视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

【自传】像差校正电镜技术先驱之Ondrej L. Krivanek

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2020/11/12 14:15:26
导读: Ondrej Krivanek,美国Nion公司联合创始人,目前仍是该公司总裁,同时也是Gatan公司研发总监。

【简介】

91b36629-908d-449c-8019-9fb14da2dc83.jpg

Ondrej L. Krivanek

Ondrej Krivanek出生于布拉格,于1960年代后期移居英国,并在利兹大学获得学位,然后移居剑桥,与Archie Howie一起在电子显微镜领域攻读博士学位。

剑桥大学毕业后,Ondrej Krivanek在京都、贝尔实验室和加州大学伯克利分校担任博士后职位。在伯克利任职期间,他对电子能量损失光谱学产生了兴趣,并建立了自己的光谱仪。他于1980年成为亚利桑那州立大学国家科学基金会NSF HREM设施的助理教授兼副主任,与此同时,他开始与Gatan公司合作,首先是担任顾问,然后永久加入公司并成为其研发总监。

1995年,他获得皇家学会的资助返回剑桥,与Mick Brown和Andrew Bleloch合作进行电子透镜像差校正。他的成就帮助他与Niklas Dellby于1997年创立了Nion公司,他目前仍是该公司的总裁。在Niklas Dellby和IBM的Phil Batson协助下,他通过扫描透射电子显微镜获得了亚埃的分辨率,该成果于2002年发表。

Ondrej Krivanek是电子显微镜和电子能量损失光谱学的知名专家之一。他获得了许多奖项,包括Duddell Medal和英国物理学会奖,以及国际显微镜学会联合会的Cosslett Medal。他是皇家学会,美国物理学会,美国显微学会和美国物理学会的会员,也是皇家显微学会的名誉会员。他与Maximilian Haider、Knut Urban、Harald Rose一起获得了2020年度科维理奖(Kavli Prize)。


【自传】

我出生于捷克斯洛伐克(现为捷克共和国)的布拉格,那时候,苏联和其他社会主义国家为自身的科学技术成就和教育体系感到自豪。1961年4月,Yuri Gagarin成为第一个绕地飞行的人。我和伙伴们因此受到鼓舞,成立了宇航员俱乐部,并且,我们的“火箭乘员RP-35”文章在布拉格最受欢迎的日报——捕获.PNG头版发表,这是一件非常开心有趣的事。

我父母是在第二次世界大战结束后相遇,战争给他们带来了苦难。父亲是一名化学工程师,专门研究彩色摄影化学,并且撰写了摄影方面的书籍,退休后,他还从事编辑月刊Zpravodaj。母亲的专业是新闻学,后来她成为了一名图书管理员。祖父是学校法律方面的专家,外祖父从事摩托车研制,在布拉格的捷克国家技术博物馆(the Czech National Technical Museum)中就展出了一辆他设计的摩托车。

高中时期,我最喜欢的科目是数学和物理,学校鼓励对这些科目感兴趣的学生参加课外竞赛,也会布置一些具有挑战性的家庭作业,我非常喜欢解决这些有难度的任务。那时候,我参加了全国的数学和物理比赛,并且都获得了奖项。获奖的学生就可以进入更高级别的比赛,1968年6月,我代表捷克斯洛伐克参加了在布达佩斯举行的第二届国际物理奥林匹克竞赛,获得了第二名。

奥林匹克竞赛由捕获.PNG教授和另外几个专职老师于1959年在捷克斯洛伐克发起,并于1967年成为了国际比赛。我们获得了第二名,仅次于匈牙利的“本土”团队。从那以后,我有幸与另一位前国际物理奥林匹克选手niklas Dellby共事,他是我在Nion的搭档。

我的另一大爱好是使用轻木和半透明的轻质纸组建飞机模型。我喜欢组建飞机模型和研究如何使它们变得更好。控制飞机飞行是一件非常有趣的事情,但对我来说,设计和组建的过程更令人有满足感。

