您好,欢迎访问仪器信息网
注册
南京拓服工坊(TOFWERK中国)

关注

已关注

银牌1年 银牌

已认证

粉丝量 0

400-860-5168转6080

仪器信息网认证电话,请放心拨打

当前位置: TOFWERK > 公司动态
公司动态

Vocus ABC 监测仪——半导体行业AMC实时监测解决方案

Vocus ABC 监测仪TOFWERK半导体无尘室中的气态分子污染物(AMCs)对晶圆良率和效率至关重要。一般来说,无尘室中有多种常见污染源的可能,包括通风系统、泄漏、设备故障、清洁试剂和人为排放等。传统监测技术很难全面监测AMC所包含的各种不同种类化合物,且数据分析速率较慢。当晶圆制程向更小尺寸发展,即使痕量浓度(不同AMC在理化性质上有很大差异,也会与半导体表面或其他化合物发生不同反应。由于AMC成分的复杂性,优选监测系统需能覆盖不同化学性能和挥发性的物质,同时兼具秒级响应速度和ppt级别的灵敏度。TOFWERK响应速度Vocus ABC监测仪采用实时化学电离飞行时间质谱法,结合专利技术的快速电压极性和试剂离子切换,支持同时多达六种试剂离子的化学电离模式。2秒周期内可对多种AMC进行光谱覆盖。图1展示了Vocus ABC 监测仪的快速响应速度。上插图显示了同时测定的MEK、PGME和PGMEA的浓度,而下图显示了用另一种试剂离子同步测量的甲苯。图1 图1. Vocus ABC监测仪在物种浓度变化时的整体响应时间。图中的x轴表示目标浓度,而Y轴是所选化合物的测量浓度。TOFWERK无碎片软电离AMC在软电离检测条件下几乎不产生离子碎片,从而实现了简化的解谱过程,高准确性的定量分析和未知物定性能力。丙二醇甲醚醋酸酯(PGMEA,108-65-6)、丙二醇甲醚(PGME,107-98-2)和甲乙酮(MEK,78-93-3)在电离过程中通常会产生相似度较高的碎片,用传统的CI质谱仪很难区分。本文图2展示了Vocus ABC监测仪的软电离无碎片分别检测的强大能力。图2. 顺序在ABC检测仪前引入或移除PGMEA、PGME和MEK源,ABC检测仪实现了对这些具有挑战性的化合物的分别检测。因无电离碎片,上述三种物种检测过程无相互干扰。TOFWERK线性响应Vocus ABC监测仪可实时准确地检测出单ppt级别的浓度,与传统技术相比,可实现更大浓度范围的污染检测和管控。表1列出了Vocus ABC监测仪对部分AMC物种的检测下限(LOD),图3和图4则列出了标定的线性度。表1 Vocus ABC对半导体制造相关AMC物种的LOD图3. 甲苯的检测线性范围TOFWERK重现性、准确性图4. 为了证明重现性、准确性和响应时间,MEK、PGME和甲苯的浓度梯度增加后归零,随后重复两次。左Y轴为检测信号,右Y轴为浓度。这3种AMC是经过标气(含12种化合物)稀释后测量的,整体VOC浓度约为1200 ppb。TOFWERK其他应用场景Vocus ABC监测仪适合半导体产业的各种应用场景,包括材料逸出、洁净室多通路监测、瞬时测漏和FOUP污染监控。点击对应链接可查看具体应用。图5是洁净室泄露监测实例,Vocus ABC检测仪全程检测了甲苯和氨气的泄漏过程。图6展示了ISO 5级无尘室中某材料逸出AMC的测量结果。图5. 在ISO 5级的精细化学洁净室中检测到的氨气和甲苯泄漏图6. 在ISO 5级无尘室中的材料脱气。材料用零气不间断冲洗,并经Vocus ABC监测仪直接检测。每个时间序列都同时使用3种不同的化学电离方式,从而光谱监测各种不同种类AMC。

