您好,欢迎访问仪器信息网
注册
上海昊量光电设备有限公司

关注

已关注

金牌12年 金牌

已认证

粉丝量 0

400-860-5168转2831

仪器信息网认证电话,请放心拨打

当前位置: 昊量光电 > 公司动态
公司动态

基于time-bin量子比特的高速率多路纠缠源——PPLN晶体应用

基于time-bin量子比特的高速率多路纠缠源——ppln晶体应用随着量子计算的不断发展,对于现代公钥加密的威胁也逐渐明显起来。而量子密钥分发(QKD)是克服这一威胁的方法之一,通过允许在多方之间安全地共享加密密钥,以抵御潜在的窃听者和量子计算器的解密能力。纠缠光子是此类应用的基本资源,因此纠缠分发是新兴量子网络计划的关键组成部分。来自加州理工学院的Andrew Mueller及其团队,在《Optica》期刊上发表了一篇题为"High-rate multiplexed entanglement source based on time-bin qubits for advanced quantum networks"的研究文章,介绍了他们开发的基于time-bin量子比特(qubits)的高速率多路复用纠缠源,而这一成果为构建前沿的量子网络提供了重要的基础技术。Time-bin纠缠光子简介以光子的不同时间模式编码的量子信息称为time-bin量子比特。在这类量子比特中,光子被编码到较早或者较晚到达的时间里,也就是说time-bin量子比特是光子到达时刻的相干叠加,描述一个光子处于两个时间单位的概率幅。相对于基于偏振的系统相比,time-bin纠缠光子源具有相当的优势。在时间模式中,相对的相位是稳定的,因此在远距离的传输中不会发生严重的退相干。自由空间中用于传输的偏振态对于光纤中的双折射和散射十分敏感,而Time-bin这种量子比特编码形式凭借其在光纤中对抗退相干的鲁棒性,zui适合于长距离传输。非等臂干涉仪是产生 Time-bin 量子比特的一种常用方法。Time-bin编码的概念,利用单光子。光路用红线标出。光学元件:BS -分束器,M -反射镜,φ -长程总相位变化。取自Misiaszek-Schreyner, Marta. "Applications of single-photon technology." arxiv preprint arxiv:2205.10221 (2022). 实验内容在本文中,通过将4.09-GHz的锁模激光器的光通过80ps的延迟干涉仪(12.5-GHz自由光谱范围)导入到非线性晶体中,以实现高速纠缠源。低抖动差分超导纳米线单光子探测器(SNSPDs)可以使time-bin量子比特解析为80ps宽的bin。而波长复用被用来实现多个高可见度的通道配对,这些配对共同加起来形成了一个高符合率。在低平均光子数(μL=5.6×10-5±9.0×10-6)时8通道系统可见度可达到平均99.3%,而在较高功率时(μH=5.0×10-3±3.0×10-4),演示时总符合率为3.55MHz,平均可见度为96.6%。装置具体分为纠缠光子源以及光谱复用以及探测部分。纠缠光子源下图展现了该实验装置。来自锁模激光器的脉冲光,中心波长为1539.47nm,通过一个80ps延迟线干涉仪。源干涉仪每个时钟周期产生两个脉冲,用于编码early/late的基础状态(|e⟩, |l⟩),随后由一个二次谐波生成(SHG)模块上转换,并通过一个type-0的自发参量下转换(SPDC)模块(Covesion),由下转换产生纠缠光子对。SPDC模块是一个进入的25px氧化镁掺杂铌酸锂(MgO:PPLN)波导,具有18.3μm周期。上转换的脉冲在769nm处具有243 GHz(0.48nm)的全宽半高带宽。锁模激光器(Pritel UOC)的脉冲通过80ps延迟线干涉仪分成两束,然后在二次谐波生成+掺铒光纤放大器(SHG + EDFA)模块中进行上转换和放大。来自SHG模块的短PM光纤连接到一个非线性晶体(Mgo:PPLN),通过自发参量下转换(SPDC)生成光子对。粗波分复用(CWDM)模块将光子对的光谱分离成8个13nm宽的波段,分别围绕1530和1550nm,对应于信号和闲置光子。信号和闲置光子分别被引导到Bob和Alice站点。光谱复用和探测产生的光子对通过一个粗波分复用器(CWDM)分离,该复用器的作用是将SPDC光谱分成宽带宽的两半。对于在Alice和Bob使用超过16个密集波分复用器(DWDM)通道的系统,CWDM将替换成一个分束器,该分束器有效地将1540nm以下的完整SPDC光谱发送给Bob,将1540nm以上的光谱发送给Alice。PPLN产生的纠缠闲置和信号光子分别被发送到标记为Alice和Bob的接收站。每个接收站的一个读出干涉仪将所有光谱带投影到一个复合的时间-相位基础上。在这里,DWDM将能量-时间纠缠的光子对分成光谱通道。使用100GHz间隔的密集波分复用器(DWDM)模块将每个频率通道引导到不同的光纤中。实验中采用两个超导纳米线单光子探测器(SNSPDs)进行光子到达时间的测量,并分辨通过多路复用技术产生的多个高可见度通道对。PPLN的作用高速率纠缠分布实现了基于高速率纠缠的QKD,以及具有前沿量子网络特征的更一般的操作,而这些在许多指标上都有令人印象深刻的表现。目前许多研究都强调需要利用高总量度、光谱亮度、收集效率和产生纠缠光子对的高可见性,而通过非线性晶体可以满足实际高速率纠缠分布的需求。在量子通信和光子学领域内,非线性光学晶体起到了至关重要的作用。在这项研究中,量子通信依赖于量子纠缠态的生成和分发,而使用Covesion的PPLN晶体(周期极化铌酸锂晶体),通过非线性光学效应——自发参量下转换(SPDC)产生纠缠光子对,而这些光子对是实现QKD和量子网络的基础。Covesion的PPLN晶体凭借其高非线性系数和精确地极化周期,实现了高效率的光子对产生,这将提高量子通信系统的整体速率。本文中采用WGP-1550-10光纤耦合加固型封装波导应用于SPDC,在具有出色转化效率的同时兼具易用与可靠,并可配套提供温度控制器,保证晶体在稳定的温度下工作,满足相位匹配条件以获得稳定的纠缠光子对产生。如果您对于封装波导有更多其他的需求,Covesion也提供定制服务,包括周期以及晶体长度等等参数。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.08.14

反射式-超窄带宽滤光片(FWHM可低至20pm)

反射式-超窄带宽滤光片(FWHM可低至20pm)--超窄带宽、空间光目前市场上的窄带滤光片一般都是10nm,比较窄的也仅能做到0.5-1nm左右。 反射式-超窄带宽滤光片是上海昊量光电可提供的一款超窄带宽滤光片产品(FWHM可低至20pm)。它是基于体布拉格光栅(VBG)原理制作的滤光片产品,不仅可以提供超窄的带宽,还可以实现较高的衍射效率(up to 95%)且偏振不相关,物理性能稳定,是实现空间光窄带宽滤波应用的理想选择,且已应用在量子光学、太赫兹光谱、超快光谱、窄线宽激光器等领域。体布拉格光栅(VBG)技术开发于佛罗里达大学-光学与激光研究教育中心(CREOL)。该技术通过运用紫外线进行辐射无机光敏玻璃(PTR)进行热加工,通过对光敏玻璃内部的多种特殊掺杂元素成分作用永久性的改变光敏玻璃内部的折射率,通过这种全息曝光方法,实现了具有相位调制功能的衍射体布拉格光栅(VBG)。体布拉格光栅(VBG)根据具体应用的差异,可分为以下几个主要产品:体布拉格光栅反射镜(RBG) ---波长锁定、线宽压窄;啁啾体布拉格光栅(CVBG)  ---fs/ps的脉冲展宽和压缩;超窄带滤光片(BPF)        ---超窄线宽滤波;陷波滤光片(BNF)          ---超低波数拉曼测量及汤姆逊散射;透射式布拉格光栅(TBG)    ---角度放大;反射式-超窄带宽滤光片,欢迎客户前来咨询了解。  产品主要特点:1. 超窄带宽(FWHM可低至20pm);2. 高衍射效率(up to 95%);3. 偏振不相关;4. 物理性能稳定,不易潮解;5. 参数可定制(波长、带宽、尺寸、镀膜等); VBG主要参数:n 波长范围:350-3000nm; n 衍射效率:10%-99%;n 半高全款(FWHM):20pm -2nm;n 高损伤阈值镀膜(可选) 比如波长:405nm,530nm,630nm,780nm,795nm,800nm,810nm,813nm,863nm,895nm,1030nm,1064nm,1341nm,1522nm,2200nm等; 示例展示:欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2024.08.14

使用800nm OCT光谱仪实现超深OCT成像

使用800nm OCT光谱仪实现超深OCT成像传统上,OCT成像需要使用更长的波长来探测单次扫描中超过几毫米的深度,但波长超过1100nm之后,就需要使用InGaAs探测器相机作为探测元件了,这是的整个OCT光谱仪的成本大幅增加。为此,美国Wasatch公司开发了一种拥有专li的独特光谱仪设计,使其能够使用800 nm OCT光谱仪实现高达12毫米的成像深度,为长距离成像在眼科、医学和无损检测中的经济高效应用开辟了新可能。在眼科中,长距离成像有利于对整个前房(从角膜到晶状体)的检查,因为它允许在更短的时间内获得更完整的眼睛图像。如果配置得当,它甚至可以用于对整个眼睛进行成像。它还促进了视网膜的广域成像,视网膜的曲率需要更大的成像深度,尤其是在患者不太可能保持静止的临床环境中。 在医学中,长距离OCT在血管内和胃肠道应用中的腔内成像方面可以带来巨大好处。在这种情况下,感兴趣的结构可能距离成像导管超过几毫米,因此超出了典型的OCT成像窗口。较长的成像深度可以补偿成像探头与感兴趣区域之间距离的变化,从而促进更好的成像效果。 总体来讲,成像更深的能力有助于广域成像,因为可以在单次扫描中捕捉到曲面轮廓和结构的全貌。这对于材料加工应用中的无损检测也非常有用,因为某个待检测的槽或孔可能很深,此外还可以用于在增材制造中对复杂表面进行轮廓分析。 波长与成本的平衡难题但目前主流方式有两种:扫频源光学相干断层扫描(SS-OCT:Swept Source Optical coherence Tomography)和光谱域光学相干断层扫描(SD-OCT:Spectral Domain optical coherence tomography)。这两种方法都使用多波长激光照射样品,然后测量返回的不同波长的散射光,通过对光谱进行傅里叶变换来检测不同深度的结构。不同的是SS-OCT使用扫频激光器对波长进行逐一扫描,并使用单点光电探测器捕捉信号,而SD-OCT则使用宽带光源加高分辨OCT光谱仪的组合来实现测量。 在SD-OCT系统中,宽带激光(一般为SLD,SLED或超连续谱光源)被分成两条路径:一路通向参考臂,另一路通向待测样品。来自这两条路径的光重新组合并干涉,产生的条纹图案由光谱仪读取,光谱仪将每个波长的光纤转化成数字信号输出。 当需要大于5毫米的成像深度时,会选择更长的中心波长,1300 nm就是这个穿透深度的OCT的首xuan波长。美国Wasatch公司的Cobra 1300光谱仪系列提供1.4-11.5毫米的成像深度(在空气中),具体取决于带宽。然而,随着带宽的增加,成像深度减小。因此,当需要更深的成像时,使用带宽较窄的系统。尽管1300 nm OCT为许多结构的大深度成像提供了足够的深度,但使用这种波长需要用到InGaAs相机,InGaAs相机相对于于800 nm SD-OCT的ccd或cmos相机要昂贵得多。通过使用较短的中心波长(CWL),光谱仪成本可以降低约40%,但必须也要减少带宽(BW)以保持相同的空间分辨率。 但要想使用800 nm中心波长的宽带光源进行长距离成像系统,则工作光谱带宽需降至30 nm以下,才可以在12毫米的成像深度中保持等效的空间分辨率。这就对光谱仪的分辨率提出了极高的要求:光谱分辨率需低于0.02 nm! 使用Wasatch Cobra-S 800 OCT光谱仪进行长距离成像为了将长距离成像的优势应用于800 nm SD-OCT,美国Wasatch公司运用了在光谱仪设计方面的专业知识,开发了一款具有超精细光谱分辨率的OCT光谱仪。这种拥有专li的光学设计的光谱仪就是Cobra-S 800光谱仪系列中的zui新型号CS800-841/28。它能够在841 nm的中心波长上以28 nm的带宽实现0.015 nm的分辨率。这使得使用这款OCT光谱仪的系统的成像深度可以扩展到12毫米,将传统800nm SD-OCT的范围足足扩大了三倍。 美国Wasatch公司Cobra-S 800长距离成像型号OCT光谱仪通过优xiu的光学设计做到了接近衍射极限的光学分辨率,并通过低串扰探测器将滚降(roll-off)降到非常低的水平。10毫米成像深度下的滚降小于12 dB,即使在扩展深度下也能确保高清晰度图像。空间分辨率与Wasatch Cobra 1300系列中的可比型号相似,甚至略好。 由于Cobra-S 800长距离成像型号的中心波长较短,组织中的散射会更高,尽管水中的吸收会更低。这可能会略微改变结构的对比度,在某些情况下可能会改善区分,例如某些内视网膜结构如神经节细胞。 总结:通过在更具成本效益的操作波长下提供可比的图像分辨率,800 nm的长距离成像有可能为长距离成像在眼科、医学和工业中的实际应用开辟新的机会。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.08.14

搭建光学相干断层扫描(OCT)系统您需要知道

搭建光学相干断层扫描(OCT)系统您需要知道光学相干断层扫描(OCT)系统的搭建需要光学和机械、信号和图像处理等背景知识、一定的编程能力、以及大量的时间投入。使用现成的OCT光谱仪作为起始组件可以大大加快和简化这一过程,并提高收集到的图像的质量, 在这篇技术说明中,我们将向您介绍搭建光学相干断层扫描系统的一些关键原理和光路,并分享我们技术专家的一些建议,希望对您的DIY OCT系统能起到一些有益的帮助。 一、光学相干断层扫描(OCT)简介光学相干断层扫描(Optical coherence Tomography, OCT)是一种非破坏性的3D成像技术,已广泛应用于眼科、心脏病学、动物实验和研究等医疗应用,以及工件探伤,熔池监测等领域。光学相干断层扫描是超声波的光学版本,它使用红外激光探测样品,记录光频率的干涉图,并使用光谱仪进行分析以生成横截面图像。尽管超声波检查被认为是次表面成像的标准,但其速度和分辨率有限,并且需要使用耦合介质。共聚焦成像虽然能提供亚微米级分辨率,但非常昂贵且仅限于小于1毫米的深度。OCT提供了高分辨率和高速的中等成像深度。它保留了超声波将探头带到样品的灵活性,但无接触且适用于小型或精细样品。与共聚焦成像不同,OCT可由非专业人士使用,并且可以很好地与其他系统集成进行引导成像。 OCT结合低相干干涉测量技术和对样品的扫描生成一系列横截面图像或3D体积图像。低相干干涉测量有几种实现方式,但目前主流方式有两种:扫频源光学相干断层扫描(SS-OCT:Swept Source optical coherence tomography)和光谱域光学相干断层扫描(SD-OCT:Spectral Domain Optical Coherence Tomography)。这两种方法都使用多波长激光照射样品,然后测量返回的不同波长的散射光,通过对光谱进行傅里叶变换来检测不同深度的结构。上图描述了OCT整个工作流程:a) 测量从样品返回的多波长光,b) 光谱的傅里叶变换产生反射与深度的关系(A-扫描)c) 沿x方向扫描光束生成横截面图像(B-扫描)d) 收集一系列B-扫描生成3D体积或表面图像。 扫频源OCT(SS-OCT)中,会使用一台扫频激光器对波长进行逐一扫描,并使用单点光电探测器捕捉信号。而在光谱域OCT(SD-OCT)中,则使用宽带激光源(SLD,SLED,超连续谱光源)结合具有线阵相机的光谱仪进行信号采集。 相比而言:SS-OCT提供高速和低衰减,但由于扫频源激光器的高成本而价格昂贵。SD-OCT以较低的成本提供更好的分辨率,但在速度和衰减性能上无法竞争。直到2017年,Wasatch公司首批将一种新型相机整合到其Cobra-S OCT光谱仪产品线中,才很大的改善了SD-OCT的速度问题。OCT 概念示意图,展示了如何使用低相干干涉测量技术来确定三维材料内部的结构。使用Wasatch的Cobra-S OCT 光谱仪的SS-OCT、传统 SD-OCT 和高速 OCT 的关键参数对比 二、光学相干断层扫描系统的结构在SD-OCT系统中,宽带激光光被分成两条路径:一路通向参考臂,另一路通向待测样品。来自这两条路径的光重新组合并干涉,产生的条纹图案由光谱仪读取,光谱仪将每个波长的光纤转化成数字信号输出。 光源可以使用超连续谱激光器或成本较低的超发光二极管(SLD,SLED)。为了生成横截面的OCT图像,激光束必须通过高速度扫描机制(如振镜或基于MEMS的设备)快速扫描样品。 系统软件与光谱仪和扫描臂进行通信,以同步数据采集和光束扫描,并通过快速傅里叶变换将采集的频域数据转换为时域数据来处理光谱。 三、什么是好的OCT光谱仪?用于光学相干断层扫描系统的OCT光谱仪对收集图像的质量有巨大影响。具体来讲OCT光谱仪会影响整个OCT系统的成像深度、分辨率、图像采集速度和图像对比度。低“衰减”(roll-off,即随着深度的增加,信号敏感度开始衰减)是任何OCT光谱仪的关键性能参数,这个参数由光谱仪性能直接决定。 以下是评价一台OCT光谱仪性能的一些关键方面: 1.整个谱段的效率:OCT中的反射光强度非常低,因此高灵敏度的光谱仪将显著改善图像质量。由于OCT的结果依赖于对光谱的傅里叶变换过程,所以光谱中的每个波长都很重要。光谱仪响应波长越均匀,图像质量越好。使用高效、宽带光栅在光谱仪中非常重要,Wasatch Photonics是世jie上知名的透射式体相全息光栅的制造商,可以为OCT光谱仪需求提供量身定制的光栅,从而极大的提升了其OCT光谱仪的性能。2.对偏振不敏感:由于OCT是一种干涉技术,通常使用光纤进行传输,这使得系统对偏振变化高度敏感。虽然光谱仪中的大多数组件对偏振不敏感,但一些光栅对偏振高度敏感,因此不适合OCT成像。VPH透射型体相全息光栅的偏振灵敏度非常低,这就是为什么Wasatch Photonics是全qiu领xian的OCT光栅供应商。 3.衍射极限光学设计:市场上能买到的光学元件往往无法提供高清晰度的OCT图像,因为获得良好衰减的光学限制非常严格。好的OCT性能要求在整个谱段上,聚焦在每个相机像素上的光斑必须很小,以避免信号扩散到相邻像素。Wasatch Photonics,的OCT光谱仪定制设计的镜头组,提供所有波长下OCT的优化光谱仪性能,远远优于使用现成的镜头。4,高速高保真相机:尽管you秀光学设计可以显著减少OCT光谱仪中的衰减,但相机像素间的串扰可能限制可实现的性能。在Wasatch Photonics,我们使用高灵敏度、低串扰的相机,例如用于我们的Cobra-S光谱仪所使用的相机可提供高达250 kHz的扫描速率,可满足大多数商业SS-OCT的速度要求。 5,相机接口选项:Cobra系列OCT光谱仪中相机的数据传输可以通过 camera link 或USB完成,具体取决于相关相机型号。camera link可提供更快的扫描速度和更稳定的平台,但需要购买相应的板卡和一台电脑。USB 3.0通信则允许使用笔记本电脑进行扫描,但仅限于130 kHz;还需要相机相关的软件开发。我们提供这两种选项,给您所需的灵活性。 6,简化相机通信的SDK:用于OCT光谱仪的相机有许多其他用途,并且附带了大量复杂的控制和数据采集命令手册,筛选这些命令可能非常耗时。因此,Cobra系列OCT光谱仪附带软件开发工具包——一组精简的OCT特定命令和示例GUI,允许您在从任何OCT光谱仪中获取图像后的30分钟内开始,节省了数天到数周的软件开发时间,并保证结果。 四、Wasatch OCT光谱仪:Wasatch Photonics提供从可见光到1600 nm波长范围的无与伦比的OCT光谱仪系列,速度高达250 kHz,让您找到zui适合的选择。选择您所需深度和分辨率的中心波长和带宽,然后选择适合您应用的相机、速度和连接。 关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.08.14

OCT在无损检测中的应用举例

OCT在无损检测中的应用举例光学断层扫描成像(OCT)利用红外光提供表面轮廓和次表面结构及均匀性的信息,提供比超声波检测更高的分辨率和更快的图像速度。该新型无损检测(NDT)技术无需接触或耦合介质,能够实时提供精确的信息,用于现场过程反馈和成品的高通量质量控制。 光学断层扫描成像(OCT)在无损检测中的主要优势为:高分辨率:2.6-10.0 µm视频速率采集:每秒30张图像成像深度:高达5.8 mm非接触和非侵入性无需耦合介质3D成像和尺寸分析 光学断层扫描成像(OCT)可检测的典型 材料所有介电材料涂料、玻璃、薄膜、涂层聚合物、硅胶、橡胶塑料(较浅深度,约2 mm)金属(仅表面特征)OCT在无损检测中的应用 OCT在无损检测中的主要应用包括: 1.激光焊接及增材制造OCT是评估工具、模具和zui终部件形状和尺寸的优xiu工具,如图所示,适用于基于聚合物的3D打印。它还可以在激光加工期间提供实时过程反馈,用于控制烧蚀深度,以及在增材制造中的缺陷检测和尺寸分析。 高分辨率激光微加工和焊接系统所需的精确度和速度要求同样精确的无损原位监测工具进行反馈。Wasatch公司的OCT引擎能够以快速、非接触的表面扫描提供评估烧蚀率、焦点位置和深度所需的速度和详细信息,用于自适应过程控制。它们还集成到评估工具、模具和zui终零件形状和尺寸的系统中,并用于增材制造中的缺陷检测和尺寸分析。 2.航空与汽车OCT可用于评估航空和汽车等行业关键涂层和油漆的应用。高分辨率层成像可以分析厚度均匀性和影响质量及安全的缺陷。OCT提供高分辨率图像以评估精细结构材料的缺陷和均匀性,如图所示,通过划痕区域的涂层厚度横截面。 Wasatch公司的OCT光谱仪成功集成于我们客户OCT系统之中,用于检查涂层和油漆的多层结构,评估平整度、均匀性和次表面缺陷,精度可达微米级。 3.显示和面板的OCT无损检测OCT的优良轴向分辨率非常适合多层结构的NDT成像,应用于显示面板。获取的3D信息可用于评估平整度均匀性并识别影响显示质量的次表面缺陷。可以清晰成像小于10 µm的亚层。 4.医用设备的OCT无损检测由于能够生成非常小、薄和精细结构(如隐形眼镜)的非接触图像,医疗行业迅速采用了OCT。OCT还可以提供有关关键膜和密封件生产中的孔隙、缺陷和间隙的信息。5.血管造影和皮肤病学OCT血管造影(OCT-A)允许在不使用外部对比剂的情况下,可视化微观血流,创建微血管的3D轮廓。可见光OCT更进一步,通过测量血氧饱和度(我们的Cobra VIS是唯yi现成的型号)。在皮肤病学中,我们支持研究人员非侵入性地诊断和监测各种组织癌症,以及评估肿瘤边缘。迈阿密大学的一组研究人员甚至捕获了详细的伤口图像,能够客观评估一种新的干细胞疗法,效果堪比显微镜。 6.矫正镜片关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.08.14

