视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

南理工纳米储能材料研究进展发表在《Advanced Materials》

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2018/03/02 12:02:08
导读: 南京理工大学材料学院/格莱特研究院纳米能源材料(NEM)实验室夏晖教授团队在超级电容器氧化铁电极材料研究方面又取得新的突破。相关研究成果“Achieving Insertion-Like Capacity at Ultrahigh Rate Via Tunable Surface Pseudocapacitance”于2018年2月在线发表在材料科学领域顶尖期刊《Advanced Material

  近日,南京理工大学材料学院/格莱特研究院纳米能源材料(NEM)实验室夏晖教授团队在超级电容器氧化铁电极材料研究方面又取得新的突破。相关研究成果“Achieving Insertion-Like Capacity at Ultrahigh Rate Via Tunable Surface Pseudocapacitance”于2018年2月在线发表在材料科学领域顶尖期刊《Advanced Materials》(Adv. Mater., 2018, 1706640; IF=19.791)上。青年教师翟腾为第一作者,夏晖教授为通讯作者。这是该团队近一年内发表的第十篇影响因子10以上的论文。

  

  图 改性氧化铁/亚硫酸钠体系容量随扫速变化及储能机理

  与超级电容器的其它负极材料如碳材料相比,三氧化二铁(Fe2O3)不但拥有较高的比电容量,而且资源丰富、价格低廉、环境友好,是一种极具应用潜力的高性能负极材料。但是其弱电子、离子传导性能,导致功率密度偏低和稳定性较差,严重制约着它在高性能超级电容器中的广泛应用。自2017年以来,夏晖教授团队在超级电容器电极材料的研究上取得了一系列研究进展,其研究结果均发表在国际材料能源领域的顶尖期刊上。在前期工作中,青年教师徐璟等人利用超细镍纳米管阵列上生长Fe2O3纳米片(Adv. Funct. Mater., 2017, 27, 1606728; IF=12.124),有效的提高了复合电极的赝电容性能。尽管如此,氧化铁的本征弱电子、离子传导性能依然亟待提升。在此基础上,NEM实验室的博士生孙硕首先发明了一种利用硼氢化钠溶液还原处理的普适方法制备具有本征高导电性和高离子传导性的Fe2O3结晶/非晶-核壳异质纳米结构(Nano Energy, 2018, 45, 390;IF=12.343):通过构筑非晶壳-结晶核异质结构并引入氧空位,成功在不损失能量密度的前提下有效地提高了赝电容超级电容器的功率密度以及循环稳定性。在这一工作进行的同时,夏晖教授团队通过同种改性方法引入的氧空位,调控改性氧化铁电极“牵手”氧化还原电解液中可贡献赝电容量的亚硫酸钠电解质。增量吸附的亚硫酸根为电极提高了可存储的电量,同时不受离子扩散限制的储能反应的快速动力学过程保证了大充放电倍率下实现更高的比容量(3.2 V s-1,290 C g-1)。高性能氧化铁负极材料/体系的研发,为高能量密度水系超级电容器的构筑提供了新的思路。此外,青年教师翟腾等人通过在金属氧化物表面实现磷酸根离子的表面改性,从而大幅度提高材料的表面反应活性而显著提高其赝电容贡献(Adv. Mater., 2017, 29, 1604167)。除了电极材料/体系比容量的提升,工作电压的拓展是获得高能量密度水系超级电容器的另一个关键。夏晖教授与化工学院朱俊武教授合作的2.6 V水系不对称超级电容器的研发成果于2017年6月在线发表在《Advanced Materials》(Adv. Mater., 2017, 29, 1700804)上。系列研究成果的结合将为水系高电压不对称超级电容器的应用研究提供有力的技术支撑,有望在未来取代铅酸电池。

  习近平总书记在十九大报告中关于“建设美丽中国”中指出,要“推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系”。能源存储材料作为高效储能装置的关键,是大力发展清洁能源不可或缺的一环。夏晖教授团队立足于清洁能源高效利用,围绕多种储能系统的关键材料开展研究,在过去一年中取得了一系列进展。

  其中围绕锂离子电池研究方向,取得的研究成果包括博士生薛亮完成的三维自支撑多孔LiCoO2纳米片阵列正极(Adv. Funct. Mater., 2018, 28, 1705836; IF=12.124)、青年教师岳继礼和硕士生嘉蓉完成的碳包覆SnO2-x多孔纳米片阵列负极(Energy Storage Mater., 2018, 13, 303;即时IF=13.39)、博士生夏求应完成的简易可控的硼(B)氮(N)双掺杂三维多孔碳纳米纤维正负极用于锂离子电容器(Adv. Energy Mater., 2017, 1701336; IF=16.721)、青年教师徐璟和硕士生蒋瑶完成的多孔氧化锰纳米立方负极的研究工作(Small, 2018, DOI:10.1002/smll.201704296;IF=8.643)。

  围绕钠离子电池研究方向,取得的研究成果包括青年教师杨梅和硕士生马依凡完成的氮(N)硫(S)共掺类石墨烯材料(Energy Storage Mater., 2018, 13, 134)、青年教师杨梅和博士生陈婷婷完成的功能化石墨烯/硫化钴量子点复合电极(J. Mater. Chem. A, 2017, 5, 3179;IF=8.867)、博士生郭秋卜完成的CoSx量子点内嵌氮硫共掺类石墨烯材料(ACS Nano, 2017, 11, 12658. IF=13.942)、硕士生陈琪等完成的硫化镍嵌入的柔性三维碳纤维电极材料用于柔性钠离子电池(Adv. Energy Mater., 2018, DOI:10.1002/aenm.201800054;IF=16.721)的研究工作。上述研究工作受到了能源存储领域的专家学者以及新能源企业的广泛关注。

[来源:南理工]

用户头像

作者:材料-峰峦如聚

总阅读量 61w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~