您好,欢迎访问仪器信息网
注册
罗姆(江苏)仪器有限公司

关注

已关注

金牌7年 金牌

已认证

粉丝量 0

400-860-5168转4029

仪器信息网认证电话,请放心拨打

当前位置: 罗姆仪器 > 解决方案 > 放射性污水处理方案 - 絮凝剂的稳定性分析

放射性污水处理方案 - 絮凝剂的稳定性分析

2024/05/30 10:03

阅读:18

分享:
应用领域:
环保
发布时间:
2024/05/30
检测样品:
废水
检测项目:
稳定性分析
浏览次数:
18
下载次数:
参考标准:

方案摘要:

各种活动都会产生含有不同放射性和毒性水平的裂变产物的放射性废水。特别是,137Cs和90Sr离子是乏燃料流出物中的主要问题,一旦进入环境,它们在整个生态系统中的高流动性会导致生物体吸收它们,最终进入人类饮食并引起严重的健康影响。因此,从废物溶液中有效去除这些离子对于核废物管理和辐射防护策略至关重要。 化学(共)沉淀是一种非常常见的放射性废水处理技术,因为它具有应用灵活性、成本效率以及对大量含高盐浓度水的有效性。化学沉淀的关键问题之一是形成胶体和非常细小的沉淀物,这导致沉降速度缓慢并增加脱水的工作量和成本。这个问题使得固体沉淀物与液相的分离变得非常困难,并且通常需要额外的集成技术,例如膜过滤或离心。因此,形成具有合适沉淀的致密颗粒对于简单有效的固液分离非常重要。 因此,在本研究中,我们研究了吸附和共沉淀相结合的方法来生产用于强化固液脱水的组合混凝剂。利用已证实的Cs+对斜发沸石的吸附亲和力以及BaSO4有利于Sr2+快速沉淀的晶体结构,在二次BaSO4沉淀中添加细斜发沸石粉末生成聚集体,并同时促进 Cs+/Sr2+扩大结构以实现快速分离。合成的组合颗粒得到了充分的表征,可以深入了解其结构和组成。此外,还从Cs+和Sr2+离子在同一溶液中的吸附速率和条件方面研究了斜发沸石的吸附动力学。此外,然后使用离心力和重力测量悬浮液的物理分离程度的分析沉降速率和分布。最后,通过分析压缩屈服应力来研究悬浮液是否易于固结。

产品配置单:

分析仪器

罗姆分析性质分析仪LUMiReader X-Ray

型号: LUMiReader X-Ray

产地: 德国

品牌: 罗姆

面议

参考报价

联系电话

罗姆分散体分析仪LUMiSizer ® 650

型号: LUMiSizer ® 650

产地: 德国

品牌: 罗姆

面议

参考报价

联系电话

方案详情:

放射性污水处理方案 - 絮凝剂的稳定性分析

各种活动都会产生含有不同放射性和毒性水平的裂变产物的放射性废水。特别是,137Cs和90Sr离子是乏燃料流出物中的主要问题,一旦进入环境,它们在整个生态系统中的高流动性会导致生物体吸收它们,最终进入人类饮食并引起严重的健康影响。因此,从废物溶液中有效去除这些离子对于核废物管理和辐射防护策略至关重要。

化学(共)沉淀是一种非常常见的放射性废水处理技术,因为它具有应用灵活性、成本效率以及对大量含高盐浓度水的有效性。化学沉淀的关键问题之一是形成胶体和非常细小的沉淀物,这导致沉降速度缓慢并增加脱水的工作量和成本。这个问题使得固体沉淀物与液相的分离变得非常困难,并且通常需要额外的集成技术,例如膜过滤或离心。因此,形成具有合适沉淀的致密颗粒对于简单有效的固液分离非常重要。

因此,在本研究中,我们研究了吸附和共沉淀相结合的方法来生产用于强化固液脱水的组合混凝剂。利用已证实的Cs+对斜发沸石的吸附亲和力以及BaSO4有利于Sr2+快速沉淀的晶体结构,在二次BaSO4沉淀中添加细斜发沸石粉末生成聚集体,并同时促进 Cs+/Sr2+扩大结构以实现快速分离。合成的组合颗粒得到了充分的表征,可以深入了解其结构和组成。此外,还从Cs+和Sr2+离子在同一溶液中的吸附速率和条件方面研究了斜发沸石的吸附动力学。此外,然后使用离心力和重力测量悬浮液的物理分离程度的分析沉降速率和分布。最后,通过分析压缩屈服应力来研究悬浮液是否易于固结。