OCT:从原理到关键参数

OCT:从原理到关键参数一、什么是OCT?光学相干断层扫描(OCT)是一种三维成像技术,可以在散射介质中进行高分辨率成像,无需接触样品或使用任何耦合介质。OCT的横向成像分辨率可达到几微米,成像深度可达几毫米。OCT能够提供样品表面轮廓和次表面结构(即表面以下的结构)及样品均匀性的信息,从而实时提供准确的信息用于诊断、监测和现场过程反馈。因此,OCT已经在眼科、皮肤科、血管造影等生物成像领域得到了应用,并且在材料检测和无损检测中作为超声波的强大替代技术。 二、OCT的工作原理OCT依赖于样品不同区域的背向散射光来生成3D图像。它使用不同的定位技术来获取轴向(沿光束方向或进入样品的z轴)和横向(垂直于光束的平面或样品的x-y轴)信息。轴向信息是通过估计从样品中的结构或层反射的光的时间延迟来获得的。这种技术类似于生成超声波图像的技术,但使用的是光而不是声音。由于光速极快,直接测量反向散射光的时间延迟并不容易。因此,OCT系统使用低相干干涉技术间接测量时间延迟。1.移动参考臂实现OCT测量在低相干干涉仪中,使用具有宽光谱带宽的光源进行照明。光源发出的光被分束器分成两条路径,称为参考臂和样品臂。来自每条臂的光被反射并在检测器处结合。只有当参考臂和样品臂的光程几乎相等时,检测器上才会出现干涉效应。因此,干涉现象的出现可以被用来进行光程的相对测量。光学相干断层扫描就是将样品臂中的镜子替换为待成像的样品。然后对参考臂进行扫描,并在检测器上记录得到的光强度。当镜子几乎与样品中的某个反射结构等距时,会出现一定的干涉图案,从而获得样品对应位置的结构信息。显然在参考镜移动的过程中,两次干涉发生对应的参考镜位置之间的距离对应于测量光路中样品两个反射结构之间的光学距离。当光束穿过样品时,不同的位置的独特结构会通过上述低相干干涉记录的反射量被记录下来,从而得到测量样品的散射信号和深度之间的函数关系。 把 OCT 中使用的宽带光源光束聚焦到一个小点(约几微米),并在样品上进行x-y扫描,同时使用干涉测量收集深度信息,这样可以构建样品的完整 3D 图像。 2.傅里叶域OCT傅里叶域OCT(FD-OCT)提供了一种更高效的方法来实现上述低相干干涉。傅里叶域OCT(FD-OCT)并不是像上边提到方法那样在参考镜的不同位置记录强度,而是将强度记录为光的波长(或频率=光速/波长)的函数。不同频率的光强度变化率反映样品中不同反射层的位置信息。可以证明,光谱干涉数据的傅里叶变换提供的信息相当于移动参考镜所获得的信息。 3.傅里叶域OCT测量光谱干涉的两种常用方法光谱域光学相干断层扫描(SD-OCT:Spectral Domain Optical coherence Tomography):宽带光源向样品发出包含很多多波长成分的光谱管,并使用光谱仪同时测量所有波长。扫频源光学相干断层扫描(SS-OCT:Swept Source optical coherence tomography):光源在一系列波长范围内进行扫频,检测器的时间输出被转换为光谱干涉。 傅里叶域OCT相对于干涉仪中样品臂镜的移动拥有更快的成像速度,因为样品的所有反射都被即时的同时测量出来的。傅里叶域OCT引入的速度提升为该技术开辟了全新的应用领域。通过商业化的设计,傅里叶域OCT可以轻松获得实时视频、面下OCT成像,使其广泛用于用于诸如过程监控和手术引导等对实时性要求比较高的领域之中。  三、OCT系统的关键参数1.分辨率OCT系统的轴向和横向分辨率是独立的。轴向(深度)分辨率与光源的带宽(相干长度)有关。对于高斯形光谱,轴向分辨率 (λc) 由以下公式给出:其中:λ是中心波长,Δλ 是光源的带宽。需要注意的是,这个光谱是指在探测器上测量到的光谱,可能与光源的发射光谱不同,这是由光学元件和探测器本身的响应造成的影响所致。需要注意的是,严格来讲上述公式仅适用于高斯形光谱,对于其他光谱形状仅可作为一个分辨率估算参考。对于任意已知形状的光谱,应估算轴向扩展函数以了解可实现的分辨率和可能的边带。下图中的轴向分辨率方程的图显示了三个不同中心波长的情况,展示了光源带宽对近红外常用工作带中的轴向分辨率的影响2.成像深度OCT(光学相干断层成像)的成像深度主要受光源在样品中的穿透深度限制。此外,在傅里叶域OCT中,深度还受到光谱仪有限像素数和光学分辨率的限制。如前所述,傅里叶域OCT中的图像是在傅里叶变换光谱干涉数据后获得的。傅里叶变换后的总长度或深度受光谱数据采样率的限制,并遵循奈奎斯特定理。具体来说,光谱数据采样率(或采样密度)指的是在给定的波长范围内,光谱仪所能分辨和记录的波长点的数量。更高的采样密度意味着在相同的波长范围内有更多的采样点,从而可以获得更高的分辨率和更大的成像深度。由N个像素采样的总带宽(Δλ)给出了波长采样率δλ = Δλ/N。由于傅里叶变换将频率与时间关联起来,我们可以将波长转换为频率,δν = cΔλ /λ²。奈奎斯特定理表明,傅里叶变换数据中的zui大时间延迟将是tmax = 1/2 δν,而数据中的zui大深度将是zmax = c* tmax。通过结合这些,傅里叶域OCT中可实现的zui大成像深度为:3.灵敏度随深度的变化关系在傅里叶域OCT中,理论上灵敏度取决于反射目标的位置。zui大灵敏度出现在样品光和参考光之间光程正好相等的点,即零延迟差点附近,并且随着我们远离零延迟点而减小。这种损失是由光谱仪的有限像素大小和有限光学分辨率导致的。可以证明,灵敏度与深度的关系如下:其中R(z):随深度变化的灵敏度。z: 深度,通常指光在样品中传播的距离。ρ: 一个与光谱仪分辨率和光源带宽相关的常数,具体定义依赖于系统的设计。W=δλ/Δλ: 其中δλ是波长采样率(光谱仪的分辨率),Δλ是总带宽sin(ρz): 表示由于光谱仪有限像素引起的调制效应。sin(ρz)/(ρz): 表示由于有限像素引起的调制效应的归一化形exp[-z^2/(wρ)] : 指数衰减项,表示由于光谱仪有限光学分辨率引起的衰减效应。通过这个公式可以看出,OCT的灵敏度随着分子深度z^2的增加而减小,这种减小是由光谱仪的有限像素和光学分辨率共同决定的。 4.信噪比信噪比一般定义为信号功率与噪声功率的比率,噪声功率用其方差来定义。 OCT的主要噪声来源有:A,探测器噪声,主要来自电子元件的热波动。B,由于光子到达和探测器检测的内在方差产生的散粒噪声。C,光源的相对强度噪声 (RIN)。理想的OCT系统,应该是其探测器和强度噪声都被zui小化掉了,在散粒噪声域内工作,其性能仅受限于到达探测器的光子数量。5.OCT的灵敏度在光学相干断层扫描 (OCT) 中,灵敏度指系统检测样本反射zui微弱信号的能力。数值上,灵敏度是使信号达到信噪比 (SNR) 为1时的信号衰减程度,即信号强度等于系统固有噪声的点。6.分贝 (dB) 单位的测量信噪比或灵敏度常用分贝 (dB) 表示。物理量的dB单位对应10log(Pa/Pb)。光学测量中,光功率 (P) 与光电探测器输出电流 (I) 成正比,但电功率与I²成正比,因此考虑光功率时,OCT的SNR和灵敏度测量用20log(Pa/Pb)。7.速度OCT系统的速度取决于到达探测器的光量。速度与系统积累足够光子的时间直接相关。其他限制因素包括各部件自身参数的限制,例如:基于光谱仪的光谱域OCT系统速度受相机传感器和电子元件限制。对于扫频光源傅里叶域OCT,扫频激光源的速度常是限制因素。尽管SS-OCT常因速度被选择,近年来相机速度的进步开始缩小这一差距。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2024.08.14

时域热反射测量系统(TDTR)的典型光路介绍

时域热反射测量系统(TDTR)的典型光路介绍时域热反射技术(TDTR)是一种高精度、高时间分辨率的热物性测量技术,主要用于研究各种材料的热物性,包括单层膜、多层膜、液体材料的热导率、热容,以及固-固材料界面、固-液材料界面,微结构界面热导;及各种微结构热物性等,从而帮助科研人员更好地理解材料的热传输特性。本文主要对飞秒激光时域热反射测量系统(TDTR)的典型光路即组成进行了介绍。1,泵浦探测技术泵浦-探测技术(Pump-Probe Technique)是一种时间分辨光谱技术,广泛用于研究材料的电子、振动和光学性质。这项技术通过精确控制时间,可以捕捉材料在不同时间点的动态变化,因此在纳米材料的热传输和能量转移研究中尤为重要。基于泵浦-探测技术,发展出了一系列实验技术,如瞬态热反射(Transient Thermo-reflectance, TTR)、时域热反射(Time-Domain Thermo-reflectance, TDTR)、频域热反射(Frequency-Domain Thermo-reflectance, FDTR)和热透射显微镜(Photothermal Microscopy)。这些技术各有特点,适用于不同的研究场景。 2,时域热反射技术(TDTR)时域热反射技术(TDTR)是一种高精度、高时间分辨率的光热技术,用于测量材料的热物性参数,如热导率、热扩散率和界面热阻。时域热反射技术(TDTR)基本原理如下:①泵浦脉冲加热:首先,一个强激光脉冲(泵浦脉冲)照射到材料表面,瞬间加热样品。这种加热过程非常短暂,通常在皮秒(ps,10^-12秒)量级。通常情况下,样品表面会镀上一层薄金属膜作为传感器,当温度升高时,金属膜的反射率会发生线性变化。②探测脉冲测量:然后,一个弱激光脉冲(探测脉冲)在不同时间延迟下照射同一位置,测量探测脉冲的反射光强度,以获取材料反射率的变化。③数据分析:通过分析反射率变化曲线,结合热传导模型进行数据拟合,从而提取样品的热导率、热扩散率、热容、界面热阻(界面热导)等参数。3,时域热反射技术(TDTR)的典型光路图如下以昊远精测的Pioneer-ONE:飞秒激光时域热反射测量系统为例介绍TDTR系统的典型光路:图(1)双波长热反射泵浦探测系统结构示意图 Pioneer-ONE TDTR时域热反射系统的结构如图(1)所示,其核心部分是一台飞秒光纤激光器,该激光器提供系统的输入光源,波长为1064nm,脉冲宽度为100 fs,重复频率为80 MHz,发出的是线偏振光。为了防止背反射导致系统不稳定或激光器损坏,激光首先通过一个光隔离器(optical isolator)。接下来,激光通过一个由1/2波片(1/2 Waveplate)和偏振分束器(Polarizing beam splitter)组成的分光结构,分为两束:泵浦激光和探测激光。1/2 波片可以用来调节泵浦探测两路的分光比例。 泵浦激光路径:①泵浦激光经过一台美国Conoptics公司的电光调制器(Electro-Optic Modulator, EOM),其强度被加载ωr频率的调制,ωr同时也作为锁相放大器的参考信号使用。②泵浦激光随后经过BBO晶体进行倍频,经过晶体之后,激光变成了包含1064nm(基频成分)+532nm(倍频成分)的双色光。③经过倍频晶体的激光经过冷光镜(Cold Mirror)滤波,基频光被基本滤除。Red filter进一步滤除泵浦激光中的基频光,减少其对探测信号的影响。 探测激光路径:①探测激光首先经过延迟平台(delay Stage),控制光程,以调节泵浦脉冲和探测脉冲到达样品表面的时间间隔。延迟平台的步进精度决定了测量的时间分辨率(在其不小于脉宽的情况下),行程决定了可测量的总延迟量(在其不大于脉冲间隔的情况下)。②为减少光束发散的影响,在探测激光经过延迟平台前,使用扩束装置(beam expander)放大光束,减少发散角。 合束及检测:①处理后的泵浦激光和探测激光通过冷光镜(Cold Mirror)合束,并通过一个光学物镜共同聚焦在样品表面。②探测激光在样品表面反射后,通过偏振分束器和四分之一波片(1/4 Waveplate)进行分离。探测激光在延迟平台后为水平偏振方向,完全通过偏振分束器,到达样品前后经过四分之一波片,偏振方向由水平变为竖直,在返回至偏振分束器时被完全反射。③由于探测激光信号非常微弱,少量泵浦激光到达光电探测器会严重影响测量结果。因此,在光电探测器前放置蓝光滤光片(Blue Filter),对波长为532nm的泵浦光进行再次滤波,有效去除其对探测光的干扰。④反射出来的探测激光经过焦距为300 mm的平凸透镜聚焦在另一个光电探测器的光敏面上,该探测器与锁相放大器相连,用于采集实验信号。⑤另外,通过铝膜反射镜将光线反射至ccd相机,可以观察样品表面的质量以及泵浦激光和探测激光光斑的重合程度。 如上就是Pioneer-ONE TDTR采用的双色激光泵浦探测方案,此方案能更好去除泵浦光对探测光信号的干扰,以实现更高的信噪比和抗干扰性。采集到的方案经过昊远精测专业热传导分析软件平台Thermo-Mind进行建模分析,就能够得到样品的相关热物性参数了。

应用实例

2024.08.01

热物性拟合中的敏感度分析

热物性拟合中的敏感度分析一、热物性敏感度介绍热物性敏感度分析(Sensitivity Analysis)用于确定系统或模型对输入参数或待拟合参数变化的敏感程度。热物性敏感度分析主要作用包括识别关键因素、提高模型可靠性、不确定性评估、模型简化等。以时域热反射(TDTR)系统为例,影响敏感度的主要因素包括激光功率、激光光斑尺寸、调制频率以及样品的各项热物性参数。敏感度一般推荐是在样品制备之前进行,根据热物性敏感度分析的结果来设计样品和选择实验参数有利于拟合模型得出更加可靠的结果。除此之外,热物性敏感度分析还可以被用作模型简化:通过识别不重要的变量,热物性敏感度分析可以帮助简化模型,减少计算复杂度和成本,同时保持模型的准确性。二、热物性敏感度的公式及相关参数下面我们以时域热反射(Time-Domain Thermoreflectance, TDTR)系统的敏感度分析为例,来理解敏感度分析的具体情况,敏感度的定义为:其中 x 是模型参数,Y 为锁相放大器信号, Sx 为信号对该模型参数x的敏感度,之所以使用对数形式是因为根据对数函数求导规则这样就可以消除信号自身强度对敏感度的影响,使得各个参数的敏感度可以进行横向比较。在TDTR,FDTR,SDTR中,可以用来拟合的锁相放大器信号(Y信号)包括信号的幅值,相位、相位差、Vin、Vout、或整个复数信号Z。时域热反射技术(TDTR)中常用幅值信号、相位、有时也会使用复数信号随延迟量的变化曲线进行拟合。频域热反射技术(Frequency-Domain Thermoreflectance, FDTR)一般使用相位信号随频率的变化曲线进行拟合。传统的空间域热反射技术(Spatial-Domain Thermoreflectance, FDTR)使用相位信号随空间扫描位置坐标的变化曲线进行拟合,但这种方法存在相位差校准引入的误差。昊远精测公司WildFire-ONE 热导率测量仪改进了传统的空间域热反射技术(SDTR),采用扫描位置与双光斑重合位置的相位差随扫描位置坐标的变化曲线做为拟合信号,同时使用了振幅信号随位置坐标的变化曲线作为等效光斑尺寸的拟合信号。同时解决了相位矫正和光斑输入的误差,极大的提高了SDTR技术的准确性和可靠性。时域热反射技术(TDTR)中的参数包括,飞秒脉冲激光的重复频率、等效光斑直径、调制频率、各层厚度、各层各向热导率、各层热容、各层界面热阻(热导)等。其他系统的基本类似。三、热物性分析软件Thermo-Mind敏感度分析功能的用法昊远精测热物性分析系统平台软件Thermo-Mind提供方便快捷的敏感度分析功能,可以极大的助力实验进程高效的进行以及得到优质的实验数据。下面我们以TDTR系统为例介绍一下热物性分析软件Thermo-Mind的敏感度分析的一些使用场景:1,在制样之前,客户首先要大致规划样品的结构,并估算样品的参数的数值。在这个阶段,我们就推荐客户对各参数进行敏感度分析,并根据敏感度分析的结果对初步的样品结构以及部分参数(譬如样品各层厚度)进行优化调整。绝大多数热物性测量(包括TDTR、FDTR、SDTR、3OMEGA谐波法等)都是基于模型拟合的方式进行测量的。在拟合过程中,如果将有过多的参数设为待拟合参数,往往效果不佳甚至出现明显错误的结果。所以在规划实验阶段,首先就要先确定哪些参数为输入参数(已知参数),哪些为待拟合参数(未知参数)。此时推荐进行敏感度分析对样品结构设计进行优化,优化的原则是:输入参数敏感度越小越好,待拟合参数敏感度越大越好。输入参数敏感度小会降低实验结果对输入参数误差的依赖性,提高系统拟合结果的可靠性。待拟合参数敏感度越大则会增加待测参数拟合的精度。2,在样品制备完成之后,一般是通过更改调制频率来调控各参数的敏感度的。调制频率和热场的穿透深度直接相关,热穿透深度公式为:从上式可以看出,对于任意样品,都有调制频率越高穿透深度越浅,调制频率越低,穿透深度越深。不论是各光热反射方法还是3Omega谐波测温法都是通过样品表面温度的变化来计算相关模型输出信号的。不同穿透深度会更多的携带其穿透深度内的信息到达表面温度场。所以控制不同的穿透深度对测量结果有着至关重要的作用。Thermo-Mind软件敏感度分析功能可以针对不同的样品结构帮助客户锁定zui优的调制频率。3,在实际TDTR测量中,很多时候会存在这样的现象(以下以两个参数拟合的过程为例),即在某个频率下待测参数A的敏感度非常低,同时待测参数B的敏感度较高;在另外一个频率下,待测参数A的敏感度较高,同时待测参数B的敏感度非常低。如果经过敏感度分析发现样品的确存在这种现象,则可以选择先在第1个频率处把B参数固定在某个数值上,仅对A参数进行拟合。第二步再在第二个频率下,把第1步拟合出的参数A当成输入参数,对参数B进行拟合。此后再将第二步得到的参数B带入第1个频率下的数据进行拟合,如此迭代可以极大的提高测量的准确性和可靠性。值得一提的是,昊远精测zui新版的Thermo-Mind-TDTR软件增加了多频拟合功能,客户可以根据敏感度分析的结果对多个zui优频率进行整体拟合,从而方便快捷的得到可靠的测量结果。如您有任何关于热物性敏感度的问题,您可以和昊远精测的工程师及专家进行沟通探讨。此外昊远精测提供各种专业热物性测试服务,服务之前我们都会对您的样品进行详尽的敏感度分析,和您共同制定优化的测试方案,以期得到准确和可靠的结果。欢迎大家咨询联系。

应用实例

2024.08.01

光谱可调光源在消费电子传感器调试及测试的应用介绍

光谱可调光源在消费电子传感器调试及测试的应用介绍背景介绍消费电子产品广泛的应用在日常生活的方方面面,包括手机、笔记本电脑、平板电脑、智能手表等等。消费电子中通常会包含各类传感器用于感知设备周围环境参数。包括环境光传感器,接近传感器,频闪传感器等。环境光传感器可以检测周围的光源强度,并根据检测结果自动调节屏幕亮度,它还可以调整相机曝光、白平衡参数,控制屏幕自动旋转和调整环境照明等。接近传感器用于检测设备与物体之间的距离,可以自动关闭屏幕和调节听筒音量等,如当用户将手机靠近耳朵时,接近传感器会检测到物体的距离,并自动调节屏幕亮度或自动关闭屏幕,以节省电池电量,并避免过亮的屏幕对眼睛的刺激或在通话时误触屏幕。闪烁传感器是一种可以检测光源闪烁频率的传感器,用于自动调整摄像头的曝光时间和白平衡,从而避免了拍摄出来的照片和视频出现闪烁或条纹等问题。提高低光条件下的拍摄效果,从而提供更加清晰和稳定的照片和视频。通常情况下,各类传感器在实验室环境下需要在各类光源和强度下进行调试和测试,确保其正常稳定的工作。但是,现有的对应的光源产品通常仅仅提供有限几种光谱、色温和强度,例如现有工业上常用的色彩视觉评价标准光源箱,通常包含标准的日光、CWF、TL84、A光源等几种固定光源,强度不可调,且无法增加新的光源;随着LED技术的不断发展,各种各样的光源光谱在市场上都非常常见,并且应用在人类生活的各个场景。 所以现有的光源产品难以满足现在研究和工业的需求。为了解决上述问题,昊量光电提供了一个zui终的解决方案-光谱可调LED光源,可以实现任意光谱曲线的复现,从而达到复现各类照明环境的模拟。核心技术和产品昊量光电的新一代多通道光谱可调LED光源采用多种覆盖可见光至红外的几十种高功率LED和完全自主研发的控制软件,可以实现对任意光谱功率分布的模拟,包括高品质的日光(显色指数CIE Ra 99, 同色异谱指数A)、黑体辐射轨迹(2000-20000K)和zui新的LED标准光源,照度强度可调节,无预热时间,稳定性强,寿命长,可自校准等优点。灵活的安装方式可以按照客户要求定制大空间光环境照明光源。LED通道光谱功率分布曲线新一代多通道光谱可调LED光源灵活安装方式消费电子传感器测试场景技术规格透射式多通道LED均匀校准光源透射式多通道LED均匀校准光源是一款专门为传感器和相机模组测试开发的。光源包含≥32个LED通道,覆盖380-1000nm,实现光谱级可调,保证平滑的光谱功率分布输出,并提供波长定制服务。每一LED通道有12位的亮度可调,并通过线性恒流驱动,保证完全无频闪。色温可调范围为2000-20000K,出光面照度可调范围为1-20000lux。you秀的光学设计保证出光面Φ100mm高均匀>96%输出。半导体散热保证LED模块的工作温度范围控制在±1℃以内,实现ji佳的输出稳定性。软件允许用户自定义光谱数据的创建、保存和调用,且支持外接测量设备实现光源的快速测量和校准,API函数可用于客户端软件自校准和集成。透射式多通道LED均匀校准光源产品特点:≥32个LED通道,覆盖380-1000nm,实现光谱级可调,平滑光谱功率分布输出宽色温输出范围,2000K-20000K单通道12位(4000级)亮度可调,线性恒流驱动,完全无频闪宽照度输出范围,1-20000Lux高出光面均匀性,>96%半导体散热保证光输出ji佳的稳定性,LED模块的工作温度范围控制在±1℃以内通过软件和外部测量设备实现自校准长寿命 (>20000h)可提供API函数进一步集成自动化 应用照明研究通常需要提供各种色温、光谱和强度模拟研究用的照明场景,并进行相关的实验,找到zui佳的特定场景下的照明参数,包括健康照明、医疗照明、中间视觉、光的非生物效应、物体显色性、白度评价、农业照明等不同光环境下测试笔记本电脑的传感器各种色温模拟宽照度输出计量和认证光源产品已经在计量院做过计量和检测这款光源应用的场景众多。想要了解更多应用可以联系我们工程师。主要涉及到:医疗照明研究,手机厂商光谱可调光源,汽车色彩视觉评价光源房,相机及传感器校准和测试,照明场景模拟等。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.07.11

基于SPAD单光子相机的LiDAR技术革新

基于SPAD单光子相机的LiDAR技术革新单光子光探测和测距(激光雷达)是在复杂环境中进行深度成像的关键技术。尽管zui近取得了进展,一个开放的挑战是能够隔离激光雷达信号从其他假源,包括背景光和干扰信号。本文介绍了一种基于量子纠缠光子对的LiDAR(光探测与测距)技术,该技术通过利用时空纠缠光子对及SAPD单光子相机的特性,显著提高了在复杂环境中的探测精度和抗干扰能力。该技术使用SPAD单光子相机作为探测端,并通过内置的时间相关单光子步进偏移计数技术来提高测量时间精度。光源使用了一个基于β-钡硼酸盐(BBO)晶体的非线性光学晶体来产生纠缠光子对。通过精确控制光子对的发射和接收,以及利用SPAD单光子相机高速、高灵敏的特性,zui终能够精确捕获从目标反射回来的光子。该系统使用两种技术来提高测量的准确性和抗干扰能力:1. 时间相关单光子步进偏移计数:通过记录每个单独光子的时间戳,能够以皮秒级的时间分辨率捕捉光子。这种高分辨率计时信息对于确定光子从目标反射回来的准确时间至关重要。使用SPAD单光子相机,这种相机具有单光子灵敏度和皮秒级的步进偏移时间分辨率。实验利用了时间门控技术,通过精细地移动时间窗口来捕捉光子,这有助于高精度地确定光子的飞行时间。具体到每个光子的时间戳记录,使用时间相关的单光子步进偏移计数技术,记录每个探测到的光子的到达时间,从而实现高精度的深度信息获取。   2. 时空反相关技术:通过利用纠缠光子对的时空反相关性,即使在干扰信号的存在下,也能区分目标光信号与其他光源。例如,实验中使用SPAD单光子相机设置特定的门控窗口,只有当纠缠光子对同时到达相机时,才会记录事件,从而有效过滤掉非目标光源的信号。在该量子LiDAR(光探测与测距)系统的实验测试中,研究团队展示出了其在处理同步和异步的干扰信号方面的显著性能。系统通过使用时间门控和空间反相关技术,成功地从其他光源干扰中分离出目标光信号。实验结果显示,该系统能够在复杂的干扰环境下准确地成像和测距,即使在有意的欺骗攻击和背景LiDAR系统的干扰下也能保持高精度和高信噪比。并且还通过更具体的测试场景如模拟多个LiDAR(光探测与测距)系统并行工作和环境光干扰,来验证量子LiDAR(光探测与测距)系统证明了其在实际应用中的可行性和优越性。实验和分析结果如下图所示:这些实验不仅验证了量子LiDAR(光探测与测距)在技术上的前瞻性,也为未来其它应用领域提供了重要的参考价值。量子LiDAR(光探测与测距)技术通过利用量子纠缠光子对的独特性质,显著提升了LiDAR(光探测与测距)系统在复杂环境中的性能。特别是在高干扰的环境中,如多LiDAR(光探测与测距)系统操作或强烈背景光的情况下提高对目标物甄别的能力。该实验中所应用的SPAD单光子相机为SwissSPAD2,其为瑞士Piimaging公司目前所产SPAD512²的前身,阵列像素为512×512,无读出暗噪声,帧率zui高为100000帧/S,步进偏移精度为17ps。未来,这种技术有望在自动驾驶、机器人技术以及军事和民用遥感领域中发挥重要作用。上海昊量光电设备有限公司是瑞士Piimaging公司中国区域的du家合作伙伴,负责全面的技术支持,售前售后等服务。本文章的参考的原文章如您感兴趣,请联系上海昊量光电进行下载。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.07.11

紫外波段SID4-UV HR-免费试用7天!-火热预定中,先到先得

紫外波段SID4-UV HR-免费试用7天!-火热预定中,先到先得190-400nm紫外波段SID4 UV-HR免费试用!紫外波段SID4 UV-HR免费试用 Phasics波前传感器以其独有的横向四波剪切技术闻名,其推出的SID4系列波前传感器以高灵敏度、高分辨率、高重复性的特点更受市场青睐,昊量光电推出免费试用-紫外波段SID4-UV HR样机活动,为190nm-400nm紫外波段科研方向研发助助力,为中国工业提提速!PHASICS成立于2003年,提供zui先jin的光学计量和成像解决方案,从独立的SID4波前传感器到全自动测试台、Kaleo MTF、MultiWAVE,以及全模块化计量解决方案Kaleo Kit。PHASICS独特的、获得专li的波前传感技术被称为四波横向剪切干涉术(QWLSI)。相位四波横向剪切干涉仪,称为SID4波前传感器,QWLSI技术是为了克服Shack-Hartmann (SH)技术的分辨率不足而开发的。它采用了智能衍射光栅设计,而不是哈特曼测试中使用的孔和夏克在20世纪60年代提出的微透镜。图1 SID4波前传感器部分测试结果图★什么是波前传感器?波前传感器是一种设计用来测量光波前的装置。术语“波前传感器”;适用于不需要任何参考光束干扰的波前测量仪器。波前传感器的应用范围很广,如光学测试和对准(表面测量)、传输波前误差测量、调制。★QWLSI四波横向剪切干涉测量原理四波横向剪切干涉测量(QWLSI原理) 具有纳米级灵敏度和高分辨率的相位和强度。这项创新技术依靠衍射光栅将入射光束复制成4个相同的波。经过几毫米的传播,4个波纹重叠并干涉,在检测器上产生干涉图。★QWLSI四波横向剪切干涉技术优势四波横向剪切干涉测量技术(QWLSI),也被称为改进哈特曼掩模技术,是一种获得专li的波前传感技术。它以其高空间分辨率,无需中继透镜即可测量发散光束的能力和消色差而脱颖而出。该技术于2004年由Phasics在市场上推出,现在因其性能和易于集成而获得国际认可。★SID4 UV HR紫外波前传感器特点 在190nm ~ 400nm的紫外波段,SID4 UV HR波前分析仪具备高分辨率(512x512测量点)和高灵敏度。使用范围包括并不局限适用于光学元件表征(光刻、半导体)和表面测量(透镜和晶圆)。★SID4 UV HR紫外波前传感器参数欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

