您好,欢迎访问仪器信息网
注册
克吕士科学仪器(上海)有限公司

关注

已关注

金牌9年 金牌

已认证

粉丝量 0

400-860-5168转3784

仪器信息网认证电话,请放心拨打

当前位置: 克吕士中国 > 公司动态
公司动态

应用:添加增效剂对防治桃蚜的减量增效作用

‍‍研究背景桃蚜是桃树上最常见的害虫,对桃树的正常生长和产量有巨大的影响,且其还是多种植物病毒的主要传播媒介。氟啶虫酰胺是新型吡啶酰胺类化合物,对吡虫啉等新烟碱类产生抗性的蚜虫具有优异的防效。为了提高农药制剂的应用性能,进而提高农药的利用率,加入桶混增效剂是最直接、最有效的手段。桶混增效剂可以通过降低药液的表面张力及减小药液喷洒在靶标表面的接触角来增加靶标与药液的接触面积,明显改善叶面的润湿、铺展、滞留和渗透等理化性能。从而增加防效,达到降低农药用量和成本、减少环境污染的目的。本文通过对七种不同增效剂与46%氟啶虫酰胺·啶虫脒水分散粒剂进行桶混,评价桶混后界面性能及其对桃蚜的防治效果,为46%氟啶虫酰胺啶虫脒水分散粒剂的田间应用提供思路和参考。实验方法与仪器1.动态表面张力的测定动态表面张力是以时间为变量体现液体表面张力变化的一个物理量,用于评价液体运动特性。药液喷雾沉积的影响,通常可通过它们雾化效应和动态表面张力予以说明。目前在农药领域对于表面张力的关注,主要侧重于对药效的评价,通过药液动态表面张力的测定,可以在一定程度上预测评价制剂的药效。本文采用KRÜSS动态表面张力仪BP100进行动态表面张力测定。2.静态表面张力的测定静态表面张力是指表面活性剂在界面达到吸附平衡时的最低表面张力,是用来测定表面活性剂静态吸附性能的重要参考指标。表面活性剂一般通过在界面吸附来改变界面性能,故此检测静态表面张力对桶混增效剂的应用有一定的指导意义。本文采用悬滴法,通过德国KRÜSS光学接触角测量仪DSA100对稀释药液进行静态表面张力测定,重复测量3次取平均值。实验所设温度为20±1℃。3.接触角、黏附张力及黏附功的测定接触角是表面科学的重要参数之一,表征液体在固体表面的润湿性能。农药要发挥高的使用效率,首先要能在靶标物质上铺展和滞留,这就要求喷施的药液具有较好的润湿性,而接触角就是评价润湿性的重要指标之一。在20±1℃下,取药液滴于桃树叶片表面,利用KRÜSS光学接触角测量仪DSA100测定20s时的平均接触角θ。并计算药液的黏附张力β和黏附功Wa。β=γcosθ (1)Wa=γ(cosθ+1)(2)式中:θ为液滴在叶片上的接触角,°;γ为药液的表面张力,mN/m。4.46%氟啶虫酰胺啶虫脒桶混水分散粒剂制备增效剂1号~7号按照表1配制,将七种增效剂分别与46%氟啶虫酰胺·啶虫脒水分散粒剂按表2进行混配,分别考察46%氟啶虫酰胺·啶虫脒分散粒剂及其与增效剂桶混后的界面性能。表1 七种桶混增效剂配制方案 表2 七种增效剂与46%氟啶虫酰胺·啶虫脒水分散粒剂配比 结果与讨论1.动态表面张力动态表面张力能够反映药液表面张力随表面年龄的变化过程,可有效区分不同药液表面张力降低速率和效果,在评价田间施药喷雾效果中发挥重要作用。药液表面张力降低越快,越容易在有害生物表面润湿附着,起到提高农药有效利用率的作用。在(20±1)℃下,七种稀释药液的表面年龄与动态张力关系如图1所示。各增效剂与46%氟啶虫酰胺·啶虫脒水分散粒剂桶混稀释药液的表面张力均随表面年龄的增加而减小。其中,增效剂4号和7号助剂体系的表面张力降低速率最快,且降低效果最好,推测其药液的润湿铺展效果会更好。 图1 七种增效剂与46%氟啶虫酰胺·啶虫脒水分散粒剂桶混动态表面张力变化趋势。2.静态表面张力由表3可知,46%氟啶虫酰胺·啶虫脒水分散粒剂稀释8000倍时,药液的静态表面张力为70.94 mN/m,其与纯水的表面张力72.3 mN/m相近。当加入桶混增效剂后,表面张力为35.68~42.77 mN/m,显著低于46%氟啶虫酰胺·啶虫脒水分散粒剂,表明加入增效剂可以降低供试药剂的表面张力,改善46%氟啶虫酰胺·啶虫脒水分散粒剂药液对作物及靶标害虫表面疏水性蜡质层的亲和性,使药液更易润湿铺展。表3 七种桶混增效剂样品与46%氟啶虫酰胺·啶虫脒水分散粒剂桶混下的静态表面张力(20℃) 3.接触角、黏附张力及黏附功的测定七种桶混增效剂中,增效剂7号和增效剂4号桶混体系的接触角较小(表4),分别为22.8°和23.2°。因此,两者黏附张力较大,分别为39.43 mN/m和34.23 mN/m。然而,增效剂7号黏附功大于增效剂4号的黏附功,为82.20 mJ/m2。这一结果表明增效剂可通过降低药液的静态表面张力和减小药液接触角来增强药液在靶标部位的黏附,从而延长药液在叶片及靶标上的附着和持留时间,以减少药液流失。表4 七种桶混增效剂与46%氟啶虫酰胺·啶虫脒水分散粒剂桶混下的接触角、黏附张力及黏附功 结论一般农药制剂配方中只包含少量加工助剂,而这些助剂是针对农药的乳化性、悬浮性和润湿性等物理性状或指标而选择和优化的,其种类和含量并非根据靶标动植物而设计的。因此,只有添加桶混助剂才能有的放矢、因地制宜地以极大的灵活性克服特定条件下影响药效的因素,最大程度地发挥有效成分的生物活性,但不同种类桶混助剂增效作用机制不同,需要根据施药具体场景有针对性的添加。参考文献[1]李彦飞,冯泽腾,王国强,等.不同增效剂对46%氟啶虫酰胺·啶虫脒水分散粒剂防治桃蚜的减量增效作用[J].现代农药,2023,22(06):42-45+70.

应用实例

2024.07.17

时下最流行的评价粘接效果的方程:OWRK

Owens-Wendt-Rabel-Kaelble(OWRK)是一种测量表面能的经典方法。它是利用两种不同种类的液体在固体上的接触角来计算固体表面能。较之于其他方法,其主要优点在于:1)测量过程简便快捷,如微恒压双滴定模式全自动测量表面能仅需一秒钟2)将表面能分为极性和色散部分,有利于解释和优化液体与固体之间的长期粘合作用背景根据杨氏方程,接触角θ,液体的表面张力σl,固液之间的界面张力σsl和固体表面自由能σs 之间存在关系:为了能够通过接触角计算表面自由能,第二个未知量σsl必须确定。根据Fowkes法,界面张力σsl通过两相的表面张力σs和σl以及两相之间相似的作用来计算。这些作用可以被称为表面张力或表面自由能的色散部分 σD和极性部分 σP的几何平均:检测固体的表面自由能至少需要两种已知表面张力极性部分和色散部分的液体,其中至少一种液体极性部分大于0。在双组分系统,界面张力取决于极性和色散部分是否能与临相的相应部分形成作用。例如,当固体是极性的,那么与水这类极性液体的界面张力也会更小。另一方面,如果固体的极性部分比较小,(σP l ⋅ σP s)1/2是一个较小值,极性作用只对降低界面张力做出较小的作用,相应的也会有较差的润湿和大的接触角。下图表现出把不同的作用力拟化成“手”,只有性质一致的手才能拉起。原理图表现出2相接触型。意义OWRK法用于研究极性和色散作用对浸湿性和附着性的影响,特别是评价两种不同极性表面的接触和改变极性后的效果,例如在喷涂和等离子处理过程中,可以利用OWRK法对喷涂,印刷,焊接和亲水疏水涂层过程进行评估和优化。参考文献[1] D. H. Kaelble, Dispersion-Polar Surface Tension Properties of Organic     Solids. In: J. Adhesion 2 (1970), P. 66-81.[2] D. Owens; R. Wendt, Estimation of the Surface Free Energy of Polymers.     In: J. Appl. Polym. Sci 13 (1969), P. 1741-1747.[3] W. Rabel, Einige Aspekte der Benetzungstheorie     und ihre Anwendung auf die Untersuchung und Veränderung der     Oberflächeneigenschaften von Polymeren. In:     Farbe und Lack 77,10 (1971), P. 997-1005.

应用实例

2024.07.05

小科普:为何PP餐具上的油污难清洗?

研究背景塑料餐具耐摔经用,但清洗起来却不太容易。我们经常会发现,明明用了很多洗洁精来清洗,一摸餐具,却还是感觉有一层油腻附着在上面,怎么也恢复不了使用之前光滑清爽的状态。尤其是当你用聚丙烯PP材质的餐具盛放美食的时候,更加难以清洗。为什么聚丙烯PP材质的餐具会比陶瓷类餐具难清洗呢?界面化学和粘附角度PP(聚丙烯)是典型的非极性物质,疏水;陶瓷(硅酸盐)因为还有大量羟基(亲水官能团)而具有强亲水性。餐具大部分污染物(例如油渍等)含有大量非极性基团(长链脂肪烃),根据“结构相似互溶原理”,极性较强的水分子对表面极性分量比例大的陶瓷材料亲和力较强,抗污染能力强,非极性的油污对聚丙烯亲和力较强,抗污染能力弱。借助Harkins提出的“粘附功”理论(即将两相界面拉开所做的功)来做进一步的解释。粘附功越大,固液界面结合的越牢固。水中油污在材料表面的粘附功为(油oil,水water):Wows=γsw+γow-γso,材料的表面张力又可看成是由极性分量和色散分量组成,γ=γd+γp。Owens和Wendt利用几何平均法,将极性和色散相结合,得到两相间的界面张力为: 根据以上公式,可得水下油污与餐具的粘附功为: 以色拉油为例,查阅相应文献,它的表面张力为33mN/m,极性9mN/m,非极性24mN/m。PP聚丙烯,表面能30mN/m左右,极性为0。陶瓷的表面能在40-60mN/m之间,以极性为主,色散部分很小。水的表面张力为72.8mN/m,极性为51mN/m,色散部分为21.8 mN/m。根据上述公式,水中色拉油在PP餐具上的粘附功为62mN/m左右,而水中色拉油与陶瓷餐具的粘附功为7mN/m左右(取陶瓷表面能为40mN/m,忽略色散分量)。水中色拉油与陶瓷间的粘附功远远小于色拉油与PP聚丙烯的粘附功,油污越易从陶瓷表面脱离。例如一滴常规色拉油滴入陶瓷表面,由于大量水存在,水会迅速在陶瓷表面铺展,代替原来油滴和陶瓷的固液界面,并迫使油滴聚合,随着水不断地进入到油滴与陶瓷界面之间,油滴与陶瓷之间的接触面积不断减小。由于水是极性液体,与高极性的陶瓷表面有较大的相互作用,这直接导致了油滴与陶瓷之间的作用力逐渐变小,水在陶瓷表面的铺展变得比较容易,也更容易将油污从陶瓷表面置换掉。而PP餐具则更加困难。相容性聚丙烯本身是一种分子量超大的半结晶性长链脂肪烃。饭菜中的长链脂肪酸甘油三酯和PP具有很好的相容性,很容易渗透进入PP结晶之间的无定形部位造成表面溶胀,而这些渗入PP表层的油脂是不可能被洗掉的。高温会增加油脂向塑料中渗透的速率,所以经常用来热牛奶、盛热菜的PP餐具很快就会从透明变得白花花雾蒙蒙。清洗方法使用洗洁精(一种表面活性剂),可以降低所有液体的表面张力,使清洁状况得到部分缓解。清洗PP餐具油污的好方法,先用干法——纸巾(餐巾纸)擦碗,由于纸巾有很多的微孔结构,表面结构粗糙,表面积很大,使得纸巾能更好的吸收油渍,吸附油污的能力比PP强上好几个数量级。用纸巾擦完以后再水洗,加点洗洁精,PP餐具也会更加容易洗干净。结论想让PP餐具历久弥新,就要尽量避免用它装富含油脂的食物,尤其是热食。当然,有些看上去人畜无害的食物也不一定安全,比方说胡萝卜汁里面的β-胡萝卜素(C40H56)能够以肉眼可见的速度渗入PP容器表面,着色力超强,保证搓破手皮也洗不掉。真想让餐具天长地久,就老老实实用瓷器吧。上述的计算方法进行了很多的简化,也可通过KRÜSS的DSA系列接触角测量仪,精准测试油污和餐具间的粘附力。DSA100型液滴形状分析仪参考文献[1] 胡世豪. 表面自由能对陶瓷釉面易洁性的研究[J]. 硅酸盐学报, 2008, 9(6);[2] FOWKES F M. Determination of interfacial tension, contact angle and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces[J]. J Phys Chem, 1962, 66(2).

