视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

2021年全国电子显微学学术年会材料科学分会场集锦(下)

进入
阅读更多内容

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2021/10/18 01:12:46
导读: 第三分会场“功能材料的微结构表征”、第四分会场“结构材料及缺陷、界面、表面,相变与扩散”和第五分会场“先进显微分析技术在工业材料中的应用”吸引了材料领域与会者的热烈关注。

仪器信息网、中国电子显微镜学会联合报导:2021年10月15日,由中国电子显微镜学会主办、南方科技大学承办的“2021年全国电子显微学学术年会”在东莞市会展国际大酒店隆重召开。为期三天的大会吸引了来自高校院所、企事业单位等电子显微学领域专家学者1300余人参会。

本次大会共设置十个分会场:

1)显微学理论、技术与仪器发展;

2)原位电子显微学表征;

3)功能材料的微结构表征;

4)结构材料及缺陷、界面、表面,相变与扩散;

5)先进显微分析技术在工业材料中的应用;

6)扫描探针显微学(STM/AFM等);

7)扫描电子显微学(含EBSD);

8)低温电子显微学表征;

9)生命科学显微成像技术研究;

10)中国电子显微镜运行管理开放共享实验平台

其中,第三分会场“功能材料的微结构表征”、第四分会场“结构材料及缺陷、界面、表面,相变与扩散”和第五分会场“先进显微分析技术在工业材料中的应用”吸引了材料领域与会者的热烈关注。电子显微学技术是探索微观世界,揭示材料科学奥秘的重要手段,因此广泛应用于材料学等领域。以下为部分精彩报告摘要:

报告人:郭俊杰 教授(太原理工大学)

报告题目:《二维金属电催化材料结构设计与调控》

郭俊杰教授利用石墨烯晶格缺陷以及石墨层之间狭小的空间的限域作用,实现了金属催化活性组分的“纳米颗粒-亚纳米团簇-单原子”跨尺度结构调控,充分发挥了金属催化活性组分的量子尺寸效应和金属-载体协同效应,表现出了优异的电催化性能;克服了二维材料等“电镜难视材料”易受电子束辐照损伤的难题,阐明了石墨烯缺陷对金属单原子的钉扎机理和d轨道电子调控机制,发现二维材料纳米孔对于材料电子结构的调控作用;综合运用相调控、晶面调控、应变调控等策略,增加催化活性位数量,提升材料传质、传电能力,调节表面电子结构,开发出性能优异的金属基二维纳米筛电催化材料。

报告人:闫鹏飞 研究员(北京工业大学)

报告题目:《钴酸锂失效机理的电子显微学分析》

钴酸锂是目前应用最为广泛锂离子电池正极材料之一,尤其是在便携设备和移动电子设备中的锂离子电池中,这得益于其优越的体积能量密度和稳定的循环性能。然而,其实际所用的能量密度仅占其理论能量密度的一半,仍然有很大的发展提升空间。提高能量密度最常用的办法是提升充电电压,利用更多的锂源,但这样做会迅速加快钴酸锂正极材料的失效,造成电池性能快速衰退,以及安全性问题等。报告中,闫鹏飞介绍了利用电子显微镜相关的分析技术,研究LCO中的几种主要的衰退机制:体材料的相变、裂纹和界面衰退的表面相变、表面CEI和表面腐蚀/溶解。

报告人:韩梦娇 副研究员(松山湖材料实验室)

报告题目:《WTe2中的本征缺陷研究》

二维材料具有光学、超导、铁磁等特性,可以应用于电学、催化、储能等领域。韩梦娇课题组利用控水氧的手套箱互联系统等设备研究了具有1T'相的WTe2中的点缺陷、边缘结构、晶界结构、波浪状起伏等。结果表明,控水氧的手套箱互联系统能够有效降低敏感材料的氧化及污染,实现敏感材料的原子尺度结构表征;对WTe2中的空位、边缘及晶界的分析发现WTe2中仅存在120°旋转晶界;WTe2中还存在各向异性的ripple结构,并且Te空位更倾向于在ripple的压缩一侧产生。

报告人:张英杰(北京科技大学)

报告题目:《基于局域密排结构调控的非晶合金强韧化》

在块体非晶合金中增加局域疏松区可以提高非晶合金的结构不均匀性,是提高非晶合金室温塑性的常用手段,但是一般会降低材料的屈服强度和硬度。北京科技大学吕昭平教授课题组吴渊等人提出了一种新的非晶合金强韧化策略,即通过适量非金属小原子掺杂,在非晶合金中形成局域密排区。这种提高结构不均匀性的方法可以促进溶质周围原子在较高的应力水平下参与塑性变形,同时提高材料的强度和塑形。目前这种新的合金设计理念已经在多个体系中得到了证实。