企业动态

2024.07.11

傅里叶光场显微成像技术—2D显微镜实现3D成像

傅里叶光场显微成像技术—2D显微镜实现3D成像摘要:近年来,光场显微技术的应用越来越广泛,针对光场显微镜的改进和优化也不断出现。目前市场各大品牌的2D显微镜比比皆是,如何在其基础上实现三维成像一直是成像领域的热门话题,本次主要讨论3D成像数字成像相机的研究,即3D光场显微镜成像技术,随着国内外学者通过研究提出了各种光场显微镜的改进模型,将分辨率、放大倍数等重要参量进行了显著优化,大大扩展了光场显微技术的应用领域。同时,由于近年来微型化集成技术的发展,微型化光场显微技术也逐渐成为国内外学者研究的热点。 1. 傅里叶光场显微成像技术在国内外的发展2014年,Rober等人在核荧光显微镜的像平面上放置了一个微透镜阵列,构建了一个光场反卷积显微镜(LFDM)装置,如图1所示。为了克服LFM中轴向和横向空间分辨率之间的权衡,研究团队通过利用记录数据的混叠并使用适用于LFM的3D反卷积算法,有效地获得了改进的横向和轴向分辨率,蕞终在生物样品内部的横向和轴向维度上,分别实现了高达约1.4μm和2.6μm的有效分辨率。图12019年,我国的学者团队通过改变微透镜阵列与透镜和图像传感器之间的相对位置,使微透镜阵列远离了光学系统的本征像面,首次提出了高分辨率光场显微镜(HR-LFM)概念,有效避免了传统光场显微镜产生的重建伪影。同时由于微透镜阵列的移动,图像传感器不再记录原始像平面处的图像混叠,大大提高了成像分辨率,如图2所示。图2这一装置广泛应用于活体细胞成像,三维分辨率为300nm-700nm,成像深度为几微米,体积采集时间为毫秒级。该方法可以将线性调频作为一种特别有用的工具,在多个时空水平上理解生物系统。此后随着光场显微技术的快速发展,光场显微镜产生了更多类型的演变,如图1-7所示。研究人员通过在微型显微镜平台上引入光场显微镜(LFM),构建了微型化光场显微镜(MiniLFM),证明了单次扫描体积重建,如图3所示。这是通过将微透镜阵列(MLA)与光场反褶积算法相结合,将微透镜阵列(MLA)引入到现有的微型镜平台上。然而,这种设计在多个深度上存在横向分辨率不均匀的问题。图32. 微型化集成技术的发展光学显微镜是一种在很大程度上抵制集成的技术,它通常仍然是一种体积庞大、价格昂贵的桌面仪器。在神经科学中,显微技术在活体动物身上得到了广泛的应用,但是传统显微镜的局限性阻碍了脑成像实验的范围和规模。2011年,KunalKGhosh等人首次提出了光场荧光显微镜的微型化集成,如图4所示。这是一种微型集成荧光显微镜,由大量可生产部件制成,包括半导体光源和传感器。该设备能够在活跃的老鼠身上进行0.5mm3的高速细胞成像。与高分辨率光纤显微镜相比,这一设备在光学灵敏度、视野、分辨率、成本和便携性方面具有优势。图4传统的光场显微镜(LFM)同时捕获入射光的二维空间和二维角度信息,能够通过单个相机计算重建样本的完整三维体积信息,如图5所示。对于传统的线性调频,将微透镜阵列(MLA)放置在宽视场显微镜的本征像面(NIP)上,并且光学信号以混叠方式记录在MLA后焦平面的微透镜上,但线性调频的空间信息采样模式是不均匀的,导致了重建伪影的出现。除此之外,体积重建采用波光学模型的PSF反褶积。传统线性调频的PSF在横向和轴向尺寸上都是空间变化的,这增加了计算成本,使得重建相当慢,不利于快速观察动态或功能数据。图5傅里叶光场显微镜通过在透镜和微透镜阵列之间插入一个新的光学透镜,首次将光学变换从时域转入傅里叶域(FD),如图6所示。在傅里叶频域光学系统中,所有信号都可以看做不同正弦函数的叠加,因此这一光学透镜的引入可以将入射光波变成不同频率的单色平面波的线性组合,由于不同单色平面光具有不同的系数,即复振幅,因此后焦面上不同坐标的光强分布,对应入射光波分解成的不同频率单色光波的功率,即位置坐标和光的频率是一一对应的。来自中继像面处图像的光场被傅里叶透镜转换为傅里叶频域下的光场,并与物镜后瞳孔波前共轭,微透镜阵列通过对波前分段,在单个透镜后传输角度信息,从而使相机在不同区域输出图像。图6傅里叶光场系统通过在傅里叶域(FD)中记录4D光场,成像方案主要通过两种方式对LFM进行变换。首先,FD系统允许以一致的混叠方式分配入射光的空间和角度信息,有效地避免由于冗余而产生的任何伪影。第二,由于FD以并行方式处理信号,因此可以用统一的三维点扩展函数来描述图像形成,从而大大减少了计算成本。3. 光场传播和成像模型结合光场显微技术和傅里叶变换理论的有关知识,微型化傅里叶光场显微镜的设计是在光场显微镜的基础上引入一个新的光学透镜,这一透镜放置的位置应远离像平面NIP处,同时应放置在主透镜和微透镜阵列之前;根据微型化的实际需要,本次选用的物镜系统是折射率呈梯度变化的自聚焦透镜GRINlens。由此可以初步得出微型化傅里叶光学系统的主要光学结构如图7所示,这也是光场传播和成像的主要路径。图74. 光路设计傅里叶光场显微镜是在改进后的高分辨率光场显微镜的基础上,在透镜和微透镜阵列之间插入一个新的透镜,该透镜能将光场从时域转换成频域,起到傅里叶变换的作用。为了实现微型化,物镜系统采用GRINlens实现,具体的光路原理图如图8所示。图85. 机械系统整体结构设计本设计的光学外壳是基于傅里叶光场显微镜的微型化而产生的。随着微型化集成技术的不断发展,越来越多的学者团队开始研究将光场显微技术与微型化技术进行结合,也由此设计出了适用于不同光路的微型化结构模型。如图9所示,一学者团队利用GRINLENS作为物镜系统,设计完成了一般光学显微镜和光场显微镜的微型化结构。通过调整各元器件的相对位置,尽可能压缩整个微型化外壳的尺寸,在微型化的同时实现光路设计的预期功能。图9基于这一研究成果,根据所设计的微型化傅里叶光场显微镜,在原有光场显微镜微型化外壳的基础上,加入一个新的凹槽,用来安放新加入的傅里叶透镜。结合前文设计好的各元器件的尺寸参数和相对位置,结合光路预期实现的功能,蕞终设计并完成了微型化傅里叶系统的光学外壳结构,具体尺寸及结构如图10所示。图10图116. 总结15年来,人们一直提出实施光场显微镜(也称为全透视或整体显微镜)。光场显微镜能够记录厚样品的3D信息,而无需执行多次拍摄。通过捕获不同的视角并使用适当的算法,可以进行深度重建(关注不同的平面)并计算样品宽度和长度上可区分部分的深度图。随着该技术进一步的拓展,应用已逐渐走向大众并实现产品化,比如上海昊量光电代理的西班牙的DOIT 3D Micro相机如图11所示,DOIT®(数字光学成像技术)基于全能信息捕获的范式转变。它设计不是在图像平面附近捕获信息(传统技术可以这样做),而是在傅里叶平面中捕获信息。通过这种方式,可以直接获得正交透视,而无需任何数字处理。此外,还避免了使用小微透镜的要求,这避免了限制传统全透镜模式分辨率的波粒二象性,通过zui简单的方法让2D显微镜实现3D成像如图12所示。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.24

多自由度梯度磁场控制系统相关应用文献(2017-2022)

多自由度梯度磁场控制系统相关应用文献(2017-2022)昊量光电新引入瑞士苏黎世联邦理工学院机器人与智能系统研究所研发的多自由度梯度磁场控制系统MFG系列。这些MFG多自由度梯度磁场控制系统能够产生各种各样的静态或时变磁场,用于研究磁场依赖现象,它们也用于开发磁性微纳米机器人以及其他微操作程序的应用。多自由度梯度磁场控制系统MFG系列产生场和场梯度,为5个自由度提供力和扭矩,非接触式驱动,用于颗粒定向和定位,粘滑或滚动运动,以及鞭毛游动。应用包括工程和流体动力学研究,局部流变学测量,微观力学生物学刺激和表征。 以下2017到2022年之间描述、使用或引用这款MiniMag / nanomag / OCTomag系统的相关文章列表: 1. Hongri Gu, Emre Hanedan, Quentin Boehler, Tian-Yun Huang, Arnold J.T.M. Mathijssen and Bradley Nelson. Artificial Microtubules for Rapid and Collective Transport of Magnetic Microcargoes. Nat. Mach. Intell. 4, 678-684 (2022).摘要:微货物的定向运输对于生物体以及微机器人、纳米技术和生物医学的应用至关重要。现有的递送技术往往存在速度低、导航控制有限和心血管血流分散的问题。在细胞生物学中,这些问题在很大程度上由细胞骨架马达克服,这些马达沿着微管高速公路携带囊泡。受此启发,我们开发了一种人工微管(AMT),这是一种结构的微纤维,嵌入微磁铁,引导颗粒快速通过流动网络。与现有技术相比,在相同的驱动频率下,微货物的移动速度要快一个数量级,并且通过强大的动态锚定效应减轻了分散。即使在强大的流体流动中,巨大的局部磁场梯度也可以实现锚定和引导推进。zui后,我们证明了AMT可以促进微粒自组装成活性物质团簇,然后通过集体桥接垫脚石来提高它们的行走速度。因此,我们展示了一种独特的策略,用于微血管网络内的稳健递送和微创干预,其非平衡效应可能与增强生物运输过程同样相关。 2. T. Gwisai, N. Mirkhani, M.G. Christiansen, T.T. Nguyen, V. Ling and S. Schuerle. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 7, eabo0665 (2022).摘要:结合自推进和磁引导的细菌微型机器人越来越被认为是有前途的靶向癌症治疗药物递送载体。到目前为止,控制策略要么依赖于难以扩展的磁场梯度,要么使用受细菌马达限制的推进力的定向磁场。在这里,我们提出了一种基于旋转磁场的磁转矩驱动驱动方案,以无线控制磁螺旋藻AMB-1承载多功能脂质体货物。我们观察到通过血管内皮模型的共轭易位增加了4倍,并发现驱动这种增加的运输的主要机制是在细胞界面上的扭矩驱动的表面探索。使用球体作为三维肿瘤模型,荧光标记的细菌在暴露于旋转磁场的样品中以高达21倍的高信号定植其核心区域。除了增强传输外,我们还证明了这种磁刺激同时驱动和感应检测AMB-1的适用性。zui后,我们证明了RMF在小鼠全身静脉给药后显著增强体内AMB-1肿瘤积累。我们的研究结果表明,可扩展的磁转矩驱动控制策略可以很好地利用生物混合微型机器人。磁转矩驱动的运动增强了活体微型机器人在体外和体内跨越生理屏障的渗透。 3. H. Chen, Y. Li, Y. Wang, P. Ning, Y. Shen, X. Wei, Q. Feng, Y. Liu, Z. Li, C. Xu, S. Huang, C. Deng, P. Wang, and Y. Cheng. An Engineered Bacteria-Hybrid Microrobot with the Magnetothermal Bioswitch for Remotely Collective Perception and Imaging-Guided Cancer Treatment. ACS Nano 16, 6118−6133 (2022).摘要:由多种推进力驱动的微型机器人在生理环境中具有巨大的无创靶向递送潜力。然而,在低雷诺数生物环境下的远程集体感知和精确推进仍然是微型机器人在体内实现预期治疗效果的主要挑战。在这里,我们报道了一种生物混合微型机器人,它集成了磁、热、缺氧敏感性和内部荧光蛋白,作为靶向癌症治疗的热和定位信号的双重报告者。微机器人系统中有三个关键元素,包括负载磁性纳米粒子(MNP)的益生菌大肠杆菌Nissle1917 (EcN@MNP),用于空间磁性和缺氧感知,设计到细菌中的热逻辑电路,用于控制mCherry的生物合成,作为温度和定位报告器,以及编码在EcN中的NDH-2酶,用于增强抗癌治疗。根据基于荧光蛋白的成像反馈,该微型机器人在磁场作用下对肿瘤区域表现出良好的热敏性和主动靶向能力。结合磁热消融和NDH-2诱导的活性氧(ROS)损伤,在体外和体内有效地触发了癌细胞的凋亡。我们的研究表明,生物混合EcN微型机器人是一个理想的平台,将物理、生物和化学特性整合在一起,用于集体感知和推进靶向癌症治疗。 4. Jiaen Wu, David Folio, Jiawei Zhu, Bumjin Jang, Xiangzhong Chen, Junxiao Feng, Pietro Gambardella, Jordi Sort, Josep Puigmarti-Luis, Olgac Ergeneman, Antoine Ferreira and Salvador Pané. Motion Analysis and Real-Time Trajectory Prediction of Magnetically Steerable Catalytic Janus Micromotors. Advanced Intelligent Systems 4: no. 11, pp. 2200192 (2022)摘要:化学驱动的微电机显示不可预测的轨迹,由于旋转布朗运动与周围的流体分子相互作用。这阻碍了这些微型机器人的实际应用,特别是在需要精确控制的地方。为了克服旋转布朗运动,增加运动的方向性,机器人通常用磁性成分装饰,并由外部磁场引导。然而,尽管方法简单,但对其运动的明确分析和建模仍然有限。在这里,催化Janus微电机制造与不同的磁化和磁性转向控制自推进运动显示。为了分析微电机的动态行为,从理论上建立了一种状态相关系数与鲁棒两级卡尔曼滤波器相结合的动态模型,该模型可以成功地实时预测微电机在均匀粘性流动中的运动轨迹。在大范围的模型参数变化范围内,理论预测的动力学和实验观测结果之间有很好的一致性。所建立的模型可以普遍适用于不同尺寸、几何形状和材料的各种催化微纳米发动机设计,甚至适用于不同的燃料溶液。zui后,该模型可作为生物传感、检测燃料浓度或确定未知环境下小型电机推进机制的平台。 5. Victor de la Asuncion-Nadal, Andrea Veciana, Shen Ning, Anastasia Terzopoulou, Semih Sevim, Xiang-Zhong Chen, De Gong, Jun Cai, Pedro Wendel-Garcia, Beatriz Jurado-Sanchez, Alberto Escarpa, Josep Puigmarti-Luis and Salvador Pané. MoSBOTs: Magnetically Driven Biotemplated MoS2-Based Microrobots for Biomedical Applications Small 18(33), pp. 2203821 (2022).摘要:二维层状二硫化钼(MoS2)纳米材料具有很高的生物相容性、机械和电气性能以及灵活的功能化特性,是生物医学应用的一个很有前景的平台。此外,MoS2的带隙可以被设计成吸收宽波长范围内的光,然后将其转化为局部热,用于光热组织消融和再生。然而,诸如水分散体稳定性差和在受影响组织中的低蓄积等限制阻碍了MoS2在生物医学应用中的充分实现。为了克服这些挑战,本文提出了以蓝藻螺旋藻为生物模板的多功能MoS2磁性螺旋微型机器人(MoSBOTs),用于治疗和生物识别应用。细胞相容性微型机器人结合了近红外辐射下的远端磁导航和二硫化钼光热活性。由此产生的MoSBOTs的光吸收特性被用于靶向光热消融癌细胞和在微创肿瘤治疗应用中的动态生物识别。拟议的多治疗MoSBOT在无数癌症治疗和诊断相关应用中具有相当大的潜力,规避了当前消融手术的挑战。  6. Huaijuan Zhou, Carmen C. Mayorga-Martinez, Salvador Pané, Li Zhang, and Martin Pumera. Magnetically Driven Micro and Nanorobots. Chem. Rev. 121 (8), 4999–5041 (2021).摘要:在不同的流体环境中,微和纳米游泳者的操纵和导航可以通过化学物质、外场甚至运动细胞来实现。基于磁场驱动策略具有远程和时空控制、无燃料、高度可重构性、可编程性、可回收性和通用性等优点,许多研究者选择磁场作为主动外部驱动源。这篇综述介绍了磁性微/纳米机器人的基本概念和优点,以及磁场和磁性材料的基本知识,磁场操作的设置,磁场结构,以及有效运动的对称破坏策略。讨论了这些概念来描述微/纳米机器人与磁场之间的相互作用。本文介绍了鞭毛磁机器人的驱动机制(如螺旋状运动和行波运动/纤毛运动)和表面行走器(如表面辅助运动),磁场在其他推进方法中的应用,以及微/纳米机器人在运动之外的磁刺激,以及(准)球形、螺旋形、柔性、线状和生物混合磁机器人的制造技术。MagRobots在靶向药物/基因递送、细胞操作、微创手术、活检、生物膜破坏/根除、成像引导递送/治疗/手术、环境修复污染去除和(生物)传感等方面的应用也进行了综述。zui后,讨论了磁动力小型化电机目前面临的挑战和未来的发展前景。 7. Pierre E. Dupont, Bradley J. Nelson, Michael Goldfarb, Blake Hannaford, Arianna Menciassi, Marcia K. OMalley, Nabil Simaan, Pietro Valdastri, and Guang-Zhong Yang. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 6 (60), eabi8017 (2021).摘要:机器人是一门前瞻性的学科。人们的注意力集中在确定下一个重大挑战上。然而,在医疗机器人等应用领域,重要的是要在清楚了解研究界zui近取得的成就以及这项工作在临床需求和商业化方面的地位的基础上规划未来。这篇综述文章确定并分析了过去十年中医疗机器人的八个关键研究主题。这些主题领域是使用确定十年中被引用次数zui多的论文的搜索标准确定的。我们这篇评论文章的目标是为读者提供一种方便的方式来快速欣赏过去十年中医疗机器人领域一些zui令人兴奋的成就;因此,我们只关注每个专题领域的少数开创性论文。我们希望本文能够培养研究者的创业精神,以缩小研究与翻译之间日益扩大的差距。 8. L. O. Mair, G.s Adam, S. Chowdhury, A. Davis, D. R. Arifin, F. M. Vassoler, H. H. Engelhard, J. Li, X. Tang, I. N. Weinberg, B. A. Evans, J. W.M. Bulte and D. J. Cappelleri. Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System. Front. Robot. AI 8:702566. doi: 10.3389/frobt.2021.702566 (2021).摘要:小型软机器人系统正在探索医学上的无数应用。具体来说,能够远程操作的磁驱动微型机器人在治疗药物和生物制剂的靶向递送方面具有巨大的潜力。以前在微型机器人上的许多努力都致力于在水环境和坚硬表面上的运动。然而,我们的人体是由致密的生物组织构成的,这就要求研究人员开发出能够在组织表面上移动的新型微型机器人。翻滚微型机器人是这些设备的一个子类,能够在旋转磁场引导下在表面上行走。利用微型机器人将有效载荷运送到敏感组织的特定区域是医疗微型机器人的主要目标。中枢神经系统(CNS)组织由于其精致的结构和高度区域特异性的功能是一个主要的候选者。在这里,我们展示了软体海藻酸盐胶囊的表面行走能力,能够在离体大鼠皮层和小鼠脊髓上移动,展示了多位置小分子递送到每种组织上多达六个不同的位置,具有高空间特异性。海藻酸盐凝胶的柔软性可以防止微机器人在运动过程中与中枢神经系统组织摩擦造成的损伤。该技术的发展可用于临床和临床前应用,如药物输送、神经刺激和诊断成像。 9. Daphne O. Asgeirsson, Michael G. Christiansen, Thomas Valentin, Luca Somm, Nima Mirkhani, Amin Hosseini Nami, Vahid Hosseini and Simone Schuerle. 3D magnetically controlLED spatiotemporal probing and actuation of collagen networks from a single cell perspective. Lab on a Chip, 21(20) 3850-3862 (2021)摘要:细胞不断地感知和反应来自周围基质的机械信号,这些基质由生物聚合物的纤维网络组成,影响着细胞的命运和行为。利用磁控制的几种有效方法已经开发出来,以评估细胞外基质(ECM)模型内的微力学特性。然而,其中许多仅限于平面内传感和驱动,这不允许在其完整的3D环境中探测矩阵。此外,很少有人注意到模型ECM系统特有的因素,这些因素可以深刻地影响其中包含的细胞。在这里,我们提出了利用磁微探针(μ rod)在与细胞相关的尺度上对细胞外基质网络进行时空探测和操作的方法。我们的技术利用3D磁场生成,物理建模和图像分析来检查和应用纤维胶原蛋白基质的机械刺激。我们确定了剪切模量范围在数百Pa到数十kPa之间,并模拟了接近刚性表面和局部纤维致密化的影响。我们分析了响应10 pNm量级的磁扭矩所产生的矩阵变形的空间范围和动力学,在跨越数十微米的区域内偏转纤维。zui后,我们演示了荧光标记μ杆的三维驱动和姿态提取。 10. D. Ahmed, A. Sukho, D. Hauri, D. Rodrigue, G. Maranta, J. Harting and B. J. Nelson. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nature Machine Intelligence 3, 116–124, 2021.   摘要:抗血流推进的能力,即执行正流变性,可以为靶向治疗和非侵入性手术的应用提供令人兴奋的机会。到目前为止,还没有生物相容的技术来引导微粒在背景流体中逆流而上。受到许多自然发生的微游泳者的启发,如细菌、精子和浮游生物,它们利用壁面的防滑边界条件来展示上游推进力,在这里,我们报告了自组装微群的设计和特征,这些微群可以在外部声场和磁场的组合下执行上游运动。声波和磁场对人体都是安全的,非侵入性的,可以深入人体,在临床环境中得到了很好的发展。这两个领域的结合可以克服单一驱动方法所遇到的局限性。讨论了微群进行滚动运动所需的声致反作用力的设计准则。我们展示了实验数据与我们的模型之间的定量一致,该模型捕获了滚动行为。上游能力提供了一种将小药物分子输送到难以到达的部位的设计策略,代表了实现微纳米系统导航对抗血流的基本步骤。  11. C. C. J. Alcantara, F. C., Landers, S. Kim, C. de Marco, D. Ahmed, B. J., Nelson, S. Pane. Mechanically interlocked 3D multi-material micromachines. Nat. Commun. 11:5957 [https://doi.ord/10.1038/s41467-020-19725-6] (2020).摘要:金属和聚合物在物理化学性质上是不同的材料,但在功能上是互补的。因此,金属有机结构可以在小型机器人中引入丰富的新应用。然而,目前的制造技术无法加工三维金属和聚合物部件。在这里,我们展示了通过结合3D光刻、模具铸造和电沉积,混合微观结构可以互锁。我们的方法可用于实现具有前所未有的分辨率和拓扑复杂性的复杂多材料微器件。我们证明了金属成分可以与由不同种类的聚合物制成的结构相结合。金属和聚合物的特性可以并行利用,从而产生具有高磁响应性、高药物负载能力、按需形状转换和弹性行为的结构。我们通过展示新的微型机器人运动模式和控制的群体聚集来展示我们的方法的优势。 12. N Mirkhani, M Christiansen and S. Schuerle. Living, self-replicating ferrofluids for fluidic transport. Adv. Funct. Mater. 2020, 2003912.摘要:磁驱动为微流体泵送和靶向药物输送等应用提供了一种无线控制铁磁流体流动的方法。尽管这些概念很有前景,但实际使用合成铁磁流体作为流动致动器通常需要高浓度,并且受到低铁磁流体动力耦合效率和不均匀流场的阻碍。受趋磁细菌(MTB)表现出的磁性和流体动力学形式的启发,这项工作研究了将这些微生物作为一种活的、自我复制的铁磁流体,通过磁力强制旋转来改善流体运输。以多核氧化铁纳米颗粒作为性能基准,在旋转磁场下的MTB显示出更均匀和高效的流动。无论是磁性材料的体积还是总的体积分数的比较,都增强了耦合性。为了阐明在输运中与边界的相互作用的机制作用,开发了一个计算模型并进行了实验验证。应用该模型,预测了两种不同且可行的磁控制策略:一个旋转梯度场,尽管边界促进相反方向的流动,但仍产生定向流动;一个静磁门控场,实现空间选择性驱动。为MTB确定的优势属性为实现这些策略打开了设计空间。 13. M. K. Hausmann, A. Hauser, G. Siqueira, R. Libanori, S. L. Vehusheia, S. Schuerle, T. Zimmermann and A. R. Studart. Cellulose-Based Microparticles for Magnetically Controlled Optical modulation and Sensing. Small 16, 1904251 (2020).摘要:具有双折射光学特性的响应材料已经在一些现代电子设备中被用于光的操纵。虽然电场通常用于实现光调制,但磁刺激可能为远程控制和操纵光提供诱人的补充方法。本文报道了具有不同寻常磁光性质的磁响应双折射微粒的合成和表征。这些功能微颗粒是通过微流控乳化工艺制备的,其中水基液滴在流动聚焦装置中产生并拉伸成各向异性形状,然后通过光聚合转化为颗粒。双折射特性是通过在液滴拉伸过程中将纤维素纳米晶体排列在微颗粒内来实现的,而磁性响应性是通过在初始液滴模板中添加超顺磁性纳米颗粒来实现的。当悬浮在流体中时,微粒子可以通过外部磁场进行可控操纵,从而产生独特的磁光耦合效应。使用一个远程驱动的磁场耦合到偏振光学显微镜,这些微粒可以用来将磁信号转换成光信号,或者通过磁驱动的微流变学来估计悬浮流体的粘度。 14. M. Xie, W. Zhang, C. fan, C. Wu, Q. Feng, J. Wu, Y. Li, R. Gao, Z. Li, Q. Wang, Y. Cheng and B.He. Bioinspired Soft Microrobots with Precise Magneto-Collective Control for Microvascular Thrombolysis. Adv. Mater. 32, 2000366 (2020).摘要:用于生物医学应用的新时代软体微型机器人需要模仿自然界生物的基本结构和集体功能。生物相容性界面、智能功能和精确的运动控制是设计复杂生物环境下软体微型机器人的关键参数。在这项工作中,受趋磁细菌(MTB)的启发,开发了一种具有快速运动响应和精确定位的仿生磁性微机器人(BMM),用于靶向溶栓。与MTB中的磁小体结构类似,BMM由嵌入在非膨胀微凝胶壳中的排列的氧化铁纳米颗粒(MNP)链组成。在静态磁场作用下,MNPs的粒子间偶极相互作用形成了线性链。仿真结果表明,装配的程度和速度与场强成正比。BMM在旋转磁场下实现了161.7µm s−1的zui大转速和小于4%的精确定位控制。重要的是,对BMMs的运动分析表明,在8Hz频率下,BMMs的同步与频率相关,而在更高频率下,由于阻力扭矩的增加,BMMs的异步化。BMM可以通过磁集体控制传递和释放溶栓药物,有望用于超微创溶栓。 15. Roberto Bernasconi, Elena Carrara, Marcus Hoop, Fajer Mushtaq, Xiangzhong Chen, Bradley J. Nelson, Salvador Pané, Caterina Credi, Marinella Levi, Luca Magagnin. Magnetically navigable 3D printed multifunctional microdevices for environmental applications. Additive Manufacturing 28, 127–135 (2019)摘要:结合立体光刻3D打印和湿金属化技术,制作了用于水清洗的微型机器人原型。使用化学和电解沉积在3D打印部件上沉积不同的金属层,以赋予所需的功能。特别是,利用电解共沉积的灵活性和多功能性,污染物光降解和细菌杀灭首次结合在同一设备上,通过在银基质中涂覆含有二氧化钛纳米粒子的复合纳米涂层。由此获得的微型机器人的微观结构得到了充分的表征,并通过施加旋转磁场成功地驱动了它们。从水净化的角度来看,该装置对水污染物具有明显的光催化活性,对革兰氏阴性菌具有抗菌活性。 16. J. Xie, C. Bi, D. J. Cappelleri and N. Chakraborty. Towards Dynamic Simulation Guided Optimal Design Of Tumbling MicrorobotS. Proc.ASME 2019 Intl. Des. Engin. Techn. Conf. and Comp and Inform. Engin. Conf. IDETC/CIE2019 (2019).摘要:小型机器人的设计是一个基于试错的过程,既昂贵又耗时。目前还没有很好的动态仿真工具来预测微型机器人在基底上移动时的运动或性能。在较小的长度尺度上,粘附和摩擦的影响(随表面积的变化)变得更加明显。因此,假设两个物体之间的接触可以被建模为点接触的刚体动力学模拟器是不合适的。在本文中,我们提出了模拟微型机器人运动的技术,其中机器人与衬底之间可能存在间歇性和非点接触。我们使用这个模拟器来研究不同形状的微型机器人的运动,并选择zui有希望执行给定任务的形状。 17. S. Schuerle, A. P. Soleimany, T. Yeh, G. M. Anand, M. Häberli, H. E. Fleming, N. Mirkhani, F. Qiu, S. Hauert, X. Wang, B. J. Nelson. N. Bhatia. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci. Sci. Adv. 5(4), eaav4803 (2019)摘要:纳米颗粒(NPs)已成为治疗各种疾病(包括癌症、心血管和炎症性疾病)的有利药物输送平台。然而,它们将物质运送到病变组织的功效受到一些生理障碍的阻碍。一个障碍是将药物从血管中转运出来,再加上随后进入目标组织的困难。在这里,我们报告了使用两个不同的由旋转磁场驱动的微螺旋桨,通过增强局部流体对流来增加扩散受限的NP输运。在第1种方法中,我们使用了一种称为人工细菌鞭毛(ABF)的合成磁性微机器人,在第二种方法中,我们使用趋磁细菌(MTB)群通过利用铁流体动力学创造了一种可指导的“活铁磁流体”。这两种方法都增强了血液外渗和组织渗透的微流体模型中的NP运输,该模型由以胶原基质为边界的微通道组成。 18. Daniel Ahmed, Thierry Baasch, Nicolas Blondel, Nino Läubli, Jürg Dual & Bradley J. Nelson. Neutrophil-inspired propulsion in a combined acoustic and magnetic field. Nature Communications 8, Article number: 770 (2017)摘要:能够在血管系统中精确运动的系统可以为靶向治疗和非侵入性手术的应用提供令人兴奋的可能性。到目前为止,大部分工作都是在二维环境中分析推进,在边界附近的可控性有限。在这里,我们展示了仿生滚动运动,通过在磁场和声场中引入超顺磁粒子,灵感来自于在墙壁上滚动的中性粒细胞。在旋转磁场的作用下,由于偶极子-偶极子相互作用,粒子自组装。由于声场的辐射力,聚集体向通道壁迁移。通过结合这两个场,我们实现了沿边界的滚动式运动。声场和磁场的使用在临床环境中已经成熟。这两个领域的结合能够克服单一驱动技术所遇到的局限性。我们相信我们的方法将对靶向治疗产生深远的影响。 19. Burak Zeydan, Andrew J. Petruska, Luca Somm, Roel Pieters, Yang Fang, David F. Sargent, Bradley J. Nelson. Automated Particle Collection for Protein Crystal Harvesting. IEEE Robotics and Automation Letters 2(3), (2017)  摘要:介绍了一种用于X射线晶体学的蛋白质晶体采集自动化系统。该系统使用了一个基于商用现货组件的紫外线成像系统、一个磁控工具和一个弹性行为控制器。该系统通过收集超过350个聚苯乙烯珠(用作晶体模拟器),并在14小时内在没有人为干预的情况下将它们运送到2毫米的预定目标来验证。识别,收集,运输和交付晶体模拟器的平均时间为2.4分钟,类似于专家操作员。这是一个完全自动化的蛋白质晶体采集系统的首次演示。 20. Simone Schuerle, Ima Avalos Vizcarra, Jens Moeller, Mahmut Selman Sakar, Berna Özkale, André Machado Lindo, Fajer Mushtaq, Ingmar Schoen, Salvador Pané, Viola Vogel and Bradley J. Nelson. Robotically controlled microprey to resolve initial attack modes preceding phagocytosis. Science Robotics 2(2), eaah6094 (2017)摘要:吞噬细胞,免疫系统的掠食性细胞,不断探测其细胞微环境,寻找入侵者。这需要猎物的识别,然后形成足够稳定的身体接触。尽管免疫细胞必须施加物理力来拾取它们的微生物猎物,但由于缺乏适当的技术,人们对它们在吞噬前的狩猎行为知之甚少。为了研究吞噬细胞的捕猎行为,在这种行为中,猎物附着在物体表面的粘合剂必须被破坏,我们利用微型机器人探针来模拟细菌。我们使用5自由度磁梯度控制系统(5D-MTS)模拟不同的狩猎场景,通过与单个巨噬细胞对抗模拟猎物的微磁铁。通过动态调整引导这些微粒平移和旋转运动的能量格局,探索平移和旋转阻力如何调节巨噬细胞攻击模式。对于平移抵抗性猎物,观察到明显的推拉攻击。对于杆状、无抵抗力的猎物,它们模仿自由漂浮的病原体,细胞将猎物与它们的长轴对齐,以方便捕获。增加旋转陷阱的刚度来模拟抵抗性或表面束缚的猎物会破坏这种重新调整过程。在105皮牛顿纳米弧度- 1左右的刚度水平下,巨噬细胞无法重新调整猎物,从而抑制了摄取。我们的5D-MTS被用作概念验证研究,以高空间和时间分辨率探测吞噬细胞的平移和旋转攻击模式,尽管该系统也可用于从单细胞到器官芯片设备的长度尺度上的各种其他机械生物学研究。 21. Naveen Shamsudhin, Vladimir I. Zverev, Henrik Keller, Salvador Pane, Peter W. Egolf, Bradley J. Nelson, Alexander M. Tishin. Magnetically guided capsule endoscopy. Med. Phys. 44 (8), e91-e111 (2017)摘要:无线胶囊内窥镜(WCE)是一种强大的医学筛查和诊断工具,它是一个小胶囊被吞下并通过人体胃肠道(GI)的自然蠕动和重力移动。集成摄像头的胶囊允许小肠的可视化,这是以前传统的柔性内窥镜无法到达的区域。作为一种诊断工具,它可以定位胃肠道中部出血的来源,并识别炎症性肠病(克罗恩病)、息肉病综合征和肿瘤等疾病。WCE的筛查和诊断效果,特别是在胃区域,受到各种技术挑战的阻碍,如缺乏主动的荚膜位置和方向控制。由于胶囊体积和能量储存的限制,大多数商业胶囊缺乏治疗功能。利用人体外源磁场来引导、定向、驱动和操作胶囊及其机制的可能性导致了对磁引导胶囊内窥镜(MGCE)的研究越来越多。本工作简要回顾了WCE技术的历史和现状。它强调了磁技术在推进WCE诊断和治疗功能方面的作用。这篇综述不仅局限于胃肠道,还进一步研究了磁引导微型机器人的技术发展,这些机器人可以在体内充满空气和液体的腔体和腔体中导航,用于微创医学。 22. Petruska, A.J., Edelmann, J., Nelson, B.J. Model-Based calibration for Magnetic Manipulation. IEEE Transactions on Magnetics 53.7, 2017摘要:基于模型的磁工作空间校准不仅提供了磁场及其梯度矩阵的平滑表示,而且还使用物理约束来平滑校准测量。本文首次提出了一种基于模型的磁操纵系统标定技术,该技术采用非线性zui小二乘法求解每个源的标量势。通过数值有限元仿真和实际系统的实例标定,验证了该方法的性能,该方法可以实现0.9997的r2值。此外,为了方便起见,给出了球面多极展开的前三个空间导数的解析表达式,它们对应于工作空间中磁偶极子上的扭矩、力和力-空间变化率。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.24

