷酸(ddNTP)生成不同长度的DNA片段,通过电泳分离并通过荧光检测。 代表性仪器是 Applied Biosystems 及其 3730xl DNA 分析仪。 工艺创新主要有自动毛细管电泳、荧光标记和碱基识别算法的开发 。

  a. 自动毛细管电泳:通过向填充有凝胶或聚合物基质的细毛细管施加电场来分离不同长度的 DNA 片段的过程。 DNA 片段根据其大小和电荷在毛细管中迁移,较小的片段比较大的片段移动得更快。 毛细管电泳系统可以自动并行加载、进样、分离和检测多个样品,从而提高 DNA 测序的通量和效率 。

  b. 荧光标记:将荧光染料附着到链终止核苷酸 (ddNTP) 上的过程,用于在测序反应中生成 DNA 片段。 荧光染料根据 ddNTP 的碱基类型(A、T、C 或 G)发出不同颜色或波长的光。 荧光信号由毛细管电泳末端的激光和相机或扫描仪检测 。

  c. 碱基识别算法:分析毛细管电泳产生的荧光信号并确定 DNA 片段中碱基序列的过程。 碱基检出算法使用各种方法来校正信号中的噪声、伪影和错误,例如峰检测、峰对齐、峰归一化、峰反卷积和质量评分。 碱基检出算法以各种格式输出序列数据,例如色谱图、跟踪文件或 FASTA 文件 。

  二、第二代测序仪

  基于大规模并行边合成边测序 (SBS),它使用修饰的核苷酸或探针,在每个循环后终止 DNA 合成(或允许可逆终止终止子、可切割探针)。 DNA 分子通过聚合酶链式反应 (PCR) 或桥式 PCR 在固体表面或乳液液滴中进行扩增,并通过光学或化学检测进行测序。 代表性仪器主要有Illumina的基因组分析仪、HiSeq和MiSeq平台; 罗氏及其 454 平台; 以及 Ion Torrent 及其个人基因组机器和 Proton 平台。 工艺创新主要有测序反应的小型化、光学/化学检测方法和核苷酸化学方法。

  a. 测序反应小型化:减少第二代测序仪中 DNA 样本和测序反应的大小和体积的过程,涉及使用微流体装置或显微孔阵列来限制 DNA 分子,并通过聚合酶链式反应 (PCR) 或桥式 PCR 对其进行扩增,减少了所需的 DNA 量并增加了测序反应的密度。

  b. 光学/化学检测方法:测量第二代测序仪中 DNA 合成过程中碱基掺入所产生的光或化学信号的过程,涉及使用荧光标记的核苷酸或探针,根据碱基类型发出不同的颜色或强度。 光学/化学检测方法根据测序平台和化学成分而有所不同,通常遵循以下步骤:

  i. 在测序反应中,DNA 模板与引物和 DNA 聚合酶杂交。

  ii. 测序反应提供标记的核苷酸或探针,它们在每个循环后终止 DNA 合成或允许可逆终止(例如可逆终止子、可切割探针)。

  iii. 根据碱基配对规则将标记的核苷酸或探针添加到DNA模板的互补链上。

  iv. 荧光信号或化学信号(例如 pH 值变化)由高分辨率相机或扫描仪捕获并转换为数字数据。

  v. 通过计算分析信号以确定碱基身份和序列。

  c. 核苷酸化学方法:涉及使用修饰核苷酸或探针影响第二代测序仪中 DNA 合成的过程。 它基于互补碱基配对的原理,其中A与T配对,C与DNA中的G配对。 核苷酸化学方法根据测序平台和化学方法的不同而有所不同,通常遵循以下步骤:

  i. 在测序反应中,DNA 模板与引物和 DNA 聚合酶杂交。

  ii. 测序反应提供经过修饰的核苷酸或探针,它们在每个循环后终止 DNA 合成或允许可逆终止(例如可逆终止子或可裂解探针)。

  iii. 根据碱基配对规则将修饰的核苷酸或探针添加到DNA模板的互补链上。

  通过光学/化学方法检测修饰的核苷酸或探针,然后通过化学或酶促步骤去除或灭活,从而允许下一个循环进行。

  三、第三代测序仪

  基于单分子实时(SMRT)测序,不需要扩增或终止DNA分子。 通过监测将荧光标记的核苷酸或探针掺入互补链的 DNA 聚合酶的活性,对 DNA 分子进行测序。 代表性仪器主要有 Pacific Biosciences 及其 PacBio RS II 和 Sequel 平台; Oxford Nanopore Technologies 及其 MinION、GridION 和 PromethION 平台; 以及 Ultima Genomics 及其 Ultima 平台。 工艺创新主要有使用零模波导(ZMW)、纳米孔或纳米通道来限制和观察单个 DNA 分子; 使用磷酸化核苷酸或纳米孔接头来实现连续测序; 以及使用人工智能来提高碱基识别准确性。

  a.零模波导 (ZMW)、纳米孔和纳米通道是三种类型的纳米结构,可以限制和观察单个 DNA 分子以进行第三代测序。

  i. ZMW 是金属薄膜中的纳米级孔径,可产生高度受限的光学观察空间。 当激光照射在金属薄膜上时,只有少量的光可以进入ZMW并激发内部的荧光分子。 这样可以检测通过 DNA 聚合酶掺入 DNA 链的单个荧光标记核苷酸或探针。 Pacific Biosciences 在其 SMRT 测序技术中使用 ZMW。

