您好,欢迎访问仪器信息网
注册
上海士锋生物科技有限公司

关注

已关注

已认证

粉丝量 0

400-860-5168转2972

仪器信息网认证电话,请放心拨打

当前位置: 上海士锋生物 > 资料中心 > 大肠杆菌杂交及基因定位实验

大肠杆菌杂交及基因定位实验

2016-01-12 07:25

浏览:147

分享:

资料摘要:

一、原理 大肠杆菌染色体呈环状。高频重组菌株(Hfr)的染色体上整合有F因子,当Hfr细菌与F-细菌细胞发生接合(即杂交)时Hfr细胞(供体菌)的染色体从Hfr细胞向F-细胞内转移。由于染色体的转移具有一定的方向性,并且可以随时中断,因此根据结合后F-细菌(以重组子形式选出)中Hfr细菌染色体基因出现次数的多少,即可得知基因转移的先后顺序,也就是说基因在染色体上排列的顺序。转移时,靠近转移起始点的染色体基因进入F-细胞的机率大,重组频率高,远离转移起始点的基因进入F-细胞的机会少,重组率低,F因子大部分位于转移起始点相对的一端(末端)。因此转移的频率很低。只有当接合时间很长,足以使整个染色体转入F-细胞(受体)时,才会使F-细胞转变为Hfr或F+状态。 基因定位时首先要从Hfr与F-细菌的混合培养物中筛选出某一Hfr与F-细菌基因(选择性标记基因)已经发生了重组的细菌(重组子),然后在这些重组子中逐个测定其它的Hfr基因(非选择标记)出现的次数。Hfr菌株染色体上的选择性标记应位于染色体前端,这样才能保证以100%的频率出现在重组子中。选择性标记之后的基因,则以低于100%的频率出现在重组子中。F-细胞的选择性标记应起到排除Hfr菌生长的作用(即反选择)。本实验使用的F-菌株为Strr, Hfr菌为Strs,借此可排除Hfr菌的生长。另一方面为保证Hfr基因有机会出现在重组子中,反选择性标记应位于染色体后端。为了使Hfr菌株有较高的接合频率,F-细菌应该过量以保证每一个Hfr细菌都能与F-细菌接合(10~20:1)。 二、目的 通过本实验,了解大肠杆菌杂交及其基因在染色体上的排列方式,并掌握大肠杆菌接合及染色体基因定位的原理与方法。 三、材料、试剂与器具 1、受体菌:FD1004 F-leu purE trp his metA ilv arg thi ara lacY xyl mtl galT strr rifr。 2、供体菌:CSH60 Hfr sup strs。 3、生理盐水:0.85%NaCl。 4、10×A缓中液。 5、基本培养基。 6、lb培养基。 7、选择培养基[B]—[G]:基本培养基加氨基酸(表1-2)。 8、培养皿、三角瓶、吸管、灭菌牙签、摇床、酒精灯、接种环。 四、操作步骤 1、第一天傍晚,分别接一环供体菌和受体菌于5ml LB培养液中,37℃振荡培养10-12小时。 2、第二天清晨,各取1ml过夜培养物,分别加入到2个盛有5ml LB培养液的250ml三角瓶,37℃振荡培养2-3小时。 3、吸取0.5ml供体菌和4.5ml受体菌,加入到一个无菌的250ml三角瓶中混合,置37℃摇床上培养100分钟。 4、将上述接合菌液用生理盐水稀释100、10-1、10-2倍。

下载本篇资料:

资料文件名:
资料大小
下载
复件 公司logo001.PNG
50KB

相关资料

英文名称:PLP;Pyridoxal-5-phosphatemonohydrate;Pyridoxal-5-monophosphoricacidester;3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde5-phosphate;Codecarboxylase 其他名称:5-磷酸吡哆醛;吡多醛5-单磷酸酯;3-羟基-2-甲基-5-[(膦酰氧基)甲基]-4-吡啶甲醛一水合物;磷酸吡醛素;吡哆醛-5-磷酸酯;3-羟基-5-羟甲基-2-甲基异烟酰;辅脱羧酶 CAS号:41468-25-1 C8H10NO6P?H2O=265.15 级别:AR 含量:≥99.0% 维生素B6:≤0.5% 干燥失重:≤10.0% 重金属:≤20ppm PH(0.25%agSolution):2.6~3.0 性状(以下信息仅供参考):类白色至淡黄色或黄色粉末。熔点140~143℃。几乎无气味。无味。见光缓慢分解。易溶于甲酸、含水吡啶和稀碱液,微溶于水、乙醇、丙酮、乙醚、氯仿和苯。水溶液在冷而避光处很稳定,0℃时3周