便携式L波段微波辐射计的设计与特性

便携式L波段微波辐射计的设计与特性(转译自Portable L-Band radiometer (PoLRa): Design and Characterization;Derek Houtz , Reza Naderpour and Mike Schwank) 摘要:介绍了一种适用于地面遥感或无人机测绘的轻质量、小体积双偏振L波段辐射计。在ESA土壤湿度和海洋盐度(SMOS)和NASA土壤湿度上有突出的应用主被动(SMAP)卫星的L波段辐射测量可用于反演环境参数,包括土壤湿度、海水盐度、雪中液态水含量、雪密度、植被光学深度等。介绍了气隙贴片阵列天线的设计和测试,并显示可提供37°的3db全功率波束宽度。我们提出了射频(RF)前端设计,它采用直接检测架构和平方律功率检测器。使用两个内部参考校准,包括在环境温度下的匹配电阻源(RS)和主动冷源(ACS)。射频(RF)前端不需要温度稳定,因为通过天空测量表征ACS噪声温度。介绍了ACS的表征过程。在1 s积分时,辐射计的噪声等效Δ (Δ)温度(NEΔT)为~0.14 K。天线总温度不确定度范围为0.6 ~ 1.5 K。1. 介绍星载L波段(1 – 2GHz)微波辐射计的现代时代始于欧洲航天局(ESA) 2010年土壤湿度和海洋盐度卫星(SMOS)[1]。紧随其后的是美国guo家航空航天局(NASA)的Aquarius卫星[2]和土壤湿度主动式被动卫星(SMAP)[3]。L波段辐射测量通常发生在1400-1427 MHz的受保护频段。基于该波段的双偏振微波亮度温度,已经证明了土壤湿度[4,5]、海面盐度[6]、植被光学深度[7,8]、雪液水[9]、雪密度[10-12]、土壤冻结/解冻[13,14]和海冰厚度[15]等环境状态参数的反演。近地表L波段辐射测量,如便携式L波段辐射计(PoLRa),允许来自多个平台的高空间分辨率的L波段辐射测量。紧凑和轻质量的设计允许在无人驾驶飞行器(UAV)或无人驾驶飞机,轮式车辆或固定在塔,杆子或建筑物上使用。无人机安装的PoLRa能够提供几米(地面分辨率。基于无人机的L波段辐射计已经在先前的文献[16,17]中得到证实。这两种系统都不能提供双极化离zui低点天线温度,而这种温度对于已建立的检索算法(如Tau-Omega (TO)[18,19]或Two-Stream (2S)发射)来说是zui佳的模型(EMs)[5]。PoLRa是一种直接探测辐射计,提供校准的双极化L波段天线温度,在1 s积分时分辨率为~0.14 K,根据积分时间和输入天线温度的不同,总不确定度在0.6-1.5 K之间。PoLRa采用独特的双2 × 2贴片阵列天线,带有气隙衬底,具有高增益和低欧姆损耗。独特的天线温度校正方案允许校正相对较宽的天线功率37°全波束宽度−3db灵敏度。该校正将天线方向图与模拟的角度相关的面亮度温度进行卷积,同时还考虑了几何性质在偏离轴视角处引入的偏振混合(参见附录[20])。PoLRa是一个研究型的辐射计系统,本文演示了它的特性。下面几节介绍辐射计硬件、特性、初步结果和结论。硬件包括辐射计、电子设备和天线。表征包括辐射计的分辨率和稳定性、校准和不确定度。初步结果包括基于无人机的天线温度测量和土壤水分检索。 2. 硬件以下各小节将介绍PoLRa的硬件组成,包括射频前端、后端和天线。 2.1 射频前端PoLRa是一种直接探测辐射计,具有三个模拟滤波级,其中一个在第1个放大器之前。前端滤波器对于防止射频推断(RFI)信号使低噪声放大器(LNA)饱和至关重要[21]。辐射计使用两个内部校准噪声源作为参考,包括环境温度下的匹配电阻源(RS)和主动冷源(ACS)。一个四端口低损耗射频开关在两个校准源和两个(垂直和水平)极化天线之间切换。温度传感器监测参考噪声源以及天线和电缆的物理温度。经过多次滤波放大后,射频信号由线性平方律功率检测器检测。射频前端框图如图1所示。滤波器是陶瓷谐振器滤波器,两个LNA级提供了~70 dB的总增益。射频组件目前通过同轴电缆线路和SMA型连接器连接。RF组件可以与微带或共面波导连接,从而允许在单个印刷电路板(PCB)上实现整个RF前端。单个带通滤波器的实测响应如图2所示。前端损耗或噪声系数(NF)由第1个LNA之前的组件驱动,并决定辐射计系统噪声温度,从而决定辐射分辨率。由于PoLRa所要求的轻质量和小体积,使用大的低损耗谐振腔滤波器是不切实际的。四口射频开关、隔离器和陶瓷腔滤波器的插入损耗分别为1.3 dB、0.2 dB和2.1 dB。第1个LNA的NF为0.6 dB,由于所有连接器和SMA部分约0.8 dB,存在额外的损耗。从交换机到包括第1个LNA的NF为5.0 dB。辐射计系统噪声温度Tsys由以dB为单位的NF计算[22]:Tref是290k。这对应于Tsys为627 K。图1所示,L波段辐射计射频(RF)前端和后探测电子器件的框图。图2,用矢量网络分析仪(VNA)测量滤波器响应:(a)宽带响应;(b)频率y轴在保护频带附近变焦。2.2.后端及处理Linux微控制器驱动开关,读取温度传感器,并对模数转换器(ADC)进行采样,读取功率检测器输出信号。开关的稳定时间小于1 ms,通常一个完整的校准周期需要~69 ms,其中积分每个开关位置花费16 ms,在四次 ~1 ms的开关位置稳定周期内对4个温度传感器进行采样。ADC的采样频率为~ 2kHz和22bit,低通滤波器的RC时间常数为τ≈1ms。由于电池电源的稳定电压调节,该ADC能够检测<0.01 mV分辨率。辐射计完全运行在5V DC上,功耗约0.7 A,总功耗低于4W。辐射计没有主动温度控制,这被证明是不必要的,其达到所需的精度,可与星载L波段辐射计相媲美。相反,我们依赖于ACS的物理温度依赖性的表征。第3.1节详细介绍了这种特性。第三节还介绍了辐射计噪声温度的校准过程。 2.3. 天线设计与表征独特的双贴片阵列天线结构紧凑,重量轻,并提供足够的指向性,以获得合理的地面分辨率,低后瓣贡献和较小的极化串扰。印刷电路板(PCB)贴片阵列使用由气隙隔开的两个PCB层来获得高增益和高辐射效率。贴片由印刷在与贴片相同的PCB上的微带馈电网络以均匀的幅度和相位馈电。微带馈电网络用同轴探头馈电,用1m的SMA电缆连接到前端交换机。天线由两个厚度为1.5 mm的FR4 PCB组成,中间间隔有6mm的PTFE垫片。PCB连接使用尼龙螺钉通过垫片和PCB层运行。天线总尺寸为0.6 m × 0.3 m × 9mm。监测天线和馈电电缆的物理温度,如图1所示。天线的欧姆损耗和同轴馈电电缆的损耗是根据经验确定的,作为第3节中描述的ACS特性的一部分。图3显示了天线在地面天空测量和无人机测量期间的照片。图3,天空测量时安装在塔上的贴片阵列天线(a);(b)在飞行测量时安装在多旋翼无人机上。在设计过程中,利用商用有限元电磁学软件ANSYS electromagnetics Suite对天线回波损耗进行了仿真。优化了馈电网络和补片尺寸,减小了模拟回波损失。在天线指向天空的情况下,用矢量网络分析仪(VNA)测量回波损耗。天线的谐振,或zui小回波损耗,对FR4衬底的电磁介电常数高度敏感。zui终呈现的设计需要多次迭代才能准确确定特定PCB供应商提供的FR4介电常数。利用ANSYS Electromagnetics Suite有限元软件对天线的角相关功率灵敏度进行了仿真。此外,采用[23]中描述的太阳立交桥方法测量天线功率灵敏度方向图。天线的定位使轴向指向当天太阳zui高天顶角的方位角和仰角。用太阳立交桥法测量的相对天线方向图将增益表征为太阳与天线轴向之间的总角度α的函数。球面极角θ只会恰好等于α时,太阳直接通过头顶,但对α的响应应该在恒定φ ={0◦,90◦}之间的切片。太阳立交桥法的数据只显示通过- 6 dB功率电平,因为在高角度地平线变得杂乱的树木,和测量变得不可靠。图4显示了(a)模拟和测量的天线回波损耗,(b)模拟和测量的天线功率灵敏度图(归一化天线增益)。图4,(a)有限元模拟和VNA测量的天线回波损耗;(b)由有限元模拟和太阳立交桥测量得到的归一化天线功率灵敏度图。3. 辐射计表征下面的小节描述了PoLRa辐射计的实验特性。首先,描述了主动冷源(ACS)表征过程;其次,讨论了稳定性和辐射分辨率;第三,给出了辐射计不确定度的量化。 3.1.主动冷源表征在非温度稳定的辐射计硬件上使用主动冷源(ACS),需要确定ACS噪声温度对温度的依赖性。在没有星系背景辐射的情况下,根据天顶角的不同,天空的L波段亮温Tsky约为几个开尔文[24]。银河系辐射已被证明对天空亮度温度的影响高达5K或更多[25],但与[25]中假设的10°天线相比,相对较大的37°天线波束宽度将其减少到不到2K。两个极化开关输入处的噪声温度p={H,V},Tinp可以被以下式子表达:式中ap为天线/电缆平均物理温度Tphy(假设所有天线元件和电缆温度均匀)下总传输路径(TP)的吸收。请注意,温度符号上的条形重音在接下来的讨论中指的是物理温度。以分贝(dB)为单位的Lp是天线和辐射计输入之间的累积损耗(上面提到的TP),它考虑了由于非理想天线效率、电缆损耗、适配器和连接器损耗以及不匹配误差造成的损耗。由于两种传输路径(TPs)的电缆和天线损耗各自的可变性,我们考虑在每个极化p = {H, V}中不同的损耗Lp。我们使用天空和环境匹配电阻源(RS)测量,以开关输入作为参考平面对辐射计进行两点校准。辐射计增益Gp和辐射计固有偏置(off)噪声温度Toffp由下式给出:式中TRS = TRS为RS的噪声温度,如果RS完全匹配,则等于RS的物理温度TRS。uRS为RS开关位置测得的探测器电压,uskyp为天线极化p = {H, V}处开关位置测得的探测器电压,天线朝向天空。开关输入端ACS的校准噪声温度TACSp为:如文献[26,27]所示,ACS参考文献的噪声温度TACSp随其物理温度呈线性增加。因此,以下线性模型适用于表示ACS噪声温度TACS,modp作为其测量物理温度TACS的函数,其中mp和bp分别是线性zui小二乘回归的斜率(单位为K/K)和偏移量(单位为K)。给定一个理想的开关,因为所有的值都参考开关输入,所以没有极化依赖于ACS噪声温度,这意味着TACSH = TACSV。我们将此与假定的ACS噪声与物理温度之间的线性关系一起使用,以制定成本函数(CF),通过zui小二乘拟合zui小化并获得LH和LV的损失:其中TACSH,i和TACSV,i是由式(5)导出的ACS噪声温度,并使用天空测量得到的电压uACS ,i ={1,2,…n}。CF中的第1项表示ACS噪声与其物理温度的线性关系,第2项表示TACSH = TACSV。利用数值全局zui小查找器zui小化CF以获得zui优LH和LV。对于理想的测量系统,公式(6)中使用的线性拟合参数mp和bp对于p = {H, V}是相同的,但在实践中并非如此。为了获得zui优的与极化无关的ACS线性温度依赖关系,可以对m =<mH, mV>和b =<bH, bV>进行两个极化的平均,这相当于所有TACSp,i值与TACS的线性拟合。图3a显示了在达沃斯-拉雷特遥感野外实验室进行这些天空测量的设置[28]。天线以大约70°高度角朝向南方。在2020年5月7日至8日约11小时的时间内,每隔5分钟进行一次天空测量。傍晚至夜间(当地时间17:00-06:00)测量是为了zui大化物理温度范围,同时也避免太阳侵入天线。我们还使用夜空计算器调查了潜在的银河系噪声入侵,并从我们的赤道坐标估计其小于1 K[25],zui坏的情况发生在测量周期的开始。图5显示了物理温度和测量到的探测器电压。夜间冷却期提供了~25 K的温度变化。请注意,PoLRa上的检测器是反斜率检测器,因此较低的电压对应于较高的绝对功率水平。图6提供了校准后的冷负荷亮度温度TACSp,i (TACS)与ACS物理温度TACS,以及两个极化的线性拟合线TACS,mod和该拟合线的95%置信区间。表1显示了成本函数(CF)zui小化过程产生的参数值。图5,(a)测量到的物理温度,(b)在天空测量期间测量到的探测器的原始电压与一天时间的关系。图6,主动冷源(ACS) TACS的测量物理温度与校准的ACS噪声温度TACSp,i和线性拟合TACS,mod,用于基于天空测量的ACS特征。虚线表示线性模型的95%置信区间(CI)。颜色条表示在2020年5月7日至8日之间进行每次测量的当地时间。表1,来自ACS特性的参数值。3.2. 辐射计稳定对于辐射计的标称使用,天线在水平和垂直极化时的温度使用两点校准,以内部匹配电阻源(RS)和主动冷源(ACS)为参考。与式(3)(4)相似,辐射计增益G和偏移Toff的计算公式为:在开关位置p = {V, H}处,在开关输入参考平面处的噪声温度Tinp为:其中up为天线指向目标场景时,开关在水平和垂直极化输入口测得的探测器电压。通过在两根天线馈电电缆的末端附加电阻匹配源来表征辐射计的稳定性。辐射计从冷启动开始持续测量约20分钟,在两个外部电阻源上使用τ = 16 ms积分时间。在四个开关位置之间切换对应的总时间,在每个位置(ACS, RS和两个外部电阻源)对检测器采样16ms,对四个温度传感器采样69 ms。在稳定性测试中,辐射计使用电池供电。在稳定性试验中,外部匹配的电阻源被动地保持在环境温度下。假定各自的射频电缆和匹配的电阻源处于相等和均匀的温度。在测试过程中,将热电偶温度传感器连接到匹配的电阻源上,以监测其物理温度。在测量期间,检测到匹配的电阻源轻微发热(~0.6 K),可能是由靠近辐射计电子设备产生的热量引起的。噪声等效Δ (Δ)温度(NEΔT)由该匹配电阻源稳定性试验实验计算得到。NEΔT取决于积分时间(τ),在我们的系统中,它由原始16 ms样本的尾随滚动平均值表示。所提供的NEΔT值是作为超过1000个原始样品的校准天线温度的标准偏差计算的。积分时间被实现为与积分时间对应长度的尾随滚动平均值(矩形窗口),因此是16的倍数。表2给出了不同积分时间下的实验NEΔT值。图7给出了H极化开关端口的测量原始(在τ = 16 ms(蓝色)时采样)和集成天线温度的示例,以及各自原始数据的直方图和高斯拟合。图7中原始样本的峰度为3.018,接近高斯分布。表2,两种极化和不同积分时间下实验辐射计噪声等效Δ (Δ)温度(NEΔTs)表。图7,辐射计在匹配电阻源期间测量的噪声温度连接到辐射计的H端口,用于量化PoLRa的稳定性。(a)不同积分时间τ的噪声温度时间序列随源的物理温度绘制。(b) (a)所示原始τ = 16 ms样本的直方图和分布的高斯拟合。NEΔT也可以通过公式[29]进行理论计算:其中Tsys为2.1节(627 K)中讨论的系统噪声温度,B为系统的RF带宽,τ为检测后积分时间。射频带宽由FE滤波器决定,其在1400-1427 MHz范围内具有27 MHz的3db通频带。理论值NEΔT和实验值见表2。理论值可能略低(~20%),因为在实验过程中辐射计的温度不是完全稳定的,并且式(11)中假设的理想矩形滤波器的带宽高估了实际滤波器的带宽。实验确定的NEΔT值确实与各自理论值的趋势密切相关,这表明辐射计确实是在测量高斯热噪声。外阻源的平均噪声温度与平均物理温度的差值在H极化口为0.02 K,在V极化口为0.26 K。垂直极化端口的较大差异可能是由于电缆加热不均匀或温度传感器与电阻源的热接触不理想所致。热电偶传感器的绝对精度规格仅为1K。考虑到这一点,外部电阻源(附在H端口上)的测量噪声温度与传感器不确定度内的物理温度一致。 3.3. 不确定性特征在变量不相关的情况下,交换机端口参考平面标定噪声温度的系统不确定度可以用方差公式表示为[30]:其中Δ前缀表示与前一个变量相关的不确定性。测量电压uRS、uACS、up的系统不确定度ΔuRS、ΔuACS、Δup均为0.01 mV。当通过增益G (~5 K/mV)的乘积转换为温度单位时,这些不确定性远小于TRS, TACS的测量物理温度ΔTRS = ΔTACS≃1K。因此式(12)可化简为:其中:其中偏导数由式(8)和式(9)代入式(10)计算。在3.1节给出的温度传感器不确定度ΔTRS = ΔTACS≃1K, ACS RMSE ΔTACS = 0.66 K的条件下,输入端口p = {H, V}处PoLRa噪声温度测量的系统不确定度ΔTinp可由式(13)计算。我们计算ΔTinp的范围为上,覆盖50 K≤Tp≤350 K的范围,用于地面场景的测量。总不确定度ΔTin,totp的测量噪声温度在辐射计端口p = {H, V},然后计算为系统和统计贡献的平方根和:系统不确定度ΔTinp和总不确定度ΔTin,totp在图8中为两个不同的积分时间绘制。当测量的噪声温度大致处于两个校准参考点(RS和ACS)之间时,不确定度达到zui小,当测量的噪声温度需要外推超出校准参考点时,不确定度增加。额外的不确定性来源,如非线性、失配和隔离[31],在本分析中被忽略,因为与与温度传感器相关的不确定性相比,它们被认为很小。检测器提供线性估计,元件和开关端口之间的不匹配都测量在−20 dB以下。上述不确定度分析只考虑了影响开关输入端口p = {H, V}处测量噪声温度Tinp的内部不确定源。当天线在地面上观察自然足迹时,会产生额外的不确定性源,包括潜在的射频干扰(RFI)。尽管许多现代辐射计zui近使用高采样率数字后端来缓解频域RFI,但这种方法仍然会导致残余RFI,并且不是万无一失的[32]。在时域对样本进行高斯拟合也是一种适当的RFI检测手段,如文献[28,33,34]所示。本文讨论的便携式L波段辐射计(PoLRa)采用直接检测架构,具有稳定、简单和低功耗的总功率检测。类似辐射计的数字后端已被证明至少消耗19W[35],这远远超过PoLRa使用的~ 4W。图8。计算系统和总噪声温度不确定性作为两个不同积分时间τ的测量噪声温度的函数。用于检索地球物理状态参数的从天线温度到足迹亮度温度的转换也可能需要进行校正,以考虑到天线的相对较大的视场。当以非zui低点入射角观察地面时,天线平面上的线极化只对应于天线轴线上相同的线极化。在非zui低点角度,来自地面的发射必须进行偏振混合校正;该过程的详细描述见[20]的附录a。基于PoLRa的地球物理参数(如土壤湿度)检索将在未来使用原位土壤湿度传感器网络进行验证。4. 讨论概述了便携式L波段辐射计(PoLRa)的设计和特性。给出了详细的技术讨论,以证明该辐射计的硬件功能符合预期,并提供了其噪声温度测量不确定度的估计。虽然使用与其他辐射计相似的架构,但PoLRa的天线设计独特,电子设备简单,功耗低,成本效益高,无需主动温度控制。由于采用了新颖的主动冷源(ACS)表征方法,这里介绍的辐射计不需要温度稳定性。利用模拟的冷天亮度温度来表征ACS噪声温度对预期工作温度范围内物理温度变化的响应。这一初始特性允许之后对辐射计进行完整的内部校准,而不需要进一步的天空测量。内部校准噪声源(RS和ACS)的测量物理温度的不确定度是PoLRa输入端口测量噪声温度总不确定度的主要原因之一。通过提高温度传感器的质量,可以提高辐射计的精度,但这也需要研究二阶不确定性项,如非线性和不匹配。与基于卫星的无源l波段测量相比,在自然足迹上测量的噪声温度范围的总不确定性值在0.6 K到1.4 K之间,仍然很低。例如,SMOS的不确定度为3k或更高[36,37],而NASA SMAP辐射计的不确定度为1.3 K[3]。PolRa的总质量小于4公斤,包括所有安装硬件,可以安装在无人驾驶飞行器(UAV)上,如多直升机无人机,或者可以用作塔架或简单杆子上的地面仪器。这种辐射计也可以安装在其他车辆上,如农用拖拉机、汽车或飞机上。系统的低功耗允许使用紧凑型电池或小型太阳能电池板和电池系统进行离网地面使用。这种具有成本效益的设计允许生产大量这样的辐射计,这将允许在广泛的网络中用于卫星地面验证目的,或大规模生产用于农业和土木工程的硬件。农业方面的应用可能是基于无人机的土壤水分和植被含水量测绘。土壤湿度信息可用于智能灌溉系统,节约用水,减少作物压力,提高作物产量。植被含水量检索可用于评估作物健康状况和作物成熟度,如小麦和谷物,以确定zui佳收获时机。基于无人机的PoLRa在土木工程中的应用将包括发现堤坝和水坝的泄漏,以及为调查和建筑规划评估土壤湿度。PoLRa未来的其他潜在用途包括滑坡风险预测和缓解,以及通过雪湿度和密度的空间测绘来减轻雪崩风险。本论文介绍了PoLRa辐射计的硬件设计、特性、校准和不确定度分析。我们只包括冷天空的自由空间测量,以表征主动冷源(ACS)校准参考。这里介绍的其他测量都是在实验室中进行的。未来的出版物将介绍使用PoLRa的地面和无人机测量,以及相关的环境参数检索,例如,包括土壤湿度和植被光学深度。 5. 结论我们介绍了一种小型、轻质量、低成本的L波段辐射计设计,并提供了表征结果来证明其性能。L波段,频率zui低的无源保护波段,从1400-1427 MHz,提供对自然介质的渗透,如土壤和植被。通过在多旋翼无人机上安装便携式低质量辐射计,可以实现~6米或更小的像素尺寸。PoLRa还可以方便地作为卫星验证网络的地面辐射计,或任何亮度温度时间序列测量,并且可以安装在简单的自动气象站类型的基础设施上。本文介绍了该辐射计的硬件设计、标定、表征和不确定度分析。基于无人机的演示和结果保留用于以下出版物。给出了直接检测总功率辐射计的框图和实测的系统前端滤波器响应。根据前端和第1LNA的级联噪声系数,估计辐射计的系统噪声温度为Tsys = 627 K。给出了独特的气隙贴片天线阵设计,并给出了仿真和实测的回波损耗和增益图。天线的半功率全波束宽度为37◦,并且与方位角几乎对称,从而产生圆形zui低点观看像素。第3节介绍了主动冷源(ACS)参考、噪声等效Δ (Δ)温度(NEΔT)和总辐射不确定度的特征。ACS与电缆和天线损耗因子一起进行了表征,噪声温度均方根误差(RMSE)为0.66 K。在τ≈1的积分时间内,实验确定的NEΔT是0.14K, 这与由系统噪声温度、积分时间和带宽确定的理论值0.12 K非常吻合。由于校准视图和两个极化视图,1秒的积分时间实际上总共需要大约4.4秒。对于未来基于无人机的操作,更现实的集成时间约为100ms,对应于总测量时间为480ms,NEΔT为0.4 K。辐射计的总不确定度是系统不确定度和统计不确定度贡献的总和。系统不确定度由标定参考不确定度的传播决定,而统计不确定度等效于NEΔT,并且是积分时间的函数。在观测范围内,总不确定性在0.6 K到1.4 K之间,15个预期自然亮度温度中的13个在50 K到350 K之间。这个值小于ESA SMOS卫星的辐射不确定度,与NASA的SMAP仪器相当。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.24