  ii. 纳米孔是膜上的纳米级孔,可在膜上产生电势差。 当 DNA 分子穿过纳米孔时,它会破坏离子电流并产生反映 DNA 碱基序列的特征信号。 纳米孔可以是生物的(例如蛋白质孔)或合成的(例如固态孔)。 Oxford Nanopore Technologies 在其 MinION、GridION 和 PromethION 测序平台中使用了纳米孔 。

  iii. 纳米通道是表面上的纳米级凹槽,为 DNA 分子拉伸和排列创造了一个有限的空间。 当荧光染料应用于 DNA 分子时,可以通过显微镜对它们进行成像,并且可以通过将荧光图案映射到参考基因组来确定它们的序列。 纳米通道可以通过多种方法制造,例如蚀刻、光刻或模制。 Ultima Genomics 在其 Ultima 测序平台中使用了纳米通道。

  b.磷酸化核苷酸和纳米孔接头是两种类型的修饰核苷酸或探针,可对单个 DNA 分子进行连续测序。

  i. 磷酸化核苷酸是荧光标记的核苷酸,其磷酸基团上连接有可移除的接头。 连接体可防止焦磷酸盐的释放,否则会终止 DNA 合成。 连接子还允许在每个掺入循环后裂解荧光染料,从而可以在多个循环中重复使用相同的 ZMW。 Pacific Biosciences 在其 SMRT 测序技术中使用了磷酸化核苷酸 。

  ii. 纳米孔接头是具有发夹结构和条形码序列的合成寡核苷酸。 这些接头连接到 DNA 分子的两端,形成可以多次通过纳米孔的环状 DNA 分子。 条形码序列允许对同一 DNA 分子的重复读取进行识别和比对,从而提高准确性和共识质量。 Oxford Nanopore Technologies 在其 MinION、GridION 和 PromethION 测序平台中使用 Nanopore 适配器 。

  c.人工智能是计算机科学的一个分支,它使用机器学习、深度学习、神经网络和其他方法来执行需要人类智能的任务,例如自然语言处理、图像识别、语音识别和决策。 人工智能通过以下方式提高第三代测序中的碱基检出准确性:

  i. 使用来自不同测序平台和化学物质的原始信号和相应序列的大型数据集来训练神经网络。

  ii. 开发可以纠正原始信号中的噪声、伪影和错误的算法,例如信号漂移、同聚物错误、插入/删除错误和碱基修饰。

  iii. 实施可以利用多个来源信息的方法,例如参考基因组、共识序列、质量评分和元数据。

  iv. 优化方法,适应不同的测序条件,例如读长、覆盖深度、测序速度和样品质量。

  d.用于第三代测序中碱基检出的人工智能方法的一些示例:

  i. DeepNano:一种深度循环神经网络,使用原始电流信号执行碱基识别。

  ii. Guppy:一种基于神经网络的软件工具,使用原始电流信号执行 Oxford Nanopore MinION 读取的碱基识别。

  iii. DeepMod:一种双向循环神经网络,使用原始电流信号进行碱基识别和碱基修饰检测。

  iv. NanoMod:一种卷积神经网络,使用原始电流信号进行碱基修饰检测。

  v. Megalodon:一种软件工具,可使用原始电流信号读取执行碱基识别、碱基修饰检测和选择性剪接检测。

  vi. DeepSimulator:一种深度卷积生成对抗网络,模拟 Oxford Nanopore MinION 从参考基因组中读取的内容。

  vii. Clairvoyante:一种多任务卷积神经网络,使用原始信号强度值对 Pacific Biosciences SMRT 读取执行变体识别。

  viii. IsoPhase:一种深度卷积神经网络,使用原始信号强度值读取执行单倍型感知亚型重建。

  ix. DeepIso:一种深度卷积神经网络,使用原始信号强度值读取进行异构体量化。

  总之,第一代、第二代和第三代测序是DNA的三种不同读取方法,在原理、方法、优势和局限性方面有着显著的差异。第一代测序是基于桑格测序方法,使用链终止双脱氧核苷酸(ddNTP)生成不同长度的 DNA 片段,并通过电泳分离和荧光检测,工艺创新主要有自动毛细管电泳、荧光标记和碱基识别算法的开发。第二代测序是基于大规模并行边合成边测序 (SBS),使用修饰的核苷酸或探针,在每个循环后终止或可逆终止 DNA 合成,并通过光学或化学检测进行测序,工艺创新主要有测序反应的小型化、光学/化学检测方法和核苷酸化学方法。第三代测序是基于单分子实时(SMRT)测序,不需要扩增或终止 DNA 分子,而是通过监测将荧光标记的核苷酸或探针掺入互补链的 DNA 聚合酶的活性进行测序,工艺创新主要有使用零模波导(ZMW)、纳米孔或纳米通道来限制和观察单个 DNA 分子;使用磷酸化核苷酸或纳米孔接头来实现连续测序;以及使用人工智能来提高碱基识别准确性。这三代测序技术各有优缺点,适用于不同的目标和场景。选择合适的测序技术需要考虑多种因素,例如读长、准确性、速度、成本和样品质量。随着科技的进步,DNA 测序技术仍在不断发展和改进,为生命科学领域带来新的机遇和挑战。


[来源:仪器信息网] 未经授权不得转载

用户头像

作者:Lambyang

总阅读量 4993 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~