您好,欢迎访问仪器信息网
注册
北京世纪朝阳科技发展有限公司

关注

已关注

金牌6年 金牌

已认证

粉丝量 0

400-860-5168转4443

仪器信息网认证电话,请放心拨打

当前位置: 世纪朝阳 > 公司动态
公司动态

岩溶关键带的水中氮、硫酸盐和碳的分解来源及其转化机制

岩溶临界关键带的水中氮、硫酸盐和碳的分解来源及其转化机制摘要:在喀斯特临界区关键带(KCZ),采矿和城市化活动产生的多种污染物会,对饮用水和灌溉所必需的重要地下水和地表水资源构成威胁。尽管它们很重要,但人们对这些污染物在高密区复杂的水文和土地利用中的相互作用仍然知之甚少。在本研究中,我们利用多种同位素和 MixSIAR 模型揭示了氮、硫酸盐和碳的转化机制和来源,并使用 ArcGIS 进行了空间建模中的水文和表面分析。结果显示地下水和地表水之间存在频繁的交换,通过δD-H2O 和 δ18O-H2O 的分析结果证明了地下水和地表水之间存在频繁的交换过程这一点。硝化作用主要发生在地表水中,同时反硝化过程也起到了重要作用作用的作用较小。地下水和地表水中的无机氮主要来自土壤氮(分别为 48% 和 49%)。污水和粪便是地表水中无机氮的次要来源,其中城市占41%,矿区占38%。值得注意的是,无机硫氧化在城市和矿区之间表现出显着的空间差异,使得地下水比地表水更容易受到硫污染。地下水与地表水频繁互换,对地下水造成较高的污染风险。此外,地下水和地表水中 CO2 和HCO3− 的主要来源是水碳酸盐反应和土壤呼吸。研究发现硫化物氧化会增强碳酸盐溶解,从而导致高密带碳酸盐溶解释放的二氧化碳增加。这些发现增强了我们对地下水和地表水中氮、硫和碳的转化机制和相互作用的理解。这些知识对于准确控制和处理库里水污染至关重要。研究目的: 这项研究的目的是解开氮、硫酸盐和碳在喀斯特关键带(Karst Critical Zone)的水中的来源和转化机制。具体来说,研究人员想了解这些污染物在复杂的水文和土地利用中的相互作用,以及它们在地下水和地表水之间的交换。他们使用多种同位素和MixSIAR模型来研究这些问题。研究方法: a. 在喀斯特关键带的地下水和地表水中收集样本,并分析其δD-H2O和δ18O-H2O值,以确定水之间的交换频率。b. 使用MixSIAR模型来确定氮、硫酸盐和碳的来源和转化机制。c. 使用ArcGIS进行空间建模和表面分析,以了解污染物在复杂土地利用中的分布。结论:我们证明了多种同位素方法(N、S、C、H、O)和MixSIAR模型在揭示复杂土地利用模式下岩溶临界区(KCZ)污染物来源和转化机制的复杂性方面的有效性。硝化作用是城市和矿区地表水中氮循环的主要过程。相反,地下水中的硝化作用相对较弱。反硝化作用对地下水和地表水中氮循环的贡献最小。土壤是地下水(48%)和地表水(49%)中无机氮的主要贡献者。在城市和矿区,污水和粪肥是地表水中无机氮的次要贡献者,占46%~47%。还原无机S的氧化作用是SO42−的主要来源。矿区地下水由于与地表水频繁交换,易受黄铁矿氧化的SO42−污染。同位素值表明,水、碳酸盐和土壤呼吸之间的相互作用是地下水和地表水中CO2和HCO3−的主要来源。此外,当产生H+和SO42−时,硫化物氧化可以增强碳酸盐的溶解,增加CO2的释放。这些发现从各种定量来源为硫化物氧化和碳酸盐溶解的耦合提供了有价值的见解。了解这些过程有助于有效的岩溶水管理,并了解人为因素对KCZ中N、S和C的生物地球化学耦合的影响。Picarro仪器的使用: 作者使用了Picarro仪器(Picarro,Santa Clara,USA)来测量δ18O-H2O和δD-H2O值。根据文本,作者进行了离散采样测量。他们收集了样本,并使用Picarro仪器进行测量。Picarro仪器数据的使用和支持: 作者使用来自Picarro仪器的数据来确定δ18O-H2O和δD-H2O值,这些数据用于确定水之间的交换频率。这些数据支持了研究结论,即地下水和地表水之间存在频繁的交换。https://doi.org/10.1016/j.scitotenv.2024.171310

应用实例

2024.06.07

丽水高精度温室气体监测系统安装案例

丽水高精度温室气体监测系统安装案例根据生态环境部《碳监测评估试点工作方案》环办监测函〔2021〕435号文件和《城市大气温室气体监测点位布设技术指南(第一版)》要求,丽水市结合本地的地形地貌、气象条件和生态环境等因素规划建设了6个高精度温室气体监测站点。为全面掌握丽水市城市碳排放现状和森林生态系统碳汇现状以及丽水市“双碳”评估工作提供了有力技术支撑。高精度温室气体监测站点主要配置高精度温室气体监测示意图站点配备了北京世纪朝阳科技发展有限公司提供的全套高精度温室气体监测系统(包括Picarro G2401、G2301型号温室气体分析仪及世纪朝阳预处理系统,其中Picarro G2401高精度温室气体分析仪可同时监测CO、CO2、CH4和H2O,Picarro G2301高精度温室气体分析仪可同时监测CO2、CH4和H2O),用于获取丽水地地区大气温室气体背景浓度,同时也预留了充足的空间可用于后续升级,例如加装碳同位素分析仪(Picarro G2201-i)及氧化亚氮分析仪(Picarro G5310)等,助力完成二氧化碳、甲烷浓度及其碳同位素,氧化亚氮浓度在内的多种大气主要温室气体的数据储备。安装过程设备清点设备搬运设备安装培训与交流丽水市高精度温室气体监测站点,填补了浙南区域监测网络的空白,与杭州、宁波组成了浙江区域相对完善的监测网络,为全方位、宽领域、大范围监测整个浙江区域温室气体做出有力支撑。

应用实例

2024.05.13

世纪朝阳助力实验室仪器设备更新升级

PICARRO科学仪器更新升级选型指南 近期,国务院发布《推动大规模设备更新和消费品以旧换新行动方案》,将为科学仪器行业带来大变化。设备更新、以旧换新、循环利用、标准提升,每一项都与我们息息相关。方案旨在加快构建新发展格局、推动高质量发展,既利当前、更利长远。科学仪器行业新时代来了!北京世纪朝阳科技发展有限公司强力响应国策,多款设备等您来挑,让我们一起跟上国策的步伐,共创美好未来!G2301气体浓度分析仪G2301 温室气体浓度分析仪可同步精确测量二氧化碳(CO2)、甲烷(CH4)和水汽(H2O),灵敏度为十亿分率(ppb),设备具备长期稳定性,无需频繁校准。G2311-f EC 通量气体浓度分析仪Picarro G2311-f 通量气体浓度分析仪可在10 Hz频率下同步精确测量二氧化碳(CO2)、甲烷(CH4)和水汽(H2O),适用于涡度相关方法、梯度方法和涡旋累积法通量测量。G2401 气体浓度分析仪Picarro G2401气体浓度分析仪可同步精确测量一氧化碳(CO)、二氧化碳(CO2)、甲烷(CH4)和水汽(H2O),灵敏度为十亿分率(ppb),符合WMO和ICOS环境大气监测要求。 G2401-m 航空专用气体浓度分析仪Picarro G2401-m气体浓度分析仪可同步精确测量一氧化碳(CO)、二氧化碳(CO2)、甲烷(CH4) 和水汽(H2O),灵敏度为十亿分率(ppb),可进行空中测量,稳健设计确保飞行期间的性能。G2508 气体浓度分析仪Picarro G2508 气体浓度分析仪可同步精确测量氧化亚氮(N2O)、甲烷(CH4)、二氧化碳(CO2)、氨(NH3)和水汽(H2O)。可在开路或闭路系统中运行,并且能够轻松与腔室系统进行集成。G2509 气体浓度分析仪Picarro G2509 气体浓度分析仪可同时精确测量氧化亚氮(N2O)、甲烷(CH4)、二氧化碳(CO2)、氨(NH3) 和水汽(H2O)。分析仪优化气体管路,实现了氨气的快速响应。 PI5310 气体浓度分析仪Picarro G5310气体浓度分析仪可同步精确测量氧化亚氮(N2O)、一氧化碳(CO)和水汽(H2O),灵敏度为万亿分率(ppt),符合WMO和ICOS国际环境大气监测要求。 SI2103 气体浓度分析仪 Picarro SI2103气体浓度分析仪可精确实时测量氨(NH3)和水汽(H2O)。 G2307 气体浓度分析仪Picarro G2307气体浓度分析仪可精确实时测量甲醛(H2CO)、甲烷(CH4)和水汽(H2O)。SI2104气体浓度分析仪Picarro SI2104气体浓度分析仪以十亿分之一(ppb)的灵敏度精确测量硫化氢(H2S),可用于测量垃圾填埋场、炼油厂、造纸厂或工业厂房的排放物。PI2114 气体浓度分析仪 Picarro PI2114气体浓度分析仪可测量低至3 ppb的过氧化氢(H2O2),以避免药物发生氧化并确保药物稳定性。SI2108 气体浓度分析仪 Picarro SI2108气体浓度分析仪可精确实时测量氯化氢(HCl)和水汽(H2O),灵敏度为万亿分率(ppt),对于大气科学和空气质量应用。SI2205 气体浓度分析仪Picarro SI2205气体浓度分析仪可精确实时测量氟化氢(HF)和水汽(H2O),灵敏度为万亿分率(ppt), 对于大气科学和空气质量应用。G2131-i 同位素与气体浓度分析仪Picarro G2131-i同位素与气体浓度分析仪可精确连续测量二氧化碳(CO2)中的δ13C以及CO2和CH4气体浓度,适用于各种应用,从大气和海洋科学研究到食品与饮料的来源与真实性无不涵盖其中。G2201-i 同位素分析仪Picarro G2201-i 同位素分析仪可精确连续测量二氧化碳(CO2)和甲烷(CH4)中的δ13C。G2210-i 同位素分析仪Picarro G2210-i 同位素分析仪可精确、同步、连续测量甲烷(CH4)中的δ13C以及乙烷 (C2H6)与甲烷(CH4)比率,实现实时甲烷排放源归属与量化分析。Picarro碳同位素设备可以与各种反应前端自由搭配(包括TOC、OC/EC、EA/CM、DIC以及各种类型呼吸室等),实现不同样品的分析。L2130-i 同位素与气体浓度分析仪运用各种 Picarro 外围设备,L2130-i 水同位素分析仪可高精度测量液体、气体和固体中的δ18O和δ2H。L2140-i 同位素与气体浓度分析仪Picarro L2140-i 水同位素分析仪可同步测量δ18O、δ17O、δ2H, 并确定古气候、(生态)水文学和大气科学应用的17O-盈余。北京世纪朝阳科技发展有限公司始终致力于为广大用户提供先进的仪器及技术解决方案,以先进的技术和产品,完善的售后服务,赢得了广泛的市场和良好的信誉。若您想要了解相关产品的详细应用,欢迎与我们联系讨论。

企业动态

2024.04.03

陆地DOM的输入伴随着DO和pH值的下降并加剧了千岛湖的CO2排放

原文链接:https://doi.org/10.1016/j.watres.2024.121155 摘要:陆地输入和随后湖泊生态系统中溶解有机物(DOM)的降解会导致溶解氧(DO)的快速消耗。陆地DOM(包括有机酸)的输入也会导致pH值下降。然而,迄今为止,很少有研究调查陆地DOM输入、水体中的DO和pH水平以及湖泊生态系统的二氧化碳(CO2)排放之间的联系。根据2020年5月至2021年4月在中国主要人工饮用水水库千岛湖100个站点的月度实地采样活动,我们估计该湖的年二氧化碳排放量(FCO2)为37.2±29.0 gC m−2 yr−1,相当于0.02±0.02 TgC yr−1。FCO2随着DO、叶绿素a(Chl-a)和δ2H-H2O的降低而显著增加,而FCO2随着比紫外吸收率(SUVA254)和陆地类腐殖成分(C2)的增加而增加。我们发现DO浓度和pH随着陆地DOM输入的增加(即SUVA254和陆地类腐殖C2水平的增加)而下降。垂直剖面采样显示,CO2的分压(pCO2)随着陆地DOM荧光(FDOM)的增加而增加,而DO、pH和δ13C-CO2随着陆地FDOM的增加而下降。这些结果强调了陆地DOM输入在改变物理化学环境和促进该湖泊和潜在的其他水生生态系统的二氧化碳排放方面的重要性。  图形摘要:研究目的:确定中国主要水库之一的千岛湖中溶解有机质(DOM)的化学组成和活性如何影响溶解氧(DO)浓度和pH,从而影响二氧化碳(CO2)的排放。陆地DOM输入及其随后的降解与水体中DO和pH水平以及CO2排放之间的联系。 研究方法:2020年5月至2021年4月期间,每月在千岛湖的100个站点进行了现场采样。研究者测量了溶解氧(DO)、pH、水温和陆地DOM荧光(FDOM),并收集了水样进行实验室分析,包括DOC、Chl-a、δ2H-H2O、SUVA254等。此外,还使用超高效分辨率质谱(FT-ICR MS)来追踪DOM的分子组成,同时使用Picarro G2201-i同位素分析仪来测量CO2的稳定同位素组成,并进行垂直剖面采样以研究pCO2和δ13C-CO2的垂直变化。  Picarro 仪器的使用:Picarro G2201-i同位素分析仪被用于测量水样中CO2的浓度及稳定同位素组成,这是离散采样测量。在文章中,展示了2022年5月、8月和2023年3月在水库中进行的三次垂直剖面采样期间收集的pCO2和δ13C-CO2的数据,这些数据是通过Picarro G2201-i仪器获得的。 Picarro G2201-i仪器提供的数据用于分析CO2的稳定同位素组成(δ13C-CO2),这有助于研究者们理解CO2的来源和产生过程。通过这些数据,研究者们发现随着陆地DOM荧光(FDOM)的增加,pCO2增加,而DO、pH和δ13C-CO2减少。这表明陆地DOM的输入和随后的降解导致了DO的消耗和pH的降低,从而促进了CO2的排放。这些发现支持了研究的结论,即陆地DOM的积累和降解是水库CO2排放的关键过程,并且这些排放与水体中DO的消耗和pH的降低有关。这些结果强调了在模拟湖泊和水库碳平衡的变异性时,应考虑DOM的化学组成和活性对DO和pH变化的影响。  结论:我们估计千岛湖的年CO2排放量为0.02±0.02 TgC yr−1。我们的研究结果表明,陆地DOM的积累和降解会加剧CO2排放,同时伴随着DO的消耗和水体pH值的下降。结果表明,DO和pH水平随着陆地DOM的增加而下降,δ13C-CO2随陆地FDOM的增加而降低;随着pH值的降低,pCO2增加,而δ13C-CO2的稳定同位素特征降低。这些结果突出了DOM的陆地输入在驱动CO2排放中的重要性。鉴于DOM在全球碳生物地球化学循环中的重要性,在模拟湖泊和水库中碳平衡的变化时,应考虑DOM的化学成分和生物不稳定性对DO和pH的变化以及CO2排放的影响。

企业动态

2024.04.03

反硝化作用调节城市河湖互联网络中N2O排放的时空格局

背景简介目前大气中N2O的平均浓度约为333 ppb,并以每年0.25%-0.31%的速度持续增加。在100年的时间尺度上,N2O的温室效应潜力是CO2的265倍,N2O是影响全球气候变化的重要因素。城市河流是N2O产生和排放的热点。在中国许多城市中,为了改善城市河流的水质和水动力条件,建设了相互连接的河湖网络。N2O的产生受到内陆水系微生物过程的强烈控制。最近的研究发现,硝化和反硝化都是N2O产生的主要途径。反硝化作用对N2O的贡献随着湖泊富营养化水平的增加而增加。然而,在废水处理厂和农业河流的下游经常观察到高NH4+浓度,此时硝化作用可能主导N2O的产生。本研究的目的是:1)分析N2O浓度和排放的时空分布;2)揭示影响N2O排放的潜在因素;3)确定各种途径对N2O产生和消耗的贡献,揭示互联河湖网络N2O排放时空变化的控制机制。该研究将促进对调节城市地表水中N2O排放的微生物过程的认识,并为水质和N2O排放综合管理提供理论依据。研究方法站点描述武汉市的地表水面积占城市总面积的四分之一,是中国地表水面积最大的城市。随着经济的发展和人口的增长,该地区的河流和湖泊遭受了不同程度的污染。为了改善水质和水量,武汉将河流和湖泊连接起来形成了河湖网络。尽管城市中的河流与湖泊通过渠道进行了物理连接,但由于水位、水闸和水坝的原因,河流与湖泊之间的实际连通性大不相同。因此,相互连接的河湖网络中的水质和温室气体排放在该地区具有很大的时空异质性。图1. 本研究采样点的地理位置和土地利用类型。城市河流的一端与湖泊相连,另一端与长江相连,形成了一个河湖网络。在城市河流与长江的连接处安装了水闸,在河流与湖泊的连接处设置了溢流坝,以调节河流流量。河流采样点分别设置在农村(绿色周期)和城市(红色和黄色周期)。湖泊采样点设置在与河流连接处附近。样品采集样本采集于2021年3月至2022年1月的四个季节。调查了长江以南的七条河流和十一个湖泊(图1)。共设置了49个采样点。所有研究河流的宽度为10m至20m,深度为1m至2m。城市河流长度为2.3km至9.2km,农业河流长度为45.1km。本研究将城市区域内的河流分为孤立的城市河流(UR)和与湖泊相连的城市河(LUR)。实验使用便携式水质参数测量仪(Hach Company,USA)在现场测量水体的温度、溶解氧(DO)、pH值、电导率(EC)等物理化学参数,并收集水样进行δ18O-H2O、TDN(总溶解氮)、DOC(溶解有机碳)等的分析。此外,还通过提取微生物DNA使用实时定量聚合酶链式反应(qPCR)(Roche LightCycler®480)来评估与N2O产生相关的基因丰度(如16S rRNA、AOAamoA、AOBamoA、nirS、nirK和nosZ)。研究者还使用了同位素模型来定量估计N2O的产生和消耗过程。 统计分析采用N2O和瑞利分馏模型中δ15N-sp与δ18O的同位素映射方法来计算N2O产生和消耗的途径(硝化和反硝化)的贡献(图2)。硝化作用和反硝化作用的贡献比例可以通过截距和两个端元的SP值来计算。图2:估算N2O混合和减少的映射方法。场景1(M-R):首先将反硝化和硝化产生的N2O混合,然后通过完全反硝化将混合后的N2O还原;场景2(R-M):通过异养反硝化产生的N2O首先被还原,然后剩余的N2O与通过硝化产生的N2O混合。图中“样品”的坐标是微生物衍生的N2O的同位素值。Picarro 仪器的使用水样中δ18O-H2O(水的氧同位素比值)通过水蒸气同位素分析仪(Picarro,L2130-i,USA)进行测量,δ18O-H2O的分析精度为±0.1‰。在本研究中,δ18O-H2O数据被用于以下几个目的:1) N2O来源分析:通过测量水样中的δ18O-H2O值,研究者可以区分微生物产生的 N2O和大气中的 N2O。这是因为微生物在产生 N2O的过程中,会从水中获取氧原子,而这个过程中水的氧同位素组成会发生变化。通过比较水样中的δ18O-H2O值和大气N2O的δ18O值,可以估计微生物活动对N2O产生的贡献。2) 定量分析N2O产生途径:研究者使用同位素模型(如Rayleigh分馏模型)结合δ18O-H2O数据,可以定量分析N2O的产生途径,即区分硝化作用和反硝化作用对N2O的贡献。这有助于理解在不同水体中N2O产生的主要微生物过程。3) 分析环境因素与N2O排放的关系:δ18O-H2O数据还可以帮助研究者理解环境因素(如温度、溶解氧浓度等)如何影响N2O的产生。例如,温度和溶解氧浓度的变化会影响微生物活动,从而影响N2O的产生和排放。4) 时空变异性研究:通过在不同季节和地点收集δ18O-H2O数据,研究者可以揭示N2O排放的时空变异性,这对理解城市河湖网络中N2O排放的动态变化至关重要。 研究结论文章调查了武汉市一个相互连接的河湖网络的溶解N2O浓度和排放。利用N2O相关基因丰度和同位素模型定量估算了微生物产生和消耗N2O的过程。研究结果表明,N2O浓度、排放和产生途径存在显著的空间变化。较高的氮含量和缺氧条件导致UR中的高N2O产生和排放。然而,有效的河湖互联项目增加了溶解氧浓度,降低了LUR的TDN、NO3-N和NH4+-N浓度。这些环境因子的变化通过抑制硝化和反硝化作用,显著降低了N2O浓度和排放通量。这些发现推进了对调节内陆水域N2O排放的微生物过程的认识,并说明应调整对水闸和水坝的控制来有效连接城市河流和湖泊,从而改变氧化还原条件和氮含量,进而控制N2O的排放。 原文链接:https://doi.org/10.1016/j.watres.2024.121144