参数原理

2023.10.04

Vocus CI-TOF半导体AMC快速精准检测

“ 我们将简短回顾AMC类别,AMC对洁净室环境和晶圆可能造成的负面影响,以及Vocus CI-TOF质谱仪在多个半导体应用场景下对多种AMC的监测案例”01—背景介绍越来越精密的半导体制程工艺和同步的高良率目标,不仅仅对晶圆加工设备和运行参数需要精益求精,对洁净室中可能存在的气态分子污染物(AMC)的监测和管控需求也越来越高。随着半导体制程趋近于摩尔极限:纳米(nm)级别的蚀刻尺寸和更高密度的晶体管密度,洁净室内空气中的各种‘杂’分子如果沉积到晶圆表面,都可能会影响到工艺效果。同时由于现代工艺的复杂性和众多步骤,这些影响都会不断传递并放大,最终体现在晶圆良率上。换个角度来说,AMC污染物的检测技术手段也需要跟上不断进步、追求极限的半导体制程工艺的步伐。根据文献报道和相关研究,为最大程度减少AMC对工艺良率的影响,洁净室内的重点AMC浓度需要控制在万亿分之一(pptV)的级别。在达到高灵敏度的同时,快速响应也是一个重要指标,从而提高样品测量通量,并在AMC浓度异常时尽早发出警报,从而避免或者减少对工艺和晶圆良率的负面影响。半导体生产车间内的AMC的来源分为外部和内部源。外部主要来自于供应给洁净室内部的空气净化和过滤系统。内部则可能来自于多个源头,包括工艺残余、FOUP污染、清洁溶剂使用、工作人员相关、洁净室内材料逸出等[1]。晶圆在洁净室内需要经历上百个制程,多个工艺设备以及时长不等的储存,这也意味在某个环节对某批次晶圆的污染也会不可避免的波及到下游工艺相关环节以及后续批次的晶圆。半导体业界对部分AMC的来源以及它们可能对晶圆产生的影响有大致了解和认知,但对其它AMC的存在和可能影响还是一知半解。现在市面上能够实时检测并出数,并能高灵敏度覆盖大部分目标AMCs的检测手段在半导体产业还没有常规使用或者缺失。Vocus CI-TOF质谱仪,借助于多年在大气监测科研领域的硬件开发和经验积累,在半导体洁净室这一方‘微环境’内的应用能全面胜任。本文中,我们将简短回顾AMC类别,AMC对洁净室环境和晶圆可能造成的负面影响,以及Vocus CI-TOF质谱仪在多个半导体应用场景下对不同AMC的监测案例。02—气态分子污染物(AMC)图1.基于半导体设备和系统线路图,不同制程节点要求下洁净室内AMC上限浓度一览。气态分子污染物(Airborne molecular contaminant,AMC),是对半导体制程良率可能产生负面影响的气态污染物的统称。2007年发布的ITRS半导体技术发展蓝图对AMC的基本种类进行了定义:酸类(MA)、碱类(MB)、可凝结物质(MC)和掺杂物质(MD)。十年后,蓝图的继任IRDS设备和系统线路图中,业界开始认识到需要关注的AMC物种远远不止上述种类。随着制程工艺节点越来越小,工艺复杂度和步骤不断增加的大前提下,洁净室内的AMC数目和类别也会持续增加。现行的AMC检测方法普遍受到仪器数据输出频率低或者物种覆盖范围较小的限制。例如常见的在线色谱质谱联用通常每30分钟才能出一组数据,而且耗材和维护人力成本较高。另一类常见的在线分析方式是光谱法,比如以光腔衰荡光谱(CRDS)为代表的激光吸收光谱技术。因激光光源限制,一台CRDS设备一般只能检测一种或者几种化合物,同时数据时间分辨率是分钟级别。这也是IRDS路线图中对各种类的AMC都推荐某几种设备组合的主要原因。Vocus CI-TOF质谱仪是AMC检测技术的强力补充。只需一台仪器,业主就可以覆盖AMC的几大主要种类,同时获得秒级响应和pptV级别的检测限。搭配的高分辨率TOF飞行时间质谱的全谱记录让Vocus CI-TOF具有数据回溯分析的功能,这在半导体需管控AMC种类不断扩充的前提下显得尤其重要。上述这些优点也使得Vocus CI-TOF质谱仪成为要求苛刻的洁净室AMC检测需求的解决方案首选,从而确保车间内空气质量保持稳定和‘低调’,不成为影响晶圆产率的因素之一。图2.Vocus CI-TOF与其他分析技术的参数对比酸类物质 (MAs)酸类物质,尤其是无机酸,对晶圆良率的负面影响是半导体从业者的痛点之一。酸会腐蚀晶圆表面的金属线或表面,形成颗粒物沉积到晶圆表面,损坏光刻掩模,以及弱化HEPA滤膜性能。HEPA滤膜材料劣化会导致过滤系统效率降低,也有一定几率会产生含硼化合物和其他影响到半导体工艺和晶圆良率的污染物。痕量酸类物质与晶圆良率的具体关系其实至今还没有系统性的研究,其原因可能在于快速精确检测pptV浓度有机/无机酸的检测设备在半导体行业还没有得到广泛使用。2017年度IRDS设备和系统线路图中列出的分析技术手段对于酸类物质的检测限是100 pptv或更差,而同一份线路图中也明确列出了在半导体工艺达到5 nm或者以下时,洁净室内的无机酸浓度总量建议控制在5 pptV或更低。无机酸检测需求和现有技术手段的落差可以被Vocus CI-TOF质谱仪填平。在之前的《半导体晶圆运输盒AMC污染快速检测》一文中,较好的展示了Vocus CI-TOF针对各种痕量无机酸的检测能力。碱类物质(MBs)氨气、有机胺和酰胺等含氮分子在AMC中是相对特殊的存在。这些碱类分子会在空气通过简单的,也是最常见的酸碱成核机理,产生盐类为主的颗粒物,会有很大可能沉降到晶圆表面或者洁净室内各种外表面。更值得注意的是,氨气对铜等金属表面具有很强的吸附性,对金属参与的制程和仪器内外表面都会产生持续时间较长的污染。氨气一直是在AMC的监管清单之中,近年来,业界也不断发现各种有机胺和酰胺物质的存在在洁净室环境内对光刻和蚀刻等工艺施加的不良影响。为了更有效的减少MBs对制程和良率的负面作用,需要对洁净室空气中存在的多种碱类物质进行精确的长期监控,从而系统化理解它们的气态浓度与工艺效率之间的相互影响。Vocus CI-TOF前期实验结果清楚的显示了碱类物质在FOUP内表面的停留时间要长于酸类物质。换个角度来说,FOUP或者其他设备表面存在碱类物质污染的话,需要冲洗的时间或者清洁技术都可能需要更多的考量。前段提到的酸碱结合生成颗粒物的这一过程,也强调了需要在洁净室内同步观测酸类物质和碱类物质的重要性。Vocus CI-TOF可以秒级检测pptV痕量酸和碱分子的能力使其成为洁净室空气、FOUP和车间供气内MA和MBs测量的优选之一。 可凝结物质(MCs)和挥发性有机物 (VOCs)该AMC种类主要有塑化剂、有机磷酸盐、抗氧化剂、硅氧烷和其他VOCs。MC物种的可凝结特性意味着在酸碱成核反应之后,MC会凝结到细小颗粒物外表面,促进其生长,也就相应的增加了沉降几率和对晶圆表面的危害程度。同时MC也会以分子态或者单分子层凝结到晶圆或者设备部件表面。例如,丙二醇单甲醚乙酸酯PGMEA的水合产物之一,乙酸会对晶圆表面和光刻掩膜表面形成雾化污染。又如,含硅有机物沉积在光刻棱镜表面后会对整体光学系统的散射性能产生影响,这在EUV室等要求及其苛刻的环境中尤其值得重点关注[1]。03—半导体应用案例洁净室AMC实时监测除了生产安全和能耗之外,半导体洁净车间(也称无尘室)设计的另外一个目标是最大化产品产量和良率[4]。之前文献报道了良率和洁净室内空气质量的相关性研究。为了迎合这方面需求,洁净室一般根据每单位体积内的颗粒物数浓度和大小分布进行分级,对应的也会配套相应的空气清洁过滤系统。同样重要的是对洁净室内空气中的颗粒物和颗粒物前驱物进行实时监控,保证洁净室100%满足对应的ISO等级需求。洁净室内的污染来源一般有人员相关(比如呼出气体)、通风系统效能、车间内材料逸出、清洁溶剂使用、工艺或设备原材料泄漏等等。即便在最高等级的洁净室环境内,Vocus CI-TOF质谱仪也检出很多种物种。图3展示了Vocus CI-TOF在一间ISO6等级的洁净室内的空气检测结果,包含了多个AMC种类:无机酸、VOCs和含氟有机物(PFAS物种)等。图3.某间ISO 6等级的洁净室内Vocus CI-TOF采集到的谱图,多种类的AMC同时被Vocus CI-TOF检出。材料逸出洁净室内对晶圆良率影响最大的材料逸出源头,也是与晶圆相处时间最长的部分,是负责晶圆在不同厂区位置间运输和制程间存储的前开式晶圆传送盒,简称FOUP。现代半导体制程中,晶圆除了在不同原理的设备内部被加工之外,在厂区内的其余时间都在FOUP内度过。文献中已经报道过‘上批晶圆->FOUP->后批晶圆’为顺序的交叉污染[2][3]。同一批晶圆在产线上都有着专属的FOUP,不太可能出现FOUP交叉污染,但也不排除出现‘FOUP->晶圆->设备->下批晶圆->对应FOUP’的可能性。因为材料逸出的‘慢’属性,也意味着晶圆在污染FOUP内部时间越长,受到污染的可能性和程度都会相应提高。我们之前利用Vocus CI-TOF,对FOUP内的残余的MA和MB物质进行了长时间不间断的跟踪测量。结果表明,在连续冲洗10小时之后,FOUP内仍有痕量pptV浓度的酸类物质检出,这也充分证明了酸类物质的去除难度极大,以及Vocus CI-TOF在此类应用中的不可或缺性。上述的模拟FOUP逸出实验很好的验证了Vocus CI-TOF技术的快速响应、pptv级别的检测限和高精度、也展示了Vocus CI-TOF在FOUP相关应用上的巨大潜力。一个现成的应用是将Vocus CI-TOF 集成在FOUP清洗站内,实时提供每个FOUP的清洗状态,并相应调整清洗程序参数。另外一个应用是利用Vocus CI-TOF质谱仪不间断的实时检测并反馈各类工艺设备晶圆装载端口内的气体质量,从而将FOUP或者晶圆对制程设备产生交叉污染的可能性降到最低。TOFWERK推出的Vocus CI-TOF是针对半导体不同环境中,各种类AMCs实时、高灵敏度、高精度监控案例提出突破性解决方案。该仪器高水平的软硬件集成度、极低的操作运行和维护成本、以及未来大有用处的高移动性都可以解决现有市面上其他仪器的多个痛点,也为业主在提升整体良率、AMC事件预警、实时排查和后续案例分析和总结等需求,提供最佳的投入回报比。参考文献1.     Den et al. 2020. Doi:10.1149/2162-8777/aba0802.     Nguyenet al. 2013. Doi:10.1016/j.mee.2012.04.0083.     Jeonget al. 2019. Doi:10.1109/ASMC.2019.87917944.     Den et.al. 2005. Doi:10.1149/1.2147286

应用实例

2023.10.04

未来可期--布鲁克联合TOFWERK共同开发应用市场

摘要01TOFWERK 紧凑、快速的飞行时间质谱仪针对小分子应用进行了优化02创新的在线化学电离技术可实现用于固定和移动分析的高灵敏度和原位小分子检测03灵敏、实时的 TOF-MS 解决方案可用于半导体行业、环境空气分析、软木塞分析和呼出气诊断研究2022年5月10日瑞士图恩 -- 布鲁克公司和TOFWERK AG宣布建立战略合作伙伴关系,以提供高速、超灵敏的应用和工业分析解决方案。同时布鲁克对TOFWERK的注入了新资本。该伙伴关系为提升仪器功能提供了技术支撑,也为开发高速、超灵敏的新型分析应用提供了奠定了合作基础。TOFWERK希望利用布鲁克的商业规模来加速进入目标细分市场。这包括TOFWERK提供的紧凑型飞行时间质谱仪(TOF-MS)。该质谱仪用于小分子和挥发物的分析,具备出色的检测速度和灵敏度,以及优异的移动性和个性化设置。TOFWERK的产品组合包括基于TOF-MS分析仪和各种电离方法的专业解决方案。其中包含实时质子转移反应(PTR)化学电离方法、在扫描电子显微镜(FIB-SEM) 中使用快速离子束的SIMS方法和电感耦合等离子电离(ICP)方法。布鲁克最近收购的实时直接分析(DART)技术与TOF-MS技术融合产生的新型业务机会分析解决方案也在开发计划中。TOFWERK的仪器用于实时环境空气监测、呼吸分析(仅供研究使用)、食品和风味分析以及半导体行业的空气污染物(AMC)监测等应用。小尺寸和稳定的工业设计,组装和测试可以让TOF-MS不论是在苛刻的工业环境、外场移动平台,亦或是实验室环境,实现同样强大的分析能力。布鲁克CALID集团总裁Jürgen Srega先生说:“布鲁克很高兴与TOFWERK合作,将布鲁克的创新分析应用与最合适的科学工具相结合。最近收购的IonSense DART技术与TOFWERK Vocus CI-TOF-MS平台的融合,完美展示了布鲁克技术的协同效应,使不同应用领域的工业和应用市场客户收益。”TOFWERK的联合创始人兼首席财务官Katrin Fuhrer博士评论说:“TOFWERK很高兴与布鲁克合作。在布鲁克的全球商业和服务渠道的帮助下,TOFWERK能够利用技术和运营协同效应更好地为我们的客户服务。”TOFWERK的联合创始人兼首席执行官Marc Gonin博士补充说:“TOFWERK与布鲁克密切合作进一步加速紧凑型高速TOF-MS解决方案的商业化。该解决方案由TOFWERK和布鲁克共同开发,以超高灵敏度和针对需求的分析技术服务于工业和应用市场。为了更好地服务国内客户,TOFWERK于2019年成立全资中国子公司:南京拓服工坊科技有限公司。分公司致力于为亚太区的客户提供无时差的售后和技术咨询等服务。”关于TOFWERKTOFWERK通过创新的化学分析解决方案使世界变得更清洁。 TOFWERK的科学家和工程师设计、制造和优化高性能TOF质谱仪的新应用,以支持研究人员和世界各地的工业客户。 TOFWERK仪器的结构紧凑坚固,提供了飞行时间质谱的速度和灵敏度,可在任何环境使用,灵活的设计加快了应用开发和升级的速度。 TOFWERK的产品组合跨越了不同的市场范围,包括环境空气监测、呼吸分析、食品和风味、地质科学、材料科学和半导体制造业。