阿尔茨海默病(AD)是一种全球范围内患病人口较多的神经退行性疾病。 自发病起,患者的认知功能会逐渐衰退,病理表现为大脑中β淀粉样蛋白(Aβ)的累积、过度磷酸化的tau蛋白导致的神经纤维缠结以及神经炎症。 cGAS-STING通路是哺乳动物细胞检测外源DNA,并激活先天免疫反应的重要通路。它在缺血性脑损伤、帕金森病、亨廷顿病、脊髓侧索硬化症等神经疾病的发生发展中有重要作用,但是,cGAS-STING通路是否参与AD仍不清楚。 近日,由中国科学院昆明动物研究所的曾健雄和美国南加州大学的赵振领衔的研究团队,在国际顶尖杂志《自然·衰老》发表关于cGAS-STING通路参与AD的最新研究成果[1]。 他们发现在人类AD患者和衰老小鼠大脑中,cGAS与细胞质中的双链DNA结合,激活cGAS-STING通路,而敲除Cgas可以抑制AD模式小鼠的Aβ累积、神经炎症以及认知衰退。 他们还发现,STING抑制剂H-151可以显著抑制AD模式小鼠大脑中cGAS-STING通路的激活,抑制AD病理进程。 总的来说,这项研究揭示了先天免疫通路cGAS-STING和AD之间的重要联系,靶向

英文名称:Estradiol;1,3,5-Estratriene-3,17beta-diol;17beta-Estradiol;3,17beta-Dihydroxy-1,3,5(10)-estratriene;Dihydrofolliculin 其他名称:β-雌二醇;雌甾二醇;雌甾-1,3,5-(10)-三烯-3β,17β-二醇;β-1,3,5(10)-三烯-3,17β-二醇;3,17β-二羟基-1,3,5(10)-雌甾三烯-3,17β-二醇;β-雌激素 CAS号:50-28-2 C18H24O2=272.38 含量:≥98.0% 熔点:173~179℃ 比旋光度:+76~+83°(C=2,5mol/LHCl) 水分:≤3.5%(KARLFISCHER) 性状(以下信息仅供参考):白色或乳白结晶性粉末;无臭。本品在二氧六环、丙酮中溶解,在乙醇中略溶,在水中不溶。比旋度取本品,精密称定,加二氧六环溶解并定量稀释制成每1ml中含10mg的溶液,依法测定。 用途:本品仅供科研,不得用于其它用途。 保存:2~8°C

紫杉醇是目前已发现的最优秀的天然抗癌药物。紫杉醇生物合成途径已研究多年,而超大的基因组和复杂的代谢路线是途径解析的主要限制因素。中国科学院天津工业生物技术研究所与西北工业大学、深圳华大生命科学研究院等合作,首次完成了喜马拉雅红豆杉超10Gb的染色体水平的全基因组测序,并通过复杂基因组组装与分析,解析了红豆杉中生物合成紫杉醇的关键基因簇,探索了紫杉醇合成途径的起源与进化机制,为完全解析紫杉醇生物合成途径奠定了重要基础。 全基因组倍增事件是开花植物提升环境适应能力,并逐渐替代裸子植物,遍布地球的主要原因。通过对裸子植物喜马拉雅红豆杉基因组的进化分析,研究发现在地球上存活更久的红豆杉却几乎没有经历过明显的全基因组倍增事件,而是发生了大量的基因串联重复事件,其比例超过了几乎所有已知的开花植物。大量基因串联重复导致红豆杉中的一些基因家族急剧扩张,随着这些家族重复基因的功能分化,红豆杉进化出非常复杂的代谢物合成和转录调控网络。例如,与紫杉醇合成密切相关的细胞色素P450酶家族与酰基转移酶家族,通过串联复制都产生了超过50份基因拷贝,如此多的重复基因为红豆杉进化出极其复杂的紫杉醇合成途径提供了遗传基础。迄今为止,已在紫杉科的植物中发现了超过500种具有紫杉烷类天然产物。因此,大量的基因串联重复是红豆杉中紫杉醇合成途径形成的主要进化机制,也可能是红豆杉能在地球上存活至今的重要原因之一

推荐产品
供应产品

上海士锋生物科技有限公司

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 上海士锋生物科技有限公司

公司地址: 上海宝山区锦乐路957弄 联系人: 王小姐 邮编: 201900

主营产品:

仪器信息网APP

展位手机站