企业动态

2024.03.21

应用G2103与G2509对不同施肥方式下氨气排放通量室优化设计的研究

文章链接:https://amt.copernicus.org/preprints/amt-2023-212/amt-2023-212.pdf 前言田间施用的浆料畜便(Slurry)是氨气(NH3)排放的重要来源,通常有害于环境和人类健康。为了评估缓解方案,需要可靠的效果测量。本研究提出一种新的具有高时间分辨率在线测量的动态通量室,新的测量系统有助于在手动和农场规模的浆料畜便施用后以相对较高的精度重复进行NH3排放测量。 (一)研究目标: 本研究的目的是开发一种新的动态通量室(Dynamic Flux Chambers, DFC)系统,用于测量农场规模机械施用液态动物粪便(slurry)后的氨(NH3)排放。研究还评估了不同施肥方法(手动、实验性喷雾器、商业喷雾器)中氨气排放的变异性,并与逆向拉格朗日随机模型(bLS)的测量结果进行比较。 (二)研究方法: 研究在三个田间试验(Trial A、Trial B、Trial C)展开,简要说明情况如下:1. Trial A:· 施肥技术:使用手持设备施肥。· 测量方法:动态通量室(DFC)和风洞(WT)。· 试验说明:在一个地块上使用9个DFC和3个WT,每个测量单元都有背景测量点。与早期设计的风洞进行比较,评估新DFC系统的性能。2. Trial B:· 施肥技术:使用30米长的商业肥料喷雾臂(30-m boom)。· 测量方法:动态通量室DFC和逆向拉格朗日随机模型(bLS)。· 试验布局: 100m2地块上使用8个DFC,并在地块内外设置了bLS测量点。评估30米喷雾臂施肥对氨排放的影响,并与DFC测量结果进行比较。3. Trial C:· 施肥技术:使用3米长的实验性肥料喷雾臂。· 测量方法:动态通量室DFC和逆向拉格朗日随机模型(bLS)。· 试验布局:分别在56 m2和47 m2的地块上使用6个和7个DFC进行施肥和注射施肥的测量,并在每个地块内及上风向位置设置了bLS测量点。比较两种施肥方法对氨排放的影响,并与DFC和bLS测量结果进行比较。 这三个试验的目的是评估不同施肥技术对氨排放的影响,并比较DFC和bLS两种测量方法的准确性和可靠性。 (三)Picarro仪器的使用与数据说明: 1.在三个田间试验中,Picarro G2103被用于DFC和风洞( WT)测量,空气被抽取到一个旋转阀,测量周期为8分钟,试验A每144分钟产生一个数据点(9个DFC具有3个背景,3个WT具有3个背景,共18个测量),试验B每88分钟产生一次数据点(8个DFC和3个背景,共11个测量),试验C每80分钟产生一次数据点(每个应用方法7个DFC,3个背景,共10个测量)。2.在bLS模型测量中,使用了3台Picarro G2509 CRDS测量上风向和下风向的NH3浓度。仪器使用的说明如下:a.测量稳定性:在施用消化液前,这三台仪器测量的氨浓度在9.5小时内保持稳定,这意味着在施肥前,田间的氨背景浓度没有显著变化。b.仪器间的偏差:尽管测量结果稳定,但三台仪器之间存在小的偏差(offset)。这可能是由于仪器校准、传感器灵敏度或环境条件等因素造成的。c.背景浓度:在施肥前,三台仪器测量的平均背景浓度分别为:1) 注射施肥地块(injection plot)的仪器:1.920 ± 0.06 μg NH3 m-32) 喷雾臂施肥地块(trailing hose plot)的仪器:0.273 ± 0.03 μg NH3 m-33) 背景测量的仪器:0.824 ± 0.11 μg NH3 m-3d.校正:为了确保测量结果的准确性,对于注射地块和尾随式施肥地块的仪器,分别进行了校正。校正的重要性:尽管仪器间的偏差很小,但考虑到背景浓度与施肥地块的浓度差异不大,如果不进行校正,这些小的偏差可能会影响注射地块的氨通量(flux)测量结果。3. 数据说明:a. 氨排放速率(NH3是TAN总氨态氮的一部分):通过喷雾臂施肥或注射施肥后,用动态通量室(DFC)、风洞(WT)或后向拉格朗日随机模型(bLS)的测量,可以直观地比较不同测量方法和施肥技术对氨排放的影响。b. 展示DFC、WT和bLS三种不同测量方法的结果,有助于确定在不同施肥条件下更适合评估氨排放的方法。c. 帮助研究者评估不同施肥技术对减少氨排放的潜在效果。d. 直观地展示研究结果,支持注射施肥相比传统的喷雾施肥技术可以显著减少氨排放的研究结论。(四)总结:1.动态通量室DFC技术通过设计改进、CFD模拟验证、实地试验结果和统计分析,证明了其在测量氨排放方面的准确性和可靠性优于WT技术。2.动态通量室DFC和逆向拉格朗日随机模型bLS,这两种方法都显示:与喷雾施肥相比,注射施肥方式大幅度降低NH3排放量(DFC为89%,bLS为97%),新的测量系统有利于对NH3的排放进行测量如果各位老师、学者、同学对此文感兴趣请联系我们,我们会竭诚为大家发送此文献原文以及文献相关的解读资料。北京世纪朝阳科技发展有限公司成立于2000年,拥有二十多年的分析仪器在中国市场推广、销售与售后服务经验。2019年,Picarro经过对中国大陆地区公司的遴选,决定授予我公司全行业代理权,并负责大中华区Picarro产品的售前售后以及应用支持。北京世纪朝阳科技发展有限公司的公众号,会定期发送一些应用Picarro设备进行的一些最前沿的生态系统变化监测技术,欢迎各位老师关注。Picarro分析仪的用户遍布全球各知名机构与组织,在环境气体监测网络领域有许多经验和案例,如果各位老师和专家想了解更多信息,欢迎与我们联系。更希望Picarro设备对各位老师的科学研究有所帮助。

企业动态

2024.03.21

利用同位素特征对上西里西亚煤盆地甲烷排放进行源解析

摘要人为排放是大气甲烷(CH4)水平增加的主要来源。然而,对人为CH4排放的估算在全球和区域尺度上仍然具有很大的不确定性。CH4同位素源特征δ13C和δ2H的差异有助于限制不同源的贡献(例如,化石、废物、农业)。上西里西亚煤盆地(USCB)是欧洲最大的CH4排放区之一,从50多个煤矿通风井、垃圾填埋场和污水处理厂排放了500多吨甲烷。在2018年6月的CoMet(二氧化碳和甲烷任务)活动期间,使用包括飞机和汽车在内的各种平台进行了甲烷观测以量化这些排放。除了采用连续采样监测大气甲烷浓度外,还从通风井内部和周围(1-2公里)以及高空和远程研究飞机(HALO)和DLR Cessna Caravan飞机上采集了大量空气样本,并在实验室分析了CH4的同位素组成。本文主要介绍USCB甲烷样品的同位素分析,分析在小型飞机上采集的新样本,并与已经公布的地面样本进行比较,以确定煤炭开采和废物处理对USCB甲烷总排放量的贡献。数据和方法在2018年初夏(5月至6月)期间,部署几架飞机共进行了10次飞行(图1)并结合地面仪器来广泛调查USCB的甲烷排放。飞行日期是根据天气情况选择的——晴朗的天气,尽可能少的云层和稳定的风力条件是首选——以简化质量平衡分析。根据风向,USCB的不同部分被定位,目的是确定整个USCB及其部分的排放估算。这些飞行被设计为质量平衡飞行,飞行过程首先在行星边界层(PBL)内沿上风方向进行,然后在源头下风向进行几个飞行段,其中最高的一个刚好在PBL上方。质量平衡飞行的最佳时间是在下午,此时PBL达到最大范围并且在垂直方向上混合良好。图1:飞行轨迹,标记了排放数据集中的煤矿通风井和JAS样本位置。图2:带有通风井的USCB地图,这些框标记了不同飞行的大致目标区域。在DLR Cessna Caravan飞机上安装一个带有干燥装置和12个体积为1L的玻璃烧瓶的空气采样器,在德国耶拿的马克斯·普朗克生物地球化学研究所对两个采样器收集的样品进行痕量气体浓度的分析,记录采样方法以及分析参数和不确定性的详细信息。我们报告了常规δ表示法中的同位素比值为δ13C=[13RSA/13RST−1]和δ2H=[2RSA/2RST−1],其中13Ri和2Ri分别是样品(i=SA)和国际标准(i=ST)的13C/12C和D/H比值。国际标准以Vienna Pee Dee Belemnite(VPDB)作为δ13C值的标准和维也纳标准平均海水(VSMOW)作为δ2H值的标准。在USCB的九次飞行中,总共成功收集了62个烧瓶样品。根据采样位置将样品分为三类:自由对流层(FT)、流入(IN)和流出/羽流(PL)。在PBL上方采集的样本被归类为自由对流层。流入和流出样本是在PBL内采集的,如果它们是在USCB煤矿的上风处采集的,则被归类为流入,如果它们是在USCB煤矿的下风处取样,则被归类为流出。我们的数据集总共包括15个FT样本、8个IN样本和32个PL样本,并首次在这里发布。2.2地面样品在地面,团队从几个移动平台进行采样。矿井通风井内部和周围的空气样本被装在Supelco Flexfoil袋中。然后通过乌得勒支海洋和大气研究所(IMAU)的连续流动同位素比质谱法进行分析痕量气体浓度和同位素组成分析。此外,还使用Picarro G2201-i光腔衰荡光谱仪(CRDS)从测量车观测到的一些CH4羽流来确定δ13C。最后,将无人机的活性空气核心样品装入采样袋中,并分析CH4同位素组成。结果与讨论对于三个类别(FT、IN和PL),我们确定了所有飞行的平均同位素特征(图3),对于PL样本,也确定了单个飞行的平均同位素特征(图4)。图3:飞机样品的基林图δ13C(a)和δ2H(b)包括自由对流层(FT)、流入(IN)和流出/羽流(PL)三种状态的源特征和Pearson相关系数(R)图4:三种模式(自由对流层(FT)、流⼊(IN)和流出/⽻流(PL))以及每次⻜⾏的PBL样本的机载样品和衍⽣的CH4同位素源特征。数字表⽰飞行号,符号表⽰⽬标区域。彩⾊区域表⽰化⽯燃料(灰⾊)和现代微⽣物(绿⾊)的典型源特征范围。地面团队于2018年和2019年在USCB进行了广泛的CH4同位素采样。从附近(1-2公里)和竖井内的样品中获得了USCB内各个来源的特征。还调查了一个牛场、两个垃圾填埋场、一些沙井和一个废水处理设施的生物源排放。虽然在主要研究区以东约100公里的Kraków收集了一些生物样品,但我们希望它们也能代表USCB中类似类型的来源。从不同日期采集的样品中获得的煤矿甲烷特征在δ2H的50‰范围内变化很大,在δ13C的10‰范围内变化很大(图5)。在一个矿井中,由于地理结构的原因,同位素特征也不同。通风甲烷的特征性质也随时间而变化,因为在挖掘过程中,矿井不同深度的长壁被打开或关闭。在Pniówek矿井,除了在附近采集的样本外,还在通风井内采集了一些δ13C样本。所有样品的特征都在同一范围内。因此,外部样本的特征可变性是可靠的。对于每个竖井,平均特征是根据个别日期的结果计算出来的。通风井的δ2H特征大多在−200‰−160‰范围内。δ13C平均值在−60‰−42‰之间,有一个异常值−38‰。图6:地面样品的平均煤矿通风竖井特征与纬度和经度的关系,以检测USCB内特征中的空间梯度。在图例中给出了相关系数。图7:单个设施特征的双同位素图,以及从飞机上得出的三种状态(自由对流层(FT)、流入(IN)和流出/羽流(PL))的USCB特征以及其他USCB文献特征。误差线表示标准偏差。蓝色区域显示了煤层内游离气体的特征范围。灰色和绿色阴影区域分别显示了EMID化石燃料和现代微生物甲烷来源的平均特征范围。总结和结论在大气中温室气体浓度不断上升以及各国试图减少相关排放的情况下,定位、量化和减轻人为活动造成的温室气体排放非常重要。CH4同位素源特征δ13C和δ2H的差异有助于限制不同的源贡献(例如:化石、热成因或生物成因)。本研究证实了δ2H-CH4观测对甲烷源解析的重要性,在热成因和生物成因混合的地区尤其如此。这些结果应该通过在USCB和其他人口中心对δ2Hbio特征的更多观察来证实。  原文链接:https://doi.org/10.5194/acp-23-15749-2023 相关仪器:

企业动态

2024.03.21

东南沿海厦门地区降水中氢、氧同位素的组成:受季节变化、天气过程和台风影响

【背景】在水循环过程中,由于同位素分馏作用,氢(δH, δ2H, δ3H)和氧(δ16O, δ17O, δ18O) 的同位素以不同的比例分离到不同的相中(Sun et al., 2020)。大气降水在全球水循环中起着至关重要的作用。在水蒸气的凝结过程中,较重的同位素(δ2H和δ18O)优先进入液相,导致降水初期雨水的氢、氧同位素组成(δ2H和δ18O)为正,随着δ2H和δ18O的凝结逐渐减少。此外,大气降水δ2H和δ18O的空间和季节变化,揭示了对区域气候模式的重要见解。因此,大气降水的δ2H和δ18O可以作为追踪水汽来源或阐明大气动力学很有价值的指标,从而提供对季节和天气相关气候特征的见解。在热带和亚热带地区,降水的同位素组成表现出主要受区域季风系统驱动的季节变化影响。相反,在天气尺度上,降水的同位素组成主要受当地温度、湿度等气象因素的影响,此外,台风等极端天气事件对降水的同位素组成也有相当大的影响,不同台风对降水同位素的影响既有相似之处,也有差异。这些变化可能与台风的强度、寿命、路径和台风相关降水的水汽来源等因素有关。因此,探讨台风相关降水过程与正常降水过程的差异及其机制,进一步明确台风降水形成过程中水汽源的作用,分析不同台风过程对降水同位素的不同影响具有重要意义。这些研究为理解和研究台风降水的同位素分馏效应提供了重要基础。该研究基于2018年6月至2019年8月收集的162个样本(其中35个与台风有关)的实测数据,分析了中国东南沿海厦门市大气降水的δ2H和δ18O值,尝试探讨降水同位素季节和天气变化的影响因素,以及台风的影响。该研究对了解和研究台风过程对降水同位素分馏的影响具有重要意义。【样品采集】降水样品采集于中国自然资源部第三海洋研究所(东经118◦05′20”,北纬24◦26′10”)一座高约12 m的建筑物顶部。采样地点位于厦门岛,位于九龙江河口北侧,毗邻台湾海峡(下图)。该实验采用带漏斗的5L塑料容器收集沉淀,对于持续时间短(1 hr)的降水事件,则根据降水强度和持续时间进行连续采样,采样间隔为1 ~ 3 hr。 【PICARRO仪器使用】使用0.45 μm膜过滤每个样品,然后使用无空气顶空注射器将样品倒入20ml Labcol瓶中。这些瓶子用橡胶塞密封以防止蒸发,并储存在2-4℃的冰箱中,直到可以进行稳定的同位素分析。使用L2130-i液态水同位素分析仪测定上述样品的稳定同位素组成(δ2H和δ18O),在测量过程中使用四个内部标准品(δ18O:−2.80‰,−7.69‰,−13.10‰和−16.14‰;δ2H:−9.5‰,−51.0‰,−96.4‰,−123.6‰)进行校准,测量精度一般为δ2H±1‰,δ18O±0.2‰。【结果与图示】2018年6月- 2019年8月研究期间气象参数、降水同位素(δ2H和δ18O)和d过量的变化。厦门当地大气水线(MWLs),基于(a)所有单个样本数据,(b)台风相关数据降水样本,(c) 5月至9月的夏季风样本,(d) 10月至2月的冬季风样本,(e) 3月至4月的季节转移期样本。填充的圆圈表示台风降水样本,空心圆圈表示正常情况下的降水样本。长线表示全球大气水线(GMWL,δ2H =8×δ18O +10)和中国大气水线(CMWL,δ2H =7.9 8δ18O +8.2)。(a) δ18O与温度的相关性,(b)δ18O与降水量的相关性。台风相关降水不同阶段δ2H与δ18O的相关性。(a)总资料、(b)正常降水和(c)台风相关降水中同位素组成与当地气象参数的相关统计【研究结论】1. 厦门地区降水样品的δ2H和δ18O同位素组成具有明显的季节波动特征。这些变化主要源于东亚季风系统的影响,以及夏季台风事件的额外显著影响。夏季风期的特点是降雨多,蒸发少,导致大气水线明显变陡。2. 降水同位素在天气尺度上的变化大于季节尺度。在正常降水中观测到三种类型的同位素变化:类型1:再蒸发占δ18O值主导地位;类型II型:冷凝过程中的平衡分馏占δ18O值主导地位;类型III:多种因素控制着降水同位素;主要是雨滴的再蒸发以及水分来源。3. 台风不同的结构及动力特性对台风相关降水的同位素组成产生了不同的影响,导致了三个不同的变化阶段。台风相关降水初期和后期的δ18O值较高,主要受显著的再蒸发影响。相反,第二阶段表现出较低的δ18O值,主要是由大量降水驱动的。4. 降水中δ2H和δ18O的变化模式,主要受前期降水事件中发生的物理过程和气象参数的支配。然而,在正常和台风条件下,降水的总体同位素值主要受水汽源的控制。 原文链接:https://doi.org/10.1002/qj.4576 致谢:感谢自然资源部第三海洋研究所、尹希杰老师对该文本的专业支持!