企业动态

2023.10.04

sp-icpTOF-MS评估单细胞级应激反应

今日热点NEWS2023.9.25        应用单细胞ICP−TOF-MS评估细胞的应激反应TOFWERKicpTOF    单细胞-电感耦合等离子体-飞行时间质谱法(sc-ICP-TOF-MS)是一种能自动且直接检测单个人体细胞中蛋白质相对浓度的分析方法。也可以进一步采用金属纳米簇(Metal Nanocluster, MNC)标记目标蛋白抗体和钌红(RR)染色来确定单细胞数量以及评估细胞的相对体积。作者通过sc-ICP-TOF-MS对人体ARPE-19细胞进行系统性研究,以探究这些细胞中经过IrNCs、PtNCs和AuNCs标记的特异性抗体铁调素(HP)、金属硫蛋白-2(MT2)和铁蛋白(FPN)的表达情况。考虑到APRE-19细胞在悬浮液中呈球形且RR与细胞表面结合,则细胞体积与Ru信号强度的二分之三次方成正比。这样不仅可以确定每个细胞中目标蛋白质的质量,有了体积信息后,还可以推导出相对浓度。研究人员比较了高血糖应激和氧化应激两种模型下的ARPE-19培养物,对照组与实验组细胞显示了分析物的质量、细胞体积和目标蛋白质浓度的相对变化,从而可以清楚地识别出经过相应处理后的细胞亚群。01简介      细胞的个体异质性意味着族群的细胞中金属和生物大分子的表达水平可以相差2到3个数量级。据报道,这种细胞间的显著差异可能是多种病症的根源。因此想正确解释细胞群中目标分析物表达必须能够对单个细胞进行定量分析。因为细胞转录组还受到细胞体积的影响,所以在分析细胞群中的目标分析物时,还需要评估单个细胞体积。此外,了解每个细胞的蛋白质量和特定蛋白浓度也是非常重要的。单细胞电感耦合等离子体质谱法(sc-ICP-MS)是一种应用较为广泛的技术,可用于研究细胞中的内源性无机元素和特定生物分子,新一代的飞行时间质谱仪(TOF)已经可以同时检测单个细胞内多个目标分析物。在以往报道中,这种技术被用于藻类元素指纹图谱、酵母对金属的吸收和对精子进行多元素分析。蛋白质质量通常在单个细胞中数量级为fg(飞克,10-15克)或ag(阿克,10-18克),因此抗体(Ab)标签必须有尽可能高的灵敏度。通常选用Maxpar聚合物作为抗体标记金属原子的载体(100-140个原子每Ab)。本文使用的金属纳米团簇(MNCs)可以提供更高的信号放大率,比如AuNCs和IrNCs中分别含有579和1760个Au和Ir金属原子。为了用sc-ICP-TOF-MS测定单个细胞中蛋白质浓度,需要选择合适体积标记物。以往的研究表明,Mg和Ca等内源性元素与细胞体积相关,然而同时测量极低浓度的Mg和Ca和金属标记物是一项极具挑战的工作(小编注:原文中解释为质荷比相差较多,这不是因为文中icpTOF仪器的TOF检测器所限制。更准确解读是因前端CCT模式下优化参数所限,不一定能对处于低浓度区间的低质量数和高质量数元素做到同时高灵敏度检测)。Rapsomaniki等人提出了一种方法,使用能与蛋白质氨基共价结合的Ru复合物,理想情况下,体积标记物只结合细胞膜,这样就能将金属信号强度与细胞体积相关联。      为了比较在不同补充剂条件下的细胞培养效果,获取每个细胞的相对体积至关重要。本研究首次提出了一种使用sc-ICP-TOF-MS直接测定人体单细胞中蛋白质相关浓度的方法。作者使用MNC标记的特异性抗体来检测目标蛋白,并使用RR染色来标记细胞体积。通过测量标记蛋白和101Ru+的信号强度,本文建立了一个简洁的自动化检测方法,用于比较不同细胞群体和评估应激细胞模型。本案例通过sc-ICP-TOF-MS对人类ARPE-19细胞的三种目标蛋白质表达情况进行了研究。这三种蛋白质HP,MT2,FPN分别被IrNCs、PtNCs和AuNCs标记,并随后进行 RR 染色。通过sc-ICP-TOF-MS对这些目标蛋白进行定量检测,作者为体外细胞研究带来了对细胞异质性的新认识。02实验方法      使用人类ARPE-19细胞和MNC标记的免疫探针进行免疫测定:研究人员使用MNC标记的免疫探针同时标记了固定细胞悬浮液中的三种蛋白质。用于在ARPE-19细胞中标记HP、MT2和FPN的免疫测定流程在免疫探针浓度方面已经进行了优化。优化可以确保蛋白质的完全识别,以及足够的清洗步骤以避免非特异性相互作用。此项流程是独立地使用三种免疫探针(Anti-h-HP:IrNCs、Anti-h-MT2:PtNCs 或 Anti-h-FPN:AuNCs)进行的。优化后的抗体浓度分别为 4 μg mL−1、10 μg mL−1 和 4 μg mL−1。为了对ARPE-19细胞进行RR标记,悬浮液中的细胞被浸泡在50 μg mL−1 的RR溶液中30分钟。之后,使用磷酸盐缓冲溶液(PBS; 浓度0.1M,pH值7.4)将细胞颗粒洗涤两次,以去除多余的RR。     实验先将ARPE-19细胞以1 × 105 cells mL−1 浓度悬浮在50 mM Trizma缓冲液中(pH值7.4),再进行sc-ICP-TOF-MS分析。作者经过连续稀释和测量对照组细胞来选择合适的细胞浓度。为进行离子校准,使用了含有Pt、Ir、Au和Ru的多元素标准溶液。每天分析两组悬浮液以确定sc-ICP-TOF-MS实验设置的传输效率。使用的两组悬浮液分别是商用含PtNP的标准试样以及含有ARPE-19细胞的对照组溶液。数据处理使用了TOFpilot、Excel和JASP软件。在STDS模式下优化ICP-TOF-MS参数,用于测量不同的细胞标签,而在CCTS模式下优化参数则用于检测细胞内源性元素。为确认基于MNC标记的免疫探针和RR标签的sc-ICP-TOF-MS方法,还使用商用ELISA试剂盒测定了对照组和高血糖处理的ARPE-19细胞中HP和FPN蛋白的平均浓度。     本文的sc-ICP-TOF方法中采用的是TOFWERK icpTOF 2R和ESI microFAST SC系统。ARPE-19细胞悬浮液的细胞计数通过BD Accuri C6细胞计数仪完成,同时使用Leica DM IL LED光学显微镜捕获细胞悬浮液的图像。使用Bandelin sonoplus HD2070探头进行超声处理,以配合ELISA试剂盒进行蛋白质测定。03钌红(RR)标记ARPE-19细胞:细胞区分和体积标记      为了更好地使用金属标记抗体对生物分子进行sc-ICP-MS分析,科研人员需要同步观测元素标签和细胞内源性元素(Ca, Cu, Fe, P等),从而确认细胞的完整性和抗体的正确识别。但由于内源性细胞元素和标签金属的质量差异,这种同时检测可能会受到限制。为了解决这一问题,研究人员使用RR来检测单个ARPE-19细胞,而其与MNC标签之间的相近的质量允许同时以高灵敏度检测。实验中,科研人员注意到纯RR信号可能与ARPE-19细胞的膜片段相对应,而MNC标签信号可能来自未结合到蛋白质的自由MNC标记免疫探针。此外,使用RR不仅可以确定细胞事件的数量,还可以评估细胞的相对体积,从而允许在每个细胞中确定目标蛋白的质量和相对浓度(小编注:具体计算公式和过程请参考原文)。最后,结合同期的光学显微镜观察到的细胞体积差异,RR信号范围还被用来识别多个细胞事件,从而确保单细胞数据评估的准确性。04压力下ARPE-19细胞的蛋白质水平      研究探讨了在两种不同条件下培养的ARPE-19细胞中三种蛋白质的表达:一种使用高血糖模型(100 mmol 葡萄糖,48小时)培养,另一种使用诱导氧化应激模型(5 mmol AAPH 1小时)培养。通过sc-ICP-TOF-MS分析实现了对单细胞中HP、MT2和FPN蛋白质的同时检测以及它们相对浓度的确定。为此,通过应用选定的阈值从背景中鉴别出细胞事件后,将193Ir+、195Pt+和197Au+的强度信号转化为Ir、Pt和Au的绝对质量。然后,将每个细胞的金属质量转化为相应的蛋白质含量(小编注:具体计算公式和过程请参考原文)。最后,使用单细胞测量的101Ru+信号强度计算出单细胞体积从而得到蛋白质的相对浓度。