颗粒表征

对干燥的沉淀BaSO4、与Cs+和Sr2+共沉淀的BaSO4以及来自复合斜发沸石系统的组合材料进行了分析。

使用LUMiReader® X-Ray (L.U.M. GmbH) 进行沉降和聚集体表征和研究重力沉降率,分析固液分离颗粒的胶体行为。测量前,将10 mM NaCl与溶液混合作为背景电解质,同时制备0.25 M HCl和NaOH溶液,并通过自动滴定仪将pH值调整在2至10之间。

用于压缩性分析的离心沉降曲线是在25℃下从LUMiSizer® 611获得的,并应用从500 rpm增加到3000 rpm的离心场。根据Buscall和Whit以及Green等人建立的公式,根据离心沉降剖面计算作为体积分数函数的压缩屈服应力,如下方程式所示。压缩屈服应力是废水污泥中的一个重要参数,可了解外力下的颗粒网络行为,从而确定悬浮液中液体的可萃取性。

这里,Py(∅eq) 是平衡体积分数 (∅eq) 的压缩屈服应力,固体和液体之间的密度差用Δρ 给出,而g表示离心加速度。沉积物的初始高度和平衡高度分别为H0和Heq,从沉积物底部到离心机转子中心的总距离用L表示。

图片2.jpg

图2:LUMiSizer® 611 样品池中的沉降示意图以及用于计算压缩屈服应力的参数;径向距离L,分别为初始高度Ho和平衡高度Heq。

LUMiSizer® 611样品池的示意图2显示了压缩屈服应力的参数。在压缩屈服应力的计算中,所施加的离心场在沉淀层中起着重要作用,因为更大的加速度将导致由于颗粒聚集而导致沉淀层更致密。因此,对于每个增加的转速 (RPM),必须使用转换方程确定所施加的力,即相对离心力(RCF)或公式中的g。

其中r是到沉积物层底部的半径距离(以厘米为单位)。 对于从500 rpm到3000 rpm 的每次加速,将转子距离(r)设为13cm,将 RPM 转换为 RCF,如表1所示。一旦RFC确定,平衡沉积物高度(Heq)与相对离心力之间的导数——公式中的dHeq/dg,可通过使用Microsoft Excel™将数据拟合到幂律模型来计算的。 此过程可以计算所有测量的RPM的 ∅eq

结果与讨论

图3左图:(a) BaSO4、(b) BaSO4+Cs++Sr2+和(c) 斜发沸石和 BaSO4 与离子的组合系统的 X 射线沉降谱线。(d)沉淀层高度与时间的关系曲线。右图b:最终沉降层体积分数(左轴)和平均沉降速率(右轴)


如图3所示,研究了地球引力下的沉降分析,以检查颗粒的沉降和固结行为。 由 X 射线分离行为分析仪LUMiReader X-Ray测量的地球重力下的实时垂直沉降谱线以及线性区域沉降率。通过获取每种悬浮液的初始和最终沉降层高度及其体积分数,还计算了界面区域下固体浓度的最终沉淀层分数,并如图3中的右图所示。  

图片3.jpg

图4:天然斜发沸石的 X 射线沉降谱线(a)和速率(b)。


可以观察到,所有三个系统都显示出相似的沉降趋势,这可以从相似的骨料尺寸中预料到,沉降发生在进入压缩区之前的前50秒内。尽管如此,组合系统的初始凝结速度几乎是其两倍(见图3插图),这突出表明组合絮凝体的密度可能大于纯 BaSO4团聚物,并表明组合材料系统的一个关键优势。还值得注意的是,测试了纯斜发沸石的沉降曲线(图4),颗粒的细小非聚集性质产生缓慢的扩散沉降行为,强调需要与重晶石团聚来加速沉降。总体而言,考虑到相似的絮体尺寸,推测沉积速率提高的原因主要是组合核壳聚集体比BaSO4沉淀物密度大得多。这种区别表明,采用组合沉淀方法的方式和良好的稳定性之间存在非常强的关联性。

与BaSO4相比,最终沉淀层体积分数(图3右图(b))在没有任何额外压缩力的情况下,组合系统不仅沉降速度更快,而且固结更显着。由于添加了斜发沸石,组合系统的最终体积分数从较大的初始体积分数提高到一定程度。然而,初始体积分数和最终体积分数之间的压缩比仍然比仅使用BaSO4的系统大得多(尽管斜发沸石夹杂物的初始体积分数较大,但组合系统的最终沉淀层高度并未降低)。