应用实例

2024.06.26

应用 | 影响喷墨打印质量的重要参数 - 润湿性

研究背景全反应式喷墨打印(Full Reactive Inkjet Printing, FRIJP)是采用喷墨打印机将一种或多种反应物喷到基材上,利用它们之间产生物理或化学反应以原位形成产物的一种技术。聚二甲基硅氧烷(polydimethylsiloxane, PDMS)是一种因其低成本、好的生物相容性和高的光学透明度而被广泛应用的硅酮弹性体。首次利用FRIJP成功将聚二甲基硅氧烷(PDMS)油墨打印出复杂的三维几何图形。通过使用制备的基底,可以显著提高PDMS的打印精度,打印的特征分辨率可以高达48 ± 2µm(X,Y)。材料和方法一种市售的两组分硅酮(PolytekPlatSil71-Silliglass)被用作活性油墨的基础。PDMS油墨的两部分分别称为A(含氢化物)和B(含催化剂),反应结果如图1所示。该配方由A与B的比例为1:1(重量)组成,其中硅酮在铂催化剂的存在下发生交联。该反应不受氧气或水分的抑制,因此可以在没有控制气氛的情况下进行。 图1-PDMS在铂催化剂存在下的交联反应,硅酮氢化物键Si-H被一个额外的Si-C键取代。标记的是PDMS配方中每个组分中的化合物。用于打印的Dimatix材料打印头(DMP)(Dimatix,Fujifilm)的建议操作范围分别为粘度10-12 mPa.s和表面张力28-33 mN/m,但打印头可使用高达30 mPa.s粘度和70mN/m的表面张力。使用醋酸辛酯(octyl acetate, OA)(SigmaAldric; O5500)作为粘度改性剂。喷墨打印的一个重要因素,同时也影响墨滴如何在基材形成,这就是油墨的表面张力。通过液滴形状分析仪(KRUSS DSA 100)悬滴法测试墨水的表面张力,同时用座滴法测试了制备的PDMS油墨与基底的接触角。 图2 DSA100 液滴形状分析仪结果与讨论PDMS组分、溶剂和最终油墨的粘度和表面张力值见表1。表1-油墨、溶剂和溶液的性质。通过使用无反应的稀释剂和打印头加热;达到了可打印范围内的粘度( 采用三种材料基底物质,标准玻片、聚四氟乙烯和用1%1H、1H、2H、2H-全氟辛基三乙氧基硅烷(PFOTS)对玻璃片进行化学改性,接触角的结果如表2所示。结果表明,玻璃表面被聚四氟乙烯和PFOTS处理后的接触角都高于玻璃。对固化后的PDMS的接触角进行了分析,显示出比PTFE和PFOTS的基底上更好的润湿性。表2-座滴法测试(KRÜSS DSA100)墨水A在不同衬底上的接触角。 当使用成型技术时,PDMS能够在大多数材料表面上铺展,但对于喷墨打印,会降低特征分辨率。通过对比三种材料基板;玻璃、聚四氟乙烯涂层玻璃和PFOTS涂层玻璃的接触角,来分析油墨在基板上的打印分辨率。从接触角和打印网络测试结果结合来看,油墨在未经处理的玻璃表面完全铺展开,液滴尺寸达到了150μm,同时玻璃表面的接触角也是最小的。PFOTS涂层玻璃和聚四氟乙烯涂层玻璃的液滴尺寸相似,分别为48 ± 2µm和64 ± 2µm。油墨在PFOTS涂层玻璃上的接触角最大,使得PFOTS涂层玻璃上的液滴能够更小、更圆,因此使用PFOTS衬底可以获得最好的特征分辨率。 图3-(a)将一滴墨水a和b打印到未经处理的载玻片上的结果。(b)在制备好的聚四氟乙烯涂层载玻片打印组成墨水a和墨水b的印刷网格和(c)在PFOTS涂层玻璃上的网格结论本文研究了PDMS的反应式喷墨印刷技术,并且通过优化PDMS油墨在基底上的润湿性,来获得更好的打印分辨率。在印刷过程中,油墨与印刷介质之间的润湿性能对于印刷质量和油墨的附着力具有重要影响。因此,评估油墨在印刷介质上的润湿性能对于印刷质量的控制和油墨的选择具有重要意义。本文有删减,详细信息请参考原文:C.Sturgess, C.Tuck, I. A. Ashcroft and R. D. Wildman, J. Mater. Chem. C, 2017,DOI: 10.1039/C7TC02412F.

应用实例

2024.06.07

邀请函:KRÜSS诚邀您参加2024中国涂料油墨峰会暨展览会

展会信息2024中国涂料油墨峰会暨展览会将以“绿涂创新,双碳环保”为主题,分设工业防腐涂料,建筑装饰涂料,轨道交通及汽车涂料,生物基涂料,粉末涂料以及油墨与印刷六大主题会场,话题将涉及涂料行业创新产品、涂装案例分享、各类功能性添加剂应用案例展示、涂料研发工艺革新等,促进涂料行业上下游企业沟通交流、经验共享,促使涂料行业健康、稳定、可持续发展。KRÜSS诚邀您参加2024中国涂料油墨峰会会议时间:5.30 - 31展位号:50会议地址:上海·闵行区星河湾大酒店(上海市闵行区都会路3799号)典型应用测定涂覆表面自由能评估涂层的性能优化涂料表面张力寻找涂料最佳配方评估分散稳定性量化发泡性能展示仪器便携式液滴形状分析仪MSAMSA是一台功能强大的仪器,用于预处理,涂覆或清洁的表面的质量控制:MSA便携式液滴形状分析仪通过表面自由能的自动且快速的方式测量润湿性。只需单击一下,MSA即可同步滴加两种液体,然后直接分析推导接触角和表面自由的结果。所有步骤都是自动化的,并且在一秒钟之内即可完成。这一结果为水或有机溶液的润湿性以及粘附性提供最理想的技术支持。借助可靠的预设测量程序,减少人为因素影响,测量精度也得以提高。3D接触角测量仪AyríísAyríís摆脱了因人为干预造成测量结果不同的问题,采用了开创性的技术对润湿性进行可靠的QC检测。只需单击一次,几秒钟内即可测量水的3D接触角,根据预设的质量标准,仪器会在自动验证后显示验证通过/失败的信息。Ayríís采用了先进的3D水滴投影技术可实现自动自检,且保证每个测量结果的一致性和合理性。Ayríís是一款便携的、独立的仪器,配有易于更换的充电电池和预填充液体盒,以供生产线全天候工作。动态泡沫分析仪DFA100使用DFA100动态泡沫分析仪,可形成高重复性的泡沫并进行高精度的测量,测定泡沫的发泡性及其衰变,进而了解泡沫的稳定性。通过运行不同的模块,还可以测量液体含量,和分析泡沫结构的气泡大小及分布。DFA100还能帮您优化起泡条件,如果您的研究方向是消泡,我们的测量数据也可以帮您避免泡沫的产生。气泡压力张力仪BP100BP100气泡压力张力仪基于动态表面张力(SFT)分析表面活性剂的迁移特性。这使您可以了解表面活性物质,如洗涤剂或润湿剂,达到所需的SFT降低的速度。借助这些信息,您可以优化动态过程的配方,例如喷涂,镀膜,印刷或清洁工艺。

企业动态

2024.05.27

应用 | 激光表面处理对铝合金粘接头润湿性的影响

研究背景新能源汽车的推广和应用对汽车轻量化设计提出了更高的要求,车身轻量化研究也成为研究热点。采用铝合金等轻质材料是实现汽车轻量化的有效途径。胶接技术由于其均匀的载荷分布,在汽车、高铁、飞机等先进结构的连接中得到了广泛的应用。激光表面处理技术是一种非接触、环境友好型的表面处理技术,在工业产品中具有广阔的应用前景。激光在基体表面形成微纳表面形貌,增大了界面的粗糙度,增强了胶粘剂与基体表面之间的结合强度。此外,表面污染物的去除和新的表面氧化层的形成,有助于改善激光烧蚀表面的润湿性,提高胶粘剂在基体表面的结合强度。尽管现阶段针对粘接力学性能开展了大量的研究,但在性能提升机制方面仍存在不足。本文通过改变激光能量密度,界面形貌以及激光重叠率,系统地分析了激光表面处理工艺参数对铝-铝粘接接头剪切强度的影响。通过激光参数优化,有效地提高了铝-铝粘接接头的剪切强度。图1激光表面处理工艺示意图实验方法与仪器接触角分析仪是一种应用广泛的润湿性测量方法,该方法是通过水滴在不同表面上的形状对表面润湿性能进行分析。本文采用德国KRÜSS接触角测量仪DSA25测定样品表面润湿性。结果与讨论激光能量密度处理对润湿性的影响不同激光能量密度处理的粘接表面的接触角结果如图2所示。随着激光能量增加,界面接触角随之增大。这是因为激光加工的横纹微结构对水滴的支撑以及水滴自身的表面张力造成的,可以通过“荷叶效应”进行解释。激光处理表面疏水角度与粘接棒材的剪切强度具有一致性,这可能是棒材在轴向预紧力作用下,粘接剂进入到激光处理表面的微槽中,表面微结构提供的水接触角越大表明激光处理的沟槽深度和宽度越大,进而提高了界面的剪切强度。 图2 激光能量密度对粘接接头浸润性的影响。界面形貌对润湿性的影响不同形状激光处理表面沟槽形貌的疏水结果如图4所示。由于液滴沿着沟槽方向的浸润性以及视角的不同,使得沟槽角度从0,45°增加到90°,界面的接触角值从159.3°下降到128.8°。此外,45°+135°和0°+90°界面的接触角值接近,分别为160.1°和160.6°。这可能是交叉加工表面微结构的凸起导致的。在45°+135°和0°+90°加工的表面相当于微结构发生了转动,对界面的疏水性能影响较小。 图3. 典型的激光处理表面沟槽加工路径示意图:(a) 0°;(b) 45°;(c) 90°;(d) 45°+135°;(e) 0°+90° 图4 五种沟槽形状表面的润湿性。重叠率对润湿性的影响不同激光重叠率下,粘接接头界面粘接区域的润湿性如图20所示。随着激光重叠率Ψ的降低,界面的CA值随之增加。当重叠率Ψ为0时,重叠率的进一步降低对界面CA值影响较小。通过前文的研究可知,激光处理界面具有“荷叶效应”,是通过界面微结构与水滴之间的表面张力使得界面具有疏水性能。并且轴向载荷使得粘接剂进入到激光加工界面的沟槽中,界面的润湿性能表征了界面的剪切强度。 图5 不同重叠率下,粘接接头界面的润湿性。小结针对薄板拉伸剪切过程中的面外弯曲,本研究开发了粘接接头剪切强度的测试夹具。通过改变激光能量密度、界面形貌以及激光重叠率,探究了激光表面处理工艺对铝-铝粘接接头剪切强度的影响机制。最终可以发现粘接接头的剪切强度是受界面粗糙度和表面润湿性的共同作用的。参考文献[1]于贵申,陈鑫等.激光表面处理对铝-铝粘接接头剪切强度的影响[J/OL].吉林大学学报(工学版):1-16[2024-05-22].https://doi.org/10.13229/j.cnki.jdxbgxb.20231227.