研究中使用单细胞ICP-TOF-MS得到三种蛋白质的检测限分别为HP是3.8 ± 0.4 ag/细胞,MT2是9 ± 1 ag/细胞,FPN是4.4 ± 0.6 fg/细胞。05高血糖对ARPE-19细胞的影响     利用 sc-ICP-TOF-MS 测定对照组和高血糖处理的 ARPE-19 细胞中 HP、MT2 和 FPN的水平,研究人员评估了高血糖对三种蛋白质产生的影响。如原文中表1中结果所示,高血糖(GL)处理影响了全部三种蛋白质的平均质量,它们均发生了过表达。但在比较相对蛋白质浓度时,平均值没有明显差异。图1的A-C比较了对照组和高血糖组HP、MT2和FPN的质量分布,高血糖组的细胞平均值明显较大(注意图中y轴是对数坐标),而中值不受影响,高血糖处理的细胞蛋白质量在中位数上下分布更为分散。因此,如果只比较群体平均值(如使用传统的ELISA试剂盒法),可能会影响到诊断和治疗效果。高血糖处理扩大了两极分布,表面上看HP、MT2和FPN在细胞群里质量变化较大,而相对浓度(图1 D-F)差异有所减小。此外,每个细胞的蛋白质分布直方图(图1 A-C)呈倾斜状,中位数以上的离散度大于中位数以下的离散度,当考虑到细胞体积时(图1 D-F),峰形不再倾斜,表示蛋白质质量较大的浓度体积也较大,但在直方图里可以观测到两组细胞群。图 1. 用sc-ICP-TOF-MS测定对照组(绿色)和高血糖处理(橙色)的 ARPE-19 细胞中的HP、MT2和FPN的质量的箱形图和直方图(百分比表示)(A-C)以及相对蛋白质浓度(D-F)。(A、D)HP(B、E)MT-2(C、F)FPN。数据包括四组生物重复的对照组和高血糖处理的 ARPE-19 细胞的分析结果,每次重复都进行了三次仪器测量。      图2研究了蛋白质质量和细胞体积之间的相关性,蛋白质质量较大的细胞群在散点图上半部分用红色标出,质量较小的细胞在底部用绿色标出。图2的B、C显示的红色圈部分的细胞群中的细胞体积与蛋白质量之间呈线性增长关系,即细胞体积越大,蛋白质量越高。高血糖组(图2 D-F)也观测到了相同的趋势,但MT2和FPN中红色标记组的比例更高,意味着经过高血糖处理后,有更多细胞的体积与这两种蛋白质质量成线性关系。图2 用sc-ICP-TOF测定的对照组和高血糖处理组的HP、MT2和FPN蛋白质质量与细胞体积的散点图。A-C为对照组,D-F为高血糖组。101Ru+信号是和金属纳米簇免疫探针的金属信号同时被测量的。红色椭圆代表蛋白质质量较大的细胞群,绿色椭圆代表蛋白质质量较小的细胞群。      为了评估细胞体积是否受到处理方法的影响,研究人员对101Ru+信号强度也 进行了研究(原文图S4)。对于较大的细胞,对照组和高血糖处理组观察到相同的分布,然而对较小的细胞,明显有不同的趋势:低于65cts3/2的细胞中,只观察到对照组细胞(即此区间未发现高血糖处理的细胞),而在65-140cts3/2范围,对照组细胞比高血糖处理的细胞数要多,平均101Ru+信号强度明显大于高血糖处理的细胞(p=0.04),表明高血糖会增大细胞体积,与文献中对应酵母细胞结果一致。此外,高血糖会诱发氧化应激、脂质过氧化和细胞凋亡,并抑制细胞增殖,这可能会改变抗氧化剂和控制金属稳态的蛋白质水平。      为了验证该方法的有效性,研究人员使用商用ELISA试剂盒进行了对比实验。在高血糖处理过的细胞中,HP和FPN的平均质量均出现过表达,两者变化倍数均为1.4。在95%置信度下的t检验显示,对照组和高血糖处理的细胞之间存在显著差异(p值分别为5 x 10-4和2 x 10-6),在sc-ICP-TOF-MS结果中也发现了同样的趋势,HP和FPN的变化倍数分别为1.4和1.3。因此,sc-ICP-TOF-MS获得了与细胞生物学常用技术很高一致性的结果。不过需要强调的是,ELISA分析只能获得细胞培养物中蛋白质的平均含量,而sc-ICP-TOF-MS可以获得每个细胞的蛋白质质量,并考虑细胞体积,而不是整体细胞群的平均值,从而能够更好地理解细胞应激反应背后的生物机制。06诱导氧化应激对APRE-19的影响     作者使用同样方法研究了对照组和AAPH处理的氧化应激APRE-19细胞中HP、MT2和FPN的含量。图3描述了比较蛋白质质量分布(图3 A-C)和蛋白质相对浓度分布(图3 D-F)。从图3 A-C可以看出,氧化应激状态下单细胞的HP和FPN平均蛋白质质量增加,而MT2无明显变化。每个细胞HP蛋白质量的中位数无明显变化,而MT2和FPN中位数却有所下降,分别从 1.41 ag/cell 降至 1.23 ag/cell 和 从0.81 fg/cell 降至 0.69 fg/cell),这些差异都有统计学显著性。三种蛋白质的平均相对浓度都有所下降(图4 D-F),但对照组和氧化应激组细胞之间的FPN浓度差异并不明显。图3 用sc-ICP-TOF-MS测定对照组(绿色)和氧化应激组(橙色)的ARPE-19细胞中的HP、MT2和FPN的质量的箱形图和直方图(百分比表示)(A-C)以及相对蛋白质浓度(D-F)。(A、D)HP(B、E)MT-2(C、F)FPN。数据包括四组生物重复的对照组和氧化应激处理的 ARPE-19 细胞的分析结果,每次重复都进行了三次仪器测量。      图3 A-C中三种蛋白质的直方图显示了两种处理方式的细胞都属于一个大细胞群。然而考虑到细胞体积时,图3 D-F可以识别出几个大小不同的细胞群。对照组HP的相对蛋白浓度直方图(图3 D)有一个最大值,而氧化应激组细胞有两个不同的细胞群。图3 E中,氧化应激组中低蛋白质浓度的细胞比例比对照组更高。图3 F显示,两组都有两个不同细胞群,但是中浓度和低浓度FPN蛋白质浓度下细胞的百分比不同。     最后,图4展示了通过sc-ICP-TOF-MS得到的对照组和使用AAPH进行氧化应激处理的具有特定体积细胞的频率直方图。实验结果显示,与对照组的细胞相比,经氧化应激处理的细胞中具有高Ru信号(超过65 cts3/2)的细胞百分比更高,这意味着这些细胞的体积更大。AAPH是一种过氧自由基化合物,能增加活性氧种类的产生和通过改变细胞膜的透性增加细胞体积。因此,这种对比使我们能够得到关于AAPH处理的有趣发现,这些发现只能通过逐细胞研究细胞群体并考虑每个细胞的体积来得到。例如,与对照组细胞相比,AAPH处理的细胞中HP和FPN的质量更高,但该处理也显著增加了细胞体积;因此,这些蛋白质的质量增加不仅意味着处理后细胞内蛋白质浓度增加,也意味着细胞大小的增加。图4 使用sc-ICP-TOF-MS获得的对照组(灰色,4635个细胞)和经过氧化应激处理(黑色,3505个细胞)的ARPE-19细胞体积频率直方图。06结论      研究人员需要了解每个细胞的目标物质质量、浓度和细胞体积的变化,才能评估细胞在不同外部刺激作用下的反应和相应机理。本文介绍的方法是通过sc-ICP-TOF-MS检测经金属纳米簇(MNC)标记的抗体作为蛋白质测定的特异性标签,以及使用钌红染(RR)作为体积标签,从而以高灵敏度定量测量单细胞中的特定蛋白质的质量,单细胞的相对体积和目标蛋白质的相对浓度。实验提出的自动化且简单的检测和数据处理方法可以处理大量数据并有效地比较对照组和处理过的细胞培养物,以获得可靠的结论。实验还可以评估每个单细胞中的蛋白质总质量,从而更深入了解细胞内发生的生化过程。备注:翻译仅供学习和参考,内容以英文原文为准。文中图片版权均归ACS杂志社所有。TOFWERK icpTOF让离子再飞一会儿!‍TOFWERK icpTOF电感耦合等离子体-飞行时间质谱耦合了Thermo 公司的 iCAP RQ平台和TOFWERK高性能飞行时间质谱。iCAP RQ平台提供了高强度并稳固的ICP进样和离子源,简单可靠的椎体和离子电镜和Q-cell科技。飞行时间质谱分析仪在保证跟四级管(QMS)同等灵敏度的同时,为icpTOF增加了快速全谱分析,更宽的线性动态范围和高达6000的质量分辨率,提供了快速全谱图采集和所有元素同位素的同步分析能力。◾搭配激光剥蚀,生物、地质样品快速成像案例◾单细胞多元素组分同时分析◾大气颗粒物、单颗粒、海洋环境、土壤、固废无机多组分分析;◾极地冰芯、合金材料、玻璃陶瓷中多元素分析