时间门控拉曼光谱的创新驱动力——SPAD的突破与应用

时间门控拉曼光谱的创新驱动力——SPAD的突破与应用拉曼光谱技术是一种基于光与物质分子振动相互作用的非破坏性光谱分析方法。通过高强度激光照射样品,大部分光会以原波长散射(瑞利散射),少量光会以不同波长散射(拉曼散射),形成拉曼光谱。每个光谱峰对应于特定的分子键振动,形成独特的“化学指纹”。拉曼光谱技术因其高效和多用途特点,有着非常明显的优势如:- 非破坏性:无需破坏样品。- 无需特殊制备:适用于多种样品形式。- 高分辨率:提供分子级别信息。- 广泛应用:用于化学、材料科学、药物分析等领域所以这项技术在各科学领域中具有重要应用价值。但是其在实际应用检测的时候却也有着自身的一些限制如:- 拉曼效应较弱:需要更高强度激光来获得更强的目标信号,可能损坏样品。- 荧光干扰:大部分样品可能会产生伴生荧光,干扰zui终目标信号的检测 为了应对这些限制,从而产生了衍生技术——时间门控拉曼技术:时间门控技术在拉曼中的应用主要是为了提高信噪比,减少荧光干扰。时间门控技术通过在特定时间窗口内选择性检测拉曼散射光,排除荧光和其他背景信号。荧光通常比拉曼散射延迟出现,因此可以通过时间门控技术将其过滤掉。 通过时间门控拉曼技术 可以提高信噪比:时间门控技术能显著降低荧光背景,提高拉曼信号的检测鉴别度;非破坏性分析:在高荧光背景的样品中,时间门控拉曼光谱仍然可以进行非破坏性分析;适用范围广泛:时间门控技术适用于各种复杂样品,包括生物样品、药物和材料科学中的高荧光样品; 时间门控拉曼技术的实验配置往往需要两个核心硬件:激光脉冲源:使用短脉冲激光作为激发光源,以实现时间门控。时间门控探测器:用于在预设时间窗口内检测拉曼信号。 由于因为拉曼效应非常弱,通常仅占散射光的0.0000001%。而单光子雪崩二极管(SPAD)因其高灵敏度,能检测单个光子,极大地提高了弱拉曼信号的检测能力,并且其低噪声特性使得在低信号水平下仍能获得高信噪比的拉曼光谱信号。还可以在极短的时间窗口内进行信号采集,避开伴生荧光的峰值时间,从而减少荧光干扰,进而能够显著增强拉曼信号的检测能力。所以单光子雪崩二极管(SPAD)是目前拉曼检测较为常用的器件 但是目前市面上商用的SPAD单光子雪崩二极管大多都为单点式,而单点SPAD在此研究中的使用还是回受到不小的限制,因为单点SPAD需要配合单色仪进行逐波段扫描探测,这就导致了测算结果的速度会非常慢,无法快速得到需要的数据 针对这一不足,Pi Imaging与上海昊量光电设备zui新推出的SPAD Lambda线阵单光子探测器,不仅具有单点式SPAD拥有的所有优势,更是完美的解决了它的不足SPAD Lambda具有320×1个SPAD硅基单光子探测器阵列,单次的积分时间无上限,每个像素尺寸为29um,填充因子大于80%,且内置了320通道的10ps时间分辨率的tdc,自带门编辑模式(时间选通功能),选通门上升沿所需时间小于120ps,zui小选通时间为2ns,激光器同步触发信号与内部选通门的zui小偏移量为17ps zui大无限制。 在时间门控拉曼技术的应用中,门编辑模式起到了不可或缺的作用,其可以根据激光器的外触发信号来生成SPAD工作门,内置TDC的时间序列按照激光器的触发信号作为Start,但SPAD的工作时间是按照生成的门信号进行探测工作,虽zui小的门宽(选通时间)为2ns,但是zui小偏移也就是激光器同步触发信号的上升沿与内部生成的SPAD工作门的延迟时间zui小为17ps zui大无限制,这就意味着设备可以按照zui小17ps的一个时间选通调节分辨率来调整门,实际原理应用解释见下文: 为方便介绍和计算,我们使用10M重频的皮秒半导体激光器来激发被测物,需要测量如图1中的拉曼信号,尽可能的屏蔽掉其他非目标信号的干扰。图1但我们只需要第1ns的目标信号,隔绝1ns外的非目标信号,所以在SPAD Lambda的门编辑模式中设置2ns的SPAD工作门,并且激光同步信号和内部工作门信号的上升沿的延迟时间设置为99ns(99000ps),这样两个信号的关系就如同图2所示:图2探测器中的TDC会一直持续工作,但是SPAD只会在上一个激光周期的第99ns(空测)和下一个激光周期的第1ns(有效测量)工作,SPAD在其余时间均为不工作状态,可以有效的隔绝来自非目标信号的干扰,如果需要调整对于目标信号探测时间段,则可以通过调整延迟量来调控,所得到的目标信号的直方图如下图3所示:图3 图3为一个激光周期的直方图,设置的BIn宽为20ps(zui短可达到10ps),直方图中只会显示第1ns内和第99-100ns内的数据,将第99-100ns的数据筛除,即可得到目标信号的光强随时间变化的信息。SPAD Lambda的设备软件可一键生成直方图且同时会把直方图的横纵坐标轴的TXT文件(SPAD光强纵轴的320个文件+TDC时间坐标横轴的一个文件)直接保存到电脑端,方便数据的随时调阅及处理。总之,SPAD Lambda不仅克服了传统单点SPAD设备的不足,能够显著提高拉曼光谱的检测灵敏度和信噪比,特别是在处理高荧光背景样品,同时还提供了一种低成本、高效能的解决方案,显示出无与伦比的优势,为各科学领域的研究和应用提供了强有力的支持。  在时间门控拉曼光谱应用中,目前商用化的时间门控拉曼光谱设备如芬兰的Pico Raman设备,购买成本高昂(200-300万)。并且其核心SPAD探测器件并不如SPADLambda亮眼。SPAD Lambda成本较低,且只需加一个前置光栅,调整光栅与SPAD Lambda的空间位置,即可同时获得多个光谱的强度及时间信息。 上海昊量光电设备有限公司具有着成熟且经验丰富的系统搭建能力,如您想使用SPAD Lambda搭建一套属于您自己的时间门控拉曼测量设备,欢迎与我们联系并进行交流,构建专属于您的时间门控拉曼系统!关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.24

体布拉格光栅(VBG)在中红外激光器方面的应用

体布拉格光栅(VBG)在中红外激光器方面的应用--高功率、波长稳、窄线宽  中红外激光器(2.5-10um波段)由于其波长具有的特殊性质,比如处在大气窗口、分子“指纹”区。这些特性使得中红外激光器的应用领域非常广泛,如国防、军事、医疗、科研、通信、工业等。在国防和军事领域,中红外激光器可用于目标侦测、跟踪、识别和导引等方面,如导弹反制、激光通信等;在医疗领域,中红外激光器主要是利用光热效应达到治疗或消融病变组织的目的,如烧蚀和切割泌尿组织,汽化或切割衰竭的器官等;在科研领域,中红外激光器可用于光谱学、化学和生物学等领域的研究,如检测化学物质、研究分子的结构和生物分子的振动光谱;在通信领域,中红外激光器可用于高速光信号的传输及通信;在遥感和环境检测方面,中红外波段的大气窗口使其在遥感和环境检测中有重要应用,比如气象观测、大气污染观测和森林健康评估等;在工业领域,中红外激光可用于材料加工方面,如塑料的切割和焊接等。 中红外激光器的快速发展以及应用领域的不断扩大,也推动着中红外技术的不断提升,要求实现更高功率输出、更稳定的激光波长等要求。 体布拉格光栅(VBG)是一种以光敏玻璃(PTR)为载体的全息布拉格光栅,其物理性能稳定且具有稳定波长、压窄线宽的特性,可以应用于400-3000nm波段作为激光器腔镜。因此,这款体布拉格光栅(VBG)可直接作为激光器腔镜用在2.5-3um波段的中中外激光器中,此外,体布拉格光栅(VBG)更多的应用在1.0-2.1um波段的固体激光器用作为腔镜,然后作为中红外激光器(3-5um)的泵浦源来使用。VBG主要产品特点:1. 锁定中心波长,稳定波长输出;2. 高功率输出;3. 窄线宽输出;4. 物理性能稳定,不易潮解;5. 无偏振相关性;6. 参数可定制; VBG主要参数:波长范围:400-3000nm;(常用波长:1908nm,2090nm,2109nm等)衍射效率:10%-99%;半高全款(FWHM):0.1nm -2nm;尺寸大小:8mm x 6mm,可定制;高损伤阈值镀膜(可选) 欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。如您想要了解产品更详细信息(或相关文章),欢迎咨询浏览昊量光电官网并联系相关销售工程师。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.11

高精度分光——密集波分复用的应用前景

高精度分光——密集波分复用的应用前景介绍波分复用技术在光通信领域扮演着日益重要的角色,相比粗波分复用,密集波分复用可以拥有更多的信息通道及更高的通信速度,适用于无关协议的长距离高带宽数据传输。而高精细度滤波器是确保不同波长信号之间有效隔离的关键组件。正文随着通信技术的飞速发展,波分复用技术在光通信领域扮演着日益重要的角色。其中,密集波分复用(DWDM)和粗波分复用(CWDM)是两种主要的技术方案。密集波分复用(DWDM)技术是一项高精度分光在光通信领域引起的ge命性创新。 密集波分复用(DWDM)的工作原理密集波分复用的核心概念是在光纤中使用非常紧凑的波长间隔来传输多个独立的波长(或称为通道)。这些波长被同时发送到光纤上,每个波长都代表一个独立的通道,从而允许在同一光纤上进行高容量的数据传输。波长之间的间隔通常在0.8纳米至0.2纳米之间,这种紧凑的波长布局是DWDM系统实现高密度、高容量传输的关键。相比之下,粗波分复用(CWDM)则是在更宽的波长间隔内传输信号。虽然CWDM也实现了多通道传输,但通道之间的间隔较大,因此传输的通道数量相对较少。DWDM与CWDM的核心对比1.传输容量和速率:CWDM:CWDM是多路复用光纤的一种变体,支持同时双向数据传输。与更紧凑的DWDM相比,CWDM利用的激光信号波长一般以20nm的增量相差,每个通道可支持高达10gbps的数据速率。DWDM:DWDM利用与CWDM相同的多路复用传输系统,但它可以支持更多的信道。DWDM的较短波长间隔意味着它可以支持更密集的信号封装,因此得名。这种改进的密度允许数据传输速率高达100gbps。因此,假设每根光缆有160个通道,每个通道能够承载100gbps的数据,那么每根DWDM光缆基本上可以支持大约1.6 Tbps的容量。然而,波长上较小的差异会降低信号容忍度,因此需要更精确的激光设计。这就是为什么DWDM电缆比CWDM电缆贵得多。 2.组成部分:CWDM:CWDM的功能是将各种信道合并到一个输出光纤上,并在一个输入光纤上将它们分割成单独的波长。CWDM系统的三个关键组件是复用器/解复用器、分出/插入模块和分出/通过模块。这三个CWDM组件一起工作,以驱动更有效的网络通信。DWDM:DWDM系统的关键组件包括转发器、复用器/解复用器、光放大器和光分插复用器。数据流通过路由器接收并作为输入送到转发器。在转发器中,信号被映射到DWDM波长并传输到复用器以合并光信号。当信号通过复用器时,光放大器会增强信号,使其可以传输更远的距离。在传输过程中,光分插复用器负责添加和删除特定波长的信号通道。zui后,信号到达解复用器并被“解复用”成单独的DWDM波长。这些波长通过转发器传输并转换成相应的信号,然后发送到zui终目的地。3.应用:CWDM:CWDM的一个常见应用是在有线电视网络中。上行和下行信号利用不同的波长可以有助于提高信号质量并减少干扰。CWDM的使用也常见于千兆位接口转换器和SFP光学器件等收发器中。这些系统使用标准化CWDM波长通过光纤进行波长复用传输。总体而言,CWDM应用侧重于支持数据、视频和语音信号的高效且经济高效的传输。DWDM:DWDM通常用于长距离、高带宽、协议无关且安全的应用。例如,它是电信和有线电视公司的shou选系统,并广泛用于运营商传输网络。在城域聚合网络中,DWDM可用于组合来自多个地理位置的数据。如今的服务提供商不断努力使计算能力更接近zui终需求,因此,用于将更多数据汇聚到单个节点进行计算的DWDM由于其灵活性和提供的更高带宽而受到青睐。同时,DWDM非常适合用于高吞吐量数据中心网络,例如超大规模云中心和托管数据中心这类大数据量的高速交换。 4.优点:CWDM: 与DWDM 相比,CWDM 更易于部署和管理,因为它需要更少的光学硬件组件。 此外,CWDM 使用更宽的波长间隔,这有助于降低成本。DWDM:与CWDM相比,DWDM的主要优势在于其增强了长距离传输大量数据的能力,使其成为长距离传输的理想选择。DWDM可以部署在现有光纤上,这意味着随着光技术的突破,它可以增加企业网络的数据传输能力。尽管DWDM比CWDM成本更高,但部署DWDM 系统仍然比安装数百公里的新光纤更经济。此外,DWDM 与比特率和协议无关,因为数据流经单独的波长,并且通道之间不存在干扰。这使得 DWDM 能够通过单根光缆传输不同类型的数据,例如视频、文本和语音。 高精细度滤波器的关键作用:目前对于波分复用,信号的收发器严重依赖于滤波器,短波通和长波通滤光片用于分离或组合波长。而由于技术进步和可调器件成本的降低,可调谐激光器和滤波器正变得越来越流行。在DWDM系统中,高精细度滤波器是确保不同波长信号之间有效隔离的关键组件。这些滤波器的作用类似于分色镜,能够准确地分离出每个波长信号,防止信号之间的干扰和交叉影响。波长选择性:高精细度滤波器能够有选择性地通过特定波长的光信号,确保每个通道的波长独立传输,zui大限度地提高传输效率。信号纯净度:通过高精细度滤波器的精确滤波,DWDM系统中的各个通道能够保持高纯度,有效减少了信号失真和传输噪声。光学性能提升:高精细度滤波器的窄线宽提升了系统的光学性能,确保了波长之间的清晰分隔,从而增强了整个DWDM系统的可靠性和稳定性。昊量光电新推出可调谐F-P腔滤波器,可提供高达30000精细度的窄线宽(0.003nm)的调谐滤波,扫频速率10kHz,FSR可达约100nm。此外,昊量光电还提供各类光学滤光器具或者FP标准具,以满足数据通信滤光片解决方案对光学质量、鲁棒性、可靠性和成本敏感性的要求。上海昊量光电可为您提供专业的选型以及技术服务。对于任何产品有兴趣或者有任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。相关文献:https://www.spiceworks.com/tech/networking/articles/cwdm-vs-dwdm/更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.11

激光干涉仪是如何测量位移的?

激光干涉仪是如何测量位移的?激光干涉仪是一种广泛应用于科学研究、工业制造和精密测量领域的仪器。在科学研究领域,激光干涉仪广泛应用于物理学、化学和生物学等多个学科,为研究人员提供了强大的工具。在工业制造中,激光干涉仪在精密加工、质量控制和自动化生产中发挥着关键作用。激光干涉仪的基本原理是利用激光的干涉效应进行测量和分析。在国际上,有多种常用的激光干涉仪技术,如迈克尔逊干涉仪、法布里-珀罗干涉仪和雅各比干涉仪等。它们在不同领域展现出卓越的性能和应用潜力。法布里-珀罗干涉仪是一种常用的干涉仪,其为基于光学谐振腔原理的干涉仪器。核心是由两平行的反射镜构成的腔体,其中的激光通过多次反射形成谐振,从而形成干涉条纹。该技术在光谱分析、精密测量和光学传感等领域得到广泛应用。图1 法布里-珀罗干涉仪原理图图2 干涉条纹从图1中我们可以看到,面光源置于透镜L1焦平面处,使得不同方向的光束平行射入干涉仪,在P1,P2相向的表面镀有高反膜,因此光束可以在P1,P2平面镜中作来回多次的反射,透射的平行光在通过透镜L2汇聚在其焦平面上形成如图2所示的同心原型的干涉条纹。法布里-珀罗干涉仪的原理为多光束干涉原理。图3 多光束干涉原理示意图由图3我们可以看出,一束振幅为A0的光束以入射角θ0入射,经过多次反射与投射,透射出相互平行的光束。设高反膜的反射率为,因此可得第1束透射光的振幅为,后续依次为由等倾干涉可得,相邻的透射光束的光程差为:由此引起的相位差为:若第1束透射光的初相位为零,因此各光束的相位依次为透射光的振动可以用复数进行表示:我们计算其和振动,其中利用了等比求和公式:其中因此可得:求合振动强度时,针对分式项需要用到他与共轭复数的乘积:因此合振幅的平方为:其中 称为艾里函数,称为精细度,体现出干涉条纹的精细程度。当P为固定值时,A2与相关。当时为zui大,时为zui小。因此越大时,可P见度越显著。图4 不同精细度的艾里函数图目前,激光干涉仪技术正处于不断创新和发展的阶段。随着激光技术、光学器件和信号处理技术的不断进步,激光干涉仪在精密测量、光学成像和光学通信等领域展现出更高的性能和应用潜力。激光干涉仪为了提高测量位移的精确度与稳定性,涉及到激光光源的选择与频率稳定、测距原理、相位解调、空气折射率补偿等多方面方法和技术的综合应用,国内外的研究现状根据测距的基本原理可分为飞行时间法和干涉法两大类。飞行时间法主要根据根据时间间隔的测量原理,通过直接或间接的方法测量发射脉冲与接受脉冲的时间间隔,进而计算目标距离。干涉法量主要包括多波长干涉法、色散干涉法、双光梳干涉法与频率扫描干涉法。多波长干涉法测量距离的原理基于不同波长光在光程差发生变化时引起的干涉现象。这个方法利用了不同波长光的相位变化关系,通过观察干涉条纹的移动来确定测量目标的距离。这种方法在测距应用中具有高精度和灵敏度,尤其在需要非接触和高精度的测量场景下。通过利用不同波长光的特性,多波长干涉法可以实现对目标距离的精确测量。双光梳干涉法是一种使用两个频率非常稳定的光梳来实现高精度测距的方法。这种方法通过比较两个光梳之间的频率差异,从而测量目标的距离。通过观察和分析这些干涉条纹的模式,可以确定两个光梳之间的频率差异。由于频率差与目标距离有直接关系,因此可以通过测量频率差来计算目标的距离。本文将主要介绍频率扫描干涉法。频率扫描干涉法(FSI)也称波长扫描干涉法,是通过激光在已知波长范围内连续扫描,并在扫描过程中对干涉条纹进行无模糊计数实现绝对距离测量的,是真正的绝对、单步的距离测量方法。图5 频率扫描干涉示意图频率扫描干涉法利用频率扫描激光分束后,测量两个干涉仪的光程差的比值。如果两个干涉仪中的一个的光程差是已知的,则可以确定第二干涉仪的光程差。具有已知光程差的干涉仪则被称为参考干涉仪,并且具有假设在长时间内恒定的光程差。光程差未知的干涉仪被称为测量干涉仪,并且假设其光程差也被假设为在扫描期间恒定。斐索干涉仪具有零长度参考臂,因此光程差是干涉仪光学长度的两倍(图3中标记为LR和Lm)。接下来的讨论均关于的光学长度而不是光程差。激光器将其频率从起始频率(νt0)扫描到结束频率(νtn),并记录两个干涉仪输出强度。干涉仪的输出强度随激光频率和参考干涉仪产生的正弦函数的绝对相位呈正弦变化,由下式给出:其中Φabs, ti, R是参考干涉仪在时间ti的绝对相位,LR是参考干涉计的长度,νti是激光在时间ti时的频率,c是光速。通过扫描开始与扫描结束的时间,计算出相对相位:其中Φ ti, R是在时间ti时参考干涉仪提取的相位,而νt0是扫描开始时的频率。测量干涉仪的提取相位同样由下式给出:其中Φ ti, M是在时间ti时测量干涉仪提取的相位,LM是测量干涉仪的长度。上二式中的提取相位的比率等于长度的比率:因此,如果测量干涉仪和参考干涉仪的长度在扫描期间是恒定的,并且参考干涉仪长度是已知的,则可以确定测量干涉仪长度。而当测量干涉仪在空气中工作时,需要根据空气折射率的影响对测量长度进行校正真实的光学长度。昊量光电代理的德国Qutools公司出品的皮米级激光干涉仪,就基于频率扫描干涉原理进行相对位移测量。通过快速波长扫描,波长扫描速度远大于被测物位移速度,并添加了饱和气室,通过气体吸收线精细控制波长,精度可达图6 quDIS激光干涉仪实物图图7 quDIS激光干涉仪原理示意图此外,根据您的需求,我们还提供了不同型号的传感头,可以应用于不同需求的测试。quDIS为常规情况下的使用提供标准传感器和定焦传感器,同时根据具体的需要以及恶劣环境下的应用,也设计了响应的特殊传感头。图8 部分传感器型号与参数另外,针对在空气环境下测量时,环境中温度、湿度、压强的影响都会导致空气折射率产生变化,zui终影响到相对位移的测量。我们还提供了环境测量补偿模块,可以实时进行环境的温度、湿度、压强的测量,并实时计算出环境的空气折射率,用于补偿相对位移测量。图9 环境补偿模块参数综上,我们以FP干涉仪出发,介绍了现今干涉仪的基本原理,并介绍了我们的quDIS激光干涉仪,若对产品有兴趣,请联系我们。相关文献:[1] Dale J, Hughes B, Lancaster AJ, Lewis AJ, Reichold AJ, Warden MS. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells.[J] Opt Express. 2014 OCT 6;22(20):24869-93.[2] 张世华.基于飞秒光频梳的正弦相位调制干涉绝对距离测量方法研究[D].浙江理工大学, 2018.[3] 姚启钧.光学教程[M].北京: 高等教育出版社, 1981更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.11