应用实例

2024.05.22

邀请函:KRÜSS诚邀您参加第九届“粘接日”(南京)

展会信息“粘接日”粘接及复材技术交流大会是由逸发粘接及复材研究院打造,业内顶尖的粘接及复材应用专业技术交流平台。有轨道交通、汽车、家电、电子组装、建筑、航空、航天、造船、风能、光伏等行业参加。国内各大主机厂、零部件配套厂、施胶设备、表面分析设备制造商、知名胶粘剂企业、复合材料及制胶、用胶、新材料等专家共同探讨胶粘剂及复材的应用和发展、使用经验及面临的问题、相关标准的最新要求等。KRÜSS诚邀您参加第九届“粘接日”暨粘接及复材技术交流大会‍‍会议时间:5.20 - 21‍‍展位号:2会议地址:南京白金汉爵大酒店(江苏省南京市栖霞区玄武大道888号)展示仪器便携式液滴形状分析仪MSAMSA是一台功能强大的仪器,用于预处理,涂覆或清洁的表面的质量控制:MSA便携式液滴形状分析仪通过表面自由能的自动且快速的方式测量润湿性。只需单击一下,MSA即可同步滴加两种液体,然后直接分析推导接触角和表面自由的结果。所有步骤都是自动化的,并且在一秒钟之内即可完成。这一结果为水或有机溶液的润湿性以及粘附性提供最理想的技术支持。借助可靠的预设测量程序,减少人为因素影响,测量精度也得以提高。3D接触角测量仪AyríísAyríís摆脱了因人为干预造成测量结果不同的问题,采用了开创性的技术对润湿性进行可靠的QC检测。只需单击一次,几秒钟内即可测量水的3D接触角,根据预设的质量标准,仪器会在自动验证后显示验证通过/失败的信息。Ayríís采用了先进的3D水滴投影技术可实现自动自检,且保证每个测量结果的一致性和合理性。Ayríís是一款便携的、独立的仪器,配有易于更换的充电电池和预填充液体盒,以供生产线全天候工作。相关应用基于OWRK模型的粘结效果评价等离子处理后表面能比较

企业动态

2024.05.14

应用 | 衡量表面活性剂皮肤刺激性的辅助手段——临界胶束浓度

研究背景表面活性剂是化妆品中最常用原料之一,在洁面乳、沐浴露、洗发液等产品中均有应用。越来越多的消费者开始注重表面活性剂对皮肤的影响,追求更温和更低刺激性的表面活性剂类清洁产品,但是消费者往往忽视了表面活性剂在清洗过程中并不能完全被清除干净,容易在人体皮肤上残留,且不同种类的表面活性剂在皮肤的残留量以及机理存在差异。目前关于表面活性剂在人体皮肤残留的研究较少,因此本文对表面活性剂在人体皮肤上残留发生的机理、危害以及表征手法进行了详细的阐述。原理与测量表活在皮肤表面发生残留的机理当消费者使用以表面活性剂为主的清洁类产品时,将在完成清洁时使用大量的清水进行冲洗,但是由于人体皮肤构造存在间隙以及表面活性剂的双亲结构造成渗透等原因,不可避免的存在一部分表面活性剂无法用水冲走,而是吸附渗透至皮肤角质层内,造成表面活性剂在人体皮肤的残留,而残留会对角质层乃至皮肤深层产生长期的负面影响,如造成皮肤过度干燥、炎症等。 一般来说,表面活性剂在人体皮肤表皮发生残留主要是由表面活性剂与角质层细胞角蛋白的结合造成,这是因为在清洗过程中表面活性剂形成单体产生渗透,通过相对较强的静电相互作用导致表面活性剂疏水部分能够与皮肤蛋白片段结合,以及表面活性剂带电荷的亲水头基与皮肤蛋白某些带电荷的部分结合,吸附于皮肤深层无法清洗干净;目前研究表明不同表面活性剂结合角蛋白能力不同,所以不同表面活性剂吸附残留也会有所不同,因此在一个表面活性剂为主的产品中,影响表面活性剂在皮肤表面的吸附残留主要是由体系中表面活性剂类型以及表面活性剂的单体浓度决定。体系临界胶束浓度的影响关于表面活性剂对皮肤渗透吸附造成残留的研究,有研究人员先后提出了单体理论、胶束理论和亚胶束渗透聚集体理论等来解释不同表面活性剂的不同现象,但目前这些理论仍然存在一些问题,主要在于上述理论研究忽略了一个和实际情况不符的事实就是暴露时间,消费者在实际使用表面活性剂产品的暴露时间一般只有几分钟,而上述研究均采用了夸张的暴露时间,如通过贴片封闭接触皮肤21天或者5h接触方案,其都给予表面活性剂足够的时间来渗入和溶胀皮肤结构,因此得出的结论很难与消费者实际使用产品保持一致。因此消费者在实际使用表面活性产品如洁面时,首先体系中的单体会穿透皮肤,吸附残留在皮肤上,而决定单体穿透皮肤的主要影响因素就是体系中表面活性剂的胶束浓度和胶束电荷。Morris等研究表明表面活性剂的吸附渗透和体系的胶束浓度有非常大的相关性,而与胶束直径的相关性较差,一般来说胶束浓度越低吸附渗透越低。例如SLS复配甜菜碱类两性表面活性剂或非离子表面活性剂后,其胶束直径变小,体系CMC降低从而降低了吸附渗透。而SLES对比SLS在相同的测试条件下胶束粒径并未改变,但其CMC变小,皮肤渗透降低,这是因为大多数表面活性剂的胶束粒径均较小,满足皮肤渗透所需标准,从而得出渗透和胶束直径关联度不大的结论。综上所述,通过表面活性剂的复配降低体系的临界胶束浓度,进一步降低表面活性剂单体浓度,从而降低皮肤渗透减少表面活性剂产品在皮肤的残留,这是比较直接的方法,而增加胶束尺寸并不会直接降低表面活性剂的渗透。因此,CMC 临界胶束浓度测量可以作为表面活性剂皮肤刺激性的定向辅助手段。临界胶束浓度测量方法KRÜSS的Tensíío表面张力仪,配备两个或者单个分液器,可以全自动稀释和测量表面活性剂在不同浓度下的表面张力,得到临界胶束浓度。 作为一种有前途的表面活性剂,我们研究了聚乙二醇-10单油酸酯(PG-10-1-O)作为市场上常用乳化剂的替代品。 表1. 表面张力 vs PG-10-1-O 溶液浓度。根据线性外推,可推断自组装临界浓度的范围为 8 至 11 mg/L。在给定的 PG-10-1-O 摩尔质量为 1023 g/mol 时,处于过渡范围内的浓度 10.5 mg/L 对应于 0.011 mmol/L。因此,该浓度低于个人护理中使用的其他典型表面活性剂的CMC 值,如十二烷基硫酸钠(SDS)8.2 mmol/L 或C12/14 烷基糖苷 0.04 mmol/L,这是 PG-10-1-O 的较好温和性的一个重要标志。思考与注意表面活性剂在皮肤残留的危害表面活性剂单体进入皮肤与蛋白质结合后,会导致皮肤结构肿胀,而皮肤结构肿胀会允许表面活性剂进入皮肤结构的更深层中逐渐结合,从而进一步增强肿胀和渗透,这是一个级联过程。具体表面活性剂残留危害主要有对皮肤角质层表层蛋白的危害,对皮肤角质层脂质的危害,对皮肤表皮活细胞的危害。结论与展望清洁类产品有着良好的市场前景,由于市面上个人清洁系列产品层出不穷,不少消费者关注重心转移到清洁类产品的温和性上,追求更加低刺激的产品。在未来,化妆品的产品设计中应该更加关注基础理论的研究,寻找清洁类产品造成刺激背后的原因和机理,设计出更加科学的产品配方架构,以此来做到最大可能降低清洁类产品对人体皮肤的危害。参考文献1,秦  尧,闫加雷,钱景茹,张廷志. 表面活性剂在人体皮肤的残留研究[J]. 日用化学品科学,2023,46(6):59-63.2,KRÜSS应用报告291.一种用于低粘度配方和脂质体结构的通用乳化剂的表征方法.

应用实例

2024.05.09

邀请函:KRÜSS第九届环境友好型农药制剂加工技术研讨会(常州)

展会信息随着全球对环境和可持续农业的关注增加,现代绿色农业快速发展,对农药制剂产品的高效性、安全性、持效性、选择性和环境友好性提出更高要求,农药制剂研究向着长效释放、靶向递送、纳米给药、RNA干扰等方面转变,农药制剂产业发展生态正在深刻变革。为分享全球农药制剂领域发展动态和前沿技术信息,研讨生产研发共性问题,探讨产业未来发展方向,搭建技术成果展示平台,推广先进技术设备,促进上下游产业链深度交流合作,引领全球农药制剂产业高质量发展,中国农药工业协会经研究决定,于2024年4月23~26日在江苏省常州市举办“第九届环境友好型农药制剂加工技术研讨会暨2024年中国农药制剂创新国际论坛”(以下简称“制剂会”,英文简称:EFPF)。KRÜSS诚邀您参加第九届环境友好型农药制剂加工技术研讨会暨2024年中国农药制剂创新国际论坛会议时间:4.23 - 26展位号:38会议地址:江苏·常州白金汉爵大酒店(江苏省常州市武进区东方东路227号)典型应用农药药液的静态表面张力农药药液的动态表面张力用接触角分析农药药液和植物叶片等基材的润湿性植物叶片的表面能应用背景农药制剂的防治效果直接与药液对靶标生物的润湿和持留量相关,而持留能力与药液表面张力、药液在叶面上的接触角相关。药液喷洒到植物叶面后接触角的变化对于润湿铺展以及药效是关键。KRÜSS的表面张力,接触角等仪器可以提供快速的润湿性测量和分析。

企业动态

2024.04.22

邀请函:KRÜSS诚邀您参加2024第三届复合材料界面论坛(宁波)

展会信息先进聚合物基复合材料具有轻量化、高强度、耐腐蚀性等优异性能,在航空航天、建筑、海洋、新能源、体育用品等领域广泛应用。界面是复合材料基体和增强体之间形成的纳米级新相,作为性能传递的纽带,界面可赋予复合材料优异的拉伸强度、耐冲击性和耐热性,也是决定复合材料合成工艺、综合性能及应用场景的关键因素,研究复合材料界面问题具有重要意义。KRÜSS诚邀您参加2024第三届复合材料界面论坛会议时间:4.17 - 19展位号:A06会议地址:宁波东港喜来登酒店(浙江省宁波市鄞州区彩虹北路50号)典型应用通过接触角分析树脂和纤维浸润性树脂的表面张力分析通过表面能分析纤维和树脂的粘结强度基于OWRK模型的粘结效果评价等离子处理后表面能比较应用背景界面是决定复合材料性能的关键因素。树脂与纤维增强体的良好浸润是获得高质量复合材料界面的首要前提,对于树脂基复合材料而言,增强纤维与树脂基体之间的浸润性好坏对复合材料性能影响很大。一般来说,浸润性好、界面粘结强度就比较高。如果浸润性不好,界面上就容易留有空隙。因此,要制备高性能的复合材料,对增强材料的浸润性研究是十分必要的。论坛将对复合材料界面结构、改性方法、性能验证以及应用开发等方面进行全方位的探讨,为从事复合材料研究的专家、学者及技术研发人员提供一个共享科研成果和前沿技术的平台,通过加强学术讨论,拓宽研发思路,掌握复合材料界面发展动态,促进科研成果转化,推动界面在复合材料领域的发展。

企业动态

2024.04.16

邀请函:KRÜSS诚邀您参加2024中国油气开发技术年会

会议信息“十四五”期间,我国油气勘探开发始终坚持贯彻习近平总书记有关“保障国家能源安全提升到维护国家安全能力”的指示精神,不断加大国内油气开发力度,坚持常非并举、海陆并重,加快推动储量动用,提高老油气田采收率,加大新区产能建立力度;积极扩大非常规油气资源开发力度,多举措促进增储上产,保障国家能源安全。为了促进油气企业依靠科技创新驱动高效开发,强化核心关键技术与装备攻关,大力推进理论创新、技术创新、管理创新、机制创新,中国石油学会、中国石油油气和新能源分公司、中国石化油田勘探开发事业部、中国海洋石油有限公司勘探开发部定于2024年4月10日-12日在北京市联合召开“2024中国油气开发技术年会暨油气开发新成果及新技术展示会”。KRÜSS诚邀您参加2024中国油气开发技术年会会议时间:2024.4.10 - 12会议地址:中石油科技交流中心典型应用三次采油(EOR)界面技术能用于提高油田开采效率 能够发现大量原油储备的机会变得越来越少,同时伴有开采成本的不断增加。因此,提高现有原油储层产率的需求越来越大。储层内大部分油被截留在储层的多孔介质。为利用这些油,有必要采用三次采油的采收方法。我们的表界面科学仪器有助于提高这些方法的效率,从而降低成本。 化学驱法中的水油乳液形成 在化学驱法中,表面活性剂溶液被泵入储层,将油从层壁上洗掉,然后形成易被输送到表面的油-表面活性剂(微)乳液。为此,油和表面活性剂溶液之间的界面张力应低于10-3 mN/m。测量界面张力精确到10-6 mN/m是我们旋转滴界面张力仪 – SDT的强项。测量结果提供的信息有助于表面活性剂溶液改性,从而调整与每个特定油田内原油的界面张力。该仪器还监控界面张力的温度依赖性,鉴于石油储层和地球表面之间巨大温差,监控界面张力的温度依赖性是非常重要的。 表面活性剂表征 为了解三次采油中使用的表面活性剂特性,可使用更常见的表面张力测量技术,如威廉板法,对临界胶束浓度(CMC)进行全自动测定可用于描述表面活性剂的效率。 在油储层的压力和温度条件下测量 为进一步研发石油开采技术,在储层热力和压力条件下研究储层表面及其润湿是一个先决条件。我们的高压设备能用悬滴法进行符合需要的界面张力测量。而用同一设备测量接触角可提供有关原油和岩石间润湿和粘合作用的信息。 由于输送起泡石油所需的液体在输送过程中大量减少,可使用高压泡沫分析支持上述三次采油的方法。水力压裂原油和天然气储量开采的界面化学支持对三次采油和天然气开采时采用水力压裂法,液体被高压压入储集岩,并产生裂缝。前提条件为是液体对岩石的润湿性良好。我们的测量仪器可以测定此润湿性,并表征用于此目的的表面活性剂。测定表面活性剂的效果表面活性剂能降低压裂液体的表面张力,进而大幅提高对岩石的润湿性。我们的张力仪采用经典表面张力测量法,如环法或板法。此外,对临界胶束浓度(CMC)的全自动测量可提供有关表面活性剂使用效果的信息,测定CMC可避免过量使用表面活性剂。储层条件下的表面张力和润湿我们的光学高压测量系统结合悬滴法可测量储层调节压力和温度条件下的表面张力。在相同条件下的接触角测量是岩石润湿性的直接表征。