在选择大学专业时,我在数学和物理之间左右为难。飞机模型组建的爱好使我选择了物理学,因为它是一个更加实用的专业,也许能让我建造出有趣的机器。我参加布拉格查尔斯大学(Charles University)数学-物理系的入学考试后,就去了法国和英国过暑假,并计划在大学开学的时候回到布拉格。

1968年8月,当苏联及其追随者入侵捷克斯洛伐克以阻止由捕获.PNG领导的民主运动时,我正在伦敦,并决定留下来,而我的父母和姐姐移民到了瑞士的弗里堡附近定居。

英国人非常同情这个被苏联坦克占领的欧洲小国的公民。利兹大学(The University of Leeds)慷慨地为想要在英国学习的捷克斯洛伐克学生提供了五项奖学金,我很幸运,获得了其中一项。我在利兹大学学习了三年物理,度过了一段美好的时光。我学会了用约克郡口音讲英语,遗憾的是,后来这项技能被遗忘了。我以全班第一名的成绩毕业,并被剑桥大学Cavendish实验室录取,成为一名研究生。Archie Howie教授是我的博士生导师,他灌输的严谨标准陪伴了我的整个学术生涯。

我的研究课题是使用电子显微镜表征非晶态材料的结构,然后使用最新的电子显微镜解析各种材料的原子平面。我从“非晶态”碳中获得了0.3 nm分辨率的图像,并且表明了碳中含有小的石墨纳米晶体(Krivanek, Gaskell and Howie, Nature 1976)。这项工作让我意识到,只有具有更高分辨率的电子显微镜才能在原子尺度上清晰地观察物质的结构。

20年后,当像差校正显示出可使分辨率大幅提高的希望时,我又回到了这个课题。电子显微镜是探索原子世界的强大工具,用途广泛,我迷上了使用它们,并产生想要让它们变得更好的想法。当时,世界上分辨率最高的电子显微镜在日本京都大学(Kyoto University)Keinosuke Kobayashi教授的实验室里:Yoshinori Fujiyoshi用一台500 keV的仪器获得了铜酞菁分子图像,所有原子(氢除外)都清晰地分辨了出来。我向英国皇家学会申请延长居留时间,并获得了成功。

当去了京都之后,我发现纸上的电子显微镜是世界上最好的,它的电子源很弱,不能使我们看到足够好的图像以优化显微镜的设置。因此,Seiji Isoda和我开发了一种快速的“辅助调节”程序,使人们能够正确地设置显微镜且不需要盯着昏暗的屏幕看。结果得到了清晰的锗晶体中复杂缺陷的图像,所有投射原子的位置都可以从图像中“读出”。这是我研发改进显微镜调整方法的开始,事实证明,这是成功进行像差校正的必要组成部分。

在京都待了一段时间之后,我又进行了三个月的陆路旅行,从亚洲返回欧洲,体验了许多不同的文化,然后在美国新泽西州默里山的Bell实验室开始了博士后工作。那时候,Bell实验室非常有实力,我与其他人共同工作,其中一位是Dan Tsui,他发现了分数霍尔效应(the fractional Hall effect),并因此在几年后获得了诺贝尔奖。Bell实验室有许多有趣的材料和设备,但没有显微镜能够解析它们的原子结构。当时的解决办法是,在Bell实验室制备样品,然后经John Silcox教授和Steve Sass教授的协助,在康奈尔大学(Cornell University)使用和我在博士期间所用的相同类型电子显微镜对它们进行成像。这项工作制备出了MOSFET器件中最重要的Si-SiO2界面的原子分辨成像。

我的下一个博士后工作是在加州大学伯克利分校的Gareth Thomas教授团队。该团队隶属于材料科学系,但是与材料相比,我对先进的技术和仪器更感兴趣。我认为电子能量损失谱(Electron Energy Loss Spectroscopy,EELS)是一项特别有趣的技术。