参数原理

2023.09.26

TOFWERK:大气监测为主导,加强半导体行业研发投入——质谱核心部件大揭秘

科学仪器是人们获取物质成分、结构和状态等信息,认识和探索规律的不可缺少的有力工具,在国民经济、科学研究和军事国防中起到了至关重要的作用,属于国家战略性产业。科学仪器的进步又高度依赖核心零部件的发展,可以说“没有好的关键零部件,就没有好的仪器产品”。据调研,中国质谱市场规模已超140亿人民币。近几年来,在国家政策支持下,中国质谱产业化多点开花,四极杆、离子阱、串联四极杆、飞行时间以及电源、分子泵、气体发生器等部件附件不断有新的技术涌现。在此基础上,仪器信息网特别策划了”质谱核心部件大揭秘“ 的主题直播,以期洞察质谱产业链上游的技术及市场现状,以信息化助力产业发展。相关主题文章和视频将陆续更新,敬请关注。直播第一站来到了南京拓服工坊科技有限公司(TOFWERK 中国),TOFWERK成立于2002年,2019年成立全资中国子公司,是一家集飞行时间质谱仪(TOFMS)的研发、生产、销售和服务于一体的分析仪器公司,致力于为实验室检测和外场监测提供多选择的仪器分析方案。当前,TOFWERK的主要产品包括Vocus质子转移反应-飞行时间质谱(Vocus PTR-TOF),化学电离-飞行时间质谱(CIMS-TOF),电感耦合等离子体-飞行时间质谱(icpTOF),离子淌度-飞行时间质谱(IMS-TOF)和可搭配气相色谱的电子电离-飞行时间质谱(EI-TOF)等专注飞行时间质谱(TOF MS)相关的产品及解决方案。值得一提的是,2022年5月10日, 布鲁克公司和TOFWERK AG宣布建立战略合作伙伴关系,以提供高速、超灵敏的应用和工业分析解决方案。同时布鲁克对TOFWERK注入了新资本,TOFWERK希望利用布鲁克的商业规模来加速进入目标细分市场。这包括TOFWERK提供的紧凑型飞行时间质谱仪(TOF-MS)。该质谱仪用于小分子和挥发物的分析,具备出色的检测速度和灵敏度,以及优异的移动性和个性化设置。解决方案由布鲁克与TOFWERK共同开发,以超高灵敏度和针对需求的分析技术服务于工业和应用市场。采访中仪器信息网编辑与TOFWERK中国的谭稳博士就“TOFWERK的优势产品技术、应用解决方案,未来的技术发展方向以及如何看待中国质谱产业浪潮”等内容进行了深度的交流。采访视频请点击下方观看:仪器信息网:TOFWERK的主营产品及优势应用有哪些?谭稳: 经过近20年的发展,TOFWERK公司在真空系统设计、高速数据采集软硬件、数据处理展示软件和飞行时间质谱分析仪等领域取得了显著的技术突破、并获得了广泛的市场认可。目前TOFWERK的主营产品有Vocus CI-TOF-MS:用于实时测量挥发性有机物,应用场景 :大气环境监测、工业园区污染物监测及大范围移动走航监测、大气化学反应机理研究、食品风味、半导体洁净室、红酒木塞污染物等等;ICP-TOF-MS:基于电感耦合等离子体技术的飞行时间质谱仪,能够实时快速元素检测,单颗粒元素、细胞成像。仪器信息网:2023年TOFWERK还将推出哪些重要的新产品?产品致力解决哪些实际问题?谭稳:接下来公司还将推出面向半导体洁净室的监测的仪器Vocus ABC; Vocus IMS-TOF:解决食品、香料行业测量中同分异构体的测量问题;EC-TOF:致力解决分析化学中靶向和非靶向测量的问题。仪器信息网:您认为该类产品的技术和应用发展趋势是什么?基于此,未来贵司的该类产品会做怎么样的深度开发?谭稳:就我们公司的发展愿景而言,在未来10年,大气环境监测及大气污染机制研究仍是主导;开发Vocus AIM,探索大气中高含氧挥发性有机物的监测及生成机制。其次是近年来也会加强对半导体制造行业的研发投入;高端红酒木塞分析,TCA三氯苯甲醚的快速检测等。仪器信息网:您认为,当前中国质谱产业关键零部件的国产化现状如何?从您的角度看,国产零部件的研发、制造存在哪些难点?谭稳:国产设备已经取得了长足的发展和巨大的进步,未来在质谱仪器研发、制造上可在几方面继续提升:1.提升硬件加工的精密度;2.提升电器控制的精准性;3.加强合作交流、探索新技术、攻关技术难点等。

媒体关注

2023.09.14

什么是VOCs走航监测技术(VOCs走航车)?