Lumencor固态光源在材料科学中的应用

Lumencor固态光源在材料科学中的应用农业及食品检测 Agriculture and Food Inspection检查食品、饮料及其相关包装需要具备获取和处理图像的能力,以获得有关尺寸、形状、颜色、缺陷和完整性等参数的信息。为此,关键是优化照明强度,均匀性和几何形状,以获得具有良好的对比度和信噪比的显微图像。此外,有机和无机材料的光吸收特性各不相同,这使得为这些应用选择合适的照明波长成为一项挑战。食品在包装之前,必须经过种植和收获。当然,光是植物生长的基础。Lumencor的固态照明技术在应对这些食品检验和质量控制挑战方面处于领xian地位。 常用产品型号 SOLA、AURA、SPECTRA、MAGMA光固化和光刻 Photocuring and Photolithography固态显微镜光源是控制引发光聚合反应的理想光源。光聚合反应是广泛应用的非接触、原位制造和微结构成型技术的基础。大量的光聚合反应通常被称为光固化,而在光刻技术中,空间选择性光聚合是通过遮蔽照明场来实现的。光聚合的程度受光照强度和持续时间的控制。Lumencor的固态照明系统以微秒计时、反馈调节和光输出计量的形式提供精确的照明控制。 常用产品型号 SOLA、RETRA光伏和太阳能 Photovoltaics and Solar Energy人造光源对于光伏器件制造中的性能验证,以及新光伏材料开发中的光电导性和量子效率等特性的表征至关重要。传统上,光伏器件的表征通常采用氙弧灯或卤钨灯来近似太阳光谱。然而,它们的光谱输出不易于控制调整,并且由于其工作寿命也相对较短,长时间(数周至数月)的测试将受到限制。Lumencor的高性能照明器消除了这些限制,并引入了新的功能,例如通过组合多达21个离散固态光源的输出来获得任何所需的光谱分布。 常用产品型号 SOLA、MAGMA、RETRA 质量控制和测试 Quality Control and Testing在质量控制和测试应用中,一致的性能和可靠性是对显微镜照明的基本要求。弧光灯和白炽灯不符合这些要求。并且灯泡的使用寿命有限,每200-2000小时就需要更换和重新校准。此外,不同灯泡的输出功率可能有很大的差异,而且计算机控制操作的能力也非常有限。Lumencor的固态照明技术消除了这些限制,并增加了创新的高性能功能。固态光引擎包含光源阵列,可提供任何所需的光谱分布。这种分布可以通过计算机控制的光源强度调整进一步细化。Lumencor的第三代照明系统是精密的光引擎,集成了板载微处理器,提供校准光输出和实时性能监控。 常用产品型号 SORA、AURA、SPECTRA半导体检测 semiconductor Inspection控制光的空间、光谱和时间特性对于半导体制造中的缺陷分析和设备测试变得越来越重要。显微镜弧光灯和白炽灯受限于有限的使用寿命和缺乏集成到模块化设计框架中的灵活性。仪器设计人员、工程师和制造商正转向Lumencor的固态照明技术,以获得可持续、高性能的解决方案和稳定耐用的制造产品。 常用产品型号 AURA、SPECTRA、MAGMA、RETRA 显微镜 光学显微镜是细胞生物学的一项核心研究技术。然而,它的应用远远不止如此,而是遍及到需要微米尺度结构信息的所有研究、制造和测试领域。光学显微镜包括多种特定的技术,下面列出了其中的一些。Lumencor的固态光引擎在所有这些方面都表现出色。宽场荧光显微镜 是荧光显微镜中zui少专业性也是zui常见的一种。用于显微镜的汞弧光源和金属卤化物光源多年来无处不在,但因其性能不稳定而备受困扰,如今它们已在很大程度上被无汞、清洁和绿色的高性能固态光引擎所取代。固态光源又分为白光输出和选色输出两种。白光光源是汞弧灯和金属卤化物等的直接替代品,具有优越的稳定性,更长的使用寿命,更灵敏的控制特性和更低的运行成本。而可以选择颜色输出的光引擎消除了多色成像方案中机械式滤光片切换的需求,从而实现更快的数据采集。共聚焦显微镜 通过对激发光进行空间限制来提供三维空间信息。因此,与宽场显微镜相比,共聚焦显微镜需要更高的初始光强。因此,在共聚焦显微镜的应用中,激光光源通常比LED更受青睐。超分辨率显微镜 提供20 - 200nm范围内的空间分辨率,超出了宽视场荧光显微镜(~ 200nm)的限制。与共聚焦显微镜一样,需要空间受限的激发光,通常shou选激光光源。透射光学显微镜 通常需要比荧光显微镜更低的光强,因此可以使用更小的被动冷却光源。多年来占主导地位的卤钨灯已经被固态显微镜光源所取代。很大程度上是相同的原因,固态显微镜光源在宽视场荧光显微镜也已经取代了汞弧灯。特别是,固态光源的光谱分布(色温)不随输出光强而变化,这是保持色彩一致性的一个重要优势。暗场显微镜 利用空间滤波排除未散射的光,从而提供样品的散射光图像。在暗场(DF)的照明下,平坦的表面呈现暗色,而裂缝、孔隙和蚀刻边界等特征则会增强。因此暗场照明可以用于检测不透明、未染色材料(如半导体晶圆)中的缺陷。由于照明必须经过空间滤波,因此需要比透射光学显微镜所使用的光源输出强度更高的光源。 常用产品型号 CELESTA、ZIVA、SOLA、AURA、SPECTRA、SPECTRA X、MIRA、RETRA、PEKA、LIDA关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.11

xiRAY相机被选为第1台11mpix微型ct扫描仪

xiRAY相机被选为世jie上第1台11mpix微型ct扫描仪一. 简介昊量光电推出的xiRAY11是一款新型大画幅制冷X射线数码相机,可在不影响样品量的情况下实现高空间分辨率。计算机群集选项支持快速扫描和三维重建,在大多数情况下,该功能需要使用多台 电脑 并行重建扫描数据集的时间少于扫描持续时间。横截面图像以高达 8k x 8k 像素的各种格式生成。此款相机被选中 - 在面对面测试中击败了其他X射线相机竞争对手在一场面对面的比赛中,微型CT扫描仪制造商SkyScan(现为布鲁克)选择了我们的xiRAY11相机,而不是竞争的X射线相机,用于其下一代11万像素微型CT扫描仪。这几乎是超级科学用相机微型计算机断层扫描或“micro-CT”是指类似于医院CT(或“CAT”)扫描使用的3D X射线成像系统,但规模要小得多,分辨率大大提高。Micro-CT扫描仪通常用于3D显微镜应用,客户需要物体内部结构的无损、高分辨率3D图像。与典型的显微镜应用或电子显微镜不同,显微CT扫描仪不需要专门或破坏性的样品制备、染色或薄切片 - 单次扫描即可提供高分辨率样品完整内部3D结构的图像,而不会损坏样品。二. 内部结构---里面有什么我们的xiRAY11 是一款 11Mpix、光纤耦合和制冷 X 射线相机,基于 Kodak 的 KAI-11002 传感器。xiRAY11还采用了我们专有的传感器驱动技术CLEANPATH,使xiRAY11能够提供具有14 x 36mm视野的水晶般清晰的24位图像。该相机在全分辨率模式下具有 4 fps 刷新率,在 12x4 像素合并模式下具有 4 fps 刷新率,以及用户可设置的 12μs 至 500 秒曝光时间;所有这些功能都集中在一个尺寸仅为63 x 63 x 40mm的相机模块中。第二种型号称为xiRAY16,分别配备了16 Mpix Kodak的KAI-16000传感器。我们来了,我们看到了,我们扫描了这些xiRAY11特性共同为SkyScan的新型微型CT扫描仪提供了前所未有的分辨率、速度和性能,特别是与竞争的X射线相机中分辨率扫描方法相比。在头对头测试中,xiRAY11 证明,与采用固定光源探测器设计的竞争性微型 CT 系统相比,它可以在中等分辨率下生成比竞争对手快几倍的图像,或者在相同的曝光时间内生成更高分辨率的图像。一. 样品扫描展示 咖啡豆测试来自咖啡豆重建结果的体积渲染,其右前角被数字移除。咖啡豆的三个正交虚拟切片,由以 8 微米各向同性分辨率运行的微型 CT 系统无损重建。Wood sample以 500nm 空间分辨率扫描的木材样品重建结果的体积渲染三个正交虚拟切片显示木材样品中的单个细胞,通过具有 500 纳米各向同性分辨率的微 CT 系统对样品进行了无损可视化检测。四. 总结 我们的xiRAY11是一款新型大画幅制冷X射线数码相机,可在不影响样品量的情况下实现高空间分辨率。计算机群集选项支持快速扫描和重建吞吐量,在大多数情况下,该选项使用多台 PC 并行重建扫描数据集的时间少于扫描持续时间。横截面图像以高达 8k x 8k 像素的各种格式生成。 About SkyScanSkyScan专门从事物体内部微观结构三维无损检测研究系统的开发和制造 - 显微断层扫描或显微CT。基于超过3年的经验,SkyScan能够在1995年建造第1台商用台式微型断层扫描机。如今,SkyScan的标准商用显微断层扫描系统达到了亚微米范围内的空间分辨率。我们后期会更新一些X射线检测的算法,以及更多的应用介绍,请持续关注我们!关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

新品

2024.06.11

如何使用Moku进行阻抗测量?

如何使用Moku进行阻抗测量?频率响应分析仪Moku的频率响应分析仪(FRA)在Moku输出上驱动扫描正弦波,并同时测量Moku输入接口接收到的信号幅度(或功率)。FRA可以测量系统或被测设备(DUT)的传递函数,从而创建幅度和相位与频率的关系图,通常称为波特图。图1 波特图示例为了测量被测设备的阻抗(Zdut),我们需要了解 FRA 的功率图。FRA 图使用dbm或相对于一毫瓦(1 mW)的分贝为单位;在这种情况下,一个方便的计量单位。定义为:Moku FRA扫描正弦输出可以以伏特(峰峰值)为单位进行设置。对于正弦曲线:将上式带入(2)式,可得:以dBm表示,换算为mW,并且我们已知Moku 输入阻抗为50 Ω,得出:我们使用Moku的FRA生成1 Vpp正弦波 ,Moku输出1直接连接到输入1,如图2所示。当然,所得幅度在整个频率范围(0-1 kHz)4.050 dBm处是平坦的,非常接近到计算出的3.979 dBm。差异相当于1.7 mV(0.17%)。图2 在Moku输入中直接驱动的1 V pp的FRA图电阻测量单端口测量:现在FRA的基本电源单位已经清楚,我们可以进行阻抗测量工作。在第1个示例中,我们将测量一个简单的10 kΩ、10% 容差电阻器的Rdut。等效电路为:图3 单端口测量等效电路请注意,Vout为2 V,这会导致50 Ω负载上的电压为1 V。Moku FRA的运行频率高达120 MHz,但对于这些电阻测量,绘制至40 kHz 的图就足够了。图4显示了Vin时的Moku FRA幅度响应 = -35.821 dBm 。图4 10 kΩ、20%、单端口DUT的FRA图重新整理(1)式并代入(4)中的P,我们可以得出:从图4中可得,PdB = -35.821dB,通过(5)式可得Vin=10.23mV由图3的等效电路,可得分压公式:该电阻器的数字电压表(DVM)读数显示为9750 Ω。通过这一简单的单电阻测量,我们可以得出结论,Moku 的准确度在 77 Ω(低阻抗测量:上面的示例使用了标准10% 容差电阻。我们还可以高精度地测量较低的阻抗。为此,我们将使用100 Ω、0.005% 容差的高精度电阻器。使用上述方法,我们得到了功率幅值图。图5 100 Ω、0.005%、单端口的 FRA 屏幕截图将测得的-1.972 dBm功率代入方程(5)和(7),我们计算出Rdut为98.41Ω。这与已知值几乎一致,但我们可以通过双端口测量做得更好。二端口测量:为了改进我们的测量,我们需要考虑Moku 50 Ω输出上DUT的负载。我们可以通过双端口测量来实现这一点,利用Moku的第二个输入端口来观察实际应用的信号电平。图6显示了使用Moku:Lab的硬件设置示例。图6 Moku:Lab的两端口配置图7 二端口等效电路我们可以根据欧姆定律推导出图6中的Rdut:将(9)带入(8)可得:我们使用严格公差100 Ω、0.005%电阻器设置此双端口测量,并捕获图7中的 Moku FRA图。图7 100Ω、0.005%、两端口的FRA屏幕截图请注意,黄色线即为我们使用 FRA 数学通道(V2/V1)。在iPad界面上进行配置非常快速且简单。从(10)中我们可以看出,我们可以根据V2/V1电压比计算Rdut。FRA数学通道计算出的功率比为9.505 dBm,因此电压比为:代入到(11)中,可得:。我们将该值代入(10)可得Rdut=99.36Ω。电阻测试总结:Moku的FRA可用于进行阻抗测量并确定电阻值,精度Rdut/Ω单端口/Ω双端口/Ω数字电压表/Ω10098.4199.36100.010000967597629750在双端口方法中,测量精度将更高。电感测量在本例中,我们将测量一个已知电容器:Wurth Elektronik 7447021。这是一个100μH电容器,额定功率为10kHz,容差为20%,如下图12所示。图12 电容器的简要参数我们将采用与图6与图7相同的两端口测量方式。图13 阻抗向量示意图因此,如果我们测量频率 f 下的相位,我们就可以确定电感L。设置与测量:图14 Moku:Lab设置图14显示了 Moku:Lab的设置,我们只需几分钟,即可在 Moku:Lab的iPad 应用程序上设置搭载FRA 仪器并生成幅度和频率与相位的关系图。然后通过点击云按钮来共享应用程序上的曲线,屏幕截图和高分辨率数据,并可导出到MyFiles、SD 卡或电子邮件中。在本例中,我们将数据共享到Dropbox文件夹,如图15所示。您也可以使用PC应用程序将以上您需要的数据直接下载到您的PC上。图15 100μH、20%、双端口电感器的FRA屏幕截图Moku 输出通道1上生成了1 kHz至10 MHz的扫频正弦波。蓝色线显示通道2(V2),而红色迹线显示通道1(V1)。Moku数学通道呈橙色,并配置为两通道的除法运算 (ch2/ch1)。我们添加了几个光标来测量10 kHz、100 kHz 和 1 MHz处的相位和幅度。橙色数学通道光标使我们能够快速查看 10 kHz 频率处的相位差,即∅ = 6.775°。代入到式(12)(13)中可得XL = 5.94Ω,L = 94.5μH,在100 µH±20%的范围内。虽然电感器的工作频率为10 kHz,但我们也可以在100 kHz下根据图15的测量数据进行测量,其中= 47.619°。再次代入式(13),得出L = 87.2 µH。这低于标定值,但这是现实线圈电感器的正常现象。我们使用Moku iPad应用程序,通过Dropbox将高分辨率FRA幅度和相位数据保存到 .CSV文件中,因此我们可以将其快速导入Excel中,并利用式(13)生成电感(蓝色)和相位(绿色)与频率的关系,如图16所示。这低于标定值,但这是现实线圈电感器的正常现象。我们使用Moku iPad应用程序,通过Dropbox将高分辨率FRA幅度和相位数据保存到 .CSV文件中,因此我们可以将其快速导入Excel中,并利用式(13)生成电感(蓝色)和相位(绿色)与频率的关系,如图16所示。图16 电感与相位和频率的关系图从图中我们可以清楚地看到,在100 kHz以上,电感稳定下降,直到5 MHz左右,此时电感实际上为零。发生这种情况的原因是,实际上我们使用的线圈电感器不是理想的电感器,而是具有一些电阻和电容。等效电路实际上如图17所示。完美的电感器的阻抗随频率线性增加。但现实世jie中的电感器包含了电阻元件Resr、并联的Repr与寄生电容(Cepc)。Resr有时在数据表中被引用为直流电阻,是线圈的电阻;Repr是有效并联或交流电阻,Cepc是由于线圈靠近而产生的并联电容。因此,共振频率由下式决定:通过查询该电感的数据表,我们可以找到该电感器的典型阻抗特性。该阻抗特性曲线显示谐振峰在5 MHz左右,如图18所示图18 电感器的典型特性曲线由于Moku设备可以非常简单地通过Dropbox将FRA的数据共享到 .CSV,因此我们可以轻松使用Excel提供幅值阻抗与频率的关系图,如图19所示。图19 Moku:Lab测试的阻抗曲线测量得到的谐振频率略高于5 MHz,测量特性与图18非常一致。总结通过使用Moku:Lab的FRA(频率响应分析仪)仪器,我们可以方便快捷的进行高精度的阻抗测试,并取得了很好的实验结果。不仅如此,使用Moku:Go或Moku:Pro同样也可完成该测试。Moku系列产品不仅有频率相应分析仪,锁相放大器,任意波形发生器、频谱分析仪、数据记录器、示波器、相位计、PID控制器、波形发生器、云编译等功能,还有多仪器并行功能可以同时使用多个仪器,欢迎您与我们一同交流讨论!关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.06.11

20 GS/s的14位任意波形发生器震撼上市!!!

超快的 14 位任意波形发生器震撼上市昊量光电推出全新一代ARB Rider AWG-7000 是有史以来头等速度的 14 位任意波形发生器:20 GS/s 实时更新速率和 14 位垂直分辨率。Arb Rider AWG-7000 提供 2 或 4 通道型号,是有史以来头等速度的 AFG(任意函数发生器),可达到高达 6.5 GHz 的正弦波。得益于 Simple Rider 软件,AWG-7000 提供了-流的性能和ji其易于使用的界面。10 GHz 带宽、高达 5Vpp 的输出范围和高达 9 G 的采样存储深度,使 AWG-7000 成为物理实验、快速量子密钥分发 (QKD)、量子传感、光学和光子学、射频/无线以及航空航天和国防应用的理想选择。模拟性能不折不扣:在5Vpp的超大振幅下可实现50ps的快速上升时间。多达 32 个数字通道选项,结合 2 或 4 个模拟通道,使 AWG-7000 成为功能齐全的混合信号发生器。现在可以生成多达 4 个模拟信号,这些信号与 32 条数字线路(LVTTL 或 LVDS 标准)完全同步,频率达到有史以来的超高水平。专用的机箱内同步总线允许多达 4 个单元的多仪器同步:16 个模拟通道和 128 个数字通道,用于有史以来超强大的混合信号发生器。1.满足您所有需求的种类AWG-7000 可轻松生成复杂的脉冲序列、一系列雷达脉冲、驱动电和声光调制器、带损伤的脉冲射频信号、高斯脉冲、多电平脉冲、PAM 和 PRBS 信号、用于高端研究和量子计算的脉冲,是所有复杂测试和尖端应用的理想合作伙伴。高达 5Vpp 至 50 欧姆脉冲幅度,具有 ± 2.5V 硬件偏移50 ps 上升和下降时间轻松塑造您的脉冲转换探测器仿真真实信号的生成/回放2.光学与光子学、量子与射频无线AWG-7000 是科学技术实验前沿和高能物理、光学、激光和光子学以及射频无线通信等前沿挑战的理想选择。AWG-7000 系列仪器几乎可以创建任何信号 - 模拟或数字、理想或失真、标准或定制。您可以轻松构建复杂的 RF/IF/IQ 波形、很小宽度、高振幅脉冲来驱动电/声光调制器、脉冲激光二极管,或者它可以用于量子光学实验,例如操纵金刚石中的氮空位颜色中心。5 Vpp 到 50 Ω,模拟带宽为 8 GHz触发输入和模拟输出之间的超小延迟驱动电光调制器、调制和驱动激光二极管射频无线数字调制3.雷达、激光雷达设计、汽车和电子战宽带雷达和电子战系统需要高保真信号来复制真实环境的情况和复杂的环境场景。此外,今天的汽车包括许多高度复杂的电子控制单元,带有非常敏感的电子元件。随着需求的增加,下一代高端驾驶辅助系统(ADAS)需要越来越高分辨率的摄像头和雷达系统。摄像头、激光雷达、雷达和超声波设备需要更高的带宽和更低的延迟网络以及复杂的汽车技术。生成具有出色杂散性能的雷达测试信号使用多达 16384 个音序器条目和高端音序器条件/无条件跳转创建电子战复杂场景。为航空航天和国防、汽车和移动设备解决方案建立LiDAR信号测试高达 5V 的电气标准仿真物理层测试EMI 调试、故障排除和测试使用波形编辑器软件创建测试波形,或使用第三方应用程序(如MatLab、Labview、.NET语言等)导入测试波形。4.波形编辑器:功能强大且简单波形编辑器允许您为雷达脉冲、物理研究脉冲、真实环境信号和复杂环境信号轻松创建复杂的形状。它包含在标准软件包中。轻松生成复杂的模拟和数字信号在 PC 上远程创建波形与 True-Arb 软件完全集成5.内存与型号和操作模式AWG-7000 使用独特的策略沿通道拆分内存,以超大限度地提高内存深度/带宽分布。下表显示了如何根据型号和所选的超大采样率分配内存.AWG-7000-S 型号是经济高效的 4 通道任意波形发生器,可以在有限内存配置的 4 通道模式下运行,也可以在全内存的 2 通道模式下运行(如 AWG7xx2 型号),如下表所示6.可实现多仪器同步可以同步 4 个单元,以构建由 16 个模拟通道和 128 个数字通道组成的系统,这些通道与 True-Arb 软件完全同步和集成。可同步 4 个单元:16 个模拟通道和 128 个数字通道,通过 True-Arb 软件进行易于使用的多仪器控制。