企业动态

2024.04.03

应用 | 检测方法对电气绝缘油界面张力的影响

研究背景变压器油是变压器内部重要的绝缘材料,油品质量直接影响到变压器的电气性能和运行寿命。在运行中,变压器油在电气设备中因受湿度、光线、金属催化、水分及电场等因素的影响,会生成羧酸、醇等亲水极性物质在油-水界面的定向排列会改变界面上分子排列状况,从而降低界面张力。因此,界面张力是变压器油标准中的一项重要指标,能够反映新油在精炼时的纯净程度和在运行中油的氧化程度。实验仪器仪器:本文采用德国KRÜSS力学法表界面张力仪K11测定界面张力。最新款表界面张力仪型号Tensíío。KRÜSS 力学法表面张力仪Tensíío方法:不同产品标准所采用的界面张力检测方法不同,具体如表1和2所示。可以看出,各方法的测量原理相同,测定绝缘油的界面张力的方法大都采用的是圆环法,主要区别就是界面形成后即非平衡条件、接近平衡条件及平衡条件下测试的保持时间不同。表1 变压器油界面张力检测方法表2 不同界面张力检测方法试验条件对比结论与讨论由表3和图1可得,界面张力均随界面保持时间延长而降低。其中,新变压器油的酯类油比矿物油的界面张力低很多,这是由于酯类油的分子结构具有亲水性,使其界面张力相应减小。 表3 新油不同试验条件界面张力检测结果对比 图1 新油的界面张力随时间变化曲线表4和图2试验结果表明,老化后的矿物油和酯类油的界面张力也随界面保持时间延长而降低。与新油比,老化后变压器油的界面张力均比新油的界面张力低,尤其是矿物油D油的界面张力从新油46mN/m左右降至16mN/m左右。表3数据显示该样品抗老化、氧化性较差,因此容易生成醛、酮、羧酸等老化产品,而这些老化产物均为极性物质,在油水界面上做定向排列,从而使油品老化后油水间界面张力降低。E和F油为合成酯变压器油,虽然本身界面张力不高,但其氧化稳定性较好,老化前后界面张力变化不明显。表4 老化油不同试验条件界面张力检测结果对比  图2 老化油的界面张力随时间变化曲线对比图3和图4发现,老化油界面张力随着两相界面的保持时间呈较明显下降趋势,说明这一过程在老化变压器油中比在新变压器油中更为明显。图3 新矿油和老化矿油的界面张力随时间的变化曲线 图4 新酯类变压器油和老化酯类变压器油界面张力随时间变化的曲线IEC62961:2018方法介于ASTMD971方法和EN14210方法之间,在界面形成180s时测量界面张力更加符合实际,同时测量时间对测量结果影响较小。从图3和图4也可以看出,老化油的界面张力随时间变化较为明显,主要表现在界面张力曲线从30s到180s的变化斜率较大,而在界面形成的180s时测量界面张力数值与300s的测量数据很接近,可以提供一个较为真实的界面张力值,并且检测时间相对较短。新颁布的变压器油国际标准IEC60296:2020《电工流体电气设备用矿物绝缘油》,其界面张力检测规定采用ASTMD971-2020方法和IEC62961:2018两种方法,为了得到更有效的数据和满足实验室快速高效的日常检测工作,推荐采用IEC62961:2018方法为宜。结论界面张力是反映变压器油精制过程中洁净程度的指标,并与油品的老化程度密切相关。国内外检测变压器油界面张力方法的主要区别在于界面形成后的保持时间不同。实验室通过采用圆环法考察测量时间对界面张力值的影响,结果表明老化油的界面张力受时间影响较为明显,同时也说明变压器油的界面张力与油的劣化程度密切相关。通过考察不同方法测量时间对测量结果的影响,推荐采用IEC62961:2018方法对变压器油进行界面张力的检测,该方法既能减小因测试时间不同而引起的误差,又能快速进行检测。参考文献[1]张绮,张昱,周东等.不同检测方法对电气绝缘油界面张力的影响[J].润滑油,2024,39(01):43-47.DOI:10.19532/j.cnki.cn21-1265/tq.2024.01.009.

应用实例

2024.03.21

小科普:“酒泪”越明显,酒的品质就越好吗?

什么是“酒泪”  白酒或红酒摇晃之后存在非常明显的“泪痕”。形成的主要原因是由于酒精比水的表面张力更低。在乙醇和水混合的不均匀体系,低浓度酒精(较大表面张力)的区域会比周边高浓度酒精(较小表面张力)液体拉力大。结果导致液体随表面张力梯度从高酒精浓度流向低酒精浓度。酒杯杯壁由于较好的润湿性易于液体铺展,上方的液体由于酒精挥发表面张力较大,下方液体则由于微重力而被拉升,形成大液体。随着重力增加,张力不足以克服其影响,又会向下滑落。这种现象也可通过在光滑表面铺展液膜,将酒精滴入液膜中心来演示。液体会从酒精下落点快速流出。很多人从这种现象来评价葡萄酒或白酒,认为挂杯越多,膜越厚则质量越好。其实这是一种错误的想法,界面作用同时与液体和固体相关,例如水晶杯的附着力就比玻璃杯差,合适的酒杯几乎都会产生“酒泪”。其次,酒精中还存在糖、甘油、挥发及非挥发性物质,它们会提高酒的粘度,降低“酒泪”下流速度,甚至改变粗细形状。Margangoni效应介绍我们把类似“酒泪”的现象称为Margangoni(马兰戈尼) 效应,或Gibbs-Marangoni效应。它是一种因表面张力梯度而沿着在两种液体界面产生质量传递的过程。在温度影响下,这种行为称为热毛细对流。最早用这种理论解释“酒泪”的是来自英国的物理学家James Thomson在1855年发表的一篇文章《在葡萄酒和其它酒类表面观察到的一些奇特运动》。1865年,意大利帕维亚大学的物理学博士Carlo Marangoni在博士论文中系统讨论了这种现象并发表。1875年,美国科学家J. Willard Gibbs在《多相平衡》中提出了完整的理论假设。由于高表面张力液体对周围液体的拉力比低表面张力的液体更强,这种表面张力梯度的存在自然会导致液体从低表面张力区域流出。而表面张力梯度可能来自于浓度梯度或温度梯度(表面张力是温度的函数)。Margangoni效应的应用1.硅片干燥马兰戈尼效应的一个重要应用就是用于集成电路制造中润湿后的硅片干燥。留在晶片上的液斑会导致氧化从而损害晶片部件。为避免斑点产生,以气体、蒸汽或气溶胶的形式从润湿晶片表面上方的喷嘴产生乙醇或其他有机化合物(或从浸浴池中提起晶片,在清洁液和晶片之间产生一个月牙面),随后马兰戈尼效应产生表面张力梯度,使得重力作用下液体可以完全脱离晶面,有效干燥晶面。2.自组装马兰戈尼效应也可用于纳米粒子的有序自组装。基材上铺展包含纳米颗粒的乙醇,跟随湿气流鼓气而流动,乙醇在气流下挥发。同时,水在基材上凝聚产生小液滴。乙醇中的纳米颗粒迁移到小液体,最终干燥之后在基材表面形成很多咖啡环。3.解释现象该效应还可以用来解释泡沫膜的稳定性(如:洗手液让水面的胡椒粉散开)以及出现的对流圈(Rayleigh–Bénard convection)等现象。

应用实例

2024.03.07

应用 | 揭秘动态表面张力对个人护理中喷雾产品粒径的影响

研究背景制备个人护理应用方面的喷雾产品对于配方师来说是个很大的挑战。产品要求在雾化容易的同时, 最佳尺寸范围的乳化液滴要确保足够数量在目标区域上的沉积,但也需避免形成小液滴(小于100 μM)来减小喷射漂移。后者对使用者来说也是一种潜在的危险(小液滴可能会导致吸入口中),也可能造成喷射产品的效能降低。为了满足以上的需求 , 喷射乳液的配方必须保证符合以下的标准 :1.最合适的液滴尺寸分布,确保在目标区域上的最大沉积和附着 , 而且无漂移现象 ;2.在目标区域表面的良好涂布性和肤感。以上两个标准要求表面活性剂在气 / 液界面迅速吸附(降低动力学表面张力)。然而 , 这个表面张力不能低于临界值,从而可以防止乳化液滴尺寸过小而产生漂移 。喷雾液滴的形成原理在喷射过程中, 液体被压经喷嘴, 并在静力学压力下形成液滴 。高于某个静力学压力值, 液体通过喷嘴形成连续喷射, 而后分散成小液滴 。这个连续喷射, 而后分散成小液滴的过程是受到表面压力的结果 。球形的表面积和它的表面自由能(表面积 ×表面张力)小于其他对称体 。因此 , 少量的其它形状的液滴将会形成更小的球形液滴 。动态表面张力与粒径的关系表面活性剂和聚合物对于喷雾液滴尺寸分布的影响 , 在于他们对于表面张力的影响,表面张力一定程度上推动着雾化的产生。因为表面活性剂降低了水的表面张力 , 会形成粒径更小的液滴 。配方中含表面活性剂 , 帮助降低表面张力, 其雾化所需要的能量比不含表面活性剂的产品要少。因此 , 同样的能量输入, 会得到更小尺寸的液滴 。然而, 实际情况并不是这样简单 。在雾化的过程中,会不断形成新液体的表面。这种溶液的表面张力, 依赖于形成新界面的时间与表面活性剂从溶液内部迁移到气/ 液表面的吸附速度和扩散速度。如果形成新界面的时间比表面活性剂扩散和吸附的速度快, 那么喷雾液体的表面张力不会比纯水大很多,会形成大尺寸液滴 。相反, 如果形成新界面的时间比表面活性剂吸附的速度慢 , 那么喷雾液体的表面张力会进一步降低,形成较小的液滴尺寸 。图1显示两个不同表面活性剂体系A和B在不同吸附速度下 , 随时间t而变化的表面张力 γ,也可以叫作动态表面张力。这些曲线可以通过使用KRÜSS最大气泡压力法来测量。气泡在表面活性剂溶液中以不同的频率形成,控制气泡形成的时间并且测量气泡中所产生的最大压强,可以得到不同时间下的表面张力。在短时间内,观察到表面活性剂体系B比A的体系所带来的表面张力更小 。许多体系的动态表面张力和时间对数的曲线可分为4个阶段:诱导区、表面张力快速下降区、介平衡区和平衡区。在诱导区,由于吸附在界面层上的助剂质量浓度太低,溶液的表面张力较大;随着助剂大量被吸附到溶液表面,表面张力急剧降低,就形成了快速下降区;而随着溶液表面助剂分子的积累,吸附接近饱和时吸附速度变慢,就形成了介平衡区;足够长的时间后当表面吸附达到饱和体系进入动态平衡阶段表面张力达到平衡,此即为平衡表面张力。表面活性剂种类和质量浓度不同,其溶液体系达到上述各阶段所需时间不同,表现为各溶液体系间动态表面活性的差异。从线性相关性关系的角度上来说,时间指标越小,动态表面张力与雾滴指标之间的关系越倾向于线性状态,可以通过测试表面活性剂体系的动态表面张力来优化雾滴尺寸和粒径。传统意义上采用静态表面张力为指标研究雾滴形成的方式并不合理,在有关喷雾的实践工作过程当中,选取动态表面张力作为研究指标有着更为显著的优势。 图2. 动态表面吸附曲线图动态表面张力与粒径关系的示例图3. 不同表面活性剂溶液的动态表面张力曲线 表1. 不同表面活性剂溶液的粒径分布从图3和表1示例曲线可以明显看到,可以通过控制动态表面张力来优化雾滴的粒径,张力在一定时间内下降的越快,雾滴粒径越细腻。为了避免雾滴尺寸过小而产生雾滴的漂移,可以将表面活性剂的张力调控在一定范围。在实际生产中,喷头尺寸、喷雾压力也是改变喷量、雾滴粒径的重要手段之一。本文仅讨论了动态表面张力的改变对喷雾粒径的影响,期望能为配方设计工作者提供合适的思路。本文有删减,详细信息见原文萨瓦特 塔琼斯,玛丽克莱尔 堤尔曼,杜 晶.喷雾型产品的配方原理[J].日用化学品科学, 2004.

应用实例

2024.02.29

加强产学研,KRÜSS与山东大学共建实验室成立了!