1 为什么要进行VOCs走航监测?在当前大气环境污染现状逐步改善的大前提下,大气污染治理从颗粒物(PM2.5)防治到PM2.5和臭氧(O3)协同控制,防控污染源也从大型工业点源转移到中小型工业源、无组织排放和各种排放面源。作为PM2.5和O3的重要前体物之一,挥发性有机物(VOCs)也理所当然的成为十四五期间重点监测和减排的污染物种之一。除了完善VOCs的排放清单和总量,规范并建立多种类VOCs的检测技术手段也是重点工作之一。后者可以通过拓展新的或加强现有固定站点和检测网络,也可以通过将仪器装备到可移动装置中来观测VOCs,以获得更加密集和系统的排放和污染分布信息,也就是大家常谈的VOCs走航监测手段。近几年来,国家和各地方政府都将‘VOCs走航监测’作为VOCs污染问题排查的重要技术和监察手段。因走航监测机动性强,能够快速掌握VOCs的动态空间分布及其污染特征,是对污染排放源的环境空气影响进行跟踪溯源的重要技术手段,也是对环境空气固定站自动监测技术和污染源在线监测技术,在管理需求数据支持上不足的有效技术手段补充。2 VOCs走航监测应用发展历史走航监测技术,也称移动或者车载监测,是在平常定点监测输出的时间、物种和浓度三要素之上,加入了实时的监测地理位置信息,为数据使用和解读提供了多一层可能性。作为VOCs监测领域一种新兴的技术手段,已经在环境大气科研领域其实已有较长时间和较多的应用案例。相对于常规无机污染指标物和颗粒物监测仍主要沿用光学设备监测,特征污染物VOCs监测主要基于质谱方法,尤其是传统的气相FID、PID或质谱方法。移动监测的最初实现方式可以称为‘移动实验室’,也就是讲上述常规检测仪器和色谱仪器等通过集装箱或者货车的形式运输到某些特定地点,随后开机进行计划中的监测,完成监测任务后关机再开往下一个目标监测点。在一定程度上,这种部署方式也与色谱半小时到一小时的样品分析时间有直接关系。2000年前后,随着常压质谱和质子转移反应质谱仪(PTR-MS)为代表的直接进样快速质谱技术的出现和快速发展,尤其是2008年PTR-TOF飞行时间质谱仪器发布后,以VOCs为检测目标的秒级响应快速质谱仪在轮船、高空气球和飞机航测应用等积累了大量的案例和数据。在1998年,科学家们就已经将PTR-MS带到苏里南雨林地区,对异戊二烯及其光化学产物进行了探索性的工作(Journal of AtmosphericChemistry, volume 38, pages 167–185 (2001))。在国外,PTR质谱技术的航测研究和应用单位主要为美国国家海洋与大气管理局(NOAA)和加拿大环境部等。值得说明的是,因为航测中起飞和降落阶段,以及螺旋形上升/下降阶段对机内仪器抗重力加速度要求较高,一般需要对PTR仪器进行特殊设计和改装,资金成本和时间成本都相对较高。而将PTR等仪器部署在地面车辆进行‘移动监测’相对容易,只需将固定好商用仪器的内部、做好车内的减震装置设计和安装即可。文献中报道的最早将商用PTR质谱仪安装在车内并进行地面车载监测的是美国Aerodyne Research公司,其走航车于2003年在墨西哥城进行了道路机动车的VOCs排放跟踪测量(Environ. Sci. Technol.2004, 38, 5694-5703)。在国内,则是北京大学的朱彤老师课题组,联合德州A&M大学的张人一老师,他们首次将PTR质谱搭载在走航车上,对08年奥运举办前、中、后市区四环干道上的苯系物排放和相关系数进行了研究和探索(Atmos.Chem. Phys., 9, 8247–8263, 2009)。通过苯/甲苯的浓度比例,科学家们可以清楚地看到,奥运前期北京四环周边的污染物主要以装修和汽车尾气的苯系物为主,奥运期间因较严格的管控措施,汽车尾气贡献成为主流(Atmos. Chem. Phys., 9,8247–8263, 2009)。图1,美国Aerodyne research的走航车内仪器配置示意图。图片版权归于EST杂志社。3 国内VOCs走航监测技术的发展状况在国内,对快速质谱硬件和应用研发、以及商品化开发,起步较早的是安徽光机所研制的PTR四级杆质谱仪,在与EI电离集合,双极四级杆检测和液态进样等方向取得了众多独创性成果。真正将快速质谱推向国内VOCs走航市场并接受市场和业主考验的是广州禾信研发的单光子电离-飞行时间质谱(SPI-TOFMS)。禾信质谱的PDMS膜进样系统,在仪器性能和仪器成本之间做了一定的平衡,在大幅降低仪器整体真空要求的同时,获得了6秒左右的仪器整体响应时间。现今市面上也有厂家将便携式气相色谱-质谱联用技术(GC-MS)部署在车内,通过所谓‘双通道’进样获得走航过程的‘大致’信息,并结合停车定点测量作为补充。上述仪器均已有走航监测案例报道。据不完全统计,现市面上号称适合走航应用的大大小小厂商的仪器种类已接近两位数。同时,国内有超过100台搭配不同厂商和型号仪器的走航车在国内多个市区或园区等重点地区进行为期一到三年不等的‘常态化’走航任务。针对‘VOCs走航’这一虽较为“新颖”且发展迅速、新技术和厂商层出不穷的市场,众多的业务部门和其他潜在客户可能都或多或少的有少许‘选择困难症’。比如,2021年7月湖南省生态环境检测中心组织的VOCs检测走航车现场测试中,共吸引了多达12家公司共5大类50多台国内外设备参加在简短回顾完VOCs走航这一应用的国内外发展简史,以及市面上适用仪器的现状介绍,笔者将基于2021年6月正式实施的《长三角生态绿色一体化发展示范区挥发性有机物走航监测技术规范》(简称长三角VOCs走航规范),对走航技术的定义和实施形式、各种适用仪器性能的优缺点、走航策略规划、走航前中后质控要点、常见问题和需关注的各个方面、及各种走航案例进行初步小结。《长三角VOCs走航规范》的发布,实现长三角区域VOCs走航监测的标准统一。该技术标准着眼于‘规范走航监测工作,提升不同型号设备间数据的可比性、一致性,使环境空气VOCs走航监测技术更好的服务于示范区。同时为长三角乃至全国范围的大气VOCs科研与环境执法工作提供可借鉴、可推广的经验,引领挥发性有机物走航监测技术发展。4.1 什么是“VOCs走航监测“?《长三角VOCs走航规范》对 “走航监测”进行了明确定义, 走航监测区别于一般移动监测车或移动实验室,最重要的特点在于行进中连续自动监测,并基于地理位置信息显示污染物的空间连续分布。规范希望走航监测在行进中可得到尽可能多的污染物定性、定量信息。从整个工作流程来看,在污染点位停车进行复测,或利用其它设备辅助污染物定性、定量,或开展溯源,也是走航监测工作的重要组成部分。4.2 什么样的快速检测设备可以来实现VOCs走航检测?《长三角VOCs走航规范》中对走航适用的快速监测设备“质谱仪“要求如下:以车载质谱为主要监测设备,从走航监测工作目的和方式来看,分析周期必须尽可能的短,因此在行进时将空气中VOCs组分离子化后,利用质谱得到定性定量结果是主要的走航监测方式。目前市场上用于走航监测的快速质谱仪,离子源工作原理方式主要有三种:电子轰击(EI)、单光子电离(SPI)和质子转移反应(PTR)。质量分析器主要有两种:四极杆(Quadrupole)、飞行时间质谱(TOF)。以下对这几种技术进行简单的介绍:   (1)电子轰击电离能量为70eV,通过这种‘硬电离’,待测分子产生特征碎片,结合NIST数据库进行检索定性。通常,电离前会采用色谱柱对待测物进行分离,待测物由于物理化学性质不同,依次流出色谱柱并被EI电离。对于移除色谱柱,采用直接进样电子碰撞(EI)电离原理的质谱配置进行监测时,空气中多物质检测时产生的信号会进行叠加,相互之间形成干扰。(2)单光子电离(SPI)是相对‘软’的一种电离技术,主流的光电离技术一般通过单光子能量为10.6eV的紫外灯实现,待测物的电离能必须小于10.6eV才能被紫外灯电离。VOCs中,单环苯系物电离能一般在8~9 eV,其SPI电离效率较高;通常含氧或者含氯物质在单光子电离质谱内的响应都相对于苯系物低,检出限的差别有时候达到几十倍甚至更多(Anal. Methods, 2020,12, 4343)。因此为了提高分析的准确度,SPI质谱仪需对每一种待测因子进行外部校准才能有效降低检出值的误差。(3)质子转移反应(PTR)电离也是‘软’电离的典型方式之一。PTR电离法一般以水合氢离子(H3O+)为母离子,待测物只需满足其质子亲和势大于水(691 kJ/mol)即可以被PTR电离。大气环境中存在的绝大部分VOCs都可被电离,电离效率较为类似,响应值相对统一。(4)由于工作原理的不同,飞行时间质谱比四极杆质谱仪具有先天的性能优势。TOF可以瞬时采集全谱信息,大幅提升仪器的分析速度和灵敏度。详见《主流VOC走航质谱仪电离技术漫谈》、《为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?》、《为VOCs走航而生---高质量分辨率PTR-TOF(PTR-MS质谱)在VOCs走航应用中的若干知识点》。4.3.监测方案制定和实施在化工园区走航监测中,应制定合理的走航策略,对走航方式、走航路径、走航频率、走航时长等提出建议。各地的走航策略需要因地制宜,在前期精细化的排放清单准备之外,由粗到细,抓大放小也是常见的参考思路,之后的走航网格覆盖率和走航频次也是研究要点。详见《‘网格化’VOC走航策略漫谈》 4.4 VOCs走航过程中常见的问题有哪些?原因以及解决方法?(1)怎么规划走航路线?去哪里测?考虑走航成本、时间等因素,走航监测可以采取从粗到细的方式,首先对目标区域进行多次不同时段的走航监测,获得区域浓度总体分布图。接下来对浓度异常排放区域进行重点监测,排查污染因子、排放规律、污染来源等问题。(2)走航过程中VOCs浓度没有明显变化?走航热点区域内污染物浓度受周围企业或排放源的影响较大,污染物浓度波动明显。在较低浓度区域走航时,仪器需要高灵敏度来支持,能及时捕获较小的污染波动;在污染严重的区域,仪器不应出现“信号饱和“的情况,无法给出具体数值;同时在低、高浓度区域监测中,仪器给出的因子浓度都要具有可信度,这就要求仪器在更宽的量程上具有较好的线性支撑来满足定量的需求。(3)人鼻子闻到味道,仪器却没有响应?异味因子往往含氧、含氮、含硫、含氯等元素,目前单一的离子化质谱仪难以满足同时全部监测的需要,同时异味因子嗅阈值往往很低,这就需要仪器有更低的检出限。VOCUS PTR-TOF提供易于切换的离子试剂模式,对国内40种典型的恶臭异味物质均可以检测。详见《国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览》(4)仪器测到的物种跟厂家排放清单物种对不上走航监测常常会遇到复杂的污染环境,几种甚至几十种污染因子的存在,对仪器的准确分辨能力提出了更高的要求,监测报告因子与企业排放清单出现不吻合的情况也会出现。Vocus 配有PTR离子源的CI-TOF拥有的高质量分辨率(5000 Th/Th)和高相对质量精度(20 ppm以内)可以帮助我们把精确质量在97.045Th处检测到的因子鉴别为氟苯,而不是3-糠醛(97.028 Th)或2-乙基呋喃(97.065 Th)。(5)仪器测到物种的浓度跟清单排放量对不上在对因子准确定性的基础上,浓度多少的问题也很关键。这需要仪器的质控和校准过程符合规范,在现场检测的条件下易于操作,最好是仪器内置校准系统,减少管路拆卸引起的泄露和交叉污染问题。Vocus 配有PTR离子源的CI-TOF已经内置稀释校准系统,软件自动操作,一般可以在5分钟内完成标零和标定整个流程。同时由于质子转移反应基于反应常数和离子传输效率对因子进行定量,对没有标气的因子半定量结果误差一般小于±50%。详见《Vocus PTR-TOF灵敏度校准‘闻一知十’》(6)117组分不能全覆盖用于走航监测的各种型号质谱仪,由于离子化原理方式的限制,无法对117种因子进行同时监测,会遗漏一些重要因子的信息,导致收集资料不完整。VOCUS CI-TOF可以在5秒内无缝从H3O+模式切换至O2+、NO+等模式,来满足对其他因子的监测,保证走航监测中污染物因子信息的全谱收集。5.走航监测案例分享案例一:国外科学家利用搭配有TOFWERKPTR-TOF质谱仪的移动实验室在美国和欧洲的多个城市,系统性的研究了挥发性化学产品与交通源以及市区人口密度之间的相互关系。利用走航监测数据,科学家们清楚的展示了在上千公里尺度上,各城市周边区域内人为VOCs浓度呈显著提升,换而言之,大气污染物的‘城市热岛效应’。详见《PNAS文献:跨区域VOC走航数据揭示大气污染物‘城市热岛效应’》案例二:国内研究人员采用TOFWERK公司生产的Vocus PTR-TOF质谱仪在2020年对苏州市冬季VOCs进行了环线走航和定点观测,探究了苏州市大气VOCs的污染浓度水平、组分特征以及地理分布趋势,并进一步分析了苏州市VOCs污染物的臭氧生成潜势,为苏州市大气VOCs的污染防治工作提出了坚实数据基础和宝贵建议。详见《Vocus PTR-TOF城区大气VOCs走航+定点联合观测案例介绍》案例三:2020年6月上海金山工业区就多家快速质谱厂商联合观测的部分结果进行了平行分析,在对结果详细对比的基础上,以期判断出这三种分析手段在污染物成分更复杂的工业园区内定点或者走航案例的应用潜力和优劣势。其中VocusPTR-TOF不仅对芳香烃有很好的响应,对含氧类(CHOs)和含氮类(CHNs)的VOCs也具有较好的检测效果,详见《秒级响应PTR-TOF质谱法为工业园区预警管控和源解析提供新思路》案例四:制药工业园区内以二氯甲烷为代表的卤代烃是典型的有毒有害大气污染物。PTR-TOF仪器可以改变试剂来产生其他母离子,大多数的卤代烃都可以被O2+母离子高效电离,同时卤代烃在O2+模式下具有较好的检测限,为园区的走航监测提供支持。同时工业园区内以丙烯为代表的低碳烷烃和烯烃的精确测量是现市面上VOCs走航解决方案的一个技术难点。VocusPTR-TOF所特有的高质量分辨率,‘亚’秒级仪器响应速度和ppt级别的检测限是其成为复杂大气基体中准确鉴别并定量分析痕量丙烯的首选技术之一。详见《走航应用中氯代烃检测的若干知识点》、《Vocus PTR-TOF(PTR质谱)对二氯甲烷和其他常见卤代烃的检测实例解读》、《Vocus PTR-TOF(PTR-MS质谱)对工业园区环境大气中丙烯的监测案例详解》案例五:群众的异味投诉,属于重要的民生问题和环境污染问题。传统检测不适用于现场异味污染源排查对时效性的高分析要求。Vocus PTR-TOF对40种典型恶臭异味物质(硫化物、含氮化合物、苯系物、烯烃及含氧有机物等)均可检测。详见《Vocus PTR-TOF(PTR-MS质谱)恶臭因子实时全检测》、《国内40种典型恶臭异味物质VocusPTR-TOF(PTR-MS质谱)检测能力一览》感谢暨南大学袁斌教授对本文的贡献和指导。