新品

2024.06.11

脑磁图(MEG)新型技术及功能特点-多通道光泵磁力计便携平台

脑磁图(MEG)新型技术及功能特点多通道光泵磁力计便携平台脑磁图(MEG)发展背景前景介绍脑磁图(MEG)通过评估神经电流产生的磁场来测量大脑功能。传统的MEG使用超导传感器,这对性能、实用性和部署产生了重大限制;然而,近年来,光泵磁力计optically-pumped-magnetometers(OPMs)的引入使该领域发生了ge命性变化。OPMs可以在没有低温的情况下测量MEG信号,从而实现了“OPM-MEG”系统的概念,该系统表面上允许增加灵敏度和分辨率、寿命依从性、自由受试者移动和更低的成本。在这里,我们报告了一种新的OPM-MEG设计,具有小型化和集成的电子控制、高水平的便携性和改进的传感器动态范围(可以说是现有仪器的zui大限制)。我们表明,与已建立的仪器相比,该系统产生等效的措施;具体而言,当测量任务诱导的beta带、伽马带和诱发的神经电反应时,来自两个系统的源定位具有高度可比性,时间相关性>0.7在个体水平和>0.9群体中。使用电磁体模,我们通过在背景场中运行系统来证明改进的动态范围8nT。我们表明,该系统在自由运动期间(包括坐立范式)收集数据是有效的,并且它与同时electroencephalography(EEG-临床标准)兼容。zui后,我们通过在两个实验室之间移动系统来证明可移植性。总体而言,我们的新系统被证明是OPM-MEG技术的重要一步,并为下一代功能医学成像提供了一个有吸引力的平台。脑磁图(MEG)测量电流通过大脑神经元组装产生的磁场(Cohen 1968)。这些磁场的数学建模产生三维图像,显示electrophysiological活动的空间和时间特征。MEG是研究大脑功能的成熟工具,在神经科学和临床实践中具有应用(Baillet,2017)。在神经科学中,它可用于测量诱发反应,神经振荡,功能连接和网络动力学-显示大脑如何不断形成和溶解支持认知的网络。临床上,MEG zui常用于癫痫,以定位负责癫痫发作的大脑区域以及周围雄辩的皮层(De Tiège et al.,2017)。还有其他潜在的应用,从研究儿童常见疾病(例如,自闭症听觉诱发反应潜伏期的测量(Matsuzaki等人,2019年))到调查老年人的神经退行性疾病(例如,痴呆症皮质减缓的测量(Gouw等人,2021年))。MEG在空间精度(因为磁场对头骨的扭曲比EEG测量的电位小)和灵敏度(因为EEG更受非神经元来源(如肌肉)的人工制品的影响)方面优于临床标准electroencephalography(EEG)(Boto等人,2019年;Goldenholz等人,2009年)近年来,MEG仪器通过引入光泵磁力计(OPMs)而发生了ge命性的变化。(参见(Brookes等人,2022年;Schofield等人,2023年;Tierney等人,2019年)的评论。)OPMs测量磁场的灵敏度与传统MEG使用的传感器相似,但不需要低温冷却。它们也可以是微制造的(Schwindt等人,2007年;V. Shah等人,2007年,2020年;V.K.Shah&Wakai,2013年),因此它们小巧轻便。这导致了多种优势。例如,传感器可以放置在更靠近头皮表面的位置(与低温设备相比,不再需要热绝缘间隙);这显著提高了信号幅度(Boto等人,2016年,2017年;livanainen等人,2017,2019,2020)理论计算表明,这可以提供前所未有的空间分辨率(高于传统的MEG和EEG)(Nugent等人,2022年;Tierney等人,2022年;Wens,2023年)。阵列可以适应任何头部形状-从新生儿到成年人(Corvilain等人,2024年;Feys等人,2023年;Hill等人,2019年;Rier等人,2024年)。适应性还意味着阵列可以设计为优化对特定效应(Hill等人,2024年)或大脑区域(Lin等人,2019年;Tierney,Levy等人,2021年)的敏感性。当传感器随着头部移动时,参与者可以在记录期间自由移动(假设背景场得到良好控制)(Holmes等,2018,2019,2023; Rea等,2021)。这使得在新任务期间记录数据(Boto等,2018;Rea等,2022)甚至癫痫发作(Feys等,2023;Hillebrand等,2023)。对不同头部大小/形状的适应性加上运动鲁棒性(Feys&De Tiège,2024)意味着,像EEG一样,OPM-MEG系统是可穿戴的。然而,与EEG不同,传感器不需要与头部进行电接触,使得OPM-MEG在患者友好性方面比EEG更实用。zui后,即使在开发的早期阶段,基于OPM的系统也比传统的MEG设备更便宜。这些显著的优势在理论上可能导致OPMMEG成为electrophysiological测量的shou选方法,甚至有可能取代EEG成为某些应用的临床工具。 多通道OPM-MEG系统数据采集分析 我们zui初的目标是比较两种不同的OPM-MEG系统。两者都由64个三轴Quspin QZFM OPM传感器(QuSpin Inc. Colorado,USA)组成,每个传感器都能够在三个正交方向上测量磁场,从而实现192个独立通道的数据收集。传感器设计已经有了很好的记录(Boto等人,2022;V.Shah等人,2020),这里不再详细重复;简而言之,每个传感器头都是一个独立的单元,包括一个87Rb蒸汽电池,一个用于光泵浦的激光器,一个用于电池内场控制的板载电磁线圈和两个用于信号读出的光电二极管。光束分离器将激光输出分开,相关光学器件通过电池投射两个正交光束,以实现三轴场测量。传感器的中位数噪声底限预计~15fT/sqrt(Hz)在3-100 Hz范围内。这比典型的单轴或双轴OPM的噪声底略高,因为需要将激光束分开进行三轴测量(Boto et al.,2022)。两个系统的传感器安装在相同的3D打印头盔中(Cerca Magnetics Limited,Nottingham,UK),确保阵列几何形状对于所有测量都是相同的(参见图1A-插图)。阵列被放置在一个磁屏蔽室(MSR)中,包括四个金属层和一个铜层,以分别衰减DC/低频和高频磁干扰场(Magnetic Shields Limited,Kent,UK)。MSR墙壁配备了消磁线圈,以减少扫描前的残余磁化。MSR还配备了矩阵线圈(Holmeset al.,2023)和指纹线圈(Holmeset al.,2019)-两者都能够进行主动场控制(Cerca Magnetics Limited,Nottingham,UK)。单个“采集”计算机用于OPM-MEG控制和数据采集;该范式(以及相关的时间标记(“触发器”)描述了向受试者提供刺激的时间)由第二台“刺激”计算机控制。视觉刺激通过波导投影到位于受试者前方的背投影屏幕上~100 cm呈现。我们使用了Optoma HD39 Darbee投影仪,刷新率为120 Hz。两个系统的示意图如图1C所示。图1:OPM-MEG系统: A)机架安装(RM)OPM-MEG系统;传感器头通过MSR外的电子机架控制。B)集成小型化(IM)OPM-MEG系统;受试者佩戴的背包内包含所有控制和采集电子设备。系统原理图——对两个系统都有效,主要区别是电子OPM:红色路径显示IM系统,蓝色显示RM系统。集成微型系统的电子设备照片。图2显示了我们的RM和IM系统之间的比较结果。单个主题的结果显示(在所有6次运行中平均);第二个主题的等效图在补充材料中提供。面板A显示按钮按下期间的beta调制。在这两个系统中,zui大的beta调制被定位到左侧初级感觉运动皮层(由于右食指的运动),时间过程显示出明显的运动诱导beta幅度的减少,如预期的那样。图2B显示了圆刺激呈现期间的伽马调制。在这里,zui大的刺激诱导增加在主要视觉区域,并观察到刺激呈现期间伽马幅度的预期增加。图2C显示了对面部呈现的诱发反应。图像显示了诱发反应的空间签名,其延迟为~170ms,主要在梭形区域。图2:RM和IM系统比较: A)手指运动的β带反应;在左边的图像中,叠加显示zui大beta调制的位置,右边的时间过程显示beta带振幅的时间演变。b)对视觉刺激的伽马反应;图像显示伽马调制的位置,时间过程显示伽马带振幅的演变。c)对面部呈现的诱发反应;图像显示zui高诱发功率的位置,时间过程显示试验平均诱发反应。在所有三种情况下,数据在6次运行中平均;显示了两个系统的图像,在时间过程图中,红色表示RM系统,蓝色表示IM系统,阴影区域表示运行均方差。图3显示了我们的坐立任务的结果。图3A和C图分别显示了beta调制和从初级感觉运动皮层峰值提取的TFS的pseudo-T-statistical图像。zui大的beta调制局限于双侧感觉运动区域,从手部区域中间延伸到负责腿部运动的区域(回想一下,任务涉及站立时手指运动,所以这是可以预料的)。TFS在每次试验的前4秒显示出清晰的beta带不同步,而受试者正在运动。图3 显示了传感器测量的原始磁场数据。大多数传感器显示由运动产生的背景场偏移,>1.5 nT这超过了传感器在开环模式下运行时的动态范围。尽管有这些大的场偏移,传感器仍保持运行。虽然传感器在开环运行时可以进行这些测量,但信号的准确性将受到增益和CAPE误差的显著阻碍(Borna et al.,2022)。图3:坐立任务:A)任务引起的beta调制的空间特征。B)通道测量的原始磁场,显示传感器穿过a ~2 nT背景场,参与者从坐姿移动到站姿。C)来自感觉运动皮层的TFS,显示神经振荡的时频演变。D)任务的再现,以展示运动范围。并发OPM-MEG/EEG联动对比图4:并发OPM-MEG/EEG: A)戴着EEG帽和OPM-MEG头盔的参与者。b)在自然头部运动期间记录数据:显示了实验中受试者所做的zui大平移和旋转。条代表受试者的平均值;数据点显示每个个体受试者的值。C)和D)分别显示组平均beta和伽马效应。在这两种情况下pseudo-T-statistical图像和相关的TFS(来自beta的zui小值和伽马视觉皮层的中心点)在这些图像中显示了EEG和MEG。所有数据都是在运动的情况下记录的。小型化OPM-MEG系统总结我们的总体目标是展示一种新的OPM-MEG系统,具有集成和小型化的电子设备,并测试其评估人体electrophysiological功能的可行性。我们的主要演示看到新的IM系统在两个受试者中多次使用,以提供与已建立的OPM-MEG设备的比较,该设备以前已经得到广泛验证(Boto等人,2022; Rea等人,2022;Rier等人,2023,2024),包括与传统MEG(Boto等人,2021;Hill等人,2020;Rhodes等人,2023)。两个系统获得的结果显示出惊人的一致性。源时间在系统之间具有高度可重复性,平均相关性为~0.75对于单个运行,以及>0.9对于同一受试者的多次运行的平均值。总体而言,这些结果表明这两个系统提供了等效的性能。重要的是,这不仅验证了小型化的电子设备,而且还表明MSR内部的这种电子设备(作为背包佩戴)不会在OPM传感器处产生显著的磁干扰,这些干扰不能通过均匀场校正(Tierney等人,2021)和波束成形(Brookes等人,2021)等方法在后处理中被拒绝。 zui后,从实际角度来看,IM系统表现良好。在之前的OPM中,MEG系统的鲁棒性一直是一个关键问题,特别是在测量中丢失的通道数量。在这里,在使用我们的IM系统的32个实验中,我们丢失了(平均)3±5通道。在我们丢失通道的情况下,原因通常是传感器头和带状电缆之间的连接。传感器头使用卡扣连接,卡在带状电缆上,进行电气连接。这在制造电缆时需要zui小的公差,因为即使是电缆厚度的微小变化也会使卡扣连接器松动,从而导致连接不稳定(这也是IM系统中空房间噪音略微增加的可能原因)。这是该系统未来几代应该改变的事情。尽管有这个小限制,IM系统表现良好。64个Quspin QZFM传感器的设置时间通常约为三分钟——这包括加热蒸汽电池和激光器、用PID控制器锁定温度、优化所有传感器参数、将每个电池内的场归零、校准传感器和打开闭环的时间。每个OPM传感器头的特性略有不同,这意味着控制参数必须在每个传感器的基础上进行优化(就像超导量子干涉设备(SQUID)必须在传统MEG系统中单独调整一样)。在IM系统中,由于这些参数是在传感器启动时优化和设置的,传感器头可以轻松更换,而不需要在更换后重新启动传感器以外的任何东西。这是运行系统时的一个重要的实际优势,进一步增加了设计的模块化。 这里报告了一种全新的OPM-MEG系统设计,具有小型化和集成的电子控制、高水平的便携性和显著改善的动态范围。我们已经证明,与已建立的仪器相比,这种仪器提供了对刺激的诱导和诱发神经电反应的等效测量,并且它提供了改进的动态范围。我们已经证明,该系统在参与者运动期间(包括从坐到站的范例)收集数据是有效的,并且它与同步EEG记录兼容。zui后,我们通过在两个实验室之间移动系统来证明便携性。总体而言,我们的新系统代表了OPM-MEG向前迈出的重要一步,并为下一代功能性医学成像提供了极具吸引力的平台。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2024.06.11

激光指向稳定在光刻系统应用中的关键作用,及其优化方案!

激光指向稳定在光刻系统应用中的关键作用,及其优化方案!光刻是半导体制造工艺中的核心之一,极紫外光刻技术作为新一代光刻技术也处于快速发展阶段。其基本原理是利用光致抗蚀剂(或称光刻胶)感光后因光化学反应而形成耐蚀性的特点,将掩模板上的图形刻制到被加工表面上。光刻半导体芯片二氧化硅的主要步骤包括涂布光致抗蚀剂、套准掩模板并曝光、用显影液溶解未感光的光致抗蚀剂层、用腐蚀液溶解掉无光致抗蚀剂保护的二氧化硅层,以及去除已感光的光致抗蚀剂层。在光刻系统中,激光的指向稳定非常重要,会直接影响光刻的图形准确性和一致性。影响光束指向稳定的主要因素有三个,分别是激光器本身的位置偏移,处于不同基座上的激光器和照明系统之间的振动差异性以及传输过程中的光学系统的扰动。这些扰动会对光刻的质量造成严重影响。首先,激光指向的稳定性对于确保图形的精确刻蚀至关重要。在光刻过程中,激光束需要精确地照射到硅片上的特定区域,以实现图形的准确转移。如果激光指向不稳定,会导致图形位置偏移、尺寸变化等问题,严重影响产品的质量和性能。其次,激光指向的稳定性还关系到光刻的重复性和一致性。在半导体制造中,往往需要对大量的硅片进行光刻处理,这就要求光刻过程具有高度的可重复性和一致性。如果激光指向不稳定,每次光刻的结果都会有所差异,导致产品批次间的性能不一致,增加了制造难度和成本。因此,激光指向的稳定性在不断提升的精度要求下显得尤为重要。我们可以通过减小振动和降低温度变化等方式实现光束的相对稳定,但这只是一种被动的补偿方式,而且无法彻底规避这些干扰。对此,可以通过一套主动的补偿系统,当光束发生偏移之后通过调整光路将其转向回来,对环境的要求就显得没有那么苛刻。来自TEM公司的光束指向稳定系统可以实现上述功能。该系统由两个快速反射镜(FSM),一个位置探测器(PSD)和一个控制机箱组成。FSM的偏转通过将电动马达和压电陶瓷进行结合,可以同时保证了快速反射镜的大量程和高精度,配合高分辨率的位置探测器(PSD),系统总精度可达到亚微米量级。除此之外,响应时间对于需要激光束实时稳定的系统而言也是至关重要的,you秀的算法可以将其限制在0.2ms范围,闭环带宽超过5KHZ。下图为光束探测及其稳定系统示意图。激光经过两个快反镜R1和R2之后入射到分束镜BS1上,其中透射光用于后续的实验和正常使用,少量反射光将进入PSD中,用于光束探测。PSD是一种基于半导体PN结横向光电响应的光电器件,根据入射光斑的质心输出电压,两个PSD分别用于检测光束的位置偏移和角度偏移,控制器检测到偏移信息后经过算法将反馈信息给到FSM,控制FSM的旋转,实现对主光束的指向纠偏。下图为使用该系统前后的光斑位置偏移情况,可以明显看到在该系统工作之前光斑的位置是不稳定的,有较大偏移;而在系统开始工作之后,光斑位置基本被控制在原点附近,位置稳定性显著提高。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.05.21

190-400nm高分辨紫外波前传感器助力半导体行业发展!

190-400nm高分辨紫外波前传感器助力半导体行业发展!摘要:本文介绍了紫外波前传感器在半导体检测中的应用。详细阐述了其在晶圆检测、芯片检测、封装检测以及光学元件检测中的具体应用。指出紫外波前传感器能够提供高精度的检测数据,帮助工程师及时发现问题并进行修复,从而提高产品质量和生产效率。上海昊量光电设备有限公司推出全新一代高分辨率紫外波前传感器,探测波段覆盖190-400nm。该高分辨率紫外波前传感器具有可测试汇聚光斑,高动态范围,大通光面(13.3mm x13.3mm),高分辨率(512x512),消色差,震动不敏感等特点。半导体技术在现代社会中扮演着越来越重要的角色。随着半导体器件尺寸的减小和集成度的提高,对检测技术的要求也越来越高。紫外波前传感器作为一种高精度的光学检测手段,在半导体检测领域发挥了越来越重要的作用,应用范围也越来越广泛。 工作原理:昊量光电推出的紫外波前分析仪基于四波剪切干涉的原理。四波剪切干涉技术克服了传统哈特曼传感器的局限性,可以直接检测汇聚的激光,同时获得相位时需要的像素点大大减少,从而具有高分辨率、高灵敏度和宽动态范围,消色差等优势。AUT-SID4-UV-HR紫外波前分析仪由高分辨率的相机和二维衍射光栅构成,激光通过光栅后,待检测的激光波前分成四束,两两进行干涉,对干涉条纹进行傅里叶变换,提取一激光的信息和零级光的信息,利用傅立叶变换进行相关的计算,计算出待测波前的相位分布,以及强度分布等。波前分析仪在半导体领域的应用:半导体行业的光刻系统依赖于ji其复杂的激光源和光学系统。Phasics公司SID4 系列波前传感器涵盖从紫外线(UV,190nm)到长波红外(LWIR,14um)的范围,已被证明在半导体行业中非常有价值,可用于鉴定此类光学系统的设计波长。越来越多的研发或制造工程师将SID4 波前传感器用于激光源和光学系统的对准和计量。波前传感器可在单次测量中获得完整的激光特性。波前传感器是支持光刻系统制造商和集成商校准、鉴定和监控其紫外光源和系统的理想工具。在整个光刻过程中,都会对晶圆进行检查。晶圆的检测是晶圆制造过程中的关键部分。昊量光电推出的高分辨率紫外波前分析仪结合了高动态范围、纳米波前灵敏度和高分辨率,是集成在晶圆检测机中的绝佳候选者。 1) 晶圆检测:可以检测晶圆表面的缺陷、薄膜厚度、平整度等参数。晶圆表面形貌测量:紫外波前分析仪可以通过配合望远系统,通过测量打到晶圆表面光的反射确定晶圆表面的形貌特征。薄膜厚度测量:波前分析仪可以对薄膜进行双透射测量,根据相位变化,从而确定薄膜的厚度或者得到薄膜的均匀性特征。这对于控制半导体制造过程中的薄膜沉积和蚀刻工艺非常重要。半导体制造过程监测:在半导体制造过程中,波前分析仪可以实时监测晶圆的表面形貌和光学特性,以确保制造过程的一致性和质量。它可以帮助工程师及时发现问题并进行调整,从而提高生产效率和产品质量。2) 芯片检测:可以检测芯片表面的形貌、结构、电路布局等参数。波前传感器可以用于检测芯片封装后的光学性能,如光功率、光束质量等。这对于确保芯片在封装后的可靠性和性能非常重要。同时波前传感器可以通过高速测量和数据处理,实现快速检测,提高生产效率。随着人工智能和自动化技术的发展,波前分析仪可能会与这些技术相结合,实现自动化检测和分析。这将有助于减少人为误差,提高检测效率和准确性。 3) 封装检测:可以检测封装后的芯片的焊点质量、封装材料的折射率分布等参数。利用波前分析仪可以检测封装过程中产生的各种缺陷,如焊点空洞、引线偏移、芯片倾斜等。通过分析波前的相位和振幅变化,可以定位缺陷的位置和大小。波前分析仪可以评估封装后的芯片质量,如焊点的可靠性、引线的连接强度等。通过测量波前的散射和反射情况,可以判断封装质量的优劣。过程监控:在封装过程中,波前分析仪可以实时监测波前的变化,从而及时发现封装过程中的异常情况。这有助于提高封装的成功率和生产效率。波前分析仪在芯片封装检测中具有重要的应用价值,可以帮助工程师提高封装质量、降低生产成本和提高生产效率。随着封装技术的不断发展,波前分析仪的应用领域还将不断拓展。 4) 光学元件检测:可以检测透镜、反射镜等光学元件的表面形貌和折射率分布。波前分析仪可以测量透镜或者透镜组,平面反射镜,球面反射镜的表面面型、曲率半径、折射率分布,透射波前变化,MTF传递曲线等参数,从而评估透镜或者透镜组的质量和性能。波前分析仪用于不同光学元器件的检测 紫外波前分析仪指标参数:结论:紫外波前传感器作为一种高精度的光学检测设备,在半导体检测领域具有广阔的应用前景。随着波前分析仪技术的不断发展和成本的降低,相信紫外波前传感器将会在半导体产业中发挥越来越重要的作用。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.05.21

MOGLabs超稳定外腔半导体激光器,空间&光纤双输出!强势回归!!!

MOGLabs超稳定外腔半导体激光器,空间&光纤双输出!强势回归!!!外腔半导体激光器(ECDL)具有高度可控的发射特性,是相干光通信、光学和原子物理等领域的理想激光源。ECDL使用频率选择性反馈来实现窄线宽和可调谐性,通常使用Littrow或Littman–Metcalf配置的衍射光栅。有很多文献对ECDL的设计做出评论,提到了它许多的优点,包括线宽、被动稳定性、可调性、结构简单、紧凑等。在原子钟中的应用,原子相干过程,如电磁感应透明,和超快光纤通信的相干检测的新发展,需要远低于1MHz的被动激光线宽。一些研究已经介绍了重要的参数和贡献,注意到固有线宽取决于从外部腔的反馈。实验研究了腔长、功率、光栅参数以及外腔模相对于光栅角的失谐效应。从而发现,准直透镜的焦点会影响外腔反馈的效率,从而影响激光器的线宽。镜头焦点的微小或不明显的变化可以对线宽产生相当大的影响,但只有在技术噪声小(与固有腔线宽相当)时才明显。猫眼式反射镜的一个重要优势在于猫眼反射镜本身是自对准的,无论入射角如何,入射光束经过猫眼光学系统后能够按照入射方向原路返回二极管,即使光束没有很好地准直。因此输出激光对机械干扰非常不敏感,也确保了高反馈耦合效率,从而获得窄线宽。Thompson和Scholten的文章中通过780nm二极管激光器演示了猫眼式外腔半导体激光器原理,表明波长通过旋转滤波器可以调谐超过14nm,而测量到的窄线宽为26kHz,与传统基于光栅设计的半导体激光器相比,频率噪声和对震动的灵敏度大大降低。图1 猫眼式外腔半导体激光器的示意图图1展示了猫眼式外腔半导体激光器的示意图。由激光二极管的后反射面和输出耦合器(OC)组成的外腔决定了激光频率。用腔内超窄带宽滤波器选择模式。输出耦合器与腔内透镜组成猫眼反射镜,光通过腔外输出透镜进行再准直。半导体激光器跳模现象多由温度和电流的改变引起。半导体的禁带宽度随温度升高更变窄,温度升高时,半导激光器的发射波长以阶梯形式跳跃变化。同样,注入电流的变化会导致载流子浓度的变化,从而引起材料折射率和增益系数的改变,也会使激光器的发射波长以阶梯形式跳跃变化。而MOGLabs的激光器控制器可以很好的解决这一问题,它是一款超低噪声半导体激光器控制器,一款集电流控制、温度控制、频率锁定等功能为一体的ECDL控制器,集八大功能于一体,提供用于驱动ECDL激光器和将其锁定到外部参考源的重要部件。每一台DLC控制器都包括:微分低噪声探测器,700kHz带宽;超低噪声二极管电流源,可调谐外腔半导体激光器正朝着窄线宽、宽调谐范围、高输出功率等方向发展。通过新材料(光学反馈元件、半导体激光器)的选择、新的外腔结构设计,以及主动稳频等技术来改善激光器的光谱质量,满足各种应用的要求,实现体积小、线宽窄、调谐范围宽、无模式跳变、扫描频率快、频率和波长稳定、相位和频率噪声低,以及与光纤耦合的高性能激光器,在未来光通信和精密测量等领域将有广泛的应用前景,包括激光冷却与捕获、波色爱因斯坦凝聚、囚禁离子、量子光学中的压缩、Electromagnetic transparencyand slow ligh。MOGLabs公司Cateye(猫眼式)外腔半导体激光器(ECDL)是一种新型的外腔半导体激光器,采用猫眼式反射镜+超窄带宽滤波器组合替代传统准直敏感的基于光栅设计的Littrow或Litman-Metcalf结构。坚固、稳定、声学上的惰性是CEL系列的主要特征,即使在运转过程中用锤子敲打它,它仍能保持稳定锁定运转;此外,激光器的自动准直功能可使得在几十纳米的调谐过程中, 无需重新准直。 集诸多优点于一身的可调谐半导体激光器! 核心参数:欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.05.21

新品|Acqiris扫频OCT高速数据采集卡! 采样速度高达4GS/s!