图5:a) BaSO4、b) BaSO4+Cs++Sr2+ 和 c) 斜发沸石和 BaSO4 与离子的组合系统的重复 LUMiSizer 沉降曲线。 (d) 高度与时间/转速曲线。 (a)-(c)中的水平虚线显示透光率阈值。


研究了LUMiSizer®中各种离心加速度的沉降曲线和屈服应力分析,以了解施加应力下的颗粒网络结构的行为。图5显示了纯BaSO4、共沉淀Cs+和Sr2+的BaSO4以及离子交换组合系统在500 rpm至3000 rpm的可变离心加速度下的沉降曲线。可以观察到,所有悬浮液在500 rpm的第一分钟内形成约2.5 mm的初始沉淀层高度,并且沉淀层高度逐步变化。通过将离心场增加至3000 rpm,获得更高的压缩效果,最终压缩沉淀层高度平均为1.16毫米。在压缩下,具有BsSO4絮凝体的组合系统之间沉积物高度的差异小于地球重力下的差异,尽管考虑到组合系统的初始体积分数较高,可达到的脱水水平仍然令人印象深刻(污水处理过程中需要对沉淀物进行脱水处理)。稳定的颗粒由于形成紧密的颗粒排列而无法进一步压缩,而聚集的颗粒由于松散的颗粒网络而随着离心力的增加而受到额外的压缩。因此,对每种悬浮液观察到的沉降层的额外压缩可能是由于颗粒聚集造成的。

压缩屈服应力Py(ø),是胶体系统的另一个关键测量值,用于确定在施加离心力的压缩下形成的沉降床中颗粒的网络强度。基于这种方法,可以理解当液体被以通过施加的力产生更紧密的网络结构时,悬浮液能实现物理分离或脱水处理的程度。脱水水平取决于固结必须克服的压缩屈服应力。在图6中,根据离心沉降剖面计算出的压缩屈服应力 Py(ø) 以指数拟合曲线给出。

图6:来自 LUMiSizer® 分析的 BaSO4(黑色)、BaSO4 与 Cs+ 和 Sr2+(红色)以及斜发沸石和 BaSO4 与离子的组合材料(蓝色)的压缩屈服应力。


很明显,BaSO4和 BaSO4 + Cs + Sr絮凝体在0.339 kPa的相同压力下表现出较低的初始沉淀密度,分别为0.026和0.028 v/v。由于网络强度和聚集体形成较弱,BaSO4的平衡体积分数在较高屈服应力下增加了一倍以上,表明 BaSO4悬浮液在低至中等压力下是一种高度可压缩的材料。对于组合系统,虽然屈服应力范围更大,但压缩在更大的体积分数上发生。 由于斜发沸石的添加,在0.955kPa的初始压力下观察到凝聚点,在3000rpm下升至8.6kPa的压力。然而,相应的平衡体积分数从0.077 v/v增加到0.153 v/v,大约是仅BaSO4系统的三倍。与组合系统相比,随着离心加速度的增加,BaSO4悬浮液确实经历了稍大的压缩比,这可能是由于组合系统中聚集体的絮凝密度增加所致。

总体而言,聚集体的表征证明,BaSO4和斜发沸石组合絮凝体的组合可产生快速沉降和更高水平的压缩,这对于固液分离非常重要。


下载本篇解决方案:

资料文件名:
资料大小
下载
放射性污水处理方案-絮凝剂的稳定性分析.pdf
1074KB
相关仪器

更多

罗姆分散体分析仪LUMiSizer ® 650

型号:LUMiSizer ® 650

面议

罗姆分析性质分析仪LUMiReader X-Ray

型号:LUMiReader X-Ray

面议

颗粒计数仪@纳米级

型号:LUMiSpoc

面议

LUMiFlector乳脂乳蛋白分析仪

型号:LUMiFlector

面议

相关方案

利用LUM稳定性分析仪评估“无添加防腐剂”的防腐替代技术

我们知道护肤品中都需要抑菌,不然作为细菌的培养基,越是植物成分、营养成分多的产品,就越容易变质。如果微生物超标,对我们的皮肤必然是没有好处。但是很多常规防腐剂,比如甲酯、MIT等,在刺激性或者毒理性上是有争议的,虽然国家有限制添加比例,一般在添加比例以下对人体来说也有认为短期是安全。在调整化妆品配方的防腐体系时,化妆品研发者主要有两种方式。他们可以根据新法规变更他们现有的防腐体系,或是替换有问题的防腐剂并一点点重建其防腐体系。在初期,后一种解决方法显然要花更多的心力,但是从长远来看,这种做法能引出一些有趣的市场机会。不管怎么样,明智的防腐概念有助于避免负面报道,并预防化妆品消费者习惯未来的法规或屈从于公众压力。 现在有越来越多国际品牌关注到无添加的防腐替代技术。没有防腐剂其实不表示没有抑菌体系,实际上是用其他有抑菌功能的物质去替代防腐剂。本文研究了一款新型替代防腐剂在在乳液稳定性提升的表现(由于篇幅有限,该新型替代防腐剂在防腐,抗氧化性等性能上的表现未作阐述)。