签约仪式2024年1月30日,克吕士中国总经理王磊(左三)一行至山东大学胶体与界面化学教育部重点实验室参加了联合实验室的签约挂牌仪式,山东大学的郝京诚教授(中间)、董人豪教授(左一)、邢鹏遥教授(右一)、崔基炜教授(右二)和王旭教授(右三)、克吕士公司区域销售经理毕亚运(左二)及山东大学的教师代表及企业代表共同出席了此次会议并发表了讲话。 山东大学胶体与界面化学教育部重点实验室是国内胶体界面领域最权威的实验室之一,实验室于1993年12月经原国家教委批准,并于1996年通过验收正式对外开放。多年来,实验室注重学科前沿及其国家(行业、区域)重大需求不断拓展研究方向和领域,研究内容注重基础理论与应用基础紧密结合,学科整体实力和研究水平保持在国内同类学科前列,是我国胶体与界面化学研究和人才培养的重要基地。现任实验室主任为郝京诚教授,学术委员会主任为张希院士。山东大学胶体与界面化学教育部重点实验室非常重视国内外学术交流与合作,将基础研究与实际应用紧密结合,实验室中配备有KRÜSS品牌的DSA100和DSA25型接触角测量仪、K100力学法表面张力仪、MSA表面能分析仪设备等 ,双方具有良好的合作基础。为加强双方的联系,相互更深入了解和学习彼此最新的相关需求与进展,双方有意共建合作实验室,旨在整合优质资源、提升创新能力、提高教学质量和科研水平,双方将紧密合作,共同推动应用及技术研发先进方案的开发。克吕士公司也将用最优质和高效的服务为共建实验室设备的良好运行提供可靠的保障!联合实验室名录中国科学院化学所中国科学院过程所武汉大学浙江大学长江大学太原理工大学化学化工学院中国地质大学材料与化学学院广东省石油与精细化工研究院江苏中特嘉耐新材料研究院有限公司上海应用技术大学山东大学胶体与界面化学教育部重点实验室

企业动态

2024.02.06

应用 | 一种具有防冰性能的超疏水表面的制备与研究

研究背景凛冬将至,寒潮来袭,结冰是造成许多安全事故的重要原因。飞机防冰/除冰技术一直是航空工业的一个重要研究领域。飞机积冰主要发生在平尾、垂尾和发动机真空罩等外露表面,已成为威胁飞行安全和稳定性的严重问题。研究表明,飞机表面结冰主要是由于大量过冷水滴聚集和冻结造成的,特别是当飞机穿越过冷云层时。本文报告了通过光刻结合化学刻蚀方法制备了稳定的纳米片-微坑结构的超疏水表面,表面的防冰性和超疏水性均优于单一结构表面,且超疏水等级结构表面具有较高的非润湿性,接触角高达173°,滚动角低至4.5°,具有优异的超疏水性能和抗结冰性能,为航空工业的应用提供了一个理想的平台。实验仪器润湿性实验,使用KRÜSS DSA100接触角分析仪。在样品表面滴落4 μl液滴测试接触角和滚动角。重复3次,计算平均值来保证接触角的准确性。为了进一步检验低温润湿性,在-18℃条件下放置样品和去离子水,直到去离子水变成过冷。然后,我们尝试通过在不同样品的表面喷洒过冷的水滴来模拟冻雨的条件。使用高速的相机拍摄,快速比较这些样品的不同润湿性。KRÜSS DSA100接触角分析仪TC40温控腔箱:温控范围-30℃到160°C结论与讨论表面形貌在本节中,我们通过三种不同的处理方法构建了三个超疏水结构表面,目的是分析和研究表面形貌、润湿性和抗冰性能之间的相关性。此外,我们还制备了一个光滑的疏水铝表面作为标准对照,并与三种超疏水表面的抗冰性能进行了比较。三种结构形态的FESEM图像如图1所示。四种类型的表面处理如下:使用FAS-17改性的铝衬底表面(样品1),带有微坑结构FAS-17改性的铝衬底表面(样品2),带有纳米片FAS-17改性的铝衬底表面(样品3),具有分层结构(微坑规则阵列和纳米片)FAS-17改性的铝衬底表面(样品4)。 图1. 通过三种不同的处理获得的分层形态的扫描电镜图像:(a)微坑结构表面(样品2);(b)纳米片结构表面(样品3);(c)微/纳米分层结构表面(样品4)。常温和低温下的润湿性测试如图2所示,通过比较相同样品FAS-17修饰前后的接触角,改性后样品疏水性大幅提高。在光滑的衬底表面(样品1),通过降低表面自由能,液滴接触角可以增加到大约120°。这也证明了通过引入规则排列的CF3基团可以建立超疏水表面,此时表面能最低,为6.7 mJ/m2。样品3和样品4具有良好的超疏水性,使得水滴很容易从这些表面滚落,这可以用Cassie-Baxter模型来详细解释,说明表面的微观结构在提高超疏水性方面起着关键作用。超疏水纳米分层结构表面(样品4)具有较高的非润湿性,接触角高达约173°,滚动角仅仅为4.5°。与其他单结构表面相比,纳米片-微坑分层结构表面的超疏水性优于任何单结构表面,微尺度和纳米尺度结构的结合明显地捕获了更多的空气,导致在液滴下存在一个由无数空气袋构成的密封空气层。 图2. FAS-17改性前后4种表面结果的接触角和滚动角考虑到飞机的实际使用条件,将过冷水滴喷洒在低温下的测试超疏水性和防冰性能,结果表明,样品3和样品4可以防止过冷水滴的积累,表现出良好的超疏水性。相反,喷在样品1和样品2上的过冷水滴则表现出一定程度的亲水性。显然,研究结果证明,具有微/纳米结构的超疏水表面有效地排斥了被喷洒的冷冻水。结论综上所述,我们结合光刻工艺和化学蚀刻方法,巧妙地设计和制备了一种具有抗冰性能的超疏水分层结构表面。超疏水表面比其他单结构表面具有更强的非润湿性,并且具有优异的防冰性能,防止了过冷水滴的积累。因此,具有微/纳米结构的超疏水表面在航空工业中更具有作为飞机防冰材料的潜力。本文有删减,详细请参考原文。G.Wang, Y. Shen, J. Tao, X. Luo, L. Zhang and Y. Xia, Fabrication of a superhydrophobic surface with a hierarchical nanoflake–micropit structure and its anti-icing properties, RSC Adv., 2017, 7, 9981DOI: 10.1039/C6RA28298A

应用实例

2024.01.26

WE ARE HIRING丨招贤纳士,加入我们吧!

KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS有意者请将简历发至我司邮箱:info@krusschina.cn,邮件标题请以“应聘售后工程师+姓名”格式填写。

企业动态

2024.01.18

应用 | 膳食纤维润湿性对酸奶货架期乳清析出的影响

研究背景凝固型酸奶作为一种营养、健康的食品,在部分发达国家和地区占据液态奶市场50%以上份额,因具有独特的发酵香味及绵软的口感,深受全世界消费者的喜爱。然而,凝固型酸奶在低温运输及贮藏过程中常因温度浮动易出现凝胶乳清析出等问题。膳食纤维作为人体必需的第七大营养素,对抑制餐后血糖升高,改善胃肠道功能具有显著作用。不溶性膳食纤维作为膳食纤维家族的重要分支,经纳微化改性后具有较高的比表面积,能暴露出更多的亲水羟基,赋予其良好的溶胀性及持水性。因此,采用纳微化膳食纤维作为强化因子,替代传统商业凝胶剂在改善酸奶乳清析出等货架期品质方面极具潜力。纳微化膳食纤维不仅弥补了凝固型酸奶这类蛋白精细食品膳食纤维的不足,同时也满足了现代消费者对清洁食品的需求。本研究采用笋头副产物为原料制备了纳微化笋膳食纤维粉,研究了纳微化笋膳食纤维粉的乳润湿性和添加浓度对凝固型酸奶货架期乳清析出率的影响。并从凝胶质构特性、微观结构以及水分分布的角度,讨论其抑制乳清析出的作用机制。图1 添加不同浓度笋膳食纤维加工的凝固型酸奶(A) CK;(B) 3g/L NBDF-1.5;(C) 6g/L NBDF-1.5;(D) 9g/L NBDF-1.5;(E) 12g/L NBDF-1.5;(F) 15g/L NBDF-1.5实验仪器仪器:本文采用德国KRÜSS DSA100液滴形状分析仪评价膳食纤维与乳体的润湿性。方法:取200 mg冻干膳食纤维粉末置于压片机上制成薄片(直径20 mm,厚度2 mm),采用快速精密滴定器滴加1 μL纯牛乳于膳食纤维薄片上,平衡后采用高速摄像机捕捉画面,对液滴形状进行拟合分析即可得到接触角结果。结论与讨论纳微化笋膳食纤维的乳体润湿性纳微化膳食纤维在乳体的润湿性代表其亲和能力,会影响酪蛋白凝胶网络的形成质量,从而影响凝固型酸奶货架期乳清析出的程度,故此选择乳体润湿性良好的膳食纤维对改善凝固型酸奶凝胶品质至关重要。膳食纤维粉末(固体)、牛乳(液体)以及空气(气体)三者间形成接触角可用来表示固液间的亲和能力,接触角越小表明膳食纤维与乳体系间的亲和能力越好,润湿性及分散性越强。图2 不同粒径范围的纳微化笋膳食纤维与乳体系间的接触角(A)BDF;(B) NBDF;(C) NBDF-0.5;(D) NBDF-1.5;(E) NBDF-5.5;(F) NBDF-5.5B笋膳食纤维经多元复合改性后的乳体润湿性如图2所示。笋膳食纤维随着改性程度的增加,其接触角会呈现先下降后上升的趋势。BDF与牛乳间的接触角较高,达到88.93°。当膳食纤维经过超声-压热与酶解改性1.5h,NBDF-1.5与乳体系间形成的接触角最小为40.34°。进一步延长酶解时间或通过球磨改性的膳食纤维与牛乳间的浸润角明显提高。这些结果说明,未改性的大颗粒膳食纤维与改性过度的纳米级膳食纤维与乳体系的亲和能力均不理想,而粒径D50为10-30μm的微纤丝具有良好的乳体润湿性能。本质上,牛乳主要是由乳蛋白溶液与油脂形成的乳液体系,膳食纤维在乳体系中维持良好的分散性必须平衡各种分子间作用力。微米级颗粒状的笋膳食纤维由于表面羟基数目有限,亲水性能差,因此与乳体系的亲和能力弱;另一方面,纳米级颗粒状膳食纤维富含大量表面亲水羟基,不易于乳体系中的脂肪亲和而产生较大的接触角,乳蛋白之间弱的静电斥力不能彻底抵抗纳米纤维素之间的氢键缔合作用力,因此体系容易团聚而不能形成稳定溶液。值得注意的是,笋膳食纤维经多元复合改性后形成的微纤丝显示出较低的接触角,这可能与微纤丝相比纳米级颗粒具有更多疏水基团,与O/W水包油体系有更好的亲和能力有关。同时,微纤丝的长径比更高,空间位阻更大使得其分子间氢键缔合作用减弱,因此在乳体系中的分散性更好。结论采用超声-压热结合酶法改性制备的纳微化笋膳食纤维(粒径D50为10-30μm,直径20-30nm)呈现微纤丝状形态,具有良好的乳体系润湿性。该粒径纳微化膳食纤维与乳体系的接触角为40.34°,可作为膳食纤维配料适用于凝固型酸奶加工。该膳食纤维的添加可有效提高凝固型酸奶的振荡稳定性,降低酸奶低温货架期28天的乳清析出率。主要原因是将乳体系中的自由水转化为束缚水,通过提高乳体系的持水能力来优化酪蛋白凝胶网络结构,从而缩小酸奶发酵凝乳过程的乳清孔隙通道来抑制酸奶的乳清析出。研究表明,笋纳微化膳食纤维微纤丝可作为天然凝胶剂在提高凝固型酸奶品质方面极具潜力。参考文献:[1]陈秉彦,郭晓菲,林晓姿等.纳微化笋膳食纤维改善酸奶货架期乳清析出的作用[J/OL].食品科学:1-13[2024-0103].