企业动态

2024.03.21

炎热时刻导致农业泥炭地的N2O和CH4排放量极高

一、研究背景泥炭地是在长期淹水厌氧环境下有机质分解受抑制而导致泥炭层逐渐积累而发育形成的一类湿地生态系统,是地球上最具价值的生态系统类型之一,其在生物多样性保护、水净化和水循环调控、固碳和减缓气候变化等方面发挥着至关重要的作用。然而,过去百年来全球泥炭地受到了人为排水活动和气候变干的广泛影响,据统计,全球大约11–13%的泥炭地受到了人为排水活动的干扰。泥炭地排水后主要用于农作物种植、家畜放牧、牧草生产、林业经营或泥炭开采。排水活动引起泥炭地水位剧烈下降,导致厌氧环境下上万年才积累生成的泥炭土直接暴露在大气中而被快速氧化分解,释放出大量的温室气体如二氧化碳(CO2)和氧化亚氮(N2O),造成全球变暖,还引发泥炭地的大规模塌陷、显著改变地表形态、破坏土壤结构,为其生态恢复带来极大的难度。据估计,农业泥炭地排放的温室气体约占全球农田排放量的三分之一,但人们对这些排放的时间动态和控制知之甚少,尤其是氧化亚氮。已排水的泥炭地仅占农业用地的1%,但据估计,它们排放的二氧化碳(CO2)当量(CO2e)占全球耕地排放量的32%。随着泥炭地土壤被排干并暴露在大气中,相对于其他生态系统,高有氧分解率导致了大量的二氧化碳呼吸率。泥炭的高分解率以及CH4和N2O等其他重要温室气体的排放可能导致这些农业生态系统的大量温室气体净排放。氮肥和洪水灌溉在泥炭地农业中很常见,可能为高反硝化率和N2O生产创造最佳条件。排水泥炭地已被证明是重要的N2O来源,IPCC平均估计值,排水的农业泥炭地为8kg N2O-N ha−1y−1。然而,很少有研究对多年来的氮排放进行连续测量,而且长期的农业泥炭地温室气体预算中往往没有氮通量,部分原因是由于在野外条件下进行连续、长期的N2O通量测量所面临的技术挑战。在农业泥炭地,使用传统的手动静态室,大多数氮通量测量是间歇性进行的,采样频率通常从每天一次到每月一次。然而,CH4和N2O往往是温室气体排放的热点,使用不频繁的人工采样方法难以表征,土壤氧(O2)、温度、湿度和硝酸盐浓度的动态变化可能会影响土壤N2O通量的热时刻,因此这些事件的空间和时间动态如果没有高频测量就很难预测。手动采样方法很难捕捉到土壤甲烷通量的高峰时刻。尽管排水农业泥炭地的甲烷通量被认为很小,但灌溉等实践措施可以在一定时期内创造理想的厌氧条件,促进甲烷的产生。与恢复湿地中土壤温度、水位波动和植物活动对CH4交换的影响相比,灌溉农业土壤中CH4通量的时空控制较少被了解。因此,需要使用连续的测量方法来捕捉土壤甲烷通量的高峰时刻,并确定其在年度温室气体预算中的作用。近几年发展起来的光腔衰荡光谱技术和自动化室测量方法极大地提高了进行连续温室气体通量测量的能力。连续测量可以增加捕捉净温室气体通量高峰时刻的机会,并确定它们在年度温室气体预算中的作用。结合连续土壤传感器数据,可以利用时空密集的测量来探索土壤甲烷和氧化亚氮排放的潜在驱动因素。二、研究方法和数据分析2.1研究方法该研究在加利福尼亚州的萨克拉门托-圣华金三角洲地区进行,该地区的气候属于地中海气候,夏季炎热干燥,冬季凉爽潮湿。研究的田地连续种植了10多年的传统玉米作物,生长季节通过灌溉沟进行定期灌溉,冬季通过洪水灌溉使土壤表面上升30厘米,以限制杂草生长并为候鸟提供栖息地。施肥量为118Kg N ha−1 y−1(农民数据)。该地区的历史平均年温度为15.1±6.3℃,年平均降雨量为326±4mm。研究地点也是一个AmeriFlux站点,自2017年中期以来一直进行着CO2、CH4和水蒸气的连续涡度相关测量。从2017年6月30日到2020年6月30日,使用自动化系统连续测量了表层土壤的N2O、CH4和CO2通量。该系统由多路进样系统和九个不透明自动气体通量室(eosAC Eosense)组成。多路系统发出信号后,自动气体通量室将气体传送至光腔衰荡光谱仪(Picarro G2508)进行测量。仪器按照顺序连续测量每个通量室,测试时间为10min,吹扫时间1.5min。自动气体通量室布置在10×10米的网格中,每个通量室间隔5米。为避免洪水事件对样地的影响,在通量室外部署了35cm高的项圈。除了田间管理活动(犁地、播种和收获)期间(通常持续1周),整个田间活动期间,通量室都保持在原来的位置。为了确定通量室的体积,大约每周测量一次圈口高度,并随着时间的推移插入数值,以解释土壤和地下水位高度的差异。使用Eosenseeosanalysis-acv.3.7.7软件进行通量计算和拟合,然后在R(RStudio, v.1.1.4633, O’Connell et al., 2018))中进行数据质量评估和控制。计算过程中删除异常数据,这种数据过滤去掉了2.4%的通量测量周期,最终生成的数据集分别包含71262、70337和70554个CO2、N2O和CH4的通量测量值。为了计算土壤温室气体通量对站点级全球变暖潜力(GWP)的影响,研究使用了同一站点的净生态系统交换(NEE)涡度协方差值。研究人员通过统计学数据分析量化CO2、CH4、N2O热时刻,计算观测到的N2O和CH4均值排放所需的最小样本量。从2018年9月至2020年7月,在10厘米、30厘米和50厘米的深度安装了两套土壤传感器--热敏电阻温度传感器和湿度传感器,2套传感器连接到CR1000数据记录仪,每隔15分钟存储数据。农业事件、作物收获期间、断电期间未采集温湿度数据。在传感器测量期间(n=665天),共有58天的农业活动数据丢失或断电。在农业沼泽地进行了每周的土壤气体采样。研究者在10厘米、30厘米和50厘米深度上与土壤传感器同时采集了CO2、CH4和N2O的两个重复样本。为了采集气体样本,研究者安装了不锈钢管道,并在管道上安装了多个采样孔。采样孔每个月更换一次。他们使用30毫升的注射器采集两个气体样本,丢弃第一个样本以清除采样管道中的死体积。采样线在2019年5月和6月从田间移除,进行耕作、种植和翻耕。这些气体样本存储在过压20毫升玻璃瓶中,直到在Shimadzu GC-34上进行手动样品注射分析。这些采样数据用于研究土壤剖面中温室气体的产生分布情况。2.2数据分析使用一元方差分析(ANOVA)来比较不同时间段土壤气体浓度、氧气、湿度、矿物质氮和pH值之间的差异。还使用线性回归分析探索土壤大气温室气体浓度与净土壤温室气体通量之间的关系。利用小波相干分析(Wavelet coherence analysis)和假设性放大计算帮助我们理解温室气体通量与土壤变量之间的关系,揭示其在不同时间尺度上的变化。估计农业玉米沼泽地排放对该地区的潜在影响。三、结果3.1土壤CO2,N2O和CH4排放农业泥炭地的年土壤温室气体排放量中,CO2的平均排放量为9.20±0.04千克/平方米/年,N2O的平均排放量为4.08±0.10克/平方米/年,CH4的平均排放量为681±157毫克/平方米/年。这些排放量分别代表了单位面积和单位产量的年均温室气体排放量。N2O的年排放量最高可达41.5±1.8千克氮/公顷/年,三年的平均排放量为26.0±0.5千克氮/公顷/年,占总温室气体排放量的26%。CH4的排放量变化较大,从年净消耗率-111.0±5.0毫克/平方米/年到净排放量2220.1±519.7毫克/平方米/年不等。这相当于每年最大排放量为6.1±1.4千克碳/公顷,占该生态系统年总温室气体排放量的2%。土壤呼吸的变化较小,年值在6.61±0.07千克CO2/平方米/年到10.72±0.09千克CO2/平方米/年之间。热点时刻被定义为单个通量测量值与年均值相差超过4个标准差的测量值。热点时刻的氧化亚氮通量仅占年度测量值的0.64%至1.50%,但将平均通量率提高了38.5%至76.3%。对于甲烷,热点时刻的通量仅占年度测量值的0.06%至0.8%,但在第2和第3年,将年均通量提高了132.1%至486.4%。在第1年,甲烷消耗的热点时刻将净甲烷汇增加249.2%。这些热点时刻驱动的甲烷通量变化主要是由于大多数甲烷通量测量值接近或等于零。二氧化碳排放的热点时刻对平均二氧化碳通量的影响显著较低,仅占所有通量的0.5%(年度范围为0.3%至0.6%)。这将整体平均通量提高了5%,年均二氧化碳通量提高了2.6%至9.2%。3.2  N2O通量、CO2通量和CH4通量驱动因素冬季洪水使土壤中的N2O排放呈指数增长,在生长季节进行的灌溉和施肥也显著增加了N2O排放。冬季洪水开始后不久,每日平均N2O通量增加了两个数量级,同时土壤湿度上升,土壤O2浓度相应降低。持续的淹没导致土壤中NO3−浓度下降,随之N2O通量下降。在非洪水期间,研究者发现,每日平均N2O通量与各深度的土壤N2O浓度显著相关,可能对土壤-大气界面的净通量有贡献。通过小波相干分析表明,所有深度的土壤湿度、土壤温度和土壤O2浓度的时间模式与每日时间尺度上的净N2O通量模式显着相关。在大约100天的季节时间尺度上,净N2O通量与不同深度的土壤O2浓度以及在大约300天的年度尺度上的土壤湿度具有显著的一致性。土壤湿度、土壤温度和土壤氧气浓度驱动了日尺度上净甲烷通量的变化模式。只有土壤不同深度的氧气浓度与甲烷通量在周尺度上具有显著的相干性,而在更长的时间尺度上没有显著的相干性。而CO2通量的高度季节性变化可以解释观察到的高年内变异性。土壤呼吸速率在生长季节和收获后(7月至9月)较高,而在土壤饱和时(12月至3月)通量显著较低。在日尺度上,湿度、温度和氧气浓度与土壤CO2通量具有显著的相干性。在周尺度和季节尺度上,温度和O2浓度与土壤CO2通量具有显著的一致性。将自动化系统通量室测量与通过涡度协方差在该现场并行进行的生态系统呼吸(Reco)测量进行了比较。在整个研究期间,土壤CO2通量(9.20±0.04kg CO2m−2y−1)和Reco涡度协方差测量值(9.70±0.01kgCO2m−2y−1)类似,土壤CH4室通量(1.2±0.01gCH4m−2y−1)低于涡流协方差CH4通量(2.2±0.01gCH4m−2y−1)。同样采样频率对N2O和CH4通量估算的影响较大,减少测量采样间隔会导致显著的低估或高估N2O和CH4总通量。四、讨论本研究中的农业泥炭地土壤是N2O极端排放源,平均排放率比其他非泥炭农田N2O排放量高4-27倍。令人惊讶的是,冬季洪水,而不是施肥,是氧化亚氮排放的主要驱动因素。冬季洪水过后不久,N2O排放量达到峰值。种植期间氮肥的施用也导致N2O排放量的短期增加,但这不是年度N2O排放量的主要来源。研究结果表明日平均N2O通量与土壤大气氮含量之间存在较强的相关性。长时间的厌氧条件加上土壤温度高于10°C似乎会驱动这些系统中CH4通量的热时刻。洪水期间NH4+浓度短期升高可能会限制产甲烷作用或暂时改变产甲烷途径,并可能导致观察到的相当大的变异性。预计土壤二氧化碳通量的模式与每周和季节尺度的温度和氧气浓度有关。土壤温度和O2可用性是有氧土壤呼吸的重要控制因素,特别是在排水农业泥炭地等生态系统中,其中基质可用性不太可能限制异养生物,而自养生物的养分可用性很高。大型连续数据集使我们能够探索N2O和CH4排放热点时刻在生态系统温室气体总预算中的重要性。虽然热点时刻分别仅占年度N2O和CH4通量测量值的0.63%–1.50%和0.06%–0.76%,但它们贡献了N2O总排放量的76%和CH4总排放量的486%。这相当于仅N2O热时刻排放就占这些农业泥炭地年GWP的18%。这凸显出错过热点时刻可能会导致生态系统总温室气体预算的严重低估。研究结果进一步强调了连续测量的必要性,以准确估计生态系统N2O和CH4总通量。即使每周采样一次,也可能会低估年N2O通量高达20%,占总GWP的很大一部分,即使来自这些高排放农业泥炭地也是如此。虽然连续自动室或涡流协方差测量是捕获排放热点时刻的理想选择,但在许多地点和生态系统中,长期连续测量的成本仍然过高。如果热点时刻是可预测且明确定义的,则每日通量测量可能可以有效地适当量化N2O排放的热点时刻。然而,如果热点时刻的时间安排和控制未知或零星,那么不太频繁的采样可能会大大低估N2O排放量。本研究是迄今为止最大、最长、最全面的农业泥炭地土壤通量数据集之一。我们的研究结果提供了证据,证明这些系统是农业温室气体排放的重要贡献者。连续数据集使我们能够探索土壤水分、土壤O2和土壤N有效性等土地管理变化对土壤CH4和N2O排放的影响。我们发现灌溉时间和持续时间是控制这些农业泥炭地土壤N2O和CH4排放的主要因素,而不是施肥。详细实验数据请参考:https://www.researchgate.net/publication/353251608 设备推荐Picarro G2508 高精度气体浓度分析仪通过同时测量五种气体(N2O、CH4、CO2、NH3和H2O),从根本上简化了土壤通量研究,且描绘了温室气体土壤排放的全貌。土壤与大气之间的温室气体交换是全球碳循环和氮循环的关键一步。G2508易于集成土壤检测腔室,无需组装或同步不同的气体分析仪,就可以实现所有主要温室气体的行为观测。G2508采用精密光腔衰荡光谱(CRDS)技术,以达十亿分之一(ppb)的灵敏度测量气体浓度,其漂移可忽略不计。而且,Picarro独特的算法可以对N2O、CH4和CO2的浓度自动进行水汽影响校正。

应用实例

2024.03.12

CRDS技术在降低奶牛厂氨排放方面的应用

背景介绍氨(NH3)是农业生产中气态活性氮的主要形式之一。它对生态系统有负面影响,如富营养化、酸化和生物多样性的丧失等。一般来说,畜牧业,特别是奶牛业是氨排放的重要来源,需要降低。为了实现这一目标,荷兰制定了一系列法律法规。奶牛场的氨来源于排出尿液中的尿素。尿素在排泄后的最初几个小时内转化为氨,并从尿坑中尿液和粪便混合物的顶层(浆液)中排放出来。在过去的几十年里,混凝土板条地板替代品的发展主要集中在封闭的混凝土地板上,有时出于动物福利的原因与橡胶结合在一起。这些地板背后的工作原理是限制坑顶空间的空气交换和快速排尿到这些坑中。CowToilet奶牛厕所提供了另一种选择,它在尿液到达地面之前收集(部分)尿液。通过这种方式,尿液和粪便(部分)被分开,氨排放的主要来源从住房系统中移除,储存在其他地方,排放量可以忽略不计。奶牛厕所作为一种低排放系统已被添加到Rav法规a1.36和BWL 2021.05中,每个动物场所每年的临时氨排放系数为8.4公斤。为了获得系统的确定排放系数,制造商(Hanskamp BV)必须向“荷兰国家标准”(RVO)3提供符合适当要求的排放测量数据集。排放测量是评估的一部分,本报告描述了在应用确定氨排放因子的背景下的排放测量。 CowToilet介绍奶牛厕所是根据奶牛的生理机能设计的,它由Hanskamp AgroTech BV, Doetinchem开发。在奶牛养殖业中,为满足奶牛个体需求而在自动喂食站供应精料是很常见的。步行式喂食站为奶牛提供了离开喂食站而不用向后走的机会。奶牛厕所是在步行式喂食站上增加的一个自动小便器。奶牛从喂食围栏一侧进入奶牛坐便器,从另一侧离开奶牛坐便器。所有精料均在奶牛厕所内饲喂。在奶牛食用浓缩饲料时,将小便池降低到母牛后下方。自动小便器刺激奶牛,引起排尿。尿液被收集在一个小的蓄水池中,从那里泵送到一个储存库。奶牛厕所的主要减排原理是通过收集部分动物尿液来降低动物舍内氮源强度。收集的尿液单独存放。在这种储存中,尿素最终转化为氨,如果没有适当的覆盖,会导致大量的氨排放。这样做,预计尿液的储存不会对氨排放产生显著影响。 测试位置:测量在荷兰Leeuwarden乳业园区的环境研究仓中进行,下图显示了环境研究仓的位置和乳业园区的位置。荷兰环境研究仓的位置和乳制品园区的地形,包括背景采样点。环境研究仓其中一个隔间的两张照片组合图。注意从天花板上安装的两个通风井。测量方法:由于各单元采用机械通风,因此两个通风井代表了测量通风率和氨浓度的房间的排放点。氨的背景(环境)浓度在谷仓外谷仓两侧距离10米的2至4个地点测定,浓度值最小的点被认为是背景浓度。通风率由各通风竖井下的风机轮风速计测量。该方法基于腔衰荡光谱(CRDS)。每个通风机的一组采样管中的空气首先通过Picarro A0311S 16通道进样器。两个单元的每个通风机和两个背景点(东南和西北)布设采样管路。管路的切换时间为5分钟。测定氨浓度的平均时间为1分钟。在5分钟的总采样时间中,前3分钟的值用于获得稳定的浓度水平,这些值被排除在氨排放的进一步计算之外。仅取第4分钟和第5分钟的平均值作为氨浓度。A0311S有16个入口,分别用于6个单元和4个背景点。采样空气中氨的浓度由Picarro G2508光谱仪测量。 氨气绝对排放量(kg/每年/每个动物场所)由下式计算:Eijk=第i天在测量时段j在房间k的氨排放量(kg /每年/每个动物场所)Qijk=第I天在k室测量时段j内的平均通风量(m3/h/每个动物场所)Coutijk=第I天第k室测量时段j内出风口氨平均浓度(mg/m3)Cinijk=第I天在第j个测量周期内,房间k入风氨的平均浓度(mg/m3)AP=动物场所的数量(=16)相关研究结论:不同测量方法和周期的标准化排放结果。实验组和对照组的 NOx、Picarro(每日)测量期间的排放结果。这项研究意义重大,因为它为减少畜牧业有害排放提供了潜在的解决方案,有助于环境的可持续发展。 使用 Picarro分析仪进行连续测量可以精确监测氨水平,这对于评估 CowToilet 等排放控制方法的有效性至关重要。 • 与传统的混凝土板条地板相比,使用奶牛厕所减少了47.2%的氨排放。• 这种减少相当于0.528的比例排放率。再乘以控制室每年13 kg/畜位的排放系数,牛厕每年的氨排放率为6.9 kg/畜位。• 根据本报告中的点测量,分类排放系数为每年每个动物场所7千克NH3。• 为获得Rav立法的官方排放因子,需要第二种案例对照方法的测量结果或在至少两个其他带有奶牛厕所的畜棚的实际排放测量结果。• 减排和由此产生的排放因子受测量氨浓度的方法的影响。O使用氮氧化物方法,每年每个动物场所的排放量减少35%,标准排放系数为8.5千克NH3。O使用Picarro测量方法显示排放量减少37%,每个动物场所每年的标准化排放系数为8.2千克NH3。 原文链接:https://doi.org/10.18174/641497

应用实例

2024.03.12

Picarro官网更新快讯

Picarro公司新版官网正式上线!    近日,Picarro公司官网经过升级改版,正式以全新面貌上线。本次官网公开了用户手册user manuals,客户将不再需要登录或创建帐户来下载它们。Picarro官网做的更新动作有:1. 在每个产品页面的侧栏中添加了一个新的用户手册链接。2. 我们新增加了一栏技术支持页面Support page,该页面可链接到我们重新设计的支持页面中的用户手册。3. 我们在资源中心表格 Resource Center中的用户手册结果旁边增加“Download”按钮。本次官网升级后,原网站地址不变:www.picarro.com。注意:Picarro 社区访问和软件下载访问目前仍然需要注册帐户。

企业动态

2024.03.04

探秘稳定同位素:解密自然界地球物质的来源

1. 稳定同位素的定义及性质稳定同位素是指具有相同原子序数(即具有相同的质子数)但具有不同中子数(即具有不同的质量数)的同位素。相对于放射性同位素,稳定同位素具有较长的半衰期,因此其衰变过程可以忽略不计。稳定同位素的质量与化学性质与其相应元素的其他同位素相同,但它们在物理性质和反应性方面可能存在微妙差异。每个元素的稳定同位素数量不尽相同。以氢为例,氢元素具有三个同位素:氢-1(质子数为1,中子数为0)、氢-2(质子数为1,中子数为1)和氢-3(质子数为1,中子数为2)。通常,将质子数相同的同位素称为同位素的同位素体系。2. 稳定同位素分馏稳定同位素分馏是指在自然界中,不同同位素的分布和比例因物理、化学或生物过程而发生变化的现象。在分馏过程中,不同同位素的相对丰度会发生改变,通常表现为其中一种同位素的相对丰度增加,而另一种同位素的相对丰度减少。稳定同位素分馏可以发生在不同的环境和过程中,以下是几个常见的分馏过程:重力分馏:重力对颗粒物质的沉降速度有影响,较重同位素更容易沉降,导致较轻同位素的相对丰度增加。化学分馏:化学反应可以导致同位素的选择性分离。例如,在地球大气层中,光照作用下,氮气中较重的氮同位素(δ15N)会相对富集在大气中的一氧化二氮(N2O)中。通过分析稳定同位素分馏,我们可以获得有关环境、地质、生态和气候变化等方面的信息。稳定同位素分析在地球科学、生态学、气候研究等领域具有广泛的应用,帮助我们理解自然系统的工作原理和过程。3. 稳定同位素的应用领域3.1 地质科学稳定同位素在地质科学中具有重要的应用。通过对地球岩石、大气、水体和生物体的稳定同位素比例的分析,可以揭示岩石的形成历史、地球气候及环境变迁等信息。例如,氧同位素分析可以用来研究海洋生态系统的变化、冰川演化过程以及古气候的重建。3.2 生物学与生态学稳定同位素在生物学和生态学领域中也有广泛应用。通过分析生物体组织(如骨骼、羽毛、植物组织等)中的稳定同位素比例,可以了解生态系统中物质的循环过程和食物链结构。氢同位素分析可用于研究动物迁徙路径,碳同位素分析可用于研究植物光合作用等生物过程。稳定同位素分析可用于研究碳循环和生态系统功能。通过测量植物和土壤中的碳或氢氧同位素比例(δ13C、δ18O、D),可以了解植物的光合作用途径和水分利用策略,评估植物对气候变化的响应以及研究土壤有机碳的来源和稳定性。4. 稳定同位素分析技术稳定同位素分析技术是研究稳定同位素的关键手段。主要的分析方法包括质谱仪和同位素比例质谱仪以及光谱类仪器。Picarro稳定同位素分析仪是世界上最先进的测量CO₂与CH₄碳同位素比(δ¹³C)以及CO₂、CH₄和H₂O气体浓度的仪器之一,也是一款能够在野外长时间实现原位在线测量的仪器。可用于呼吸与发酵、氧化与还原、源与汇的鉴定等研究工作。稳定同位素示踪是一种利用稳定同位素分析技术来追踪物质在生物体、环境或化学体系中运动和转化过程的方法。通过测量物质中不同同位素的相对丰度,可以确定其来源、迁移路径、转化速率和与其他物质的相互作用。稳定同位素示踪的基本原理是不同同位素在地球上分布比例固定且稳定,而自然界中的各种过程会引起同位素比例的变化。稳定同位素示踪主要包括以下几个步骤:样品收集:从目标系统中收集样品,可以是土壤、水体、气体、生物组织等。样品收集需要根据研究目的和对象的不同进行选择。样品预处理:将收集的样品进行预处理,以提取或转化目标物质,并将其转化为适合稳定同位素分析的形式。例如,可以通过提取、净化或转化化学反应等步骤来处理样品。稳定同位素分析:对预处理后的样品进行稳定同位素分析。例如,常见的稳定同位素包括碳同位素(δ13C)、氮同位素(δ15N)、氢同位素(δ2H)、氧同位素(δ18O)等。数据解释和解析:通过分析同位素比例的变化,结合已知的同位素分馏过程和环境特征,解释数据并得出结论。这可能需要运用数学模型、统计方法和参考样品等。通过稳定同位素示踪,我们可以获得关于物质来源、传输路径、生物转化、生态过程和环境变化等方面的信息,有助于进一步理解和解释自然系统和化学体系的复杂性。稳定同位素在科学研究和应用中发挥着重要作用。它们为我们揭示了地球历史、生态系统特征以及生物过程中的种种奥秘。随着稳定同位素分析技术的不断进步,我们相信它们将在更多领域中为人类带来更多的发现和应用。(本文仅涵盖了稳定同位素应用的部分领域,稳定同位素的研究和应用仍然在不断发展,可能有许多新的突破和发现等待科研人员去探索和挖掘。)