1978年,我在康奈尔举行的分析电子显微镜研讨会上第一次接触到这项技术,在那里,我遇到了一些人,他们成为了我一生的朋友,如Pat Batson、Christian Colliex、Ray Egerton和Mike Isaacson,我们被期望建立自己的光谱仪——那时候还没有商业模型。因此,在Peter Rez的大力帮助下,我设计并制造了一台紧凑型光谱仪,Peter Rez为这台光谱仪编写了软件。从最初的构想到一台可以工作的光谱仪,整个过程共耗时10个月,这是我第一次研制一个完整的仪器并把它应用到有趣的问题上。我遵循了五个简单的原则,这些原则对我后来的项目也非常有用:

1) 适度启动,从一个比大项目更容易完成的小项目开始。

2) 仔细考虑那些会影响性能并且以后很难更改的设计选择。

3) 动作要快,不要把事情搞砸。

4) 从第一个设计中吸取教训,然后再进行第二个设计,以解决仅在第一个设计开始工作后才变得清晰的问题。

5) 与他人合作以帮助项目更快地进行。

后来我添加了第六条:

6) 当进入由新仪器支持的未开发的研究区域时,请通过产学合作进行研究,其中由工业合作伙伴提供仪器以及如何操作仪器的专业知识,由合作大学(或研究机构)提供解决问题的方法、样本、理论知识以及热情的学生和博士后。

我的第一台光谱仪的主要局限性在于,除了一阶,它没有像差校正功能,这限制了可以提供良好能量分辨率的入口孔径大小,从而导致信号收集效率低下。因此,我采用了第4和第5个原则,与Gatan的Peter Swann和顾问Joe Lebiedzik以及康奈尔大学的Mike Scheinfein密切合作,研制出了修改设计,组建出的光谱仪具有完整的二阶像差校正,其信号采集效率比第一款光谱仪高约100倍。这是像差校正有用性的有利验证。我还从Peter那里学到了很多东西,Peter拥有出色的设计天赋,我们成为了密友。那款光谱仪被称为Gatan系列EELS 607型,获得了商业上的成功。

这个设计是在我转任新职位后完成的,即在亚利桑那州立大学(Arizona State University)担任由NSF资助的HREM设施的助理教授和副主任。Gatan向ASU捐赠了一款新的光谱仪,我们与合作者一起将其应用于许多有趣的问题,并把迄今为止使用的所有稳定元素的EELS图集汇总在一起。

ASU是一个工作的好地方,员工或长期来访者中有许多电子显微镜专家:John Cowley、 Peter Buseck、John Spence、Johann Taftø、Naoki Yamamoto、Channing Ahn、Kazuo Ishizuka、Ray Carpenter、Sumio Iijima (2008年Kavli奖获得者)等。

但是,当Peter Swann将Gatan研发中心从匹兹堡移至旧金山湾区时,加利福尼亚的魅力就变得不可抗拒。1985年,我成为Gatan的研究主管。接下来是一段富有成果的时期,在此期间,我们推出了许多成功的仪器,包括并行检测EELS、柱后成像滤镜、CCD相机、扫描图像采集系统以及数字显微照相和EL/P软件。这段时间里,Gatan的规模增长了近10倍,我了解到,制造商用仪器是资助仪器研究的一种好方法,尤其是当与志同道合的研究人员和精通科学的管理人员合作时,他们能了解比较好的科学价值。