应用实例

2024.01.04

应用 | 乳化剂对氨基酸洁面膏性能的影响

研究背景皂基类产品有非常强的清洁力,但对皮肤刺激性较强,市场上逐渐兴起氨基酸型清洁产品。常见的氨基酸表面活性剂有甘氨酸型、肌氨酸型、谷氨酸型以及丙氨酸型,而其中甘氨酸型表面活性剂因其易于冲洗,洗后干爽柔滑的使用感被广泛应用于洁面产品中。在实际产品开发中,往往会利用甘氨酸型表面活性剂在pH 6~7时部分酸化形成结晶的特性来制备洁面膏,但是这类产品在研制过程中容易出现发泡能力弱、制备料体稀薄、长时间放置后料体出水或外观粗糙等问题,目前主要通过调整配方中多元醇的种类及添加量,调节产品pH值或者添加高分子来解决,而乳化剂对结晶型氨基酸洁面膏性能影响的研究报道较少。本文主要通过动态泡沫分析仪等,研究了4种不同乳化剂对结晶型氨基酸洁面膏性能的影响,以期为洁面膏中乳化剂的选择提供实践基础以及理论支持,为开发兼具使用性及稳定性的洁面产品提供新的解决思路。实验仪器1.1样品制备表1.洁面膏基础配方1.2 泡沫性能测试DFA100动态泡沫分析仪 泡沫测试采用KRÜSS的动态泡沫分析仪DFA100完成,包括泡沫高度分析以及泡沫结构分析。首先,用去离子水将洁面膏配成质量分数为10%的溶液,然后用注射器移取50 mL溶液至组装好的量筒配件中。将固定量筒的底座支架插入仪器中,进行泡沫测试。设置参数:发泡方法:搅拌器;搅拌速度:3000 r/min;搅拌3s停止3s(便于记录泡沫高度),循环15次;测试时间:15 min;照相机高度:55 mm;测试温度:25 ℃。结论与讨论2.1 乳化剂对泡沫性能的影响根据表1配方,考察不同类型乳化剂对结晶型氨基酸洁面膏的泡沫性能影响,其中1#配方为不添加乳化剂的空白组,泡沫高度结果如图1。 图1.不同乳化剂制备的洁面膏泡沫高度由图1可知,加入乳化剂,洁面膏泡沫量有不同程度的减少。空白组稳定后的泡沫高度为127.1 mm,其次是泡沫高度与其接近的2#,3#和5#配方,高度分别为126.6 mm,126.1 mm和126.7 mm;4#配方对泡沫总量减少较为明显,泡沫高度为119.4 mm。泡沫结构可以分析泡沫的细密程度以及泡沫的稳定性。图2为稳泡阶段的平均气泡面积随时间的变化曲线,图3为测试结束时的泡沫结构照片。由结果可知,除Eumulgin®S21外,乳化剂的加入都能提高泡沫的细密程度以及稳定性,其中5#配方的泡沫最绵密,稳定性也最好,在测试时间内粒径变化最小,其次是3#与2#配方。定义每平方毫米内气泡个数衰减一半的时间为泡沫半衰期,则1#~4#配方的半衰期分别为615,626,637和553 s,而5#配方在测试周期内未观察到半衰期。这也说明用Hostacerin®DGSB,Hostaphat®KW340D 和Plantasens®Emulsifier HP 30作为乳化剂能使结晶型氨基酸洁面膏的泡沫更加细密稳定,同时又不影响泡沫量。而Eumulgin®S21使洁面膏的泡沫量减少,同时泡沫也更容易变大而破裂。乳化剂由于具有表面活性,在气泡中将被吸附在空气-水的界面,与表面活性剂共同稳定泡沫。结合泡沫的稳定性因素分析,乳化剂可能会增加气泡间液膜强度,减缓气体间的扩散导致泡沫增大,从而提高泡沫的稳定性。Eumulgin®S21为聚醚类乳化剂,但配方中存在较高含量的多元醇和盐,这使得聚醚类乳化剂的浊点降低,从而改变乳化剂的亲水亲油平衡,在体系中的溶解度有限,在气-液界面形成棱镜铺展,取代表面活性剂,从而起到消泡的作用。其中Plantasens® Emulsifier HP 30是一种液晶乳化剂,易于形成多层结构,这也可能是其泡沫稳定性最好的原因:多层液晶结构能赋予气泡间的液膜更高的粘度,可以防止或减慢排液的过程;而且液晶相的存在能增大气-液界面的曲率半径,从而减弱气泡间的Laplace压力;此外,液晶结构还能更大程度的增加液膜的力学强度和刚性,以抵御引起气泡破裂的热和机械扰动。 图2.不同乳化剂制备的洁面膏泡沫大小图3.不同乳化剂制备的洁面膏微观泡沫结构结论通过动态泡沫分析仪等研究了4种不同类型乳化剂对以椰油酰甘氨酸钠为主要表面活性剂的结晶型洁面膏的影响,包括泡沫高度和结构等,得出以下结论:磷酸酯类乳化剂Hostaphat®KW340D能提高洁面膏的泡沫稳定性;Eumulgin® S21作为聚醚类乳化剂,在多元醇与盐含量较高的体系中浊点降低,使得其与体系的兼容性变差,从而导致泡沫量明显减少,泡沫的稳定性也最差;液晶型乳化剂Plantasens®Emulsifier HP 30能显著提高泡沫的细密程度与稳定性,这可能是液晶乳化剂在体系中易于形成多层结构,从而使泡沫更加稳定。以上研究也为洁面膏中乳化剂的选择提供一定的实践结果与理论分析,因此在实际配方过程中,可挑选合适的乳化剂或乳化剂组合来达到改善洁面膏特定性能的目的。此文版权来自科莱恩化工(中国)有限公司,内容有所删减,全文请查看:张美龄,王晨茜,许明力,朱晨江.乳化剂对结晶型氨基酸洁面膏性能的影响[J]. 日用化学品科学, 2022,45(6): 43-47.

应用实例

2023.12.21

喜报 | KRÜSS张晶晶荣获“上海闵行区技术标兵”称号!

我司张晶晶荣获“上海市闵行区技术标兵”称号!个人简介张晶晶自2018年加入克吕士中国公司以来,对待工作一直勤奋努力,积极主动;对待他人,真诚热情,得到同事和客户的一致赞誉。在担任应用经理之后,负责公司应用技术部门的工作,包括团队的应用支持、客户样品测试和其它相关技术相关的工作。她对表界面科学和技术了解很深入,尤其擅长为客户提供定制化的解决方案。2020年起,张晶晶通过数千次试验,成功的协助全球著名的某科技公司通过“一滴水”的测量技术,在其分布在全球的数十条产品线上实现了对多种产品元件清洁度和表面处理效果的有效质控,并助其建立了一套全球通用的测试标准和评价体系,应用在数十家供应商的产线上,简单有效的稳定和提高了终端产品的品质。同时,该项目也为克吕士公司带来了显著的品牌和经济效益。 此外,克吕士中国公司的应用团队的其他年轻工程师们也在张晶晶的培养和带领下,快速成长,现在已经都能独当一面,技术扎实。获奖采访 Q:此次荣获“闵行技术标兵”,最大的感触是什么?A:刘勰《文心雕龙》中的“不操千曲而后晓声,观千剑而后识器”最能形容此刻我想表达的内容。作为应用工程师,会操作设备只是最基本的技能,而了解每个客户行业背后与表界面之间的关联,为不同行业的样品匹配最合适的测试方法,则需要时间的积累和沉淀。是数百场讲座,与数千个客户的沟通,数万个样品的测试才成就了更好的我。Q:请分享一下工作中印象最深刻的经历?A:最难忘的还是用“一滴水”的测量技术来赢得全球著名的某科技公司项目的“来之不易”。难忘的不是那些夜以继日的时刻,难忘的是从这个项目开始,我们树立了规范化的服务意识,为每一家跨地区,跨国发展的客户提供通用的标准化操作,确保了数据的可重复性和再现性。Q:您认为公司的氛围如何?为您的个人发展提供了那些帮助?A:非常感谢我们领导王磊先生,2018年发给我了进入克吕士工作的入场券。在这里的每一天,我都在庆幸抓住了这次机会。在克吕士,公司为每一位员工提供成长的机会和时间,而每个同事都在用细节,热枕,和对工作的执着回报给公司,回馈给所有的客户,也深深的感动着我。我喜欢也愿意为我深爱的客户,公司,同事继续付出和奉献!奖项介绍为深入学习贯彻党的二十大报告中提出的实施科教兴国战略、强化现代化建设人才支撑要求,充分发挥工会在推进新时期产业工人队伍建设改革中的重要作用,努力提升职工技能素质和创新能力,进一步弘扬劳模精神、劳动精神、工匠精神,大力营造劳动光荣的社会风尚和精益求精的敬业风气,按照《闵行区总工会“百千万创新型职工”培育选树五年行动方案 (2023-2027年)》(闵工办 (2023)14号)要求,2023 年,闵行区总工会紧紧围绕产业职工“全生命周期服务”,开展了“闵行当代工匠”“闵行技术标兵”和“闵行技术能手”培育选树活动。

企业动态

2023.12.15

日程发布 | 高阶课程:ISO和GB接触角测量标准的解析及如何制定企业相关SOP

课程安排“ISO和GB接触角测量标准的解析及如何制定企业相关SOP”主题的高阶课程将于2023年12月7日上午9点在上海举办,欢迎新老用户踊跃报名参加!时间:12月7日(周四)9:00至17:00地点:上海市闵行区春东路508号E幢518室日程安排:您将掌握:通过我们的专家团队系统性的了解多达六十多项国际国内标准制定的背景以及各参数设置的原因了解到接触角测量技术发展背景及标准中测量方法的详细解读和重要步骤解析掌握如何设置标准化的操作流程和参数、成功用于稳定和提高产品质量的宝贵经验KRÜSS是如何帮助诸多国际知名企业制定接触角测量的企业标准的现实案例您将获得:本次课程的相关书面资料理论知识和实践应用培训证书(通过考核后)答题奖品(通过考核后)部分标准列表:ASTM D5946-2017 用水接触角测量电晕处理聚合物膜的标准试验方法;BS ISO 19403‑2 2017 颜料和清漆的润湿性 第二部分:固体表面自由能的测定(接触角法);BS ISO 19403-7 2017 颜料和清漆的润湿性 第七部分:倾斜台上接触角的测量(滚动角);ASTM D 724-1999(R2004) 纸的表面润湿性的标准方法(接触角法);GB 24622-2009 绝缘子表面润湿性测量导则;GB_T 42694-2023 纺织品 表面抗润湿性能的检测和评价 接触角和滚动角法;……费用和注册:费用1,580元/人(含培训资料和午餐),培训为期一天,差旅和其他食宿需自理,2023年12月7日 上午8:30-9:00 签到。报名截止日期为2023年12月1日。报名方法:关注公众微信号“克吕士科学仪器”,找到最新活动。联系方式:customercare@krusschina.cn。

企业动态

2023.11.23

高阶课程 | ISO和GB接触角测量标准的解析及如何制定企业相关SOP

活动背景接触角作为研发和质控的关键性指标已经被越来越广泛地应用于各个行业中,如电子、涂料、日化、半导体、新能源、油田石化等行业。在此次高阶培训课程中,您不仅会了解到接触角测量技术发展背景、多达六十多项国际国内标准制定的背景以及各参数设置的原因,还将获得我们技术专家系统性的讲解KRÜSS是如何帮助诸多国际知名企业制定接触角测量的企业标准、设置标准化的操作流程和参数、成功用于稳定和提高产品质量的宝贵经验。此外,我们也将提供实际的操作环节,让您亲自感受,不同变量对实际操作结果的影响,进而深入了解标准化操作的重要性。本次培训完成后,您还将会获得本次课程的相关书面资料,包括接触角测量技术的理论知识和实践应用。通过考核后,您还将获得培训合格证书。“ISO和GB接触角测量标准的解析及如何制定企业相关SOP”主题的高阶课程将于2023年12月7日上午9点在上海举办,欢迎新老用户踊跃报名参加!课程安排时间:12月7日(周四)9:00至17:00地点:上海市闵行区春东路508号E幢518室费用和注册:费用1,580元/人(含培训资料和午餐),培训为期一天,差旅和其他食宿需自理,2023年12月7日 上午8:30-9:00 签到。报名截止日期为2023年12月1日。课程内容:静态接触角常用测量标准分析(ISO,ASTM,国标,行标等)亲水性,疏水性,渗透性等多种类型样品接触角的标准测量方法常见固体表面能的测量标准动态接触角(增减液和倾斜法)常见应用场景和标准解析对接触角测量影响的关键因素和企业标准的制定操作演示:按照标准规定的要点演示常见样品静态和动态接触角的测量过程……报名方法:关注公众微信号“克吕士科学仪器”,找到最新活动。联系方式:customercare@krusschina.cn。