应用实例

2024.03.04

地下河口微生物群落对甲烷和氮转化的调节作用

地下河口微生物群落对甲烷和氮转化的调节作用背景地下河口(STEs)是重要的生物地球化学反应器,接收和处理来自陆地、海洋和地下水等各种来源的营养物质和有机物。STE在调节营养物、有机物和其他重要生物化合物的陆海通量方面发挥着重要作用。地下生态系统为微生物群落提供了多种多样的栖息地,地球上大约40%的原核生物生物量隐藏在地表以下。沿海生态系统中的原核生物群落可能是复杂的,主要由不可培养的谱系组成,使得基于实验室的研究具有挑战性。为了更好地了解陆地地下水涌入以及海洋盐水入侵对地下氮循环微生物群落的影响,需要微生物生态学和水文地质学相结合的方法。氢气(H2)、醋酸盐、二氧化碳(CO2)和其他碳化合物(如一氧化碳、甲酸盐、甲醇、甲胺)可以被产甲烷的古细菌转化为CH4。在这一过程中,DOC通过水解、产酸和产丙酮被分解,以促进产甲烷。产甲烷古菌群落因此可以栖息在独特的生态位,由于高度适应热力学能量守恒。在多种环境中,变形细菌的甲烷氧化菌可以代谢多余的甲烷作为其唯一的能量来源。厌氧甲烷营养古生菌与产甲烷古生菌关系密切,可在海岸带深层富甲烷缺氧沉积物中代谢CH4。因此,CH4的地下氧化可以成为沿海环境中强效温室气体的重要汇。16S rRNA是一种细菌和古细菌特有的核糖体RNA,通常用于研究微生物群落结构和多样性。通过对16S rRNA基因序列进行扩增和测序,可以了解不同微生物的遗传差异,从而对微生物进行分类和鉴定。这项技术被广泛应用于环境微生物学和生态学研究中,有助于揭示微生物在不同生态系统中的功能和相互作用。方法介绍研究地点位于澳大利亚昆士兰州大堡礁集水区的海滩边STE。该样带从高潮线以下的海洋端(距退潮标记26米)到沙丘底部的陆地端跨度15米。根据盐度剖面对比,选择了五个地点。位于澳大利亚阿格尼斯水域的地下河口样带研究地点的地图。本研究使用的所有样品均在8月12日的一个潮汐周期内提取。首先将地表砂石移除至地下水位以上约50 cm处,然后将不锈钢孔隙水取样头(Sonlist)与气密油管(Bev-A-line IV)连接,分别置于地下水位以下10、100和200 cm处的沉积物中。孔隙水取样开始于退潮时的海洋区,沿样带向上移动至淡水区。使用150 ml注射器从每个位置和深度抽取15个样本。孔隙水DOC样品用0.7 μm玻璃超细纤维过滤器过滤,保存在40 ml硼硅酸盐小瓶中。孔隙水溶无机氮(铵态氮和硝态氮)样品用0.45 μm醋酸纤维素过滤器过滤后冷冻待实验室分析。Picarro仪器的使用:Picarro+A0314相结合,注射器从采样瓶平衡后的顶空中提取 4 ml气体。注入的 4 ml气体样品与零空气在 SSIM 内以 4:1 的比例混合,以达到 20 ml的总气体体积。每个样品在 CRDS 上运行约 6 分钟,以确保低浓度样品具有更高的精度。每五个样品使用相同的进样量运行标准气体。结果与讨论孔隙水CH4浓度范围为0.07±0.01 μM~0.41±0.02 μM,在样带的海洋端呈下降趋势。Site 5地下水位2 m处(0.41±0.02 μM)的3个样品中CH4浓度最高。Site 5孔隙水CO2浓度也最高,在地下水位以下10 cm处为254.24±12.73 μM,在地下水位以下200 cm处为273.31±6.05 μM。CO2浓度在潮间带下部(site 1)最低,为81.43±3.22 μM。(A)甲烷(CH4)孔隙水浓度;(B)二氧化碳(CO2);(C)溶解有机碳(DOC);(D)铵(NH4+)和(E)硝(NO3-)。研究地点和地下水位以下的深度标注在左侧。CH4和CO2误差为±SD。DOC、NH4+和NO3-误差条表示分析误差。含保守混合线的盐度相关图显示孔隙水:(A) CH4和(B)铵(NH4 +)浓度。 根据图(上图)显示的盐度相关图,可以看到甲烷(CH4)浓度与盐度之间存在负相关关系。随着盐度的增加,甲烷浓度呈非线性下降趋势。在地下河口混合带,甲烷浓度迅速下降。这表明盐度是影响甲烷浓度空间分布的重要因素,地下河口中不同盐度区域的微生物群落对甲烷的产生和消耗具有显著影响。这与研究结论中提到的地下河口中隐藏的微生物群落分区以及微生物转化对减轻营养物和温室气体通量到沿海生态系统的重要性密切相关。研究结论在这项研究中,应用16S rRNA扩增子测序和配对的生物地球化学特征来空间评估STE中转化温室气体和营养物质的微生物群落。结果表明,产甲烷菌在陆地端最为普遍(相对丰度高达2.81%),孔隙水甲烷、二氧化碳和溶解有机碳浓度分别为0.41±0.02 μM、273.31±6.05 μM和0.51±0.02 mM。较低的铵态氮浓度对应着混合带丰富的硝化和氨氧化原核生物(相对丰度高达11.65%)。甲烷、铵和溶解有机碳浓度从陆地到15 m样带的海洋端均下降了50%。这项研究强调了STE隐藏的微生物群落分区,以及考虑微生物转化减轻营养和温室气体通量到沿海生态系统的重要性。原文链接:https://doi.org/10.1111/1462-2920.16558

应用实例

2024.02.01

【会议盘点】世纪朝阳近期线下交流会总结

近期,世纪朝阳分别于大连、重庆开展了线下交流会议,会议介绍了详尽的Picarro设备使用方法、提供了深度的交流平台、促进了与用户的深度沟通,两次会议均圆满结束。大连基于Picarro的温室气体浓度与通量监测理论与技术培训会2023年12月06日,《基于Picarro的温室气体浓度与通量监测理论与技术培训会议》于大连国家海洋环境监测中心成功举办。来自国家海洋环境监测中心、大连海洋大学、大连理工大学、辽宁师范大学、大连环境厅等单位近30位学者与技术人员参加了此次会议。比科技术(北京)有限责任公司(Picarro Inc. 全资子公司)总经理张晓静女士、Picarro Inc.中国区业务发展经理庄义成先生、Picarro Inc.中国区首席工程师王杰女士也作为重要嘉宾出席了此次会议。Picarro Inc.中国区业务发展经理庄义成先生发表会议开幕致辞Picarro Inc.中国区首席工程师王杰女士对Picarro进行整体介绍北京世纪朝阳科技发展有限公司技术总工程师陈晓峰就环境监测整体方案作报告国家海洋环境监测中心Picarro用户老师做关于Picarro应用实践的报告重庆氢氧稳定同位素技术原理及应用培训会2024年1月4日,《氢氧稳定同位素技术原理及应用培训会》于西南大学地理科学学院成功举办。本次会议由西南大学地理科学学院、重庆金佛山喀斯特生态系统国家野外科学观测研究站、北京世纪朝阳科技发展有限公司、比科技术(北京)有限责任公司、美国Picarro公司共同承办,共有40余名老师与学生参与了本次交流会。西南大学雷利丹主任主持会议,唐强副院长做开场报告西华大学的刘皓雯老师做关于《紫色土丘陵区浅层地下水补给特征》的报告,并分享近些年来的工作成果北京世纪朝阳科技发展有限公司售前工程师吴闯做《关于Picarro分析仪结构、原理、应用及基础介绍》的报告北京世纪朝阳科技发展有限公司技术工程师涂坤萍对在校师生进行现场技术实操培训演示和指导氢、氧是分布最广的元素,氢、氧同位素研究涉及宇宙、月球和地球各层圈,包括岩石圈、水圈、气圈等。特别是各种水的氢、氧同位素研究,对气溶胶的形成机理研究、揭示不同成岩成矿过程中同位素的变化、指示水的来源、不同环境状况下水的转移和数量(包括江河湖泊)、确定水的年龄、记录水岩相互作用等都有很重要且广泛的应用。通过稳定同位素分析仪分析氢、氧稳定同位素的变化,是揭示大气环境水溶性有机物吸湿增长特性的重要研究手段。另外,稳定同位素分析仪也是研究大气中水分来源的重要监测设备。本次交流会,为后续学院师生更好地探究揭示水的氢氧同位素变化、为研究生态变化、古气候、大气变化等提供有力支持。 - END - 如果希望进一步了解以上会议信息,欢迎与我们联系讨论。

企业动态

2024.01.18

陆-海气团传输对黄海南部大气二氧化碳和甲烷混合比时空分布的影响

陆-海气团传输对黄海南部大气二氧化碳和甲烷混合比时空分布的影响1.背景介绍二氧化碳(CO2)和甲烷(CH4)是两种最重要的温室气体,在地球的辐射平衡中发挥着关键作用。受化石燃料燃烧、土地利用变化、森林砍伐等人为活动的持续影响,自工业时代(约1750年)以来,大气中二氧化碳和甲烷的混合比一直在上升,并在2021年达到最高值415.7±0.1 ppm和1908±2 ppb,约为工业化前水平的149%和262%。近几十年来,大气CO2和CH4混合比的时空分布越来越受到科学界的关注。船载观测被认为是观测温室气体的六种常用且重要的方法之一,本文主要介绍利用船载CRDS(光腔衰荡光谱)分析仪分别于2012年11月和2013年6月在中国南黄海进行了两次实地调查研究,以揭示中国陆架海域大气中CO2和CH4混合比的时空分布和调节机制。本研究的主要目标是:(1)优化改进船基走行连续观测大气CO2和CH4混合比数据筛分方法;(2)研究海-气交换对CO2和CH4混合比时空分布的影响;(3)在野外调查中揭示季节性季风对南黄海海洋边界空气CO2和CH4时空分布的调节机制。2.材料与方法2.1观测区域黄海是亚洲大陆和太平洋之间气团运输的重要通道,可分为两个海域:黄海北部(NYS)和黄海南部(SYS)。覆盖面积约10.8×104 km2,平均深度44 m,受EAM(东亚季风)系统的强烈影响。如图1所示,为了研究大气CO2和CH4混合比的分布及其调控机制,2012年11月2日至8日和2013年6月22日至29日进行了两次调查研究,分别是EAM的典型时期(包括夏季风和冬季风)。为了保证观测数据的可比性,引入附近的三个陆基(岛)站(临安站(LAN);济州高山站(JGS);泰安半岛站(TAG))进行对比分析。    2.2气象资料两次调查研究是在一艘为在海洋环境中进行多学科研究而设计的东方红二号的科考船上进行的,该船拥有一个船载大气科学实验室。可观测的气象数据包括时间、纬度、经度、巡航速度和方向、风速、风向、相对湿度、气压和温度,分辨率为10s,可用于筛分和标记观测到的CO2和CH4混合比数据,并验证模拟风场。观测到的风数据被平均为每小时的数据,以供后续分析。如图2a所示,2012年11月调查期间,每小时平均风速为0.05~20.46 m/s,平均值为8.09(±4.17)m/s。主导风向为偏北和偏东北,表明气团从亚洲大陆流向太平洋。如图2c所示,2013年6月调查期间,每小时平均风速为0.08 ~ 9.42 m/s,平均值为4.72(±1.79)m/s。相反,主导风向转为南或东南,促使气团从太平洋向亚洲大陆流动。此外,观测到的主导风向(图2a和c)与模拟风场(图2b和d)基本一致,具有典型的冬、夏季风特征,是研究海陆空气团输送对海洋边界层CO2和CH4混合比时空变化影响的理想案例。2.3大气CO2和CH4混合比的测定如图3a所示,在观测期间,为了避免人为污染,将进气口固定在船头最高点(海拔约10m),靠近气象传感器,以避免人为污染。使用Picarro G2301高精度温室气体测定系统测定大气CO2和CH4的混合比。Picarro分析仪可以在5秒内获得一次CO2和CH4混合比(校正受水蒸气影响)的数据,已被证明是观测CO2和CH4的高精确度和准确度的绝佳选择。如图3b所示,外部真空泵将环境空气抽入专用管道,并分别通过膜过滤器,充满高氯酸镁的干燥管和另一个膜过滤器,以去除颗粒和水气。然后,通过阀门顺序设置调节,干燥和清洁的空气样品以及标准气体通过一个8口样品选择阀,由质量流量控制器控制流量为200 mL/min后进入Picarro G2301分析仪。每次观测实验前后,对Picarro G2301分析仪进行校准,保证其正常工作状态。在现场调查中,每天自动按顺序测定三种标准气体,由Picarro G2301分析仪调节。根据3种标准气体(CO2为254.53(±0.06)ppm、365.14(±0.06)ppm和569.99(±0.08)ppm,CH4为1601.0(±0.8)ppb、1925.5(±0.8)ppb和2317.7(±0.5)ppb)的测定结果和标准值,建立线性函数,对观测数据进行校正。所使用的标准气可溯源至世界气象组织(WMO)一级标准,以保证观测数据的一致性、可追溯性和国际可比性。图3:东方红二号科考船(a),用于观测大气CO2和CH4的船载Picarro高精度温室气体分析仪监测系统示意图(b)。3. 测定结果与讨论3.1大气CO2和CH4的混合比一般来说,CO2和CH4混合比随着海拔和离大陆距离的增加以及纬度的降低而降低。陆架海域大气CO2和CH4混合比的时空分布不仅反映了自然特征,还反映了海洋油气勘探等多种人为过程:陆-海气团传输,以及观测仪器故障。在两次船载调查研究中,2012年11月大气CO2混合比为392.75 ~ 688.10 ppm(图4a和b), 2013年6月为389.28 ~ 967.60 ppm(图4c和d)。2012年11月大气CH4混合比为1870.6 ~ 1986.0 ppb(图5a和b), 2013年6月大气CH4混合比为1820.8 ~ 2179.0 ppb(图5c和d)。大气CO2和CH4混合比与北半球的历史观测结果相当。异常高的观测值归因于船舶废气或分析仪日常维护等的人为干扰。3.2数据处理方法首先,利用线性函数对2012年11月和2013年6月沿巡航轨迹观测到的大气CO2和CH4混合比进行校正,每1 min平均一次,备份并生成可进行后续处理的“原始数据”。其次,根据航次记录,对仪表故障和日常维护引起的异常值进行标记。第三,当船舶在离散站点进行海洋调查或以低于风速的速度在下风向巡航时,观测到的大气CO2和CH4混合比可能受到船舶废气和人类活动的影响。根据研究经验将3 kn作为标记受船舶废气和人类活动影响的数据的标准。最后是大气温室气体观测中广泛使用的数据质量控制方法拉依达准则(“3σ”准则),用于筛分和标记非背景测定结果。图6:2013年6月28日20:40 - 29日6:40 (a)和2012年11月3日3:30 - 5:30 (b)观测到的CO2混合比和船速的变化。图7:2012年11月和2013年6月CO2 (a, b)和CH4 (c, d)混合比的筛分结果。(a)和(b)的纵坐标在450至1050 ppm做了截断处理。黑点表示本底数据(Background),蓝点表示更换干燥管(Manual)所影响的数据,灰色点表示低速航行(0-3kn)时受船舶排放影响的数据,红点表示通过拉依达准则(3σ)筛分出来的数据。3.3陆-海气团输送对大气CO2和CH4混合比分布的影响海-气交换是CO2和CH4分子通过表层海水和上覆大气界面扩散的动态过程。大气CO2和CH4的源和汇是指它们由海水排放或被海水吸收。事实上,沿海浅海海域海-气交换对CO2和CH4混合比在时空尺度上影响很大。一般来说,从海水中排放到空气中的CO2和CH4很难通过大气测量来追踪,因为它们会被迅速稀释;只有浅层渗漏区和沿海地区能够直接影响当地大气CO2和CH4的混合比,并且可以测定。为了估计海-气交换对大气CO2和CH4混合比的影响,我们使用了一种由Kourtidis等人(2006)描述并经Zang等人(2020)优化的简单方法:假设调查区域上方有一个顶板高为10米的盒子,对应于我们现场调查的进气口高度。大气CO2和CH4混合比仅受海-气交换的影响,当CO2和CH4被排放或被吸收时,它们的混合比会均匀地增加或减少,这是由海气CO2和CH4通量的平均计算结果引起的。图8:2012年11月观测海域CO2和CH4混合比的空间分布。3.4陆-海气团传输对大气CO2和CH4混合比时空分布的影响EAWM与亚洲大陆向西太平洋的大气复合输送密切相关。除第1段(S1)和第2段右端(S2)外,随着离岸距离的增加,CO2和CH4混合比呈减小趋势。(图8)。总体而言,亚洲大陆的CO2和CH4混合比高于MBL参考值。EAWM驱动的陆-海气团运输会导致温室气体的水平传输。由于后续的混合和稀释,CO2和CH4的混合比将沿着风输送路线下降。同时,S1段和S2段右端由于主导风向为ENE-SE -S,大气CO2和CH4混合比较低且均匀,说明气团是从CO2和CH4混合比较低的太平洋输送过来的。此外,后向轨迹分析显示,2012年11月几乎所有的传输路径都来自亚洲大陆,2013年7月几乎所有的传输路径都来自南海和西太平洋(图10)。导致2012年11月大气CO2和CH4混合比(图8)高于2013年7月(图9)。大气CO2和CH4混合比的季节变化与西太平洋大气CO2混合比的变化一致,西太平洋大气成分分布主要由来自太平洋的海洋气团和来自亚洲大陆的污染气团主导。图9:2013年7月观测海域CO2和CH4混合比的空间分布图10.两个典型位置(a)35.00°N、123.41°E和(b)32.53°N、125.22°E的后向轨迹。如图11所示,2012年11月观测到的大气CO2和CH4混合比随风向的波动特征相同,表明其变化受陆-海气团输送主导,这与前人的研究结果一致。黑海天然气渗漏和“北溪”管道天然气泄漏的模拟研究表明,在5 ~ 30 km的距离上,逆风排放源可以增强大气CH4混合比。如图12所示,我们假设在运输过程中混合和稀释的影响是线性的。根据计算可知:中国陆架海域大气CO2和CH4混合比的空间分布可能在EAWM前期受到陆-海气团输送的显著影响。     4.结论基于2012年11月和2013年6月在南黄海船基走行连续观测到的大气CO2和CH4混合比及气象参数,优化并建立了一种数据筛分方法,该方法可用于标记受多种自然过程和人类活动影响的CO2和CH4混合比数据。大气CO2和CH4混合比的空间和季节变化主要受EAM调节,而海-气交换的影响很小或可以忽略不计。夏季风导致大气CO2和CH4混合比相对较低,且从东南向西北逐渐增加。相反,冬季季风增强了陆地到海洋的气团输送,导致较高的大气CO2和CH4混合比,并且随着离岸距离的增加而呈递减的趋势。在东亚冬季风早期,陆-海气团传输对CO2和CH4混合比的影响范围约为20Km内。原文链接:https://doi.org/10.5194/amt-16-4757-2023