我们在Gatan研制的成像滤波器使用了四极光学器件,并使用六极杆校正了二阶像差和畸变(图1)。成像滤镜执行两个不同的电子光学任务:它们在能量选择狭缝上形成能量损失谱,充当光谱仪,然后将通过狭缝选择(滤波)的部分光谱转换成图像,作为投影镜头系统。这使得它们的光学与整个电子显微镜的非常相似。我们的滤波器使用的校正原理和后来由我和Niklas Dellby研制的像差校正器相同:四极杆赋予高阶多极杆内部光束不同的一阶特性,多极杆校正了高阶像差/失真。尽管当时的光学系统看起来很复杂,但对软件的认真学习可以让仪器变得易于操作。更高版本的滤波器使用八极杆实现了三阶像差校正。这项课题的完成使我相信,我有很大可能性来校正电子显微镜物镜的三阶(球面)像差——自从Otto Scherzer在1930年代和40年代研究该问题以来,这就是电子光学中的一个经典问题。

图片1.png

图1. 一款使用四极(Q)和六极(S)校正二阶像差和畸变的成像滤波器。它工作得很好,使我充满信心,显微镜物镜的球面像差校正器将不会很难制造。O.L. Krivanek et al., Microsc. Microanal. Microstruct. 2

1950年代至70年代,德国和英国制造了几台成功的原理校正器,但在实际性能方面,其取得的成功都没能超过最好的未经校正的显微镜所达到的成就。有几个有雄心且费钱的校正器项目未能实现目标,给研究像差校正的人员带来了一种不可能成功的思想。这使得研制像差校正器对Gatan来说成为了一个过于投机的项目。

我很想研制一台,因此我尝试在其它地方进行。我第一次为校正器争取资金是在1992年左右与时任伯克利国家电子显微镜中心主任的Uli Dahmen聊天,但没有成功。幸运的是,我说服了我母校(剑桥大学)的Mick Brown,他有一台备用的真空发生器冷场发射(CFE)扫描透射电子显微镜(STEM),我们应该尝试为它建立一个校正器。

1994年初,我们与Andrew Bleloch一起向英国皇家学会申请了资金,并从保罗仪器基金会获得了8万英镑的资助。1995年9月,我与家人一起移居剑桥,在Cavendish实验室工作了两年,并在那里获得了博士学位。我于五年前和Niklas Dellby在Gatan合作,当时他正在麻省理工学院攻读博士学位,还有其他人加入了这个项目,Robinson学院授予了我Bye奖学金。

我们有两个关键的认识。第一,像差校正对STEM的益处最大,与传统透射电子显微镜相比(CTEM),STEM的工作受到色差的影响较小,且校正的益处是传统透射电子显微镜的两倍:小型探头具有更好的空间分辨率和更强的束流,从而大大改善了STEM的光谱性能。这就是为什么我们从一开始就专注于STEM像差校正,结果证明我们的预感是正确的:现在,世界上像差校正STEMs的数量是像差校正CTEMs的两倍以上。第二,球差校正需要复杂的电子光学器件,这必然会引入很多“寄生”像差。这些问题不能通过精心构造而避免,但是可以对其进行特征化和逐一取消。如果不采取此步骤,校正器也许能够固定球差,但是强寄生像差可能会使整体成像性能变差。我们专注于研发STEM自动调谐算法,该算法使用我在之前表征像差的工作中率先提出方法来量化寄生像差。在这部分的项目中,我们得到了Andrew Spence和Andy Lupini的大力帮助。

如果电子显微镜可以使用玻璃透镜,那么像差校正将非常容易:只需按照要求对关键的“物镜”进行形状调整,使其形成正确的四阶抛物线形状,以消除球差(Cs)。但是,与穿过玻璃而没有太多散射的光不同,电子会被物质强烈散射,并且由固体材料制成的透镜对它们不起作用(除了一些特殊的例外)。取而代之的是,它们被延伸到真空的磁场聚焦,在真空中电子传播,场分布服从拉普拉斯方程,其结果是在圆形透镜中无法避免强烈的正球差。

我们的解决方案与1960年代在英国剑桥研制的原理验证校正器类似,它使用非圆形四极和八极透镜,其中电子束的横截面制成椭圆形,且先在一个方向上,然后在垂直方向上,赋予了理想的像差特性。我们还确保可以测量并修复每个重要的寄生像差。