应用实例

2023.09.13

上海某石化工业区VOCs走航比对结果

近两年以快速质谱为主力的VOCs走航解决方案在环境检测领域得到了广泛关注,同时也引发一些相应的技术指标讨论。为了系统的评估不同工作原理和质量检测器的快速质谱仪在真实复杂大气环境场景下的实测性能和优缺点,2020年5月底,上海环境监测中心召集了多家快速质谱仪供应商/厂商在上海某化工园区共同进行了为期一周半的走航监测实验。为更贴合用户可能在实际走航案例中面临的挑战和难点,参与此次走航的各厂商的仪器均对包括含氧VOCs、卤代烃、有机酸、有机胺和酰胺的校准气体钢瓶进行先期测试;并在低速(相同路径同步观测,共在不同地段持续进行了3天。此外,还设计了仪器在连续运行24小时内的平行定点测量及稳定性测试环节。  定点观测的对比结果已先行发表并小结在‘秒级响应PTR-TOF质谱法为工业园区预警管控和源解析提供新思路’一文中。近日,本次多厂商联合试验中的VOCs走航比对实验结果也发表在Science of the Total Environment杂志上。报道的数据主要来源于Tofwerk的高分辨率Vocus S PTR-TOF和SPI-TOF-MS,文中还对比了在走航过程遇到的高污染点位所采集的苏玛罐GC-MS离线数据。首先,在检测到的物种上,Vocus S PTR-TOF共检测到38种VOCs,主要包括C6-C10芳香烃,C2-C6羰基化合物,C2-C3有机酸,以及部分含氮VOCs。从TVOC的总量和时序变化上来看(图1),Vocus S PTR-TOF和SPI-TOF-MS所测量的TVOC的总体趋势具有较好的一致性;在园区中某些高浓度污染点的监测上二者具有较大的差别,如B点、C点和F点,Vocus S PTR-TOF则明显“捕捉”到了污染物轨迹及特征,TVOC的变化比较明显,而SPI-TOF-MS检测到的TVOC则相对变化不显著。图1. Vocus S PTR-TOF和SPI-TOF-MS测量到的TVOC的时间序列(黑色:Vocus S PTR-TOF; 红色:SPI-TOF-MS)图2对走航过程中一些浓度较高的排放点进行了归纳:(1). 在peak_C点,Vocus S PTR-TOF测到包括乙醇、乙醛、丁烯、乙腈、乙酸等十四种VOCs,其中仅已醛和甲苯被SPI-TOF-MS检测到;甲苯浓度较为一致,已醛结果相差较大;(2). 在peak_D点,Vocus S PTR-TOF检测到8种明显VOCs,SPI-TOF-MS共检测到3种,共同检测到的C8芳香烃的浓度,三个仪器的检测结果较一致;在其他物质的测量性能上,Vocus S PTR-TOF对GC-MS具有较好的补充,如环戊酮、苯酚、苯乙酮、丁烯酸等;(3). 在peak_E点,三台仪器均有不同的响应,三者同时检测到的VOCs有C8芳香烃、甲苯、苯,Vocus S PTR-TOF与GC-MS的结果具有较好的一致性。总的来看,Vocus S PTR-TOF在本次走航过程中对大部分VOCs,尤其是园区异味等特征物质,均有不错的响应,定量结果与GC-MS具有较好的一致性;且对部分具有“黏” 性物质的检测上,Vocus S PTR-TOF能够弥补GC-MS分离柱易吸附的缺点。图2. 在走航中各高污染点不同质谱仪的检测结果对比,图示中蓝色来自于SPI-TOF-MS,红色来自于Vocus S PTR-TOF, 灰色来自于离线GC-MS此外,从此前定点监测PMF源解析结果与Vocus S PTR-TOF的即时走航观测数据对比来看(见图3),Vocus S PTR-TOF某个时间点的走航数据与PMF溯源因子具有较好的一致性。换句话说,在走航过程中,Vocus S PTR-TOF走航车行驶到了上述污染因子的排放源头周边。其次,在所选取的几个因子中,F1因子广泛分布于化工园区中,该因子主要来源于试剂使用/化学物质;F4因子的表现比较独特,来源于精细化工区的药品或农药生产;F5(石油化学工业)和F6(精细化学)的主要贡献分别来自于丙烯酸纤维生产和农药制药厂;F7也广泛存在于精细化工区,主要来源于水溶性化学试剂使用。总的来看,仅通过Vocus S PTR-TOF的直接走航观测数据,便可对园区的污染来源和分布状况了然于心,再配合走航之余的定点监测数据,就能实现对热点区域内污染物监测的“点面结合”和“动静相宜”,也符合‘‘网格化’VOC走航策略漫谈’一文中的指导原则。图3. VOCs定点监测数据PMF源解析结果(灰色),红色柱状图为Vocus S PTR-TOF在走航过程中某时间点所观测到的即时VOCs指纹 该研究利用快速质谱仪在大型化工园区中进行大气VOCs走航监测,为如何更好及高效采集并使用好园区内的走航以及定点监测数据提供了参考,具有一定的指导意义,也为园区中的大气挥发性有机物的排放来源解析提供了新的解答和现场验证思路,对化工园区中的空气质量的管理提供更加有效的数据分析和科学依据。