应用实例

2024.01.11

亚洲季风区洞穴生物三氧同位素的变化揭示了过去300年的水分来源

亚洲季风区洞穴生物三氧同位素的变化揭示了过去300年的水分来源https://www.nature.com/articles/s43247-023-01043-6.pdf摘要:水分来源的表征对于理解水文气候过程至关重要。然而,记录过去的大气水分含量及其来源仍然具有挑战性,部分原因是水分追踪代用物不足。本文展示了亚洲季风区21个洞穴中的三氧同位素组成,来研究过去300年来东亚的空间水分来源差异。我们的数据表明在洞穴形成过程中存在同位素平衡分馏,因此从洞穴中重建的母水17O异常(Δ'17O) 值保留了有关水分起源和跨空间循环的信息。值得注意的是,洞穴沉积物Δ'17O记录具有明显的地理分布特征,中东部和华南地区值较低,西北和华北地区值较高,长江流域地区值较高。这种空间格局强调了受区域水文循环调节的不同水分源的不同影响,并证明了洞穴植物Δ'17O在重建空间尺度水分循环中的潜在作用。研究目标:利用亚洲夏季风区21个洞穴中石笋的三氧同位素组成,来研究过去300年东亚区域水分来源的差异。研究方法:本文主要采用的方法和技术包括:石笋三氧同位素分析;230Th定年;反演Parent水三氧同位素;空间插值分析等。这些技术揭示了不同区域石笋三氧同位素的变化模式,反映了区域尺度水分循环的差异。主要研究方法:(1) 从亚洲夏季风区21个洞穴中收集石笋样品。 (2) 利用Pt催化平衡法测量石笋碳酸盐的δ18O、δ17O 和 Δ'17O。(3) 用230Th方法确定石笋的形成年代。(4) 根据碳酸盐-水体系的氧同位素分馏关系,反演得到parent水的δ18O和Δ′17O。主要实验结果:(1)石笋Δ'17O值范围为-78至-56per meg,空间分布呈“四极”模式。(2)反演的parent水Δ'17O值平均约为20±7 per meg。(3)不同区域的Δ'17O值反映了各自的水分来源和大气环流差异。Picarro仪器的使用:使用Picarro L2140-i测量水样的δ18O和δ17O值,提供了参照数据。研究人员从亚洲夏季风区21个洞穴中获取石笋样品,为离散采样与测量。上图比较了水样和石笋样本的δ18O与Δ'17O值, 说明石笋保留了降水的信号。其具体内容和对研究意义: 1. 上图通过δ18O与Δ'17O的关系比较了两类样本:I组为降水和石笋反演的Parent水,II组为石笋碳酸盐。 2. 可以看到Parent水的δ18O和Δ'17O值接近现代降水的范围。 3. 石笋碳酸盐的δ18O值较高(27-36‰),Δ'17O值较低(-79到-56 per meg)。 4. 这说明在石笋形成过程中,氧同位素发生了平衡分馏。 5. 石笋Δ'17O值与δ18O值之间保持着一定的关系(上图),符合Δ'17O反映气候因素的特征。 6. 通过碳酸盐-水体系的氧同位素分馏关系,可以反演出石笋形成时Parent水的Δ'17O。 7. Parent水Δ'17O值与现代降水相似,说明石笋Δ'17O可以反映降水信号。 8. 因此,上图验证了石笋Δ'17O记录可以反映不同区域的水分来源和大气环流差异,是该研究的基础。综上,上图通过与现代降水的比较,验证了石笋Δ'17O的气候代表性,为后续利用石笋Δ'17O推断区域性水分变化奠定了基础。

应用实例

2023.12.21

Picarro安装案例—同济大学Picarro G2301海上平台安装

Picarro安装案例—同济大学Picarro G2301海上平台安装背景介绍海底科学观测网国家重大科技基础设施标志性构筑物——“同济·海一号”东海多圈层观测塔目前已顺利完成海上安装调试。“同济·海一号”东海多圈层观测塔主体结构包含导管架、组块、测风塔三部分,设计总重4530吨,海拔103米,设计服役寿命30年。搭载至少66种、195台套观测设备,作为目前全球海洋综合科学观测能力最强的观测塔,可实现大气圈、水圈和岩石圈的全方位、综合性、长期实时的高分辨率立体观测。之后多学科、多圈层、高分辨率的海量观测数据将源源不断地从东海实时回传至上海临港的监测与数据中心,为开展前瞻性、战略性、引领性和颠覆性的海洋科技创新研究提供有力支撑。海洋温室气体观测对于理解气候变化、保护海洋生态系统和推动减排合作具有重要的意义。北京世纪朝阳科技发展有限公司此次为“同济·海一号”东海多圈层观测平台配置了G2301温室气体分析系统,可以实现对东海海洋上方大气温室气体背景浓度的长期连续观测。(图片转载自同济大学新闻网)双层采样高精度温室气体监测系统流程图配置方案Picarro G2301标校系统在线测量进气系统自动除水系统软件应用介绍仪器安装在东海多圈层观测塔,距陆地100多公里,塔高103m。采样点为双层采样,采样高度分别为50米和90米,周围都是海洋,无高大建筑物遮挡。站点能对海洋大气背景下温室气体进行不间断监测,从而有效地记录东海地区温室气体浓度变化以及变化规律。仪器介绍Picarro G2301气体浓度分析仪能够同时测量二氧化碳 (CO2)和甲烷 (CH4),灵敏度为十亿分之一(ppb),在几个月的运行中漂移可以忽略不计。针对大气科学、空气质量和量化排放应用所产生的漂移可忽略不计。这款分析仪符合世界气象组织 (WMO) 和综合碳观测系统 (ICOS) 针对CO2 和CH4 大气监测方面的性能要求。

应用实例

2023.12.21

2022年温室气体公报解读

2022年温室气体公报解读世界气象组织(WMO)全球大气观测计划(GAW)站网观测到全球大气中CO2浓度在2022年达到417.9ppm,显示全球大气平均CO2浓度上升到过去200万年以来的新高。位于中国青海瓦里关的欧亚大陆唯一的GAW全球本底站观测到大气CO2浓度在2022年也达到419.3ppm,是自1990年我国在瓦里关开始全球大气温室气体观测以来的最高值,表明人类活动排放的温室气体持续在大气中累积。应对气候变化、全球温室气体减排、碳中和面临的压力依旧。20世纪90年代初,中国气象局首先在瓦里关国家大气本底站开展温室气体观测,后续在北京、上甸子、浙江临安、黑龙江龙凤山、云南香格里拉、湖北金沙和新疆阿克达拉等6个区域大气本底观测站开展温室气体的联网观测,分别代表京津冀、长三角、东北林带和松嫩平原、川滇及高原边缘带、洞庭鄱阳两湖平原和天山地区的大气本底特征。左下图是1990~2022年中国瓦里关国家大气本底站和北半球中纬度美国夏威夷冒纳罗亚(MaunaLoa,MLO)站大气CO2月平均浓度长期变化,右下图是全年在轨运行的两颗卫星监测得到的2022年中国陆地区域大气CO2年均柱浓度分布图。世界气象组织(WMO)于2023年11月15日发布的《WMO温室气体公报(2022年)第19期》显示,2022年主要温室气体的全球大气年平均浓度达到新高,二氧化碳(CO2)为417.9±0.2ppm,甲烷(CH4)为1923±2ppb,氧化亚氮(N2O)为335.8±0.1ppb,分别为工业化前(1750年之前)水平的150%、264%和124%。中国气象局瓦里关国家大气本底站瓦里关站2022年的观测数据显示,大气CO2、CH4和N2O年平均浓度分别为419.3±0.2ppm、1979±0.6ppb、336.5±0.2ppb,与北半球中纬度地区同期平均浓度大体相当,但都略高于全球平均值。2022年全球大气CO2、CH4和N2O浓度相对于2021年的绝对增量分别为2.2ppm、16ppb、1.4ppb,瓦里关站分别为2.3ppm、14ppb、1.4ppb。过去10年(2013~2022年)全球大气CO2、CH4和N2O的年平均绝对增量分别为2.46ppm、10.2ppb、1.05ppb,同期瓦里关站分别为2.16ppm、9.8ppb、1.09ppb。六个区域大气本底站大气CO2和CH42022年平均浓度与2021年相比大多呈增加趋势。卫星监测显示:2022年全球和中国陆地区域年平均大气CO2浓度分别达到415.0±2.9ppm和417.2±2.9ppm。相比2021年,增长2.3ppm和2.0ppm。全球年平均大气CO2浓度增量略低于过去10年(2013~2022年)的平均绝对增量(2.5ppm),而中国陆地区域年平均大气CO2浓度增量则明显低于过去10年平均绝对增量(2.5ppm)。CO2CH4N2O全球瓦里关全球瓦里关全球瓦里关2022年的年平均浓度417.9±0.2ppm419.3±0.2ppm1923±2ppb1979±0.6ppb335.8±0.1ppb336.5±0.2ppb2022年相对于1750年的百分比150%264%124%2022年相对于2021年的绝对增量2.2ppm2.3ppm16ppb14ppb1.4ppb1.4ppb2022年相对于2021年的相对增量0.53%0.55%0.84%0.71%0.42%0.42%过去10年的年平均绝对增量2.46ppmyr-12.16ppmyr-110.2ppbyr-19.8ppbyr-11.05ppbyr-11.09ppbyr-1表格 1 2022年全球和瓦里关站3种主要长寿命温室气体(CO2、CH4、N2O)的年平均浓度、过去1年的增量和过去10年的年平均增量。图1  1990年以来瓦里关站大气CO2、CH4、N2O浓度(上图)及其增长率(下图)上图中的蓝点表示月平均值,红线为其线性拟合曲线;下图中的红点表示月增长率,灰色柱为增长率年平均二氧化碳(CO2)是影响地球辐射平衡最主要的长寿命温室气体,对过去10年和过去5年辐射强迫增幅的贡献分别约为79%和77%。工业化前(1750年之前)全球大气CO2平均浓度保持在278.3ppm左右,由于人类活动排放(化石、生物质燃料燃烧、水泥生产以及土地利用变化等)的影响,全球大气CO2浓度不断升高。2022年全球和瓦里关站CO2年平均浓度分别达417.9±0.2ppm和419.3±0.2ppm,过去10年的年平均绝对增量分别为2.46ppm和2.16ppm。2022年其他区域站大气CO2年均浓度月均值与2021年同期相比总体上呈现增加之势。甲烷(CH4)是影响地球辐射平衡第二重要的长寿命温室气体,至2022年在全部长寿命温室气体浓度升高所产生的总辐射强迫中的贡献率约为19%。约40%的甲烷来自自然源排放(如湿地和白蚁),约60%来自人为源(如反刍动物、水稻种植、化石燃料开采、垃圾填埋和生物质燃烧)。工业化前全球大气CH4年平均浓度保持在722ppb左右。全球大气CH4的年增量在20世纪80年代末约为12ppbyr-1,1999~2006年间降至近乎为零,2007年以来,大气中的CH4再次增加。2022年全球平均和瓦里关站大气CH4的年平均浓度分别达到1923±2ppb和1979±0.6ppb,过去10年的年平均绝对增量分别为10.2ppb和9.8ppb。2022年其他区域站大气CH4年均浓度月均值与2021年同期相比总体上呈现增加之势。氧化亚氮(N2O)是影响地球辐射平衡的重要的长寿命温室气体,至2022年在全部长寿命温室气体浓度升高所产生的总辐射强迫中的贡献率约为6%。N2O通过自然源(约57%)和人为源(约43%)排入大气,包括海洋、土壤、生物质燃烧、化肥使用和各类工业过程。工业化前全球大气N2O年平均浓度保持在270.1ppb左右。由于人类活动排放,全球大气的N2O浓度不断升高。中国气象局于1996年首先在瓦里关站开展N2O的观测,至2009年逐步扩展到了7个大气本底站。2022年全球和瓦里关站的N2O年平均浓度分别达335.8±0.1ppb和336.5±0.2ppb,过去10年的年平均绝对增量分别为1.05ppb和1.09ppb。世界气象组织全球大气观测计划(WMO/GAW)负责协调温室气体的全球网络化观测和分析。截至目前,该观测网包括32个全球大气本底站、400余个区域大气本底站和100余个贡献站。中国气象局4个大气本底站(青海瓦里关、北京上甸子、浙江临安和黑龙江龙凤山)已列入WMO/GAW大气本底站系列,并按照WMO/GAW的观测规范和质量标准开展观测。瓦里关站的观测资料已进入WMO世界温室气体数据中心(WDCGG),用于《WMO温室气体公报》,以及WMO、联合国环境规划署(UNEP)、政府间气候变化专门委员会(IPCC)等的多项科学评估。设备推荐Picarro G2508 气体浓度分析仪通过同时测量五种气体(N2O、CH4、CO2、NH3 和 H2O),从根本上简化了土壤通量研究,且描绘了温室气体土壤排放的全貌。土壤与大气之间的温室气体交换是全球碳循环和氮循环的关键一步。G2508 易于集成土壤检测腔室,无需组装或同步不同的气体分析仪,就可以实现所有主要温室气体的行为观测。G2508 采用精密光腔衰荡光谱(CRDS)技术,以达十亿分之一(ppb)的灵敏度测量气体浓度,其漂移可忽略不计。而且,Picarro 独特的算法可以对  N2O、CH4 和 CO2 的浓度自动进行水汽影响校正。

应用实例

2023.12.08

黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放

黄石公园蒸汽船间歇泉喷发前、中、后期CH4和CO2扩散气体排放背景图片背景介绍:几十年来,像黄石国家公园这样的热液环境中气体的释放一直是热门研究方向。先前在黄石公园进行的研究量化了火山口和大气之间交换的二氧化碳量,强调了黄石公园如何通过火山口每年排放约4.4×107公斤的二氧化碳。诺里斯间歇泉盆地(Norris Geyser Basin, NGB)位于黄石公园的西北部,是蒸汽船间歇泉的所在地。蒸汽船间歇泉在公园的数百个间歇泉中脱颖而出,是因为它向空气中喷射的流体-气体混合物可以超过115米的高度,使其成为世界上最高的喷发活跃间歇泉。气体主要由可冷凝蒸汽和不可冷凝CO2组成,还有少量其它不可冷凝气体,如CH4。虽然蒸汽船并不定期喷发,但间歇泉最近变得非常活跃。2000年至2017年期间,发生了11次火山喷发;然而,在2018年3月至2021年2月24日期间,蒸汽船喷发了129次。为了研究气体排放的变化是否可以作为间歇泉喷发的前兆,2019年6月12日,我们连续测量了间歇泉在一次喷发事件前后30米处甲烷和二氧化碳的扩散排放。实验方法:本研究使用了两台仪器来测量地表通量。Eosense自动呼吸室(AC)被安装在距离间歇泉约30米的地面上,在间歇泉和蓄水池泉之间。AC被编程为关闭15分钟,允许气体从地下逸出积聚,打开5分钟冲洗一次,完成一个周期,期间共进行17次测试,其中喷发前完成了7次测量(包括前兆测量),喷发后进行了10次测量。自动呼吸室(AC)通过管路连接到Picarro G2201-i CO2、CH4浓度及同位素分析仪,组成CRDS-AC通量及同位素观测系统,该系统可以测量CH4和CO2的浓度及其碳同位素组成,δ13C-CH4和δ13C-CO2大约每4s测量一次。在浓度-时间曲线稳定1 - 2分钟后的前3 - 4分钟,用斜率乘以自动呼吸室(AC)内部体积和底座横截面积的商来估算通量。CRDS仪器放置在多功能车(GorrillaCarts®GORMP-12)上。在车上,由两节12V直流深循环船用电池并联连接,通过直流-交流电源逆变器为分析仪供电。期间还使用了仅测量CO2通量的单个便携式呼吸室(PAC)。该PAC是一个闭路EGM-5便携式CO2气体分析仪(PP Systems, Amesbury, MA),腔室直接连接到分析仪,提供二氧化碳浓度的高频繁测量(10赫兹)。使用线性模型计算CO2通量。PAC系统在另外三个标有标记的位置进行移动测量,这增加了本研究期间测量的空间足迹。图1所示:诺里斯间歇泉盆地东南部的地图。蒸汽船间歇泉(六边形)位于酸性到中性的地热区域。地图上还标注了20世纪初钻探的三口井。气体通量测量结果:在单次蒸汽船间歇泉喷发前~3 h、喷发中和喷发后~ 2 h测量了地表CO2和CH4通量以及其碳同位素组成。以观察扩散排放活动的变化是否与喷发的特定阶段有关,从而揭示诺里斯间歇泉盆地中地下气体的运移机制。在喷发之前和整个喷发过程中,我们使用Picarro CRDS分析仪测量弥漫性气体排放,我们将其报告为地表通量。对于CH4,喷发前后的通量在误差范围内相同,平均值分别为42.3±1.3和42.3±1.6 mg m−2 day−1。同样,CO2在喷发前(50.3±1.8 g m−2 day−1)和喷发后(52.3±2.2 g m−2 day−1)表现出相似的通量。然而,在喷发之前(不到25分钟),与之前6次Picarro CRDS分析仪测量的平均值有偏差。这第七组测量发生在从静息期阶段到预演期阶段的过渡期间,显示CH4和CO2的通量分别下降了58%和50%。这种偏离发生在静息期(a)的结束和预演期(b)的开始,在绘制的时间序列中清晰地说明了这一点,该阶段称为前体测量(图2)。图2所示:测量期间CH4和CO2通量的时间序列(左y轴)和平滑的1分钟平均连续浓度测量值(右y轴)。当气体室关闭时,气体浓度开始增加,然后在通量测量结束时打开,气体浓度恢复到环境浓度,形成锯齿状图案。浅阴影区域表示喷发前(b)和小喷发(c)阶段。较暗的阴影区域描绘了主要的喷发,倒数第二个区域突出了液体主导阶段(d),最暗的阴影区域显示了主要喷发的蒸汽主导阶段(e)。稳定碳同位素测量结果连续的CRDS-AC δ13C测量表明,重同位素在每个腔体中都有富集。在每个气室围封期间最后10次δ13C测量值的平均值作为δ13C源值。结果得出δ13C-CH4 = - 27.5±0.3‰,δ13C-CO2 = - 3.9±0.1‰(图4a)。这些源组成比各自的大气端元(CH4≈−47‰和CO2≈−8‰)的同位素重。唯一的例外是一组前体测量,其中δ13C-CH4为−35.7±2.1‰,δ13C-CO2为−6.2±0.4‰(图4b)。前驱体测量值明显比非前驱体测量值轻,并且更接近大气成分。将测量到的通量和气源同位素组成结合在一个图中(图3b),突出了前驱体测量的异常性质。图左下角的基准面表示在图2所示的时间序列中也可以观察到的前兆信号。图3所示:(a)测量期间的碳同位素值。阴影区域表示喷发开始后的时期。两幅图中黑色的水平虚线表示大气的碳同位素组成,而浅灰色的虚线表示地幔源。(b)配对δ13C和通量测量。δ13C数据(左图为δ13C- CH4,右图为δ13C- CO2)利用近10次测量的平均值估算了气源气体的稳定碳同位素组成。图4所示:二氧化碳(δ13C-CO2)和甲烷(δ13C-CH4)的碳同位素比较。每个圈地都用观测到的喷发时间序列的阶段(a-e)来标记,在同一阶段出现的测量顺序是连续的数字(参见图2,以获得阶段名称的完整解释)。“前兆”测量被清楚地指出。颜色方案表示在15分钟的腔室封闭期间记录基准的相对时间,其中深色出现在开始,浅色出现在结束。每个图中的黑色菱形代表大气同位素组成的近似端元。气体扩散途径模型:虽然蒸汽船喷发的具体机制不能仅由气体测量来支持,但通过整合收集的数据和先前发布的信息,这里共享了该系统的概念模型(图5)。大量证据表明,温泉水起源于渗入并流经流纹岩的大气水,以补给NGB和公园其他地方的间歇泉。从热成因δ13C-CH4特征和地幔样δ13C-CO2组成来看,系统中大部分气体来源于深部。在两次喷发之间,我们认为存在地幔气体从深层源向上的稳态输送(图5a)。这些气体溶解在水中,在含水层顶部溶解,向地表迁移,与浅层气体混合,然后以恒定的速率从地表排出。图5所示:说明地下管道和扩散气体到地面的途径的概念模型。注意深层烃源岩和补给储层之间的区别。(A)突出显示间歇泉在喷发之间的状态,(B)展示了前兆窗口(喷发的~ 10-25分钟)。结论:在距离蒸汽船间歇泉开口30 m处进行的光腔摔荡光谱测量显示,在2020年6月12日观测到的一次喷发开始前约10-25分钟,CH4和CO2的通量分别急剧下降58%和50%。这一证据表明,就在这次喷发之前,充满气体的水向间歇泉管道流动。同样,CH4 (δ13C-CH4)和CO2 (δ13C-CO2)的前体碳同位素测量值(分别为- 35.7±2.1‰和- 6.2±0.4‰)明显轻于非前体碳同位素测量值(- 27.5±0.3‰;−3.9±0.1‰),δ13C在喷发开始后立即恢复到稳态值。热水和天然气的高估计平衡温度表明,至少在470米深处有一个深源。之前的研究呼吁监测黄石间歇泉的气体排放率,而这项研究为如何有效地进行弥漫气体测量和研究提供了一个模型。原文链接:https://doi.org/10.1016/j.jvolgeores.2021.107233研究应用相关仪器:

应用实例

2023.12.08

CM-CRDS技术检测椰子汁掺假调查

CM-CRDS技术检测椰子汁掺假调查摘要   椰子汁的生产、销售和分销是一个价值数十亿美元的全球产业,其中饮料产品就涉及三十余家不同的公司。鉴于人们对纯正“有机”产品的偏好和消费量不断增加,椰子汁行业在如何确保产品纯度和维护客户信心方面面临着挑战。为迎接这一挑战,需要控制供应链质量,认证椰子水的等级。在此过程中重要的是要对产品的真实性进行评估,即具备对“纯正”不加糖产品和加糖“掺假”产品的绝对辨别能力。本文介绍了 Picarro 燃烧模块-光腔衰荡光谱 (CM-CRDS) 分析仪的应用。该应用是一种低成本、易用、精准、能够根据椰子汁中的碳同位素 (δ13C) 成分来辨别是否添加C4植物糖(掺假成分)的解决方案。这种分析仪使用简易,能够替代同位素比质谱仪 (IRMS),在显著降低购置和使用成本的同时,还能保持精度不变。这一应用表明,Picarro CM-CRDS 可以轻松辨别掺假率(添加C4-糖)低至约 5% 的椰子汁,具有优良的精度 (±0.3‰) 和准确度。CRDS和IRMS在椰子防伪认证中的分析比较  有机物质来源辨别能力源自构成该物质元素的同位素相对丰度差异。同位素比值的测量可以用来区分两个化学组成相同的样品。在过去十年间,有机食品和饮料成分的防伪认证成为一项日趋突出的应用。许多文献期刊已经证实,CRDS 在一系列自然科学应用与用于同位素分析的 IRMS 同样精准。本文章将 CRDS与IRMS进行了比较,以便实现有机饮料的防伪认证,特别是检测所谓“纯正”椰子汁中的掺假糖的成分。经测试证明,元素分析仪-同位素比质谱仪(EA-IRMS) 在检测椰子汁掺假成分应用是精准的。但是对于相同应用,燃烧模块-光腔衰荡光谱分析仪 (CM-CRDS) 不但具有堪比EA-IRMS的测量精准度,且还具有以下优势:• 显著降低购置成本;• 操作更简便,无需开展深入的专业培训;• 校准频率和维护成本更低;• 降低有效运作所需耗材的成本;• 自动化程度更高,测样量更大。  总体来说,与EA-IRMS相比,CM-CRDS能可以节省50%成本,包括仪器折旧、人工成本和耗材等。实验方法  CM-CRDS系统由Picarro光腔衰荡光谱(CRDS)分析仪和燃烧模块(CM)组成。每个样品测量需要5微升(µl) 的椰子汁,无需执行任何复杂的样品制备步骤,只需16分钟即可完成每个样品的测试。该系统实现自动化运行,一次可处理50至147个样品,并且只需供超高纯度N2和O2即可。Picarro CRDS分析仪报告样品燃烧所产生的CO2的δ13C。椰子汁样品测试方法• 运用一级和二级有机同位素标准物对分析仪进行校准。• 使用移液管或注射器提取 5 微升 (µl) 椰子汁,并放入锡杯中。无需执行其它样品处理操作。• 将包好的锡杯置于与燃烧模块相连的自动采样器中。自动采样器的默认容量为 50 个样品,可升级至 147 个。• 当进行测量时,样品会自动落入燃烧模块内的预填充反应器中燃烧。供应纯氧并进行相应调节以促使样品燃烧完全释放出 CO2。• 气体会从反应器传送至分析仪。• 在对完整的气体进行分析后,系统就会计算样品相对于VPDB国际标准的δ13C 碳同位素比值 (‰)。• 建议制备三个样品,然后将所测值平均,以获得符合统计要求的标准测量值和样品测量值。掺假研究结果  这项研究分析了生产商所提供的商品椰子汁样品,以验证 Picarro CM-CRDS 线性、再现性和准确性。使用一级和二级标准物对分析仪进行校准,并与无掺杂C4-糖的椰子汁的δ13C值做参照,可绘制线性图 (下图)。在4至100% 的掺假率范围内,数据线性拟合R2值为0.999。分析另一款已知掺糖的商品椰子汁样品,证实了约占其总糖含量 40% 的成分为添加的果糖。将使用 CRDS 测得的两种椰子汁 (纯正和掺假) 的δ13C 数据与椰子汁生产商所提供的独立IRMS数据报告进行比较,发现它们在±0.1‰误差范围内(表1),而从三次样品测量中获得的单个测量值的精度为±0.3‰。添加果糖的比率将纯正椰子汁样品 (绿点) 与大量果糖 (红点) 混合,并测量已知掺假的商业品牌椰子汁 (蓝点)。掺假样品的总糖含量大约有 40% 来自果糖。结论  该研究表明,Picarro CM-CRDS可在大范围的椰子汁掺假比率(4至100%)内进行准确的同位素测量,是一款高性能的分析仪。它具有优异的精度、线性和低漂移等特性。对商业椰子汁生产商所提供的样品进行比较得出,纯正椰子汁和掺假椰子汁的δ13C成分存在明显差异,而且CM-CRDS与IRMS的结果相近,但后者价格更昂贵、操作更困难且更耗时。  该分析方法并未涉及复杂的样品制备步骤。可在几分钟内制备多个样品。准备就绪后,自动化系统会连续进行测量直至完成检测,而无需实施额外的人工干预。大多数天然饮料 (例如苹果、橙子和柠檬) 行业都可采用类似的分析方法。参考文献Detection of Coconut Water Adulteration with CM-CRDShttps://www.picarro.com/support/library/documents/an037detection_of_coconut_water_adulteration_with_cm_crds_application?language=en如果希望进一步了解以上案例的仪器信息以及更多的应用方向,欢迎与我们联系讨论:Email: james@cen-sun.com  +86-15205149997chenxf@cen-sun.com   +86-18969955870

应用实例

2023.11.16

关于太阳活动对氧同位素潜在影响的新见解

关于太阳活动对氧同位素潜在影响的新见解--华中地区鸡冠洞观测IIhttps://doi.org/10.1016/j.jhydrol.2023.130114 摘要:石笋的氧同位素组成(δ18O)已被广泛用于重建夏季风变率,然而,太阳活动与季风系统之间的关系尚不清楚。本研究基于中国中部鸡冠洞2010-2022年13年间的降水、洞穴滴水和现代洞穴堆积物的δ18O值监测活动。通过分析不同厄尔尼诺事件下的水汽环流和当地降水线(LMWL)发现,在季节-年际时间尺度上,降水量 δ18O 值反映了大气水汽环流,此外我们利用交叉小波变换分析研究了太阳黑子数(SSN)和亚洲夏季季风(ASM)之间的周期关系,因为太阳活动是对ASM最重要的外部影响之一。我们研究区域的石笋δ18O数据反映了由太阳活动引起的当地降水的年代际变化。与δ18O值相关的关键因素包括太阳活动的驱动机制和与enso相关的海温异常。我们推测是太阳活动的变化引起的热带海温梯度异常,通过改变ENSO和印度洋偶极子(IOD)的变率影响中国中部水循环,最终导致石笋δ18O的变化记录。介绍:太阳是地球气候系统的重要能源,控制着地球水文系统和地表辐射能量平衡,是影响气候变化和人类活动的关键因素。气候变化已经成为全球性的问题。因此,通过对古气候变化的研究,了解过去的气候变化模式,揭示其动态机制,对预测未来的气候变化具有重要意义。研究区域:鸡冠洞(111◦34′E, 33◦46′N) 和石岩洞位于河南西部滦川县黄土高原(秦岭东部分支)的东南边缘,这两个洞穴相距约300米。研究区位于黄河和长江分水岭的北麓,处于湿润和半干旱地区的边界,对ASM的变化很敏感。岩溶系统是一个异质且高度复杂的水文地质系统。鸡冠洞上覆基岩相对较薄(30–40 米厚),主要由震旦系绿泥质大理岩组成(图1),降水从岩石裂缝中渗透下来。图1:研究区域的地理位置(a)。 (b)鸡冠洞地形图。(c)鸡冠洞示意图。研究方法与日期:1、样本收集使用自动降水和粉尘采样器(模型APS-3D)以及降水收集器收集并记录了2010年至2022年的每个降水事件。如果在某个气象站记录了一个降水事件,但我们没有收集到它,那么它就不被认为是一个降水事件。样品采集于鸡冠洞监测的5个洞穴水点,包括2个滴水点、2个池水点和1个地下水点(DTH)。在采集样品之前,用于收集水样的聚丙烯瓶在1:1盐酸和去离子水中冲洗,并在60℃的烘箱中干燥。瓶子一旦装满就被盖住,用薄膜密封运到实验室,储存在4℃冰箱里。.2010年至2019年4月每两个月采样一次,2019年4月至2022年每隔一个月采样一次。现代洞穴标本通过在两个滴水点下方放置直径为10厘米的干净玻璃板进行收集,并每2个月更换一次。用干净的刀从玻璃板上的现代洞穴标本中刮取粉末样品,并测量稳定的氧同位素组成。稳定同位素分析使用水同位素分析仪(IWA-35d-EP,LGR)对2010-2016年收集的水样进行分析,以确定水的δD和δ18O值。2017年至2022年采集的样本使用福建师范大学地理科学学院稳定同位素实验室中心的液体同位素分析仪(L2140-i CRDS,Picarro)进行分析。使用三个内部标准(δ18O:-19.13‰、-8.61‰和-0.15‰;δD:-144‰、-63.4‰和-1.7‰)作为参考标准。。所有结果均以相对于维也纳标准平均海水(V-SMOW)的每密耳(‰)为单位报告。δ18O和δD的仪器精度分别为±0.08‰和±0.5‰。数据和分析方法栾川地区的气象数据由Vantage Pro现场气象站和栾川县气象站记录(1957–2022)。滦川县气象站是一座国家级气象台站,位于滦川县东部,它距离鸡冠洞8.4公里,海拔742.4米。我们计算了1957–2022年的降水异常百分比数据(表S1)。计算公式如下:Pa = (P − P)/P × 100%结果 1.降水的氧同位素 监测期间降水的δ18O和δD值范围分别为−16.4‰~8.1‰(平均−5.8‰ ),−122.‰~45.8‰(平均−37.2‰)。δ18 Op具有显著的季节变化,最大负值出现在雨季(7月至9月),更小的负值出现在旱季(10月至6月),这与全球降水同位素网络(GNIP) 在长时间尺度上的监测结果一致。根据降水的δ18O和δD值,确定当地大气降水线(LMWL)的方程为δD=7.64δ18O+7.34,相关系数R=0.99(P2. 洞穴水的氧同位素洞穴水的δ18O值变化明显,瞬时滴水的δ18O值在−11.1‰至−6.5‰之间,多年平均值为−9.2‰。洞穴滴水δ18O值的变化小于降水δ18O值的变化。3.现代洞穴沉积物和石笋的氧同位素现代洞穴沉积物的δ18O值范围为−10.0‰~−5.0‰(LYXS平均为−9.0‰)和−10.0‰~−6.9‰(TGBD平均为−8.7‰)。与降水δ18O不同,现代洞穴沉积物的δ18O没有表现出季节性变化,除了2010年和2011年,当时夏季为负值,冬季为正值。2013年和2018年,严重干旱导致沉积记录中断,直到干旱结束,滴水饱和度回升,现代洞穴沉积物在2014年和2019年再次在两个滴水点恢复堆积。图2:(a) NINO 3.4 SST异常,(b)降水δ18O,(c)滴水δ18O,(d)现代洞穴沉积物δ18O,(e)大气条件的组合时间序列。e中的蓝色虚线表示13年来的平均值。结论鉴于石笋δ18O值的具体气候意义存在争议,在本研究中,我们探讨了太阳活动对现代洞穴沉积物δ18O值的影响。据此对河南省鸡冠洞进行了为期13年的连续监测,结果如下。鸡冠洞δ18OP监测结果具有明显的季节变化特征。通过对ENSO事件下不同季节的大气环流和LMWL的分析,我们认为大气环流是影响δ18OP在季节年际尺度上差异的主要因素。交叉小波分析揭示了太阳活动和ASM的周期性变化。研究发现,石笋的δ18O值与9–12年和2–7年周期变化的SSN和SST之间存在较强的交叉幂和高度一致性,表明石笋δ18O的变化受到太阳活动变化和ENSO相关SST异常的影响。我们确定,拉尼娜事件更有可能发生在太阳活动较低的年份,并为我们的研究区域带来更多降雨。1957年至2022年期间,57.2%的丰水年份发生在太阳周期的非活跃阶段。为了更好地理解这一现象,我们绘制了一张太阳活动可能驱动因素的示意图。太阳活动的变化引起了SSTA,在不同ENSO和IOD状态下,SSTA通过海气耦合影响了亚洲夏季风区域的水文循环。这最终改变了洞穴沉积物的δ18O值。图3。太阳活动对ASM影响的可能驱动因素示意图。红色和蓝色粗线代表拉尼娜年的WPSH气候平均值。两个蓝色圆圈代表Walker cell。棕色虚线表示季风通过。LS:低太阳活动。此外,如果在全球变暖加剧的情况下,极端ENSO事件的频率继续增加,那么预测亚洲季风地区极端气候事件的难度可能会增加。

应用实例

2023.11.16

Picarro L2130-i在评估云下蒸发对局地降水同位素组成影响的应用

Picarro L2130-i在评估云下蒸发对局地降水同位素组成影响的应用                                            ——以中国西安为例摘要当水凝物从云内饱和环境落向地面时,特别是在干旱和半干旱地区,云下过程可能会通过平衡和非平衡分馏而改变降水的同位素组成。如果这些云下过程没有被正确识别,它们可能会导致对降水同位素信号的误解。为了正确认识降水同位素记录的环境信息,定性分析云下过程和定量计算云下蒸发效应是两个重要步骤。在此,我们根据西安市两年来的降水和水汽同位素同步观测,整理出一套有效的方法来系统评估云下蒸发对当地降水同位素组成的影响。 ΔdΔδ图是有效诊断云下过程(例如平衡或蒸发)的工具,因为降水平衡蒸气和观测到的蒸气之间的同位素差异(δ2H;d-excess)显示出不同的路径。通过使用ΔdΔδ图,我们的数据表明蒸发是西安主要的云下过程,而降雪样本保留了初始云信号,因为它们受气固相同位素交换的影响较小。然后,我们选择了两种方法来定量表征云下蒸发对局地降水同位素组成的影响。一种是基于雨滴下落过程中的质量变化(以下简称方法1),另一种是取决于从云底到地面的降水同位素组成的变化(以下简称方法2)。通过比较,我们发现除了降雪事件外,两种方法在评估蒸发对δ2Hp的影响方面没有显着差异。与 δ2H 变化成比例的蒸发斜率 (Fi /Δδ2H) 在方法 1 中 (1.0 ‰ %−1) 比在方法 2 中 (0.9 ‰ %−1) 稍大。此外,两种方法均表明秋季蒸发作用较弱,春季蒸发作用较重。通过灵敏度测试,我们发现两种方法中,相对湿度是最敏感的参数,而温度对两种方法的影响不同。因此,我们得出结论,两种方法都适合研究云下蒸发效应,而方法2中仍然可以包括其他云下过程,例如过饱和度。通过应用方法2,将改善云下过程的诊断及其对降水同位素组成的影响的理解。研究目的系统评估云基以下蒸发对当地降水稳定同位素组成的影响,为此编制了一套有效的方法。研究方法与结果2010-2015年西安、兰州和西宁气温和降水的月平均变化地点:采样地点位于西安市市区东南9公里的雁塔区。水蒸气样本是在一栋12层建筑的7楼采集的,采样高度30 m,降水样本在顶层收集,采样高度50 m。测量大气水汽和降水的氢氧同位素组成; ΔdΔδ图用于定性诊断云基以下过程;Stewart模型(方法1)和气柱模型(方法2)用于定量评估云基以下蒸发效应。(1) 收集降水和水汽样品,用Picarro L2130-i测量其氢氧同位素组成;(2) 绘制ΔdΔδ图,定性分析云基以下过程;  (3) 应用方法1和方法2,定量计算云基以下蒸发对降水同位素的影响。试验结果显示:西安的降水主要受到云基以下蒸发过程影响;两种方法得到的 Δ δ2H结果没有显著统计差异,但对降雪事件的评估存在较大误差。上图显示的是西安的当地降水线(LMWL)和水汽线(LWVL)。可以看出:(1) LMWL的斜率7.0低于GMWL的斜率8.0,反映了云基以下蒸发的影响。(2) LWVL的斜率7.8也略低于平衡分馏值8.0,反映了动力学过程的影响。(3) 降水和水汽同位素组成分布在不同范围,前者较阳性,这与经典分馏理论吻合,支持了二者之间存在蒸发作用。Δd Δδ图是Graf等人在2019年提出的一种新型图解框架,可以直接区分不同云基以下过程对水汽和降水稳定同位素组成的卷积影响,尤其是平衡和非平衡过程的影响。其中Δd是降水平衡水汽与观测近地面水汽的d-excess之差; Δδ是两者的δ2H之差。图中横纵坐标分别为 Δd和 Δδ。不同云基以下过程在该二维相空间有不同的分布,从而可以更清楚地识别。说明:本文数据在 Graf 等人建议的 Δd Δδ 直径图上的投影。实线代表 Δd-excessv 和 Δδ2Hv 为0‰。虚线对应于阴影中具有 95% 置信带的样本的线性拟合。红线是降雨样本,青色线是降雪样本。罗马数字代表象限的类别。主要研究结论与总结(1)干旱地区降水和水汽同位素组成关系密切;(2) Δd Δδ图可以有效定性分析云基以下过程;(3)两种方法可以定量评估蒸发效应,但方法2可以包含更多过程。最后,感谢中国科学院地球环境研究所黄土与第四纪地质国家重点实验室;中国科学院第四纪科学与全球变化卓越中心,再次向本文作者刑萌老师等对本公众号大力支持。原文链接:https://acp.copernicus.org/articles/23/9123/2023/acp-23-9123-2023.pdf北京世纪朝阳科技发展有限公司的公众号,会定期发送一些应用picarro设备而进行的一些最前沿的生态系统变化监测技术,欢迎各位老师关注,Picarro分析仪的用户遍布全球各知名机构与组织,在环境气体监测网络领域有许多经验和案例,如果各位老师和专家想了解更多信息,欢迎与我们联系。更希望picarro设备对各位老师的科学研究有所帮助。