1997年夏,我们获得了修正STEM分辨率的校正图像,同年夏天,Heidelberg-Julich CTEM校正器项目获得第一批改善后的图像,并在1997年在剑桥举行的EMAG会议以及1998年在拉德洛港举行的TARA研讨会上介绍了我们的研究结果。我们在剑桥的研究结束了,1997年10月,我回到了美国。

图片2.png

图2. 第一个STEM Cs校正器的中心部分,提高了内置显微镜的分辨率,它具有6个多极载物台,其中包含强四极和八极,还有96个辅助线圈,用于消除寄生像差。 校正器Ø~12cm

现在,校正器(图2)在Cavendish实验室的玻璃盒中展示,旁边展示的还有Deltrap的原理验证四极八极校正器和Cavendish的“皇冠上的珠宝”(包括J.J. Thompson发现了电子以及Watson和Crick建立的DNA模型)。我们的剑桥校正器没有改进当时最好的未校正STEM的性能,但我们的mark II校正器可以改进。在我成为西雅图华盛顿大学的研究教授后,我和Niklas Dellby设计并研制了该校正器,并在1997年底创建了Nion公司。

图3为Nion的创始人以及Nion的第一名员工George Corbin。George Corbin大学刚毕业就被我们雇佣,在Nion工作的22年里,他为公司做出了巨大的贡献。我们建了一个实验室,以3万美元的价格购买了一台二手VG STEM(它比我们在剑桥使用的STEM还要新),然后开始研究新的校正器。资金主要来自位于纽约约克镇高地IBM TJ Watson研究中心的Phil Batson。该项目具有双重优势:它是第一台商业校正器,于2000年6月/7月交付并安装在IBM公司,并且成就了第一款能够将电子束聚焦到直径小于1埃(0.1 nm)的STEM, 由Phil设定为120 keV,之后不久,当我们在Oak Ridge国家实验室(ORNL)将类似的校正器组建到300 keV STEM中时,结果很快有了进展,Matt Chisholm和Pete Nellist解析了相距0.78埃的原子柱。

图片3.png

图3. Ondrej Krivanek,George Corbin和Niklas Dellby在Nion I大楼前,该大楼设有一个大型车库,后来我们改建把它改造为机械装配室,因此,Nion在某种程度上可以称其起源于一个车库。

像差校正很快成为电子显微镜的新领域。德国CEOS公司为老牌电子显微镜制造商提供校正器,最初有CTEM,后来又有STEM,而Nion公司则专注于STEM校正器,并独立完成所有的工作。

首先,我们为VG STEM制作了校正器,将其分辨率提高了近2倍。我们下一个“大胆的想法”是:我们可以通过设计全新的电子显微镜来拓展校正器的功能,并且我们会比老牌的显微镜制造商做得更好。我们研发的显微镜Nion UltraSTEM™建立了许多性能基准,它使人们对材料的性质有了新认识。之后,我们为显微镜增加了许多其他的,通常是革命性的功能,如下所述。

例如,我们的新STEM制出了二维材料(如石墨烯)和一维材料(如纳米管)令人惊叹的图像。我们利用来自爱尔兰都柏林三一学院(Trinity College)的Valeria Nicolosi和日本先进工业科学技术研究院(National Institute of Advanced Industrial Science and Technology)的Kazu Suenaga所提供的样品进入了这一领域。Niklas和我把这些样品带到橡树岭国家实验室(ORNL),在那里,我们花了一个周末的时间研究Nion交付给客户的第四架电子显微镜。

当时的普遍观点是,我们使用的成像技术(高角度环形暗场(HAADF)成像)不能有效地对像碳这样的光原子进行成像,认为该信号太弱而无法对单个原子进行成像。与这种“观点”相反,我们在一次60 keV的情况下获得了纳米管和石墨烯的清晰图像,避免了样品的严重破坏。我花了很多时间操作其他电子显微镜,但从未见过像Nion仪器所显示的那样清晰的图像。我不是一个喜欢惊呼的人,但我记得我停了一下,把椅子从控制台往后推开,然后宣布:“Niklas,我们做了一个非常好的显微镜!”