报告人:王宇佳 副研究员(中国科学院金属研究所)

报告题目:《铁电超薄薄膜和超晶格中的拓扑畴结构》

铁电拓扑结构因其尺寸小而且具有优良的物理特性, 有望应用于未来高性能电子器件中。王宇佳老师从应变、屏蔽和外场等对于铁电材料至关重要的几个外部要素出发, 结合薄膜厚度等材料内部参数, 针对PbTiO3和BiFeO3这两种典型的铁电材料, 简要总结新型铁电拓扑结构的形成及其在外场作用下的演变规律。利用具有亚埃尺度分辨能力的像差校正透射电子显微术呈现了相关拓扑结构的原子结构图谱, 构建了针对PbTiO3体系的厚度-应变-屏蔽相图, 系统归纳了两种材料中各种拓扑结构的形成条件。最后指出这两类铁电材料中易于调控出拓扑结构的几何维度体系, 并指出像差校正透射电子显微术在表征铁电拓扑结构方面的重要作用, 展望了未来可能的关注重点。

报告人:郑士健 教授(河北工业大学)

报告题目:《Ti6Al4V孪晶及其β相交互作用机理》

郑士健教授主要利用透射电子显微术,结合先进的透射电镜球差校正技术,研究了全片层Ti-6A1-4V合金中缺陷与a/β界面的交互作用机制,主要包括全片层Ti-6A1-4V合金中孪晶带及其他类型变形带的形核机制及其与β相的交互作用机制。通过多尺度结构分析,确定了全片层Ti-6AI1-4V合金中两相界面呈台阶状,并具体揭示了全片层Ti-6A1-4V合金中孪晶的形核机制及其与β相的交互作用机制。深入研究了全片层Ti-6A1-4V合金中孪晶与β相的交互作用机制,揭示了孪晶与β相诱导系列孪晶产生的机制。揭示了全片层Ti-6A1-4V合金中扭折带的结构及形成机理,并进一步发现和提出了全片层Ti-6AI-4V合金中滑移带及扭折带诱导β相分解的机制。

报告人:赖敏杰 教授(西北工业大学)

报告题目:《碳化物析出对低层错能铁合金形状记忆效应的影响及其作用机理》

Fe-Mn-Si基形状记忆合金具有原料成本低、易于制作和加工、可焊接性好等优势。文献显示,与单晶状态相比,多晶Fe-Mn-Si基合金的回复应变明显更低。对此,赖敏杰教授研究了碳化物析出对低层错能铁合金形状记忆效应的影响及其作用机理。结果表明,碳化物的析出不会必然导致Fe-Mn-Si基合金形状记忆效应的提升;碳化物不是马氏体的形核位置,并且能被马氏体穿过,因此也无法为马氏体逆转变提供背应力;在高温时效过程中,大量层错会伴随碳化物的析出而产生,这些层错对应力诱发马氏体相变有促进作用,并使得马氏体呈现为在加热时容易回复的形态。因此主要是时效过程中产生的层错而非碳化物导致了形状记忆效应的提升。

报告人:赖玉香 助理教授(湖南大学)

报告题目:《Al-Mg-Si合金中微合金化诱导复合相及其与力学性能的关系》

赖玉香老师研究了溶质Zn诱导的复合析出相结构,发现Zn进入β''相中的Si3位点,形成了含Zn的有序β''相(因此提高合金时效硬化潜力),后期相在β''相上异质形核成复合相;研究Sc诱导的复合析出相结构发现,Sc诱导无序β''相形成,无序β''相进一步演变成β''/β'/B'/U2复合相,提高了合金的热稳定性。

报告人:王涛 工程师(北京大学)

报告题目:《石墨烯上外延氮化物的极性调控》

氮化物半导体被广泛应用于固态光源、新型显示、功率电子器件、射频器件等领域。针对于此,王涛老师石墨烯上外延氮化物的极性调控。结果表明,通过MBE方法在石墨烯上N辐照可以得到N极性GaN;石墨烯上O辐照通过控制Ga和N的供给可以得到N极性GaN和Ga极性GaN;石墨烯上的AIN插入层中的极性反转可以得到Ga极性GaN。

17日下午各分会场在报告结束后分别颁发了优秀报告奖。

第三分会场优秀报告奖.JPG

第三分会场

第四分会场优秀报告奖.JPG

第四分会场

第五分会场优秀报告奖.png

第五分会场

大会后续精彩内容,敬请关注后续报道【点击报道专题链接 】。

相关仪器与技术,请点击: #扫描电镜(SEM)

[来源:仪器信息网] 未经授权不得转载

用户头像

作者:KPC

总阅读量 141w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~