企业动态

2023.11.20

应用 | “德国总督楼”旧址琉璃瓦件的釉胎损毁研究

研究背景1907年德国汉堡阿尔托纳区F. 0.施密特公司在山东青岛郊外信号山南麓半山坡建造了一座欧洲城堡式建筑作为“德国总督楼”(总督官邸)。在经历了几十年的风吹雨淋后,主楼的琉璃构件出现不同的病损。20世纪80年代,文物保护工作者对其进行了多次保护修复,其中为了与周围建筑环境颜色相协调,在琉璃构件表面施加了一层蓝色保护材料。目前,这些经过保护修复后的琉璃构件再次出现了表面保护材料与釉层脱落、胎体粉化等严重病变(图1)。 图1 绿色琉璃瓦的保存现状本工作通过分析青岛“德国总督楼”旧址博物馆绿色琉璃板瓦的表面保护材料、釉层、胎体以及胎釉结合层等不同结构的界面、显微形貌以及热性能变化,探究琉璃釉层脱落的主要变化过程以及产生的主要因素,从基础性科学研究角度确定琉璃釉层和胎体层状脱落的原因。实验仪器与条件界面张力分析采用德国KRÜSS公司的DSA25接触角分析仪,测试不同表面的接触角和表面张力,然后根据Young - Dupre方程计算不同表面之间的界面张力和粘附功 ,其中 Young - Dupre公式为式中,Wsl为固液相粘附功;σs  、σl分别为固相、液相的表面张力;σsl为固液相界面张力;θ为接触角。当溶液粘附在不同表面的面积为a时,在等温等压条件下,由热力学可得在粘附过程中的降低表面自由晗(粘附功)为图2 DSA25接触角分析仪结论与讨论界面张力琉璃釉层的脱落从釉表面冰裂纹延伸至胎釉界面以及腐蚀胎体,针对各层之间的相互作用,分析不同界面的张力变化尤为重要。选取的样品包括保护层和釉层、腐蚀胎和未腐蚀胎等各部分,测试结果显示样品保护层、釉层、腐蚀胎和未腐蚀胎的表面能分别为45.57 mN/m、35.46 mN/m和61.37 mN/m和44.96 mN/m,其中釉层和腐蚀胎之间的表面能相差较大。表1. 不同界面层的粘附功和界面张力测试样品的表面能后,如表1所示,根据公式计算出保护层-釉之间的界面粘附功为88.52 mN/m,界面张力为0.16 mN/m,釉-腐蚀胎间的界面粘附功为78.96 mN/m,界面张力为1.52 mN/m,而腐蚀胎-未腐蚀胎的界面粘附功为87.99 mN/m,界面张力为8.83 mN/m。实验同时计算了脱落釉层施加表面材料的胎体和未处理胎体之间的界面粘附功为74.93 mN/m,界面张力为15.05 mN/m。众所周知,两相组成一个界面时,其界面张力的大小与界面两相质点间结合力的大小成反比。两相结合力越大,界面张力就越小;两相结合力越小,其界面张力就越大。所以对比发现:保护层和釉之间的界面张力相对最小,粘附功较大,说明保护层和釉层两相质点间结合力较大,而釉-腐蚀胎之间的界面张力较小,二者质点间结合相对较为紧密;区别最为明显的是腐蚀胎-未腐蚀胎之间以及脱落釉层施加表面材料的胎体和未处理胎体之间的界面张力相对最大,这两部分的结合最为疏松。显微形貌和不同相之间的界面张力和粘附功的变化,较为直接地展示出琉璃不同界面的结合状况以及容易出现病损的部位为胎釉界面的腐蚀胎-未腐蚀胎之间以及脱落釉层施加表面材料的胎体和未处理胎体之间。结论通过对山东青岛“德国总督楼”旧址建筑琉璃构件的表面保护材料、釉层和胎体的显微形貌、界面张力以及热性能等分析,确定了琉璃构件釉层和胎体呈层状脱落的主要原因。本文有删减,详细信息见原文[1] 张艳群,于文頔,赵静等.山东青岛“德国总督楼”旧址琉璃瓦件的釉胎损毁研究[J].文物保护与考古科学,2023,35(02):72-80.DOI:10.16334/j.cnki.cn31-1652/k.20210802225.

应用实例

2023.11.08

弯月面法测量纤维润湿性

方法介绍弯月面法是一种基于弯月面接触角测量纤维润湿性的光学方法,弯月面的接触角是由垂直浸入纤维上的毛细力而产生的。纤维接触角与哪些问题有关?许多工艺和产品都涉及纤维和液体之间的作用。通常,润湿性扮演着重要的作用。例如,在开发护发产品时,了解洗发后头发的润湿行为是研发配方过程中至关重要的一环。在复合材料中,纤维与聚合物基体相容性也可以通过润湿性来表征。除此之外,接触角对于纺织品的制造和护理也很重要。弯月面法是什么原理?采用弯月面法测量纤维时,需将附着在支架上的纤维样品垂直浸入液体中。纤维上形成的弯月面在三相点形成接触角,通过该接触角可表征纤维和液体间的润湿性。相机将全程记录浸入的过程,并且通过视频图像进行轮廓分析以测定接触角。在浸入的纤维处形成弯月面,轮廓分析以测定接触角KRÜSS设计的纤维支架与任何液滴形状分析仪的针头滴定系统都兼容,由于是直接连接到针头,因此不需要更换整个滴定装置。如果滴定装置可通过软件进行高度调节,则在纤维浸入和拉出的过程中也可以动态测量接触角,以测定前进角和后退角。纤维接触角既然可由张力仪测量,为什么还需要有新的纤维测量方法?事实上,采用张力仪的Wilhelmy方法测量基于润湿力的纤维接触角通常是标准做法。弯月面法不会取代Wilhelmy法测纤维的接触角,但这种方法对光学接触角测量仪的用户来说是一个很好的补充,他们可以使用该模块来扩大他们的样品的测量范围,而无需采用另一台仪器,投资也很少。除此之外,采用这种新的方法的优势在于:与Wilhelmy方法不同,这种测量方法在测量时不要输入纤维直径和液体的表面张力,因为接触角是直接通过光学法测量的,这也减少了测量前的准备工作,避免了这两个容易出现测量误差的参数造成测试不准确的可能性。在什么情况下应该用张力仪测量纤维接触角?弯月面法不适用于润湿性差的样品,即接触角大于90°的样品,比如防水纺织品。在这种情况下,没有毛细管粘附,而是毛细管凹陷,即弯液面反转,三相点低于水平面。在这种情况下,光学测量很难实现。另一个极端情况是测量特别小的接触角,因为通过图像分析无法精确测定到三相点。而对于张力仪的Wilhelmy方法来说,润湿性的好坏对样品的测量不会产生影响。

应用实例

2023.11.01

应用 | 固体胶对瓦楞原纸疏水性能的影响

研究背景瓦楞原纸是纸质包装材料的重要组成部分,因其具有价廉、质轻、易加工、印刷适性好、制造的纸质包装结构简单、防冲抗压强度大等众多优点,近年来需求量一直稳步上升。环压强度和疏水性能是瓦楞原纸生产企业最为关注的两项指标,然而国内多用废纸生产瓦楞原纸,其机械强度较差。实践表明,在淀粉糊化液中添加助剂对纸张进行表面施胶,是同时提高纸张环压强度和疏水性能的有效方法。因此,本研究针对一种固体胶在瓦楞原纸表面施胶的实际应用,采用多种手段(包括水滴消失时间的测定、动态接触角的测定等),综合考察固体胶替代部分淀粉进行表面施胶对瓦楞原纸疏水性能和结构性能的影响,以期为相关企业生产质量更优、综合成本更合理的瓦楞原纸产品提供一定的技术参考。实验仪器本文采用德国KRÜSS DSA100接触角分析仪对样品疏水性能进行评价。KRÜSS DSA100接触角测量仪结论与讨论水滴消失时间和接触角对纸张疏水性能的评价,同时考虑了水对纸张的润湿和渗透作用。用胶头滴管在纸张表面滴一滴水滴并立即启动秒表,测定水滴在纸张表面的消失时间,用肉眼即可观察水滴润湿与渗透纸张过程,是一种十分简便的方法,结果如图1所示。从图1可见,随着固体胶用量的增加,水滴消失时间总体呈延长趋势。当固体胶用量从0增加到40%时,水滴消失时间从100% 淀粉施胶纸张的约30 s延长至2~3 h,纸张的疏水性能得到了显著提高。 图1 施胶纸张面上水滴消失所需时间利用测定水滴消失时间的简易方法时,还可以观察到水滴在纸张表面形成的接触角大小,甚至接触角随时间的变化,但难以定量化。因此,采用接触角测定仪进一步测定。将接触角测定仪设置为在纸张表面自动滴25~30 µL的水滴,然后测量和记录60 s内接触角的变化。图2 纸张表面60 s内接触角变化图 以100%淀粉施胶及40%固体胶复配施胶为例,用拍照的方式记录水滴润湿与渗透纸张的过程,结果如图2所示。从图3可见,100% 淀粉表面施胶纸张(见图 2(a)),从水滴接触纸面(0 s)开始,随着时间的延长,接触角逐渐减小的趋势明显,而且可以看到水滴润湿纸张表面后,会逐渐渗透到纸张内部;40% 固体胶复配施胶后的纸张(见图 2(b)),其接触角大(实测数值为 120°),且水滴可以较稳定地存在,即其润湿和渗透纸张的作用不明显,说明用该复配体系进行表面施胶能在纸张表面形成很好的疏水层。 图3 施胶纸张60 s时的接触角图 3 为水滴停留60 s时施胶纸张的接触角。从图3可见,固体胶用量从0增加到40% 时,纸张接触角从43.6°增至120.2°,表明纸张获得了优异的疏水性能。小结本研究将固体胶和淀粉以不同质量比复配获得施胶液,对瓦楞原纸进行表面施胶,采用多种分析手段综合考察固体胶用量对瓦楞原纸疏水性能和结构性能的影响。随着固体胶取代淀粉的质量比从0增加到40%,接触角从43.6°增大到120.2°,水滴渗透时间从30 s延长到3 h,水分渗透到纸张纤维内部的速度明显下降,说明固体胶可显著提高纸张的疏水性能。淀粉-固体胶复配体系改善纸张施胶效果时,主要依靠固体胶和淀粉形成表面能更低的复合物,减小水对纸张表面的润湿和渗透作用;使用固体胶复配施胶液有助于形成更为致密的纸张结构及更为平整的施胶层,降低纸张平均孔径、孔隙率及表面粗糙度,由此减少纸张对水分的吸收。 本文有删减,详细信息见原文[1]柳云雷,王立军,陈南男等.固体胶对瓦楞原纸结构和疏水性能的影响[J].中国造纸,2023,42(06):48-55.

应用实例

2023.10.25

邀请函:KRÜSS诚邀您参加2023年中国半导体封装测试技术与市场年会

KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS会议信息2023 年是“十四五”发展转折之年,集成电路产业作为作为国民经济的战略性、基础性和支柱性产业,其核心技术、生态构建、行业应用等深刻影响着国家经济发展步伐,而集成电路封装测试是产业链的重要环节,坚持推动创新驱动发展、全面塑造发展新优势是重点方向。KRÜSS诚邀您参加2023年中国半导体封装测试技术与市场年会会议时间:2023.10.25 - 27展位号:C1会议地址:皇冠国际会展酒店(昆山市前进西路1277号)会议议程典型应用1.晶圆的质量控制半导体生产的质量控制要求非常高,用于制造芯片的晶圆具有非常均匀的表面,因此表面上的任何疵点都能引起高成本损失。检查晶圆表面的质量时,必须不能改变材料的性质。接触角测量可对晶圆进行非破坏性测试,检测晶圆表面的清洁度和监控质量的均匀性。即使表面结构发生了微小的变化,接触角也会灵敏的反映出来。KRÜSS的DSA100W液滴形状分析仪是为全自动对晶圆表面质量进行标准化控制设计的,基于接触角测量来监测晶圆表面清洁度和均一性。全自动测量模块中有一个特殊的晶圆定位样品台,在定义的测量位置(“绘图”)基础上,进行一系列全自动测量。不同位置接触角的测量结果可反映样品的均一性或不同区域之间的差异。2.光刻胶在晶圆表面的润湿光刻胶必须旋涂在晶圆上。因此,晶圆表面和光刻胶之间的接触特性尤为重要。如果接触角过大,光刻胶在晶圆表面呈液滴状分布,工艺失败;如果接触角太小,光刻胶很容易分布在晶圆表面,薄膜厚度很难保证,特别是对于需要厚光刻胶的层。KRÜSS的DSA系列液滴形状分析仪可以系统的分析光刻胶在晶圆表面的静态接触角,或者使用倾斜台的方法,测试光刻胶在晶圆表面旋涂过程中的动态接触角。3.金手指的亲疏水性KRÜSS的DSAM系列液滴形状分析仪可以滴定皮升级的液滴,非常适合测试金手指等微小样品表面的接触角。4.电子元器件和密封剂间的润湿和粘附为了保护成品印刷电路板免受环境影响(如振动、冲击或水分),从而保证其长期正常运行,必须用密封剂(圆顶封装体)对组件进行封装。除了良好的润湿性,组件和密封剂高强度的粘结和低界面张力也是保证封装稳定性的必要条件。通过KRÜSS的接触角测量仪测量组件和密封剂的表面能和极性来判断两者之间的润湿和粘附。例如有两种不同的组件,已知其表面自由能和分量,而密封剂的表面张力为40.5mN/m(极性部分7.5 mN/m,色散部分33 mN/m)。则可通过上图润湿谱图预判密封剂对不同组件的润湿和粘附效果。5.用于全贴合的表面处理的表征全贴合是晶圆表面彼此粘合,以形成多层结构,可用于高频技术。在高温900℃以上可产生强粘合力,然而,对于带有功能层的晶圆来说,粘合力又太高了。通过适当的晶圆预处理,如利用氧等离子体,可在低温下实现良好的粘合性。可通过测定晶圆表面能来检测预处理的质量。便携式液滴形状分析仪 – MSA可在现场进行非破坏性检测,甚至也可在竖直表面进行。6.表征评价清洁液的质量监控清洁电路板的清洗剂中表面活性剂浓度。为确保表面活性剂添加的有效性和经济性,可测量与浓度相关的表面张力值来检测清洗剂中表面活性剂的含量。绘制不同浓度动态表面张力曲线,通过BPT便携式动态表面张力仪在现场直接进行快速测试。