我不是唯一这样认为的人,一天晚上,在ORNL做博士后的Juan Carlos Idrobo走进实验室,当他看到我们获得的结果时,他看很长一段时间,好像粘在了那个地方一样。不久之后,他和其他人开始在ORNL进行类似的实验,几个月后,Matt Chisholm制出了一张标志性的BN单分子层原子取代图像,并登上了《自然》的封面上(图4)。随后在ORNL获得的结果显示了固定在石墨烯薄片上的由6个硅原子组成的结构是如何在两个相当稳定的构型之间来回跳跃。

大约同一时间,在橡树岭和Daresbury Super-STEM实验室中,从嵌入石墨烯中的单个Si原子获得了具有精细结构特征的EEL光谱,也在实验室中从2D MoS2片中雕刻了半导体MoS2纳米线,并且维也纳大学的一个研究小组能够通过电子束在石墨烯片中按选定的方向“驱动”单个Si原子。可用束流的增加,使材料的元素组成能够通过EELS和能量色散X射线光谱法(EDXS)在原子分辨率上有效地映射出来,这正是我们所期望的。

图片4.png

图4. 《自然》期刊2010年3月25日的封面。 它显示了具有原子取代的单层BN的中角环形暗场(MAADF)STEM图像。将实验图像着色以对应于使用图像强度识别的原子类型,并在透视图中进行渲染。红色= B(硼),黄色= C,绿色= N,蓝色= O。Krivanek等人,Nature 464(2010)571-574.

也可以使用不同元素的EEL光谱中的化学位移来映射成键信息(图5)。所有这些功能只是Nion经像差校正的STEM所能实现的不同研究的一小部分。现在,全球有超过20台这样的仪器,还有约700台由其他制造商制造的像差校正STEM。在一个专题论文中覆盖使用这些仪器完成的所有创造性工作是不可能的。

图片5.png

图5. EuTiO3晶体中Eu原子的EELS图导致了与DyScO3原子尖界面。图中每个像素的强度显示了从该像素获得的光谱算出的Eu浓度,无论原子是3+Eu(绿色)还是2+Eu(红色),颜色都是如此。插入图显示了从界面(绿色)和远离界面(红色)的Eu M4,5边缘阈值峰,由于Eu价的变化,化学位移为2.5 eV。 L.Kourkoutis,D.A. Muller等人,proceedings IMC17 (Rio de Janeiro, 2010).

我们在软件方面的努力增强了像差校正的先进性,使仪器功能更强大且更易于使用。如果没有像差校正,将无法实现能量分辨率的提高:我们研发的单色仪和电子能量损失光谱仪都采用了我们首先介绍的用于像差校正的设计原理。这些仪器的光学特性和无与伦比的稳定性已将EELS的能量分辨率达到3 meV(相对于不使用单色仪的电子显微镜,能量分辨率提高了约100倍),并且在常规情况下可达到5 meV。这种分辨率级别允许在电子显微镜下进行振动光谱分析,并开辟了的新研究领域:声子(包括声学声子)的0.2-2 nm空间分辨率成像及其与晶体缺陷的相互作用; 检测和绘制氢分布图的能力; 区分不同的同位素(图6); 以及有机和生物样品的无损分析。

图片6.png

图6. L-丙氨酸两种形态的实验振动光谱,其区别在于单个的12C原子被13C取代。由于C=O键的延伸,在200 meV处,高峰的4.8 meV位移可以映射为揭示约100 nm空间分辨率下这两种类型分子的位置。J.Hachtel等人,Science 363 (2019) 525–528.