应用实例

2023.10.27

甲烷排放抵消了沿海生态系统对大气二氧化碳的吸收

甲烷排放抵消了沿海生态系统对大气二氧化碳的吸收背景介绍沿海生态系统是重要的碳储存库,其中包括大型藻类、混合植被和沉积物生态系统。这些生态系统通过光合作用吸收二氧化碳,并将其转化为有机碳,从而在一定程度上减缓了全球变暖。然而,沿海生态系统也是甲烷排放的重要来源。甲烷是一种强效的温室气体,其温室效应比二氧化碳高大约25倍。沿海湿地、浅水区和沉积物中的微生物活动会产生甲烷,并释放到大气中。因此,了解沿海生态系统中甲烷排放和二氧化碳吸收之间的平衡关系,准确评估全球碳循环和气候变化的影响至关重要。尽管已有一些研究关注了沿海生态系统中的甲烷排放和二氧化碳吸收,但对于这一关系的理解仍然有限。现有的研究主要集中在特定地区或特定类型的生态系统,缺乏全球范围内的综合分析。本文研究者旨在填补这一知识空白,并提供更全面的数据和分析,以促进对沿海生态系统的保护和管理。研究材料和方法   该研究是在名为Askö的海岛上进行的上进行的,根据基质和植被的主要类型,研究区域包括三个不同的浅水(2和CH4在一年的四个季节进行了定量分析。    研究使用光腔衰荡光谱仪(CRDS) Picarro G2201-i和自动水汽平衡装置来测量CO2和CH4浓度。地表水(约30厘米深)由一个潜水泵从位于栖息地上方的浮桥中抽出,水被转移到“Showerhead 平衡器装置中(1L顶空体积),一个连续的空气回路从平衡器连接到CRDS,其中CO2和CH4气体测量35分钟,然后对环境空气进行10分钟的气体测量(即一个完整的循环为45分钟)。这些测量周期在上述测量期间连续运行,带潜水泵的浮桥每24小时在定义的栖息地之间移动一次。1Hz测量频率每10秒做平均并记录一次。结果与讨论  1、沿海生态系统中CH4和CO2的海洋气体交换研究发现在所有的海岸生态系统中,CH4都是向大气中排放的。不同的栖息地和季节之间CH4排放量差异很大。研究者报告了海藻栖息地中的CH4海气通量,混合植被和沉积物区的每日平均净CH4通量。这些通量的大小与类似海岸环境中的最新研究测量结果相一致。在所有栖息地中,夏季和秋季的甲烷通量比春季和冬季高一个数量级(图1)。这是由于在温暖时期甲烷生成超过甲烷氧化,所以夏季和秋季的甲烷排放量增加。在一个年周期内,大型藻类向大气排放的CH4累积净通量为0.34(±0.01)gCH4m−2 y-1,混合植被为0.55(±0.03)gCH4m−2y−1,沉积物区为0.38(±0.02)gCH4m−2y−1。沿海生态系统中CH4通量分布的这种时空异质性表明,迫切需要高分辨率测量来提高CH4估算的可靠性,并限制栖息地对区域和全球CH4预算的贡献。日平均净海气CO2通量范围在不同环境和季节之间存在显著差异(图1); 研究发现,春季、夏季和秋季,海藻和混合植被区域是大气中CO2的净汇聚区,而冬季则是净排放区。这是因为阳光刺激了水下植被的光合作用,导致表层水体中的CO2相对于大气平衡处于欠饱和状态,从而促进了直接从大气中去除CO2。图1| 三个沿海生态系统每小时海洋空气CH4 (a)和CO2 (b)通量。数值为平均值±标准误差。正通量是指从水到大气(源)的流出量,而负通量则表示大气中温室气体的吸收(汇)。原位连续(1hz)测量平均间隔15分钟,并以2小时为块进行分组。2、CH4排放抵消了大气CO2吸收的碳汇容量研究发现,CH4通量大大抵消了归因于大气CO2净吸收的碳汇能力(图2a, b); 然而,这种抵消的大小因环境类型和季节而异。由于CO2和CH4储量之间的季节不同步,秋季的抵消量较高(图2),而CH4通量对温室气体净平衡在冬季处于边缘(~ 1%),可能是由于冬季低温下CH4产量低。在一个年周期内CH4通量降低了大气CO2吸收。由于对红树林等少数沿海生态系统的评估有限,沿海碳汇容量中因CH4排放对大气CO2吸收而产生的抵消仍然不确定,也难以进行比较。研究结果表明,全球普遍存在的具有无植被沉积物的沿海栖息地,以及具有生产性大型藻类和混合植被的沿海栖息地的CH4排放可以在一个年周期内将吸收的大气CO2温室气体汇估算值降低三分之一。因此,计算CH4和CO2海气通量对正确量化沿海生态系统作为大气净碳汇的潜力是必不可少的,这对制定明智的气候缓解战略是必要的。图2 |季节性温室气体净平衡。3、不同的微生物群落形成栖息地特定的CH4动态研究发现,不同栖息地中的微生物群落结构存在差异,这可能与产生甲烷的能力有关。在所有季节中,混合植被和沉积物栖息地的沉积物中存在丰富的有机质,可能有利于产生甲烷。而在海藻栖息地中,尽管没有上述的“经典”沉积条件,但仍然存在产生甲烷的微生物群落。不同的微生物群落在不同的栖息地中产生了CH4,从而塑造了栖息地特定的CH4动态。4、对各种沿海环境的CH4排放进行核算,可以为减缓气候变化提供至关重要的信息确定全球大气CO2和CH4变化的位置和机制仍然是预测未来碳循环与气候之间相互作用的关键挑战。沿海植被生态系统作为减缓气候变化工具的作用已引起全世界的注意,许多国家承诺将这种系统作为其国家确定的温室气体清单的一部分。因此,对各种沿海环境中的甲烷排放进行准确计量是有必要的,可以更好地了解和应对气候变化。详细的数据分析和测试方法,请参考原文Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems | Nature Communications设备分享G2201-i分析仪整合了 Picarro公司CO2和CH4两台碳同位素分析仪的功能,从而实现了更简单且快速地同步获得两者稳定同位素比率。研究人员只需一台仪器便可追踪从碳源至碳汇的碳转移过程。该双组分分析仪不但给研究工作带来了易用性和快捷性,小型化与耐用性令其更容易运输到野外并提供即时的结果,以便研究者根据实地情况更改实验设置,在有限的野外作业时间内取得最优的成果。G2201-i分析仪可以在三种模式下工作:1)单一CO2模式,2)单一CH4模式,3) CO2与CH4复合模式。在复合模式下,CO2和CH4的测量交错进行,采样率快于光腔内的气体重置率。当分析仪处于CO2或CH4的单一模式下,由于更多的测量时间被分配到单一组分,精度将有所提升。该分析仪在所有模式下均能高精度地测量CO2,H2O和CH4的浓度,并且相比于其它基于光谱吸收的仪器需要更低频度的校准。

应用实例

2023.10.12

洞穴降水-滴水-沉积物δ18O对ENSO的响应

洞穴降水-滴水-沉积物δ18O对ENSO的响应背景介绍:ENSO是指发生在热带太平洋地区的厄尔尼诺-南方涛动现象,是地球气候系统中最显著的海气耦合系统之一,对全球气候和天气产生重要影响。研究ENSO对气候变化的影响,对预测和应对极端天气事件具有重要意义。东亚夏季风(EASM)地区洞穴系统δ18O的气候指示意义是利用石笋进行古气候研究的一个关键前置问题。ENSO与季风降水/洞穴δ18O之间的联系及其机制也存在争议。对洞穴降水-滴水-沉积物氧同位素的长期系统监测是解决这些问题的有效途径。该研究提供了位于受EASM影响的前沿地带的中国东南部玉华洞近11年来的降水、滴水和现代沉积物δ18O的数据,揭示了玉华洞岩溶系统氧同位素的传递过程、洞穴碳酸盐沉积物氧同位素的指示意义,探讨了ENSO对降水/洞穴氧同位素的影响机制。研究方法:采样地:玉华洞(26°50′N,117°26′E)位于武夷山东南侧,距福建省福州市约200公里(图1a)。采样方法:采样时使用洁净的5L聚丙烯塑料容器, 用锡箔纸裹住瓶身,并加入大约一厘米厚的液体石蜡。接取降水后混合均匀,立即倒入 50ml聚丙烯塑料瓶和2ml玻璃密封瓶,装样过程中确保两种类型的瓶子装满并用封口膜密封以防止样品蒸发, 并置于4°C冰箱中冷藏保存直到进行分析测试,以避免发生同位素分馏。在两个滴水点(编号ENXX和SBML)下使用同类型的样品瓶收集滴水样本(图1c),并对一分钟内的滴水次数进行计数,以计算滴率。图1. (a)玉华洞的位置。该图还显示了1960年至2020年的区域平均降水量,用颜色梯度表示,箭头表示了850百帕的风矢量;(b)上方图显示NINO 3.4区域的海面温度异常序列,红色柱表示厄尔尼诺影响,灰色柱表示正常条件,蓝色柱表示拉尼娜影响。(c)玉华洞示意图:橙色点和蓝色点分别表示ENXX和SMBL的位点。ENXX附近的绿点代表了温湿度记录仪的位置。使用5×5厘米磨砂玻片收集现代方解石沉积物,用去离子水冲洗玻片并干燥,收取玻片后存放在干净的塑料自封袋中。总共收集了91个降水样品、168个滴水样品和113个现代方解石沉积样品(表1)。表1. 雨水、滴水的氧和氢同位素结果和现代方解石沉积物的氧同位素结果同位素数据测量与处理:降雨和滴水的δ18O和δD的测量在福建师范大学使用Picarro L2140-i完成。数据已标准化,使用三个内部标准(δ18O:−19.13‰、−8.61‰和−0.15‰;δD:−144‰、−63.4‰和−1.7‰),以维也纳标准平均海水(V-SMOW)表示;测量精度δD为±0.5‰,δ18O为±0.08‰。沉积物的δ18O使用碳酸盐自动进样装置kile IV与Finnigan MAT-253型质谱仪联机完成测试。每9个样品插入1个标准样品(NBS-19),分析误差(±2σ) 优于0.06‰,结果以δ18O(VPDB)表示。研究结论:该研究获取了中国东南玉华洞长达11年的监测数据,研究人员研究了降水、滴水和沉积物的氧同位素变化,以探究氧同位素的传递过程及与ENSO的联系。氧同位素是一种用来研究水文循环和气候变化的重要指标,通过分析氧同位素的比例,我们可以了解降水和水体的来源、循环和变化过程。研究表明:降水δ18O(δ18Op)的季节和年际变化主要受上游对流和降水过程调控。δ18Op强烈响应于受ENSO活动影响的热带辐合带迁移及西太平洋副热带高压带活动有关的东亚夏季风活动。由于岩溶储层混合效应的影响,滴水δ18O(δ18Od)的季节变化不规律,其振幅远小于δ18Op。δ18Od可以反映岩溶水库中雨水δ18Op在停留时间内的综合变化,并可以继承δ18Op中的ENSO信号。玉华洞滴水点的补给模型揭示了ENSO响应的时间和幅度差异,这可归因于岩溶含水层中雨水停留时间和新旧水混合比例的变化。降雨量越大,δ18Od对ENSO活动的响应越敏感,时滞越短,振幅越大。沉积物δ18O(δ18Oc)系列表现出明显的季节变化,受到洞穴温度变化的控制。在年际时间尺度上,δ18Oc的变化主要受δ18Od的控制,可以记录ENSO信号。研究表明,玉华洞高分辨率石笋δ18O重建可能能够识别东亚夏季风在年到十年时间尺度上与ENSO相关的历史变化。图2:左图展示玉华洞2011-2021年降水、滴水和沉积物的氧同位素序列及其和ENSO指数,副热带高气压带强度指数及东亚夏季风指数的对比。右图展示超强厄尔尼诺年2015年的5-9月份的降水水汽来源(a)、气压场异常(b)、对流活动(c)及降水活动分析(d)。我们的研究强调了利用对特定洞穴地点的降雨、洞穴滴水和沉积物δ18O的长期监测来改进对石笋δ18O记录中气候信息及与ENSO相关的驱动机制的解释的必要性。玉华洞高分辨率石笋δ18O重建能够记录东亚夏季风在年到十年时间尺度上与ENSO相关的历史变化。未来,我们将进一步深入追索ENSO事件与季风变化的关系,为全球变暖背景下极端气候事件的预测和应对提供理论支撑。原文连接:https://doi.org/10.1016/j.jhydrol.2023.129937 致谢:感谢福建师范大学姜修洋教授团队、文章第一作者邱万银博士对该文本的专业支持!  

应用实例

2023.09.21

国家甲烷排放清单与现场测量方法对比

国家甲烷排放清单与现场测量方法对比背景介绍:甲烷(CH4)是一种强效温室气体,其大气生命期为9年,是二氧化碳100年全球变暖潜能值的28倍。2021年的年增长率达到17 ppb,这是自1983年开始直接测量以来的最大增长率。与二氧化碳相比,甲烷的寿命短,辐射强迫强,这使其成为减缓气候变化行动组合中的关键目标。然而,由于人为和自然源和汇的多样性、异质性和可变性,在所有尺度上对CH4源/汇的量化仍然存在较大不确定性。人为甲烷排放清单是根据活动数据和排放因子编制的。其他关于生物源通量的自下而上方法可能依赖于所有相关尺度上排放过程的数值模拟,通常用于诸如湿地模式等生物源过程。无论是从太空还是从长期网络和移动平台进行的现场大气测量,都可以提供有关从地方到全球尺度自下而上排放的宝贵见解。在大尺度上,反演模型使用大气测量来校正甲烷排放清单。这些自上而下的方法已被应用于优化全球、大陆或国家尺度的排放估算。与自下而上的国家排放清单相比,欧洲、美国、加拿大和墨西哥使用逆模型估算的人为甲烷国家总排放量分别高出约20%-40%、40%、30%和20%。在局部/区域尺度上,自上而下(TD)和自下而上(BU)的估计之间同样存在很大的差异。例如,旧金山湾区基于空气的CH4计算排放量大约是区域尺度清单给出的相应值的两倍。Vechi等人(2022)报告说,与自上而下的方法相比,自下而上的清单低估了丹麦养牛场全国甲烷排放量的35%。因此,有必要更好地了解这些差异,以提高两种方法估算甲烷排放的可信度。研究简介:本文在塞浦路斯进行了移动CH4测量(一年内24个调查日),塞浦路斯是地中海东部一个面积9251平方公里、人口120万的岛国。塞浦路斯提供了一个非常相关的框架来解决自下而上与自上而下的差异:它位于新兴的温室气体排放热点,它只有两个主要部门排放甲烷(农业和废弃物),其合理的表面积使得可以用移动平台监测大部分国家甲烷排放。根据塞浦路斯向联合国气候变化框架公约(UNFCCC)提交的2022年国家清单报告(NIR),在塞浦路斯,57%的甲烷排放来自废弃物,41%来自农业活动。选取具有代表性的地方CH4排放热点Koshi(活跃填埋场)、Kotsiatis(封闭填埋场)和Aradippou地区(养牛场),约占全国CH4排放量的28%左右。我们使用高斯羽流模型量化了这些热点的排放率。这项综合研究旨在弥合自上而下和自下而上方法之间的差距,并提高我们对塞浦路斯全国范围内甲烷排放的了解。材料与方法图1. 移动测量系统的组成部分,(a)是车内设置,(b)是车外设置;2020年10月至2021年9月期间进行了24次移动调查(24天)。采用Picarro公司G2401测量CH4,仪器每月使用WMO X2004标度进行校准,测量CH4的精度为0.7 ppb。该仪器安装在一辆热发动机车辆上,车顶上装备有GPS装置(NEO-M8N-0-10 U-Blox)和声速风速计(150WX RS232气象站仪器)。此外,进风口被安装到车顶,靠近风速计(离地面约190cm)。车内设置了实时充电系统,允许电池在行驶时充电,这使得仪器可以进行长时间的观测。所有记录的数据都是实时可见的。数据日志记录了每个测量日空气从进气道到分析仪的时间延迟。测量方案和数据收集移动监测在正午前后进行,此时空气在行星边界层中混合良好。每个实地工作日都调查了三个选定的地点。只要在监测屏幕上看到CH4排放羽流,在交通条件允许的情况下,以20-30 km h-1的行驶速度跟踪3-5个重复的样带,用于研究CH4浓度的逐渐变化。在高斯羽流峰形状表征过程中,该速度范围已被确定为最佳。一般来说,每次调查的持续时间为6-7小时。每次调查中测量的甲烷摩尔分数的第二个百分位数被选为计算所有样带排放率的每日背景值。下图显示了这三个热点的地理位置以及每个站点一天的调查路径示例(站点之间约15公里)。图2. 调查地区(Koshi, Kotsiatis和Aradippou)的位置和图片以及每个站点一天的调查路径示例。数据解读:本文选取了一个活跃填埋场、一个关闭填埋场和一个集约化养牛区作为主要调查区域,设计了反复的横断线路,测量下风甲烷浓度,拟合高斯模型获得排放率。结果显示,填埋场和养牛厂来源的甲烷排放率比国家清单的估计值分别高出129%和40%。表1. 汇总了在不同季节、不同测量日期获得的甲烷排放率估算结果。这些排放率是基于高斯烟羽模型与现场观测值的拟合结果计算得到的。图3. 展示了三个调查区域不同季节的甲烷排放率。数据来源是作者基于现场移动监测获得的结果。这表明了季节变化对结果的影响较小。图4. 对比了本文移动监测结果与国家清单的数据。国家清单的数据来源于塞浦路斯提交给IPCC的最新国家温室气体排放清单。上图直观对比了移动监测获得的三大排放区的排放总量(经额外推算到国家级别)与国家清单的数据,清晰反映了两个数据源在温室气体排放估算上的差异。可以看到填埋场甲烷排放量监测值较大,而养牛区源排放量监测值也略高。这与文章结论中移动监测结果高于国家清单估算值的结论一致。上图能够直接而有效地支持文章的研究结论,反映了监测与清单间的差异,是与结论最相关的图表。研究结论:这种针对国家重点排放区的移动测量可以独立评估清单数据,有助于提高国家排放统计的准确性。作者在塞浦路斯通过为期一年的移动监测,评估了主要的甲烷排放区。填埋场的监测排放量比国家清单高出129%,牛场的监测排放量高出国家清单40%。移动监测可以独立评估国家温室气体排放清单的准确性,这种方法可用于改进排放清单编制,为减排决策提供支持。相关仪器:原文链接:https://doi.org/10.1016/j.scitotenv.2023.165896

应用实例

2023.09.21

使用碳同位素技术研究海洋微生物对甲烷的氧化速率

使用碳同位素技术研究海洋微生物对甲烷的氧化速率背景图片摘要甲烷是一种重要的温室气体,其温室效应贡献率仅低于CO2和水汽。海洋是全球尺度上重要的碳库,水中微生物对甲烷的氧化作用是控制海洋溶解甲烷释放到大气中的重要手段。其氧化速率对全球碳循环、温室气体研究有重要意义。Uhilig和Loose探索了使用稳定同位素甲烷示踪技术来量化北极海水样品中甲烷氧化速率的方法。使用PICARRO G2201-i光腔衰荡光谱仪(CO2、CH4浓度及同位素分析仪)测定了多层铝箔培养袋中顶空气甲烷浓度和同位素比率。甲烷质量平衡和稳定同位素比值的变化是甲烷氧化过程相互独立的制约因素。结果显示基于两种独立因素计算的甲烷氧化速率趋势一致。试验方法1. 多层铝箔气体采样袋①样气袋1L容积,配有一个聚丙烯组合阀和隔垫。②试验采集海水大概0.8L,顶空0.1L。2. 甲烷浓度和同位素比值的测量①分析仪主机采用PICARRO G2201-i搭配SSIM小样品进样模块;②主机测量甲烷确保量程1.8~500ppm,如果浓度过高可使用稀释模式;③实际进样量0.02mL~10mL;④气体样品导入SSIM模块前进行干燥除水。3. 数据校正①校正周期:一般24h,最长间隔31h。②标气d13C-CH4 范围:-23.9‰ ~ -66.5‰。③CH4浓度>1.8ppm时 ,dCH4精度是0.62‰CH44精度是1.8‰,见上图C。4. 培养试验①多层铝箔样袋原位采集~0.8L海水(无气泡),打入0.1L零空气,同时打入标记的甲烷气体(形成浓度梯度和同位素比值梯度)。②0℃避光保存12天(不同试验处理)③对照试验中加入NaOH溶液杀死微生物。④采气前需要静置12h以上,使CH4在水-气界面达到平衡;另外手动摇晃样袋2分钟后采集顶空气;⑤定期采集顶空气,测量甲烷浓度和同位素比值。 图表 1 水中CH4浓度(c(CH4)water) (a, e), CH4总摩尔质量的自然对数(ln(n(CH4)t) (b, f),同位素比率(d13CH4) (c, g),以及根据公式10 (d, h)在CH4峰值浓度为2003 (a - d)和103/33 (e - h)的条件下的y轴项。Concentration of CH4 in the water (c(CH4)water) (a, e), natural logarithm of the total molar mass of CH4 (ln(n(CH4)t) (b, f), isotope ratio (d13CH4) (c, g), and y-axis-term according to Eq. 10 (d, h) in selected incubations at CH4 spike concentrations of 2003 (a–d) and 103/33 (e–h). Sampling sites are Utqiagvik, Alaska, close to the IMB and Nbay. The slope of the regression lines in (b, f), and (g, h) result in the respective kox as described in the text (Eqs. 5, 10). Error bars are standard deviations of technical replicates from one bag and are, if not present, covered by the symbol size.结论1. 稳定同位素比值是甲烷氧化过程一个独立的限制因素。2. 同位素比值的变化和同位素分馏系数与微生物群落组成相关。图表 2 由CH4浓度(ppm)测定的一级氧化常数(kox)与同位素比值(delta)的比较。Comparison between first order oxidation constants (kox) determined from CH4 concentration (ppm) and isotope ratios (delta). (a) kox,delta was determined with two different fractionation factors aox=1.007 in gray and aox=1.025 in black. Black solid line is y=x.  Note the different scales on the axes between (a) and (b). Error bars indicate the standard error of the slope of the linear models determined according to Eqs. 5, 10.3. Picarro G2201-i分析仪在试验中非常有吸引力。分析仪此次实验中展现出多方面的优势:结构紧凑、操作简便,可以在多种环境条件下布置和开展试验。;G2201-i搭配SSIM模块总功率300W,只需要一瓶零空气即可开始测试。4. 气密的多层铝箔样品袋提供了很大的便利。极地泄露率kox=0.001-0.995d-1;弹性气袋可以自适用应内外气压;采集0.8L海水,大体积样品带来稳定的测量结果;可以使用1-10L容积。参考文献Christiane Uhlig and Brice Loose.  2017.  Using stable isotopes and gas concentrations for independent constraints on microbial methane oxidation at Arctic Ocean temperatures.  Limnol. Oceanogr.: Methods 00, 2017, 00–00. doi: 10.1002/lom3.10199如果希望进一步了解以上案例的仪器信息以及更多的应用方向,欢迎与我们联系讨论:Email: james@cen-sun.com   +86-15205149997chenxf@cen-sun.com   +86-18969955870

应用实例

2023.09.15

【会议动态】BCEIA 2023展会|世纪朝阳邀您相聚中国国际展览中心

BCEIA 2023展会|世纪朝阳邀您相聚中国国际展览中心2023 年 9 月 6-8 日,世纪朝阳将和您再次相聚BCEIA 2023。展现不一样的品牌形象,竭诚服务于我们的新老客户!北京世纪朝阳科技发展有限公司2000年成立于北京,作为仪器设备行业内专业的供应服务商,以经营粒度仪、Zeta电位仪、GBC光散射系统、稳定性同位素分析仪、超痕量气体分析仪、环境气象、植物生理生态和海洋监测类仪器为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套方案解决的综合性企业。为更好的服务于客户,北京世纪朝阳科技发展有限公司携手美国布鲁克海文仪器公司和美国PICARRO厂家,借此机会与新老客户相聚,给大家展示不一样的仪器设备服务体验。9月6日-9月8日我们期待与您在展位号:北京 · 中国国际展览中心(顺义馆) E1馆 E1079 相遇,欢迎各位新老朋友到展台了解和洽谈。预约看展请扫描下列二维码,提前享受VIP观众服务!