应用实例

2023.09.12

LA-ICP-TOF-MS – 揭秘矿物晶体“元素指纹”

自然界中存在着五颜六色的宝石矿物晶体。目前为止,国际矿物学会认可的矿物种类超过了5000种,而这其中具有吸引力和价值的可被用作珠宝或装饰之用的矿物被称为宝石。我们所熟知的钻石,蓝宝石,红宝石和祖母绿被称作四大宝石。宝石的形成是自然界的一场美丽的“意外邂逅”。宝石不仅外观美丽,稀有而价格昂贵,同时它也是地质学重要的标志物,对研究地质生成环境和地质定年有不可或缺的意义(图1)。1:缅甸抹谷(Mogok)地区的切割宝石级红宝石(0.369克拉)和大理石中的原始红宝石晶体【M.P. Myint, et al, Minerals, 2020, 10(2), 195; DOI: 10.3390/min10020195】。01  近年来,使用飞行时间质谱仪(ICP-TOF-MS)进行的多元素化学分析在环境科学、生物学等领域快速发展,其在宝石学领域的优势也逐渐凸显。在一项近期的研究中,科研人员提出了一种矿物多元素组成的定量方法【Wang and Krzemnicki, J. Anal. At. Spectrom., 2021, 36, 518. DOI: 10.1039/d0ja00484g】。该方法使用激光烧蚀搭配TOFWERK电感耦合等离子体飞行时间质谱(LA-ICP-TOF-MS)同时分析样品内几乎所有元素组成(图2)。图二:(a)使用LA-ICP-TOF-MS在标准NIST610试样上采集的从7Li-238U的全元素质谱谱图。注意图中信号强度采用的是指数格式,可以很好的展示仪器基线的变化情况。(b)使用75微米直径激光光斑,20Hz激光剥蚀频率的情况下的仪器的全元素检测限。【Wang and Krzemnicki, J. Anal. At. Spectrom., 2021, 36, 518. DOI: 10.1039/d0ja00484g】02     该研究提出了“先测量后确定”的新颖概念,用户在实验前无需确定要检测的元素,而是先检测几乎全部的元素组成后再进行选择和定量分析,确定样品中的无机组分。相较来说,传统的单四极杆质谱仪则需要用户在实验前提供元素信息来确定定量分析元素的同位素种类,再进行实验。而且实验后,无法对选择进行更改。这样的实验流程很可能会错过对宝石矿石类地质样品分析有重要意义且“意料之外”的元素。使用ICP-TOF-MS采集全元素质谱后再定量分析法,可以有效地抓住出现概率非常低的元素组成,比如极少数蓝宝石中的钍元素【M. Wälle, et al, Euroanalysis会议报告, 2023】,还可以对宝石矿石的地质生成环境和年代进行分析,例如对红宝石中的极少出现的锆钛矿包裹体的成因和铀铅定年进行研究【M.P. Myint, et al, Minerals, 2020, 10(2), 195; DOI: 10.3390/min10020195】。除此之外,借助TOF-MS远优于四极杆质谱仪的高质量分辨率,一些常见的干扰,比如钡和镧系元素的双电荷离子对镓和锗同位素的影响,可以得到很好的校正。通过双重标准试样校准方法(NIST610和NIST612)则可以部分消除由于标准试样基质和待测样品不同而造成的测量误差。由于飞行时间质谱TOF数据的特殊性,对其全质谱基线的校正和处理十分关键,这很大程度决定了定量结果的准确性。如果没有很好的基线校正方法,那么将会带来实验结果的偏差。实验使用的icpTOF仪器采取将原始基线下载到本地硬盘再通过软件进行自动或手动拟合处理的方法,可以将完整实验的多个基线进行叠加之后再拟合,以最大程度的保证拟合结果的准确性。如果将每一个谱线的基线直接在质谱仪电脑上进行实时拟合,可能会出现信号强度过低,信号标准偏差偏大,而基线的拟合不准确的情况。这种由于基线拟合导致的统计学噪音会直接影响实验结果的准确性和精确性。另外,后期数据处理可让用户随时对基线拟合进行调整。如果直接舍弃原始基线数据,只积分和保存元素信号的话,会出现‘不谈海平面,只谈山峰高度’的不客观表达和数据表达。03结论      综上所述,采用带有原始基线采集功能的电感耦合-飞行时间质谱仪(ICP-TOF-MS)对宝石矿物进行广谱多元素分析具有明显的优势。在每个激光剥蚀事件的毫秒时间长度内,ICP-TOF-MS不仅可以对几乎全部元素进行采集,从而避免错过任何出现概率极小的元素组成。同时,将原始全谱线下载到电脑进行后处理的方法很大程度上赋予科研人员对实验数据处理方法的掌控。让实验结果不再仅仅只是数字,而是更精确更准确的靠‘谱’分析结果。

应用实例

2023.09.11

BCEIA展会邀约:9月6-8日 TOFWERK 中国(南京拓服工坊)E2370展位

BCEIA    第二十届北京分析测试学术报告会暨展览会(BCEIA 2023) 将于2023 年9 月6-8 日在北京· 中国国际展览中心(顺义馆)召开,会议将继续秉承“分析科学 创造未来”的发展理念,围绕“生命 生活 健康——面向绿色未来”的主题开展学术报告会、论坛和仪器展览会。01展位信息                02Vocus CI-TOF随时随地 靠‘谱’分析无需色谱分离,复杂样品中挥发性有机物(VOCs)和无机物(VICs)实时定性、定量分析。最高质量分辨率≥15,000,‘亚’pptV检测下限。◾最新TOFWERK Vocus CI-TOF产品线◾大气环境VOC实时在线监测,臭氧污染管控预警◾有毒有害异味物质◾车载走航监测◾食品风味组学◾半导体制程监控,AMC实时管控预警◾材料异味,车内空气质量◾人体呼出气体分析:疾病快筛,药物动力学03icpTOF  让离子再飞一会儿!      TOFWERK icpTOF电感耦合等离子体-飞行时间质谱耦合了Thermo 公司的 iCAP RQ平台和TOFWERK高性能飞行时间质谱。iCAP RQ平台提供了高强度并稳固的ICP进样和离子源,简单可靠的椎体和离子电镜和Q-cell科技。飞行时间质谱分析仪在保证跟四级管(QMS)同等灵敏度的同时,为icpTOF增加了快速全谱分析,更宽的线性动态范围和高达6000的质量分辨率,提供了快速全谱图采集和所有元素同位素的同步分析能力。◾搭配激光剥蚀,生物、地质样品快速成像案例◾单细胞多元素组分同时分析◾大气颗粒物、单颗粒、海洋环境、土壤、固废无机多组分分析;◾极地冰芯、合金材料、玻璃陶瓷中多元素分析采用带有原始基线采集功能的电感耦合-飞行时间质谱仪(ICP-TOF-MS)对地质,生物,单颗粒,单细胞进行广谱多元素分析具有明显的优势。在毫秒时间长度内,ICP-TOF-MS不仅可以对几乎全部元素进行采集,从而避免错过任何出现概率极小的元素组成。同时,将原始全谱线下载到电脑进行后处理的方法很大程度上赋予科研人员对实验数据处理方法的掌控。让实验结果不再仅仅只是数字,而是更精确的靠‘谱’分析结果。

企业动态

2023.09.01

< 1 2 3 > 前往 GO

南京拓服工坊(TOFWERK中国)

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 南京拓服工坊科技有限公司

公司地址: 南京市浦口区浦滨路320号 联系人: 拓服工坊 邮编: 211800 联系电话: 400-860-5168转6080

友情链接:

仪器信息网APP

展位手机站