在电子显微镜下分析生物样品的振动特征且不会造成重大损坏的能力尤其令人兴奋。它基于在我们所研究的振动能量(20-500 meV)下,激发光声子的偶极相互作用被局域化了,并有可能在30-100 nm甚至更远距离电子束的区域探测分子振动。当电子束离得很远时,每个高速电子可以传递到样品的能量通常被限制在<1eV,并且没有明显的辐射损伤。空间分辨率不如将电子束照射到样品上并利用非偶极子信号时高,但在30-100 nm分辨率下探测冷冻水化生物样品中存在什么分子的技术仍有很多重要用途。

我是在柏林洪堡大学的Christoph Koch小组里,与洪堡大学的Christoph、Benedikt Haas、Zdravko Kochovski和JohannesMüller以及Nion的Tracy Lovejoy、Niklas Dellby和Andreas Mittelberger合作,一直在探索这一想法。当冠状病毒大流行袭来的时候,我们已经把所有需要的仪器放在一起准备开始实验,并且,我决定返回华盛顿州。

我们计划在疫情允许的情况下尽快恢复工作。仪器设备的研发类似于探索未知领域,就像于200年前Alexander Mackenzie和David Thompson探索美国太平洋西北地区的方式,猜测在哪个方向上会有什么欢迎之地,之后是漫长的探险之旅,每天克服困难和障碍的聪明才智决定了成败。所有的探索者都尽了最大的努力,有时偶然的发现会给正确的方向带来关键性的推动。我非常感谢Nion实验室的合作伙伴,感谢他们付出的巨大的且显有成效的努力(图7)。

图片7.png

图7. 2019年8月Nion Open House集体合影。照片中Nion团队有Niklas Dellby、Tracy lovejoy、Chris Meyer, George Corbin、Russ Hayner、Matt Hoffman、Peter Hrncirik、Nils Johnson、Josh Kas、Ben Plotkin-Swing、Lemek Robinson、Zoltan Szilagyi、Dylan Taylor、Janet Willis和Ondrej Krivanek,以及Nion的合作伙伴Toshi Aoki、Nabil Bassim、Phil Batson、Andrew Bleloch、Wouter van den Broek、Peter Crozier、Christian Dwyer、Meiken Falke、Jordan Hachtel、Fredrik Hage、Bethany Hudak、Juan Carlos Idrobo、Demie Kepaptsoglou、Jani Kotakoski、Richard Leapman、Andy Lupin、Alan Maigne、Clemens Mangler、Molly McCartney、David Muller、Matt Murfitt、Xiaoqing Pan、Luca Piazza、Quentin Ramasse、David Smith、Rhonda Stroud、Toma Susi、Luiz Tizei、Kartik Venkatraman、Wu Zhou等。

我特别感谢Niklas Dellby,我们与他一起创建了Nion,并愉快地合作了近30年。没有他的才华和努力,就不可能有这里所描述的进展。真是一次美妙的航行!

对我们所爱的人来说,持续研究并不容易,正是他们的关心和支持让我们继续前行。感谢我的女儿Michelle和Astrid,感谢我的侄子David对我的爱和理解,也感谢Eda Lacar(图8)对我的爱和支持,她以许多奇妙而出乎意料的方式扩展了我的视野,使我成为一个更好的人。

图片8.png

图8 Ondrej Krivanek和 Eda Lacar在亚利桑那州立大学西南像差校正电子显微镜中心前。 该中心有3台像差校正电子显微镜,在纳米表征方面发挥着世界领先的作用。


延伸阅读:

【自传】像差校正电镜技术先驱之Harald Rose

【自传】像差校正电镜技术先驱之Maximilian Haider

【自传】像差校正电镜技术先驱之Knut Urban


[来源:仪器信息网译] 未经授权不得转载

标签: 电镜
用户头像

作者:葱头

总阅读量 245w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~