企业动态

2023.08.17

水分来源复杂地区发挥温度效应的前提——来自高分辨率水汽同位素的证据

水分来源复杂地区发挥温度效应的前提——来自高分辨率水汽同位素的证据摘要大气降水广泛参与了许多地质档案的形成和积累。在这些过程中,同位素分馏与温度、降水量等气象因素密切相关。因此,降水同位素通常被认为是重建古气候和古环境变化的有效指标。然而,随着研究的深入,人们发现温度效应并不适用于所有地区和时间尺度,尤其是在水分来源复杂的地区。在这里,我们选择西安作为我们的研究地点,因为它位于东亚夏季风(EASM)和西风带的过渡带,水汽来源相对复杂。通过在西安进行为期三年的高分辨率、相对连续的水汽同位素组成测量,我们确定了EASM的持续时间,通常从6月开始,到9月结束。通过将δ18Op分为季风季节和非季风季节,我们发现在非季风季节有显著的温度效应,相关系数为0.54,而在季风季节和全年没有观察到温度效应。我们的水汽同位素结果表明,建立降水同位素的温度效应应该遵循两个先决条件:1、水汽来源单一;2、温度梯度大。我们的研究结果明确了温度效应的适用条件,并有助于我们更好地利用降水同位素来了解不同地区的古温度变化。1.简介由于降水是全球水循环的重要组成部分,其同位素分馏过程与环境因素密切相关(如温度、降水量、相对湿度等),自1961年以来,在国际原子能机构(IAEA)和世界气象组织(WMO)联合组织的全球降水同位素网络计划的支持下,它在世界各地得到了广泛的调查。根据GNIP的降水同位素数据,Dansgaard(1964)提出了温度、降水量和海拔对降水同位素的影响的概念。所谓的温度效应是降水同位素和空气温度之间的正相关关系,而潜在的机制是较低的温度对应于较大的分馏因子,这导致降水在分馏过程中具有更偏负的18O/16O比率,特别是瑞利分馏过程。由于光学激光系统技术的进步,同位素比红外光谱(IRIS)的出现使水汽同位素测量更加方便。利用IRIS,我们进行了为期3年(2016年至2018年)的小时分辨率水汽同位素组成测量,以研究西安的温度效应。同时,我们还收集了三年来基于事件的降水样本。通过这项研究,我们希望对以下两个问题提供新的见解:(1)在过渡带,我们能否通过高分辨率的水汽同位素观测准确区分东亚夏季风(EASM)的起止日期,以及东亚夏季风的起止日期是否具有季节性规律;(2) 温度效应何时对过渡带的降水同位素起作用,潜在的机制是什么?通过研究过渡带中降水同位素的温度效应,我们可以进一步了解复杂环境背景下降水同位素信号中记录的环境信息。2.材料和方法2.1研究地点西安,陕西省省会,中国西北地区最大的城市,位于35◦N附近,代表了中国北部和西北部的大多数城市。在夏季,EASM将渗透到该地区并带来充足的降雨(Yang和Yao,2016),而在冬季,盛行的西风导致气候干燥寒冷,降水稀少。2.2.取样和同位素测量在中国科学院地球与环境研究所(IEECAS)的大楼里同步观测现场水汽和基于事件的降水同位素组成。2016年1月1日至2018年10月7日,在离地约30米的IEECAS七楼观测到大气水汽同位素组成。从每次降水事件开始,手动收集降雨和降雪样本,并使用量瓶测量体积。我们在三年的采样活动中收集了175个降雨和21个降雪样本。降水样品由Picarro L2130-i波长扫描腔衰荡光谱仪测量,δ18O和δ2H的精度分别优于0.1‰和0.5‰。大气中水汽的δ18Ov和δ2Hv也通过IRIS(L2130-i,Picarro Inc)测量,但采用液-汽双重模型。在水汽测量模型中,仪器的入口通过外部电磁阀连接到水汽源,电磁阀的另一端连接到干燥空气,L2130-i发出的电信号控制阀门开关。在测量校准气体时,电磁阀切换到干燥空气,从而从测量池中去除任何水汽样品残留。然后,通过CTC Analytics自动采样器将液体标准物注入汽化室中,并且通过IRIS(L2130-i,Picarro Inc)测量汽化的的液体标准物。测量液体标准后,将入口切换为水汽测量模式,使用隔膜泵通过不锈钢管(1/8 in.)将大气水汽泵入仪器腔,并通过L2130-i进行检测(详细信息,请参阅Xing等人(2022))。3.结果和讨论3.1定义EASM的开始和结束日期季风的定义是一种周期性的风,尤其是在印度洋和南亚,这表明它的开始和消退日期具有内部周期性。因此,研究降水同位素记录的天气条件,第一步是准确确定EASM的起止时间。我们使用IRIS获得了西安三年一小时分辨率的水汽同位素数据,并准确定义了EASM的开始和消退日期。Fig. 1. 2016年至2018年西安水汽δ18O(蓝色)、温度(红色)和湿度(绿色)的小时变化。黑线表示通过快速傅立叶变换的水蒸气δ18O的10天平滑值。在图1中,通过快速傅立叶变换将每小时的水汽同位素数据平滑到10天的分辨率,从2016年到2018年,可以清楚地观察到δ18Ov的三次突然下降。季风的爆发以δ18Ov的急剧下降为标志(Srivastava et al.,2015;Yu et al.,2016b),因此,这三个转折点对应于2016年至2018年EASM的爆发日期。季风的消退日期定义为当δ18Ov的平滑值开始下降并遵循温度下降趋势时。2016年,EASM在西安的开始和结束时间都比较晚,但2017年和2018年的着陆和消退时间都比较早。总体来看,西安季风的开始时间在6月左右,消退时间一般在10月初。因此,我们将西安的6月至9月定义为季风季节,将10月至次年5月定义为非季风季节。3.2温度效应根据西安三年降水同位素观测结果,δ18Op与温度呈正相关,与降水量呈负相关(图2a、2b),但相关系数较低(温度r=0.26,降水量r=-0.22)。这表明温度和降水量对降水同位素的影响较弱。Fig. 2. 降水δ18O与温度(a);降水(b);水汽δ18O(c);以及相对湿度(d)的相关性。在分析δ18Ov和δ18Op之间的关系之前,将每小时的水汽同位素数据平均为每日数据。正如预期的那样,δ18Ov和δ18Op显示出显著的正相关,相关系数为0.84(图2c)。此外,根据平衡分馏理论,我们通过观测到的水汽同位素(δ18Ov)计算了平衡降水同位素(Δ18Op-e),并将其与观测到的δ18Op进行了比较。降水同位素值主要由水汽同位素变化决定(R2=0.71)。相比之下,平衡计算的δ18Op-e值比观测到的δ18Op值更负,这可能表明云下蒸发对该研究区降水同位素的影响(Xing et al.,2022)。δ18Op和RH之间的负关系(图2d)和d-excess和RH之间的正关系也反映了雨滴下落过程中云下蒸发对雨滴的影响。因此,基于δ18Ov和δ18Op之间的显著相关性,我们可以通过使用高分辨率的δ18Ov结果来进一步研究δ18Op所包含的环境信息。有趣的是,如图2所示,δ18Ov和温度(T)在非季风季节表现出相似的趋势,而在季风季节则表现出相反的趋势。通过回归分析,我们注意到δ18Ov和温度的决定系数(R2)从三年数据的0.29增加到仅非季风数据的0.46(图3),这表明δ18Of在非季风季节的变化比全年更依赖于温度。同时,δ18Ov-T在季风季节的决定系数(R2=0.03)极低(图3b)。Fig. 3. 三年内水汽δ18O与温度的相关性(a);以及在季风季节(蓝点)和非季风季节(红点)(b)。直线表示线性回归,曲线表示多项式回归。Fig. 4. 降水δ18O与温度(a);降水(b);以及季风季节(绿色方块)和非季风季节(红点)相对湿度(c)的相关性。因此,根据δ18Ov的季节划分,我们将δ18Op重新划分为季风组和非季风组,并重新进行与气象因素的回归分析。如图4a所示,在非季风季节,δ18Op与温度呈显著正相关。同时,与年度数据相比,相关系数从0.26增加到0.54。相比之下,在季风季节,δ18Op与温度之间的相关性仍然很弱。这表明西安在非季风季节存在明显的温度效应。然而,无论是在非季风季节还是在季风季节,δ18Op与降水量之间的相关性仍然很差,表明西安没有降雨量效应(图4b)。4.结论降水同位素的温度效应在古气候和古环境重建中非常有用,但它并不是无限地适用于所有地区。为了研究水汽来源复杂地区的温度效应,我们选择了受EASM和西风水汽影响的西安,同时测量了三年的降水同位素和水汽同位素组成。根据我们三年的观察,我们总结了以下主要结论:1.通过高分辨率水汽同位素观测,我们准确地确定了EASM在西安的发生和消退日期。通常,EASM在5月底或6月初在西安着陆,并在10月初消退。2.利用高分辨率水汽同位素结果,我们注意到δ18Ov-T在非季风季节表现出显著的正相关性,而在季风季节则表现出较差的相关性。因此,通过将δ18Op分为季风季节和非季风季节,在非季风季节也观察到显著的温度效应。基于瑞利蒸馏模型,提出单一的水分来源和较大的温度梯度是研究区降水同位素发挥温度效应的两个前提。我们的发现对温度效应在各个领域的应用,特别是在古气候研究中具有深远的意义。同时,为了深入了解降水同位素中所包含的环境信息,迫切需要在仅以西风带为主或以季风为主的地区进行水汽同位素观测。

应用实例

2023.08.10

地中海西北部盆地法国马赛市地区大气CO₂的变化分析

地中海西北部盆地法国马赛市地区大气CO2的变化分析背景介绍人类活动产生二氧化碳的主要来源是化石燃料的燃烧,在2010-2019年的十年中,约占全球二氧化碳排放量的86%。据估计,70%以上的CO2排放来自城市化和工业化地区。但排放清单自下向上的估计所给出的区域分布和排放部门划分仍存在较大的不确定性。因此,在过去的几年里,人们对通过大气自上而下的方法来验证城市中心及其相关工业设施的二氧化碳排放越来越感兴趣。这种方法结合了大气测量和大气传输模型。城市的二氧化碳排放要么在城市上空形成一个城市二氧化碳穹顶,要么在城市的下风处形成一层羽流。当周边地区没有受到城市羽流的影响时(因此被定义为背景浓度),二氧化碳浓度比周边地区高出百万分之几至几十万分之几。这些项目还通过使用自上而下的方法,对区域自下而上的二氧化碳排放清单进行了独立评估。如今,全球一半以上的人口都住在城市,城市化进程预计将在未来几十年快速增长。如果不努力减少排放,将会增加城市及其工业设施对全球人为二氧化碳排放量。只有减缓排放、碳储存和绿色技术的决策才能减少人为二氧化碳排放,特别是在构成城市和工业的二氧化碳排放热点的区域气候计划框架内。但要确定有效的区域路径,首先需要降低人类活动区域排放估算的不确定性。世界上有些地区更容易受到气候风险的影响变化,如地中海盆地。此外,城市中心暴露在更高的温度下由于城市炎热,城市周边和农村或海洋环境岛屿效应,这使得城市化更容易受到气候变化风险影响的地区。SUD普罗旺斯-阿尔卑斯-蔚蓝海岸(SUD-PACA)地区法国就很容易受到气候变化的影响,城市化程度也很高。特别是,该地区包括普罗旺斯艾克斯-马赛大都市(180万居民),位于地中海西北海岸。这个大都市是法国仅次于巴黎的特大城市,占法国人口的37%SUD-PACA区域。根据ATMOSUD估计,工业活动(不包括能源部门)是主要排放行业(60%),其次是道路交通(15%)、能源生产和配电(10%)、住宅和办公活动,包括供暖(8%)、海运和空运(3%)、废物处理(1%)和其他次要发射器(3%)。然而,ATMOSUD所提供的排放估计是基于基准排放因子的产品,这些因子可能与实际条件下的因子截然不同。在这一背景下,建立了艾利克斯-马赛碳项目,以开展首个自上而下的试点研究,采用自上而下的方法来减少这些估计的不确定性。评估人类活动排放二氧化碳对沿海艾利克斯-马赛-普罗旺斯大都市地区大气中二氧化碳的影响。研究方法在艾克斯-马赛地区及其周边地区(马赛市的城市和沿海站点),沿着农村、城市、沿海和海洋梯度发展了4个现场CO2观测站组成的区域大气网络,以收集2013年4月至2018年2月期间每个站点至少1.5年的数据。基于这些数据集,对法国东南部和地中海盆地西北部的大气CO2在时间变化上进行了分析,艾克斯-马赛-普罗旺斯大都市坐落在由山谷和山丘组成的粗糙景观上,海拔在300米到800米之间。其中观测站点使用Picarro G2401温室气体分析仪来监测大气中CO,CO2浓度变化。图一:四个大气观测站点位置图二:观测站点周边环境结果与讨论在本研究中,研究者分析了地中海西北部盆地法国马赛市地区大气CO2的变化,通过对4个站点采集的CO2、CO观测分析:在这四个地点,发现二氧化碳的增长速度与北半球的参考地点莫纳罗亚具有相同的量级。然而,由于靠近人为排放,尤其是在市中心,这两个城市站点的CO2浓度都增加了好几个ppm。正如在以前的二氧化碳城市研究中发现的那样,在一定程度上由大陆站点(而不是海洋背景站点)的ABLH周期驱动的昼夜周期的振幅,由于靠近大量的人为排放(主要来自交通和供暖),城市地点要比两个农村背景地点高得多.后者主要受自然通量的影响。而当地、区域和偏远地区的人为排放的影响很小。同样,城市CO2季节循环的振幅高于大陆背景区和海洋背景区。研究表明,在主导风的路径上,离城市更近的额外背景地点将有助于更好地获取马赛的二氧化碳城市穹顶和羽流。这些站点必须是逆风的背景地面站,距离马赛只有几公里,且位于主导风的路径上,特别是在西北部分,那里的远程信号更加多变,有时比背景点接收到的信号高几个ppm。设备分享

应用实例

2023.08.10

温室气体监测网络建设的国际现状

随着二氧化碳等温室气体在大气中的浓度逐年攀升,导致全球范围内的气候变暖,对人类的生产和生活造成了很大影响。达成“碳达峰”、“碳中和”的“双碳”目标是中国对国际社会的郑重承诺,既塑造了为人类命运共同体不懈努力的负责任大国形象,更是建设生态文明、实现中华民族永续发展的重要抓手。“双碳”战略部署的落实,离不开对温室气体的科学监测和评估,构建一张精密的监测网十分必要。碳通量可以使用“自上而下”(监测)或“自下而上”(核算)的方法进行估算,这两种方法是相辅相成的。“自上而下”的方法通常试图根据大气观测得到的变化模式来估计碳源和汇。相比之下,“自下而上”的方法需要调查各种本地进程并构建模型,例如将每个来源部门的化石燃料使用数据与对某种燃料类型碳含量的估计相结合。考虑到在城市生态系统中生物来源的二氧化碳和甲烷很难使用“自下而上”的方法进行量化,集成“自上而下”的方法将是有帮助的。具有高精度和长期稳定性的测量记录对于客观评价当地、区域和大陆尺度报告的排放量至关重要。当前国际上的温室气体监测网络按照覆盖地域范围分为多个级别:1. 全球级。a. 最高一级为世界气象组织(WMO)的全球大气观测(GAW)网络,覆盖全球各大洲,有80多个国家参与,目前共有30个全球站,400多个区域站,还有约100多个由其它参与网络运行的站点,国际社会引用的全球温室气体浓度资料主要就来自GAW网络。文章链接:https://pure.mpg.de/rest/items/item_2271420_3/component/file_2351145/content    b. 地球网络(Earth Networks)温室气体观测网络。该网络计划在美国建立50个站点,欧洲25个站点,世界其它地区25个站点。目前在美国已建几十个站点。来源链接:World's Largest Private Greenhouse Gas Measurement Network Powered by Picarro Analyzers | Picarro   2. 大陆级或国家级。    a.北美碳计划(NACP)。该计划涵盖北美3个国家,由多个网络组成:     i.    美国国家海洋和大气管理局(NOAA)的全球温室气体参考网络(GGGRN)。其中温室气体背景原位监测有十几个站点。图片来源文章链接:NOAA equipment pallet for USCG C-130: three reference gas cylinders,... | Download Scientific Diagram (researchgate.net)文章链接:amtd-6-1461-2013-print.pdf (copernicus.org)                ii.    美国国家科学基金会(NSF)的国家生态观测网(NEON)。该网络共有81个野外站点,包括47个陆地野外站和34个淡水水域站。文章链接:amt-8-3867-2015.pdf (copernicus.org)           iii.    美国宇航局(NASA)轨道碳观测站(Orbiting Carbon Observatory)以及总碳柱观测网络(TCCON)。卫星观测以及地面校正。   b. 欧洲综合碳观测系统(ICOS)。该网络涵盖欧洲13个国家,一共有38个温室气体监测站点。文章链接:amt-8-3867-2015.pdf (copernicus.org)       3. 省/州级。    a.与美国国家标准技术研究所(NIST)合作的美国东北走廊监测网络(NEC)。目前有29个观测站点,由地球网络公司(Earth Networks)运维,覆盖美国东海岸北部一些大城市。文章链接:Greenhouse gas observations from the Northeast Corridor tower network (semanticscholar.org)          b.加州空气资源委员会(CARB)监测网络。该温室气体监测网覆盖美国加州地区,共7个站点。   文章链接:SOP261 for PICARRO 2401 CO-CO2-CH4.pdf   4. 城市级。a. 洛杉矶特大城市(Los Angeles Megacity)项目。该网络关注美国加州洛杉矶市及周边的温室气体通量情况,共有13个站点14台分析仪。文章链接:https://acp.copernicus.org/articles/17/8313/2017/acp-17-8313-2017.pd     b. 印第安纳波利斯通量实验(INFLUX)。印第安纳波利斯是美国印第安纳州的最大城市,该网络拥有12个监测站点。文章链接:Tower measurement network of in-situ CO2, CH4, and CO in support of the Indianapolis FLUX (INFLUX) Experiment | Elementa: Science of the Anthropocene | University of California Press (ucpress.edu)             c. 巴黎特大城市(MegaParis)项目。涵盖法国巴黎地区,共有5个监测站点。文章链接:acp-18-3335-2018.pdf (copernicus.org)5. 点源级。              a. 马塞勒斯甲烷网络(Marcellus CH4 Network)。用于马塞勒斯页岩地质区的甲烷逃逸排放研究,共4个站点。推文链接:Tower Site Info | Marcellus CH4 Network (psu.edu)以上介绍的是目前国际上较成规模的温室气体网络,在高精度碳监测方面无一例外,要么从顶层设计和网络部署上认定Picarro的分析仪,要么实际主要部署Picarro分析仪以满足苛刻的监测需求。为了保证“双碳”目标的顺利实现,中国也在规划国家级的温室气体监测网络。Picarro公司作为温室气体监测领域的领导者,愿意分享与全球各温室气体监测网络的宝贵合作经验。我们将与合作单位携手,确保监测数据质量与安全,进一步提高本地化服务水平,切实地对中国温室气体网络建设做出贡献,为中国的“双碳”目标达成出一份力!文章来源:https://www.picarro.com/zh-hans/company/blog/wenshiqitijiancewangluojianshedeguojixianzhuang

企业动态

2021.11.26

< 1 2 > 前往 GO

北京世纪朝阳科技发展有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位