企业动态

2023.10.17

直播预告:日化行业中表界面常用的表征方法及应用实例分析

活动背景表界面参数在日化行业中扮演着重要的作用,可以影响产品的触感、功能、效果、和稳定性。因此,在日化产品的研发和生产过程中,越来越多的厂商开始重视表界面参数并通过标准化的测量程序实现对产品性能的多维度评价。本月19日上午10:00克吕士将举办主题为《日化行业中表界面常用的表征方法及应用实例分析》的线上研讨会。这次我们非常荣幸能够邀请到纳爱斯集团有限公司日用化工领域高级工程师徐杰作为本期讲座的嘉宾,徐杰作为项目负责人主导完成了日化产品泡沫多维度评价方法研究工作,探索了动态泡沫分析仪的实际应用,并通过差异化的自动测试程序实现了泡沫性能的多维度评价,在本次讲座中也将从分析仪器、常用参数、应用实例等多个方面和大家进行分享。KRÜSS的应用专家张晶晶也会解析表界面参数在日化行业(比化妆品中的乳化、分散、增溶、发泡和清洁等)的作用,并结合多个实例进行介绍和讲解。本次研讨会完全免费热诚期待您的参加!专家团队:讲座安排:报名方法2023年10月19日(周四)上午10:00开始本次讲座通过微吼进行,可通过手机APP或PC客户端参与直播。您可以通过以下链接或者关注我司公众微信号(克吕士科学仪器),在底部“互动”选项中选择“直播大厅”即可找到这期活动的直播入口,进行报名,期待您的参与!。

企业动态

2023.10.11

克吕士测评:粉底液的防水抗汗效果的润湿性评价

KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS“这期测评前后历时2个月,从前期说服直男老板,到线上线下调研选品,以及后期各位同事深夜头脑风暴,研究文献,配方分析,终于在金秋九月完成了。我们一直在努力向前,用尽全力为大家提供科学、严谨、有价值的评测内容”。三四十度的高温天,戴着密不透风的口罩,形容一句“人间炼狱”都不足为过。尤其是平日习惯带妆的童靴们,汗水伴随着出油,更是“每呼吸一下都在脱妆”。这时候,一款能够“超长待机”的粉底液则尤为重要。小克又拿出了看家仪器-接触角分析仪来评估粉底液的防水,抗汗效果。测评之前,我们先来讨论一下可能造成脱妆的原因:这首先得从皮肤出油导致的浮粉说起咯~非常好理解,因为粉底之类的本身含有挥发性的油脂,当上完妆之后,这些油脂就跑掉了,然后各种粉末均匀地铺展在皮肤上,显得光泽透亮。但皮肤出油之后,这些皮脂会把粉末“顶”起来,然后和粉末继续混合,并且带着粉末到处流淌,等于整个地基都破坏了。好吧,格局可以再打开一点。脱妆不仅仅是皮肤出油,还可能是外部环境的变化造成的。比如下雨天,班还是要上,门还是要出,朋友还是要见,但,妆不可以不化~;又比如,夏天想去海边、去游泳池,感受水珠打在身上的凉爽感觉,除了泳装搭配,还要考虑防水的泳妆?再比如,爬山或者出去玩害怕会出汗流白汤,毕竟汗液也是粉底天然的卸妆水。再简单了解一下粉底液增加持妆效果的配方设计。在粉底液配方中,油和成膜剂是影响持妆力的两个主要因素:油在皮肤表面形成一道封闭的油膜屏障,一般分为挥发性油和非挥发性两大类。常用的挥发性油有环五聚二甲基硅氧烷、异十二烷等。常用的非挥发性油种类繁多,基本囊括了所有的护肤油脂,例如辛酸 / 癸酸甘油三酯、新戊酸异癸酯等。硅油具有较小的表面张力,较植物油和矿油具有质地清爽不粘腻的特点,是粉底液的重要成分;成膜剂是可以形成一层连续均匀薄膜的高分子聚合物。粉底液中加入成膜剂可以提高抗水性、柔软性和延展性,改变涂抹时的流变性,使产品均匀的铺展在皮肤表面。成膜剂一般有油溶性和水分散性两大类。粉底液中常用的成膜剂有乙烯基吡咯烷酮衍生物类、丙烯酸聚合物类、有机硅氧烷类、聚氨酯类、聚酯类、MQ 硅树脂类等。那么如何选择一个好的防水粉底液呢?网络上的粉底液防水测评方法五花八门,层出不穷,最为常用的还是: 1.    将粉底液直接涂在手上,向手上喷水看水珠的状态。水珠聚落成滴,不铺展开即为好的防水粉底液。2.    目前也有参考防晒化妆品体外抗水性能测试法,在皮肤受试部位涂抹化妆品,分别测量水浸前,水浸后40min,水浸后80min受试部位的吸光度或者SPF值等。3.    更有甚者,直接化好妆,在水流冲刷下看粉底液的防水情况等。而目前,越来越多的专业彩妆公司开始考虑用接触角的方法来评估粉底液的防水和抗汗性能。该方法将一定体积的水滴或者汗液加在涂有样品的人体前臂,结合相机和软件分析水滴与皮肤的接触角,接触角越大,粉底液的抗水和抗汗性能越好。此次购买了十几个不同品牌的粉底液,从贵妇到平价都有涵盖,通过KRÜSS DSA25接触角分析仪进行测试,来系统评估粉底液的防水,抗汗和抗油脂效果。一、静态接触角本次测评,我们使用了水,人工汗液和人工皮脂,充分模拟不同的使用环境下的防水,抗汗,抗皮脂性能。接触角越大,说明粉底液的防水,抗汗,抗皮脂性能越好。二、滚动角说到滚动角,就不得不插播一段超疏水材料的起源。话说公元1063年,周敦颐先生来到了荷花池边,这位被后人称为宋明理学开山鼻祖的伟大哲学家,一挥而就写下了名传后世的《爱莲说》。这篇仅有119个字的奇文指出了荷叶“出淤泥而不染”的特性,后世的科研人员把这种性质称为表面的自清洁能力。人们通过观察自然界的自清洁现象总结出,表面的超疏水性是自清洁的前提。荷叶表面的水珠呈现无法润湿的球状,并且能够携带灰尘滚落。所以莲花的“不染尘”特性,不仅仅是静态接触角够大,还在于水能够很快从荷叶表面滚走,这就是滚动角的早期表现形式,代表了水和固体表面的粘附行为。延伸到粉底液的防水性上,可以认为水或者汗液在粉底液上的滚动角越小,水和汗液越不容易停留在粉底液上,减少脱妆的机率。结论从数据来看,大部分持妆效果比较好的粉底液中硅油和成膜剂的添加量较多,和水,汗液,油脂的静态接触角较大,而滚动角较小,一定程度上可以反映由于外部环境变化,比如雨天,游泳等情况下,粉底液的防水和抗汗,抗皮脂效果。而由于皮肤长时间出油造成的脱妆问题与接触角的关系,还有待研发工程师们进一步验证。开发粉底液所用的原料成千上万,从大量可用原料中筛查适合开发持妆型粉底液的原料是底妆配方师的工作,那么通过接触角的数据,可以帮助工程师们建立一套不同种类成膜剂等原料防水抗汗效果的数据库,为持妆型粉底液的配方开发提供一定的支撑。科技的发展带来了长足的进步,化妆品的功效评价也在与时俱进。单凭配方表或者消费者主观评价做出的任何产品评测,都是仁者见仁智者见智。目前,越来越多的专业彩妆公司开始考虑用接触角的方法来评估粉底液的防水和抗汗性能,此方法操作简单,且可重复量化。希望接触角分析技术能够为配方的筛选带来更客观和严谨的分析,建立一套可靠,便捷的体外评估方法。

应用实例

2023.09.22

应用 | 木材疏水表面的构建

KRÜSS于1796年诞生于德国汉堡,是表面科学仪器领域的全球领导品牌。先后研发了世界上第一台商用全自动表面张力仪和第一台全自动接触角测量仪,荣获多次国际工业设计大奖和德国中小企业最具创新能力TOP100荣誉。其它产品还包括各类动态表面张力仪、泡沫分析仪、界面流变仪和墨滴形状分析仪等。KRÜSS研究背景天然木材内因含有羟基等亲水基团,导致其吸水后产生膨胀、开裂、腐朽、变形等问题。一些环境因素,如湿度和酸雨,严重影响木材的耐用性和使用性能,对木制品造成损坏。将仿生疏水概念引入木材表面改良领域,在构建疏水表面的同时也赋予木材自清洁、耐化学性等特性,可提高木材在恶劣条件下的稳定性和耐久性,延长木材的使用寿命。本研究选择人工林杨木来制备疏水表面,通过自组装在木材表面构建TA-Fe III复合涂层,利用TA-Fe III复合涂层的高粘附性和二次反应活性将Ag+还原为Ag纳米颗粒沉积在木材表面,设计构建了物理化学特性稳固型木材疏水表面,并对其表面形貌结构、接触角及疏水表面的稳固性进行测试表征。 疏水木材的制备过程实验方法与仪器:本文采用KRÜSS DSA25接触角分析仪DSA25S接触角分析仪图片结果与讨论1.接触角测试如图1所示,处理前后木材表面接触角的变化。未改性木材表面的接触角为52.0°,这是由于木材表面的有大量亲水基团和丰富的孔隙结构,使木材表现出较强的亲水性,随着接触时间延长,接触角迅速下降,水滴很快渗入到木材中。经过疏水处理的木材试样,在180s内均保持在138.0°以上,表现出了优异的疏水性能。随着自组装次数的增加,TA-Fe III/木材试件的接触角从138.2°增加到了143.7°,TA-Fe III/Ag/木材试件的接触角从142.3°增加到了146.7°。在相同的处理次数下,TA-Fe III/Ag/木材试件的接触角高于TA-Fe III/木材试件,证明Ag纳米颗粒在木材表面沉积构建了良好的表面粗糙度,使得木材表面疏水性能得到明显提高。图1 木材改性前后的接触角2.化学耐久性测试疏水木材表面的耐化学性是影响疏水表面的重要因素。研究表明,强酸、强碱、有机溶剂浸泡等恶劣环境下都会影响疏水木材的疏水效果,使得木材表面接触角降低,逐渐丧失疏水性能。将疏水木材分别浸没于不同的化学试剂中 ( pH=2. 0的HCI溶液,pH=12. 0的NaOH溶液,正己烷,丙酮,乙醇,DMF) 中24h,在紫外光照射以及用开水煮沸后,疏水木材接触角均高于135. 0°(图2) ,说明在恶劣环境下,疏水木材依然可以具有优异的稳定性和耐久性。将疏水木材进行超声清洗,木材表面的接触角几乎无变化,证明疏水涂层和木材间有稳固的粘合性能。以上结果证明,所制备的疏水木材即使在恶劣、严苛的条件下,也可以保持良好的疏水性,也证明了该疏水涂层的化学耐久性和环境稳定性。 图2 疏水木材耐化学性测试结论本研究基于TA-Fe Ⅲ多次自组装在木材表面构建疏水表面,在温和、环保且不会破坏试件本身的条件下,将涂层完全覆盖于基材表面。多次自组装和利用复合涂层二次反应活性还原Ag+粒子、接枝疏水长链,可以使得木材表面被涂层完全覆盖,并逐步完善木材表面的粗糙度,使得木材表面具有更加优异的疏水性能。随着自组装次数的增加,TA-Fe III /木材试件的接触角从138. 2°增加到了143.7°,TA-Fe III/Ag /木材试件的接触角从142.3°增加到了146.7°。此外,构建的仿生疏水表面具有优异的化学耐久性和环境稳定性,即使在经过恶劣环境后,疏水木材接触角均高于135.0°,依然可以保持优异的疏水性能。参考文献[1]傅敏,李明剑,何文清等.基于TA-Fe~Ⅲ还原Ag离子构建木材疏水表面[J].化学研究与应用,2023,35(01):75-82.

应用实例

2023.09.15

新栏目:“KRÜSS的朋友圈”上线了!

团队介绍杭州电子科技大学电磁兼容材料团队,团队负责人为国家杰出青年基金获得者张雪峰教授,团队立足国际科学前沿,针对新能源、信息技术等国家战略性新兴产业需求,结合浙江省磁性材料产业区域优势,积极开展磁性材料基础研究和应用技术开发工作。团队现有专职科研人员38人,其中教授7人,副教授8人,讲师23人。已承担多项国家重大、重点研发计划和自然基金等科研项目,多次获国家级、省部级科技奖励,具有长期校企合作经验,完成了多项企业委托项目和科技成果转化。成员介绍实验室简介团队目前获批浙江省新型传感材料重点实验室、浙江省磁性材料协同创新中心、浙江省先进电磁超材料国际合作基地以及浙江省高校高水平创新团队4个省级平台团队。团队围绕永磁材料、软磁材料、吸波材料等研究领域,拥有包括超净间在内8000平方米实验室,球差电镜、SQUID、扫描电镜、放电等离子烧结、磁性材料中试线等8000万专用设备,已建成系统的基础研究、技术开发和工程化平台。

企业动态

2023.09.11

< 1 2 3 ••• 5 > 前往 GO

克吕士科学仪器(上海)有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 克吕士科学仪器(上海)有限公司

公司地址: 上海市闵行区春东路 508 号 E 栋 518 室 联系人: 王小姐 邮编: 201199 联系电话: 400-860-5168转3784

友情链接:

仪器信息网APP

展位手机站