化妆品

2024/07/15

低GI液态奶的储存稳定性观察及快速稳定性测试

随着国民生活水平提高,饮食结构发生变化,由此带来的肥胖症、糖尿病、高血压、高血脂、心血管疾病等多种代谢类疾病随之增加。不良的饮食结构和生活方式对糖尿病有重要影响,超重或肥胖人群、过多摄入动物油、高血压高血脂、吸烟饮酒等都可能增加2型糖尿病风险。因此改变不良的饮食结构和生活方式,避免摄入过多高糖、高脂食品可以有效控制血糖和体重的增加,还能够降低糖尿病患者并发症的产生。 血糖生成指数(Glycemic Index,GI)用于描述人体对食物的消化吸收速率和由此引起的血糖应答,GI值小于55.00的被认为是低GI食品。长期食用低GI食品能有效控制血糖水平的提高。牛奶GI值为28.00,同时可以作为多种营养载体。市场上可供低糖或无糖需求人群食用的牛奶品类较少,现有的无蔗糖添加的酸牛奶和纯牛奶营养成分单一,无法满足不同人群的营养需求及达到营养的全面均衡。为解决上述问题,有研究通过设计添加膳食纤维、多种维生素和矿物质,从而开发出全营养的低GI的调制牛奶。但由于颗粒内容物多,该类产品的稳定性难以把握,容易出现分层、絮凝、聚集、破乳等变化。本文用传统的储存稳定性观察,结合现代的离心式快速稳定性分析光谱,评价不同添加量的复配稳定剂对全营养的低GI牛奶的影响。

食品/农产品

2024/06/24

铁皮石斛多糖乳液稳定性分析

铁皮石斛是一种珍贵的中药植物,已被证明具有多种生物活性,包括抗氧化、抗肿瘤、降血糖、免疫调节活性、抗炎和抗菌等作用,使用石斛进行护肤,具有恢复皮肤的弹性、使皮肤有光泽、祛除皱纹的功效。海藻酸丙二醇酯(PGA)是环氧丙烷和海藻酸的衍生物,被广泛作为粘度增强剂和稳定剂应用到多个行业。阿拉伯胶(GA)是一种天然复合多糖,具有良好的乳化性能和高水溶性,广泛用作乳化剂。

化妆品

2024/06/05

载药脂肪乳的快速稳定性分析

载药脂肪乳是近年来发展较快的一种新型药物制剂,主要应用于静脉注射。随着乳剂制备技术的进步和临床治疗的需要,脂肪乳作为一种重要的药物载体,以其优良的性能得到国内外药物研发人员的高度重视,应用在抗微生物、抗肿瘤及治疗心脑血管病等药物中的应用前景广阔。许多药物的水溶性较差,难以实现注射,或必须与有机溶剂混合才能制成注射剂。而有机溶剂本身可能具有一定的毒性并且会干扰药物的作用,将无毒脂肪乳剂作为溶剂与某些药物组合不仅能够降低发病率,还能达到缓控释的目的。目前,多种载药脂肪乳剂已先后上市并投入临床使用,且临床效果良好。 但是脂肪乳属于热力学不稳定体系,长期贴存过程中可能会发生分层、絮凝、聚集、破乳等变化,因此稳定性是乳剂开发的核心与关键。然而传统评价乳剂稳定性的方法—观察法或离心沉淀法,在预测产品稳定性方面存在周期长、准确性差、不易重现等缺点;测试粘度,粒度,Zeta电位等指标需要在不同储存周期反复测量变化情况,耗时耗力。为了解决稳定性快速判定的问题,可以选用 LUMiSizer®快速稳定性分析仪来考察不同配方或工艺条件对产品稳定性的影响 本文考察羧甲基纤维素钠、透明质酸羧、甲基壳聚糖3种增稠剂对丙泊酚乳状注射液稳定性的影响。

制药/生物制药

2024/06/04

罗姆(江苏)仪器有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 罗姆(江苏)仪器有限公司

公司地址: 苏州市工业园区钟园路788号丰隆城市中心T4-1605 联系人: 顾静静 邮编: 215028 联系电话: 400-860-5168转4029

主营产品:

仪器信息网APP

展位手机站