Acqiris扫频OCT高速数据采集卡!  采样速度高达4GS/s!介绍Acqiris高速数据采集卡为扫描源光学相干断层扫描(SS-OCT)提供了卓越的数据采集解决方案。这套数据解决方案的采样速度zui高可达4GS/s,A-scan速度更可达2MHz,为SS-OCT技术的进一步发展和应用提供了有力保障。上海昊量光电作为专业的光电代理商以及Acqiris的合作伙伴,可为您提供专业的选型以及技术服务。正文扫描源光学相干断层扫描(SS-OCT)是一种高分辨率、非侵入性的成像技术,广泛应用于医学、生物医学和工业领域。SS-OCT通过扫描光源的光谱来获取图像,与传统的时间域光学相干断层扫描(TD-OCT)相比,其优势在于更快的成像速度和更深的成像深度。通过使用光源的整个频谱,SS-OCT可以获得更高的信号强度和更大的信号动态范围,从而实现更高的成像分辨率和对比度。尽管SS-OCT具有许多优势,但也存在一些局限性和弱点,SS-OCT系统通常需要使用高速的扫频光源来获得成像速度的提升。但在扫描速度变快的同时,配套的OCT数据采集设备也需要跟上光源的步伐。然而目前OCT的数据采集系统并不能完全满足日益增长的SS-OCT的需要。瑞士Acqiris公司自2014年起便致力于开发基于扫描源光学相干层析(SS-OCT)技术的高速数据采集系统。他们的AQOCT解决方案就可满足SS-OCT应用的痛点问题解决。 AQOCT解决方案主要特点A-scan rate100 kHz ~ 2 MHz通道数1/2采样位宽8-bit ~ 14-bit采样率4GS/sFPGA实时处理出色的图像质量和清晰度高信噪比(SNR)DAQ数据采集模块Acqiris的SS-OCT解决方案基于8-bit、12-bit或14-bit的ADC技术,采用du家ICs和IPs,可实现出色的信号性能、图像细节、深度、对比度和采集速度。产品的前端设计可zui大限度地减少噪声和信号失真,并在全带宽范围内实现稳定的信号性能。凭借高动态范围、精确的触发和特定的低抖动时钟分配,DAQ模块可提供更好的图像清晰度和像素对比度,满足zui苛刻的相位敏感OCT应用要求。OCT算法原理介绍SS-OCT领域其他厂家采集卡大多利用光源的K-clock作为时钟直接对OCT信号进行采样。优点是简单,缺点是性能差,无法有效消除伪影,完全依赖于K-clock信号,而K-clock自身并不稳定。Acqiris采用强大的FPGA和自研SS-OCT高性能信号处理算法,将K-clock也作为一路信号进行采集,然后利用数字信号处理技术对其进行优化以获得zui好的性能。另外,Acqiris采集卡还支持FFT、色散补偿、背景噪声去除等功能,可以为用户提供更快速、便捷的算法支持。FPGA的实时信号处理OCT数据处理步骤由模块化的FPGA实现,用户可自行开启或关闭对应模块1)双通道可编程FIR2)数字k空间重采样;3)去除背景噪声4)可编程窗口/色散补偿5)快速FFT计算6)灰度映射7)A-scan均化      快速简便的集成配套使用SS-OCT专用的C++操作软件可控制DAQ数据采集卡的所有可编程功能,进行实时的OCT处理。专用OCT图形用户界面清晰快捷,支持远程会话,加快系统设置。Acqiris的SS-OCT解决方案可在无需外接电子设备的前提下控制扫描仪/振镜定位,实现扫描仪、OCT源激光和OCT的同步处理。    选型参考Acqiris品牌除了开发适用于SS-OCT的高速采集卡,还拥有多条数据采集卡线、各类参数可供用户选择。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

新品

2024.05.21

超低噪声光学频率梳的载波包络偏频稳定测试

超低噪声光学频率梳的载波包络偏频稳定测试介绍OCTave Photonics的光频梳偏频锁定模块COSMO提供了一种紧凑的方法来检测激光频率梳的载波包络偏移频率fceo。为了评估锁定fceo的稳定性,我们使用一个COSMO模块来测量Menlo System公司的超低噪声光学频率梳的fceo,并使用反馈环外的第二个COSMO来验证锁相环的保真度。我们发现两个COSMO模块的信号在锁定1秒时优于1x10-17,在1000秒时优于1x10-20。这种高稳定性水平与成熟的f-2f干涉测量技术相当,并且所需的能量更低。正文光学频率梳的稳定性对于构建光学原子钟、量子计算机以及量子传感器都至关重要。Menlo System公司致力于开发和制造迄今为止zui稳定的频率梳,实现了破纪录的光学时钟和微波信号合成的稳定性,处于行业的zui前沿。稳定光学频率梳的梳齿结构,就必须检测和锁定脉冲的载波包络偏移频率(fceo)。Menlo System系统的频率梳系统使用传统的f-2f干涉测量进行检测,其利用专有的EOM腔可以在光纤振荡器内稳定fceo,从而实现超低噪声操作。近期,Octave Photonics 的光频梳偏频锁定模块(COSMO)利用新的整合与封装技术,为检测fceo信号时的光谱展宽和测量提供了另一种紧凑的解决方案。COSMO模块允许用极低的脉冲能量检测fceo,从而实现更低的功耗或者更高的重复频率激光器。与传统的fceo检测方案不同的是,COSMO模块虽然也采用了成熟的f-2f干涉测量技术,但其却使用了新型的纳米光子波导技术来产生超连续谱。虽然这种方法不常见,但任何fceo检测设备都可能会在检测过程中引入过多的噪声,因此,有必要验证这类新的锁定模块是否可以完成fceo的低噪声检测。所以,我们可以使用一个COSMO模块作为反馈回路的一部分来锁定来自Menlo System的超低噪声激光频率梳的fceo。另一个外环COSMO用于验证fceo的稳定性。通过比较两个信号的差异,就可以得知其是否完成低噪声检测。图1    实验装置Menlo激光器产生频率为250 MHz的光脉冲串,中心波长约为1550 nm。脉冲首先通过偏振色散补偿光纤,以补偿下游组件的色散,其余的光纤组件均采用保偏光纤,确保即使在环境不稳定的情况下系统也能稳定运行。脉冲随后通过掺铒光纤放大器,然后被50:50的光纤分离器分光,每个COSMO模块接受一半的脉冲光束。在考虑损耗后,每个COSMO器件的输入功率约为45 mW(脉冲能量180 pJ)。这一数值大约比使用传统高度非线性光纤产生超连续介质和f-2f自参考所需的功率低5倍。来自环内COSMO模块的fceo信号与来自RF合成器的30 MHz信号混合。该信号通过锁相环反馈器件向激光器提供反馈。通过计数器分别记录来自内环与外环模块的信号次数,以验证fceo信号的稳定性。如果两组COSMO模块功能稳定,则两种仪器记录的fceo信号应非常相似。实际上也确实如此,如图2b所示,fceo在内环和外环的记录值几乎相同,在1000秒的时间中可以达到8 × 10-21这一数量级。虽然用户可能期望内环和外环COSMO模块应该提供完全相同的fceo测量值,但因为脉冲必须通过不同的光纤才能到达内环和外环模块,两个模块之间的总光纤长度差约为3米,在较短的时间内,这些测量很可能受到光纤路径长度波动的限制。因此,我们将测量结果之间的微小差异归因于光纤中路径长度的微小变化。图2    基于COSMO的fceo稳定与验证通过使用两个独立的COSMO设备,我们对梳齿稳定性进行了测量,验证了COSMO可以以极高的精度检测载波包络偏移的能力。我们发现COSMO使梳齿达到了与使用传统f-2f干涉仪所获得的稳定性相当的水平。因此,COSMO可用于稳定低噪声光频梳的载波包络偏移频率,可以在1000秒内达到10-20这一数量级的精确频率控制,并且其所需的能量更小。 如果您对光频梳相关模块及锁定模块有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/three-level-227.html欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.04.26

1GHz低噪声光频梳的简易偏频锁定系统

1GHz低噪声光频梳的简易偏频锁定系统介绍利用OCTave Photonics光频梳偏频锁定模块(COSMO)来检测Menhir Photonics 1550 nm 1GHz飞秒激光器的载波包膜偏移频率(fceo),可以在激光脉冲能量小于140 pJ(平均功率ceo的精确控制,信噪比>35dB,以更低的尺寸、重量和功率要求实现了zui先jin的性能,该系统可以作为一种简单的1 GHz的超低噪声光学频率梳解决方案。正文光学频率梳因其具有高精度、高灵敏度、高分辨率的特性,为光学原子钟、精密光谱测量、阿秒科学等领域提供了一种可靠的光波-微波转换工具。飞秒光梳本质上是一组特殊的飞秒脉冲光,它在时域上是一系列时间宽度在飞秒级别的超短脉冲,在频域上是一系列间隔相等、位置固定、具有极宽光谱范围的单色谱线。飞秒光梳实现了其频率覆盖范围内所有波长的直接锁定并溯源至微波频率基准,建立起了光波频率和微波频率的直接联系。基于飞秒锁模激光器,目前一般可以通过锁定其重复频率(frep)和载波包络偏移频率(fceo)来使得光梳梳齿稳定。frep主要由谐振腔的几何腔长L与介质折射率n决定,使用外加电压调控压电陶瓷制动器(PZT)的方法就可以实现对frep的锁定。相比之下,锁定fceo则更为困难,常见的方法是通过f-2f自参考过程,生成超连续谱将光谱展宽至至少一个倍频程,然后将低频倍频后与高频拍频测得fceo后接入锁相环反馈器件进行锁定。虽然工作频率接近100 MHz重复频率的光频梳正在成为一种成熟的技术,但重复频率为GHz的梳子仍然存在着大量挑战。首先,传统的激光器架构很难构建低噪声且重复频率>0.5 GHz的谐振结构,而MENHIR-1550飞秒激光器是一种在100 MHz至5 GHz的重复频率下产生超低噪声锁模脉冲的稳定光源模块系统。其次,f-2f自参考过程通常要求激光拥有至少1 nJ的脉冲能量(即frep频率=1 GHz时,平均功率>1 W),这样才能方便与干涉仪进行高精度对准。而zui近,Octave Photonics与Vescent Photonics合作,开发了一项新的整合与封装技术。利用该项技术,光频梳偏频锁定模块(COSMO)为检测激光频率梳的载波包络偏频提供了一种紧凑的单箱解决方案。COSMO模块利用纳米光子波导技术将光限制在~1 μm的模式直径。借助强烈的非线性光学效应,使得COSMO模块允许以小于200 pJ (即frep频率=1 GHz时,平均功率ceo。zui后,由于1 GHz重复频率的频率梳的fceo可以从DC变化至500 MHz,因此为激光提供快速反馈所需的电子设备并非微不足道。新的Vescent Photonics SLICE偏移锁相(SLICE-OPL)盒提供了一种直接的反馈解决方案,可在高达10 GHz的频率下反馈稳定fceo。图1    1 GHz 1550 nm飞秒激光器载波包络偏频稳定实验装置Menhir Photonics、Octave Photonics和Vescent Photonics的这三种突破性技术结合在一起,便简单形成了一个1 Ghz低噪声飞秒激光频率梳系统。在这个系统中,完全稳定的激光频率梳可以在几分钟而不是几天内构建出来。各个光学模块间由保偏光纤相互连接,以简化组装难度并减少热漂移。MENHIR-1550飞秒激光器的输出首先通过一条90厘米长的色散补偿光纤以补偿系统中其他组件的色散。然后,1 GHz脉冲序列通过光学放大器进行放大并进入COSMO模块。COSMO模块包含超连续谱产生波导、二次谐波产生材料以及一个光电探测器。经过f-2f自拍频过程后,来自光电探测器的电信号通过一个以~380 MHz为中心频率的可调谐带通滤波器来选择fceo,然后用一个额外的RF放大器进行放大。该信号连接到Vescent SLICE-OPL,该模块为MENHIR-1550的泵浦电流提供反馈,以实现fceo稳定。使用射频频谱分析仪可以清晰记录fceo频谱和噪声频谱。在整个系统中,由于COSMO模块的优xiu性能,放大器泵浦电流提供140 mW (140 pJ)即可优化fceo信号。在偏频锁定COSMO模块内部,光信号产生了超连续谱。超连续光谱显示在780 nm附近有一个峰,而1560 nm附近的光频率加倍,也会影响780 nm的光。为了在实验上说明这个概念,我们将一个封装的超连续谱产生装置连接到放大器的输出端。图2显示了放大器的窄带频谱是如何转换为脉冲能量高约140 pJ的超宽超连续谱。图2    COSMO模块产生的超连续统接下来,我们将放大器输出连接到COSMO模块,并调整放大器以提供zui强的fceo信号。正如预期的那样,信号优化到约140 pJ时,在300 kHz分辨率带宽下,fceo的信噪比约为36 dB,在100 kHz分辨率带宽下,信噪比约为42 dB(图3)。这样的信噪比数据对于fceo所需的精确可靠的锁定来说绰绰有余。然后,我们将fceo电信号连接到Vescent SLICE-OPL并开始反馈控制,这使得我们能够将fceo锁定到任意RF频率(图3,右侧蓝色曲线)。当我们增加反馈的增益时,我们看到fceo的中心变窄,“相干尖峰”出现在中心(图3,右侧橙色曲线)。这表明我们实现了fceo的精确锁相。在fceo锁中观察到的环内剩余相位噪声如图4所示,证实了对频率低于40 khz的相位噪声有很强的抑制作用。图3    使用COSMO单元检测载波包络偏移频率fceo峰值图4    锁定fceo的环内相位噪声利用Menhir Photonics的MENHIR-1550激光器,Octave Photonics的光频梳偏频锁定模块(COSMO)和Vescent Photonics的SLICE-OPL锁相反馈模块,可以轻松构建载波包络偏频稳定的飞秒激光系统,表明了目前能够以更低的尺寸、重量和功率要求实现zui先jin的性能,该系统可以作为1 GHz的超低噪声光学频率梳。如果您对光频梳相关模块及锁定模块有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/three-level-227.html欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.04.26

用于太赫兹到光频率快速频谱分析的1GHz单腔双光梳激光器

用于太赫兹到光频率快速频谱分析的1GHz单腔双光梳激光器(本文译自(Gigahertz Single-cavity Dual-comb Laser for Rapid Time-domain spectroscopy:from Few Terahertz to Optical Frequencies )Benjamin Willenberg1,*,x, Christopher R. Phillips1,*, Justinas Pupeikis1 , Sandro L. Camenzind1 , LarsLiebermeister2 , Robert B. Kohlhass2 , Björn Globisch2 , and Ursula Keller1) 介绍在这篇论文中,我们介绍了一个自由运行的单腔体空间复用的1.18 GHz固态双梳激光器激光器。可实现的高重复率差结合激光的低噪声性能,可以在太赫兹时域光谱学(TDS)应用中进行计算梳齿追踪和相干平均。我们在激光波长约为1.05微米时,通过对20厘米长、1bar气体池中C2H2(乙炔)的吸收测量,证明了这种能力。此外,激光器的0.85纳秒延迟扫描范围非常适合高分辨率太赫兹计量学,具有快速的单次跟踪更新速率。我们使用高效的光电导天线器件进行了初步实验。在太赫兹光谱测量中,我们在2秒的积分时间内达到了55 dB的峰值光谱动态范围,允许探测3 THz的吸收特征。该论文分为以下几个部分:第1部分介绍双梳激光器及其噪声性能。第二部分演示了C2H2的TDS测量结果。第三部分讨论了ETS应用中的定时噪声和自适应采样。第四部分重点关注太赫兹-TDS和厚度测量。 正文基于飞秒锁模激光的光学频率梳[1-3]已实现许多计量应用如光谱学和精密测距[4,5]。双光频梳[6,7]是光学频率梳的一个有趣的扩展,它包括一对脉冲有细x间的差频会产生相应的频率线,从而在易于访问的射频域中实现了对梳状线的分辨测量,双梳源也是等效时间采样(ETS)测量技术的强有力工具,有时被称为异步光学采样(ASOPS)。该技术利用两个脉冲列之间的延迟扫描,实现对信号的采样。在这个技术中,一个实时持续时间为1/frep的窗口可以被转换为一个等效时间持续时间为1/Δfrep的窗口,其中Δfrep是其中一个梳齿重复的频率,Δfrep是两个梳齿重复频率之间的差异。这相当于将时间轴按比例因子frep/Δfrep进行缩放。由于这种延迟扫描方法不需要任何移动部件,因此与传统的基于机械延迟线的泵浦探测测量相比,可以获得更快速和更长距离的扫描。高更新速率是重要的先jin性能,因为它们能够实现实时材料检查和无标记成像。 基于光频梳的传感技术的一个关键参数是光源可覆盖的波长范围。许多强的光谱特征位于近红外波长范围之外,这意味着必须将已经成熟的在这一波长范围内工作的激光技术与频率转换方案相结合。例如,zui近的研究使用差频发生、光参量振荡和光整流等技术,成功地扩展了可探测的波长范围,包括分子的功能团区域(3至5微米)和分子指纹区域(5至20微米)。光整流的一个特殊情况是太赫兹辐射(0.1到10 THz)的产生,由于高效光电导天线的进展,在zui近几年中太赫兹辐射得到了广泛关注。THz频段对于科学和工业应用非常重要,因为它允许对许多在可见光和红外线下不透明的材料进行非侵入式检测和分析。应用包括检测1到5 THz范围内的光谱特征,以区分外观相似的塑料和爆炸物[16]、通过不透明包装进行质量控制监测、对油漆进行微米级精度的非侵入式层厚度测量[17]、高分辨率气体光谱学、以及作为标签自由分析生物组织的X射线技术的替代方法(因为THz辐射不会产生电离效应)[18]。这些应用通常采用太赫兹时域光谱技术(THz-TDS)来解决。在THz-TDS中,一个光脉冲列在一个发射器装置上产生一列单周期的THz脉冲,而另一个光脉冲列则被延迟,并在一个接收器装置上等效时间采样THz场[19]。过去十年中,光导式天线(PCAs)的进展使它们成为桌面系统的shou选,转换效率高达3.4%的功率[20],在适度的光脉冲能量下为数百皮焦耳。除了基于PCA的实验外,利用非线性晶体和≫nJ级光脉冲能量产生THz也受到了极大的关注[21,22]。许多PCA系统使用重复频率约为100 MHz的激光与机械延迟级联以实现THz波形的等效时间采样,但这会在速度和扫描范围之间产生严重的权衡。同样类型的激光可以通过ETS(等效时间采样)实现THz-TDS,但仅特定应用需要相应的10ns的长延迟范围(例如测量具有长响应时间或低压下分子气体的尖锐吸收线的目标)10ns。对于许多应用,较短的范围(1 GHz)已足够,例如在环境压力下进行气体光谱学,或检测薄膜层厚度的微小变化[23]。将扫描范围限制在较短的范围内可以避免在时间窗口结束时出现死时间,这提高了信噪比,因为有效信号将占据更大的测量窗口。为了解决这个问题,电子控制的光采样(ECOPS)[24]和其他技术[25,26]已经被开发出来,通过在小于重复频率的倒数的有限范围内电子控制脉冲之间的延迟。另一种可能更简单的方法是使用高重复频率自由运行双梳激光器。千兆赫兹的重复频率可以在全延迟范围内进行≪⃒100 fs的分辨率扫描,并实现高(多千赫兹)更新速率。在THz-TDS中,结合PCA使用这种激光器也是提高信号强度的有前景的途径,因为使用更高的平均功率’可以同时保持在设备的脉冲能量损伤阈值以下。使用1 GHz [27]和10 GHz [28]的钛宝石激光器探测脉冲-探测谱也已经进行了研究,但是钛宝石技术的高成本阻碍了更广泛的采用。近年来,由于高重复率钇和铒基频率梳的进展,使用千兆赫激光进行双梳光谱学和THz-TDS的应用引起了人们的新关注[29-34]。具有低损耗、低非线性、低色散腔的二极管泵浦固体激光器非常适合产生千兆赫梳[35,36],它们比传统的钛宝石系统简单得多,同时提供更好的高频泵浦强度抑制。与光纤激光器相比,它们也支持更低的噪声[31]、更高的功率,并且显示出更简单的重复频率缩放。该文提到了在双频梳应用的实际部署中,系统复杂度是另一个关键的考虑因素。传统系统由一对锁定的飞秒激光器组成,复杂度很高,需要几个反馈环。有一种先jin的替代方法是使用单腔双光梳激光器,其中通过让两个频梳共享同一个激光腔体,在自由运行状态下实现频梳之间的高相干性。这种方法已经在半导体盘式激光器[37]、自由空间双向环形激光器[38]和双向模锁光纤激光器[39]等方面得到了证明。zui近,我们利用双折射多路复用[40-42]或空间复用[43,44]演示了一组自由运行固态单腔室系统,使用所有常见光学元件,具有超低的相对时序噪声性能。 [43]中报告的系统可以实现子周期相对时序抖动([20 Hz,100 kHz]积分范围),从而超越了ASOPS系统在泵浦-探测测量方面使用两个锁定激光器的性能。此外,低损耗、低非线性和低色散腔体的二极管泵浦固体激光器非常适合产生千兆赫的梳光谱。它们比传统的钛宝石系统更简单,同时还能更好地抑制高频泵浦强度的波动,支持更低噪声、更高功率,并且与光纤激光器相比重复率扩展更为简单。1. GHz双梳激光器双梳激光器的布局如图1(a)所示。线性共焦激光腔与单片双棱镜(179°顶角)空间复用,产生在有源元件(增益晶体和SESAM)上的分离光斑,从而减小串扰。请注意,实际的腔复用是为了对称性而在垂直方向上实现的,但为了简单起见,在图1(a)中以水平方向显示。在高反射(HR)涂层双棱镜上,光束间隔为1.6毫米,通过双棱镜的横向平移可以连续调节重复率差在[-175,175] kHz范围内。双梳激光腔的技术细节在方法部分中描述。图1:示意图:(a)基于空间多路复用的双棱镜共焦腔固态SESAM模锁定GHz双梳激光器,(b)通过非偏振分束器立方体的两个梳的相干重叠触发的干涉(c)用于THz时间域光谱学的设置,其中采用高效自由空间光电导天线进行THz产生和检测(d)在乙炔(C2H2)气体室内进行的双梳光谱学分析。1.1.激光输出表现两个光梳显示出同时自启动和稳健的锁模运行,其平均输出功率范围为每个梳子80毫瓦至110毫瓦,受可用泵浦功率限制。两个光梳具有几乎相同的光学特性。功率曲线是线性的,激光在zui高功率操作点时达到了23%的光学转化效率(参见图2(a),随着腔内功率的增加,脉冲持续时间缩短的趋势符合孤子形成的预期逆比例规律(参见图2(a))。在zui高功率操作点,脉冲的持续时间为77 fs,通过测量得到(参见图2(d)),在光谱上的半高全宽为16 nm(参见图2(b)),中心波长分别为1058 nm(comb 1)和1057 nm(comb 2)。我们观察到两个梳的无杂波射频(RF)频谱,在一个重复频率约为1.1796 GHz的频点上(图2(c))。重复率差在这里被设置为 Δfrep= 21.7 kHz。图2:双梳激光器输出特性的表征,两个梳同时运行:(a) 平均输出功率和脉冲持续时间随泵浦电流的变化。详细的锁模诊断结果显示在(b)-(d),用于后续的测量。(b) 光谱。(c) 在重复频率差为21.7 kHz时,每个梳的射频频谱。(d) 通过二次谐波自相关测量的脉冲持续时间。脉冲持续时间τFWHM是通过反卷积获得的,假设为sech2脉冲形状(虚线对应于sech2拟合)。1.2. 双光梳激光器的噪声表现我们对激光的相对强度噪声(RIN)和定时抖动进行了表征。有关这些测量的详细信息在补充材料中给出。首先,我们分析了每个单独梳的RIN。在自由运行情况下,两个光梳的RMS强度噪声均为图3(b,d)展示了各个频梳的相位噪声。在2 kHz到100 kHz的频率范围内,时序抖动功率谱密度(PSD)相对平稳地随频率下降。当应用泵浦反馈时,该频段噪声均匀抑制约10 dB,这表明该频段的噪声对应于泵浦的RIN。在泵浦RIN稳定和自由运行情况下,积分时间抖动分别为2.4 fs和6.4 fs(积分范围[2 kHz,1 MHz])。在低于2 kHz的较低频率下,抖动不再由RIN主导,而是由机械噪声源引起的,这符合我们的非优化光学板实现的腔体预期。任何双梳源的相干平均应用中至关重要的一项参数是两个梳之间Δfrep的相对时间或相位噪声。在图3(b,d)中标有“不相关”的曲线中显示了此量,该量是通过[46]中提出的方法确定的。这个量的重要性在于:(i) 它通过frep/Δfrep的比率决定了在等效时间采样应用中的时序轴稳定性,(ii) 是相干双梳光谱中涉及射频梳线路中噪声的主要贡献因素,以及 (iii) 揭示了共腔结构抑制噪声的程度。我们的无相关噪声的测量结果表明,机械噪声源(在频率<2 kHz,单个frep测量中可见)被强烈抑制。在自由运行配置(无泵浦反馈)中,高频噪声也被抑制,导致全频段高达约20 dB的公共噪声抑制(达到测量的噪声基底),除了系统中一个大约在450 Hz左右的反相关机械谐振。> 2 kHz分量的抑制是因为两个梳共享泵浦激光。有趣的是,尽管反馈强烈抑制了单个梳齿的抖动,但泵浦反馈并没有显着改变不相关噪声。对于积分范围[2 kHz,1 MHz],双梳激光器的两种操作模式都产生小于1 fs的不相关时序抖动。泵浦RIN稳定未能影响不相关噪声的可能解释是存在非对称噪声贡献,例如来自泵浦的非理想偏振消光比。尽管如此,带有和不带有泵浦反馈的噪声水平对于本文第2和第4节中讨论的应用演示已经足够低。因此,为了简单起见,我们在后续测量中将激光器设置为自由运行模式。图3:(a)自由运行的双梳激光器在泵浦强度稳定和非稳定情况下的相对强度噪声(RIN)特性(详见补充材料),以及RIN的RMS积分值(c)。两个梳子同时以激光器的zui大输出功率约为110 mW/梳子的功率运行。(b)相应的时序抖动(TJ)特性:单侧功率谱密度(PSD)和积分时序抖动量(d)由参考文献[46]测量两个单独光梳和不相关噪声的单侧功率谱密度(PSD)和积分时序抖动量(d),测量方法见参考文献[46]。2.红外乙炔时间域光谱基于其超低噪声性能,自由运行的双频激光器可以直接用于双频激光光谱仪(DCS)。然而,由于时序和其他波动的影响,两个激光梳之间的混频拍在干涉图形上形成时无法直接进行相干平均,需要使用相位校正程序。这种相位校正的可行性可以通过跟踪干涉图的载波包络相位进行评估[44]。我们选用重复频率相对较高的值Δfrep来有效降低低频(的时间演化。由于波动不断地被界定在之间,因此可以在时间上明确无误地展开相位[44]。在补充材料中,我们更详细地描述了在使用不同的Δfrep值时对所呈现的激光进行相位校正的可行性。为了确认该光源适用于类似 DCS 的相位敏感应用,我们展示了乙炔在 1040 纳米附近的转动振动带的光谱。该设置如图1(d)所示:其中一个输出光梳经过一个填有乙炔(1 bar,室温.)的 20 厘米长参考气体池。将该光与第二个光梳在倾斜的 YAG 窗口上以约 70° 的入射角度下进行 S 偏振的合并,组合后的端口每个单独的光梳初始强度约为 40%,同时避免在检测路径中出现任何谐振腔效应或脉冲重复。来自组合端口的光被衰减并进行光纤耦合,然后在快速光电二极管(Thorlabs,DET08CFC)上检测两个光梳的拍频信号,该光电二极管处于其线性响应区域。为了以组合线分辨率提取气体靶的光谱信息,我们采用[44]的方法:将干涉图周期进行相位校正,通过用组合因子Δfrep/frep缩放时间轴并相加将其转移到光学域。将这个相干平均信号的傅里叶变换与频移相结合,可以在光学频率域内获得组合线分辨率的光谱信息。双梳激光器的重复频率frep确定了单个光学组合线之间的间距。图4(b)显示了乙炔气体池在0.8秒积分时间测量下的透射光谱,并与HITRAN数据[47]的预测进行了比较。测量和计算出的光谱在整个乙炔吸收在1040 nm附近的(转动-振动)分支处都有很好的一致性。请注意,为了获得更好的信噪比,可以将激光的光谱滤波至感兴趣的区域,并将相应的更高功率的光在相关的光学频率上发送到光电二极管上。在这里,我们为了简单起见使用了激光器输出提供的全光谱。图4:(a)以重复频率差Δfrep采样的干涉图相位的二阶有限差分的时间演化,并放大时间轴。放大版本中的点表示单个干涉图。(b)在积分时间为0.8秒的自由运行GHz单腔双频激光器上进行的乙炔双腔光谱测量(DCS)。请注意,来自乙炔的吸收特征仅与激光器的光学光谱远翼重叠,中心波长为1057 nm。围绕1041 nm的吸收线的放大显示了DCS测量的光谱分辨率,其中每个点对应于频率间隔为frep= 1.179 GHz或约4.3 pm的单个光学腔线。3.ETS应用中的时间噪声与自适应采样在等效时间采样测量中,通常会使用触发信号以避免在较长时间尺度上积累时序抖动。zui小化此类时序抖动非常重要,因为它会在平均过程中模糊时间轴,因此降低信号强度和频谱分辨率。在这里,我们使用双腔干涉图(IGM)来连续跟踪和纠正自由运行激光器的时序漂移。如上所述,IGM是通过两个激光腔之间的拍频产生的(见图1(b))。每当两个激光腔的脉冲在时间上重叠时,就会出现IGM峰。为了确定这些峰的定时,我们使用希尔伯特变换的幅度提取IGM包络,然后通过进行二阶矩计算来计算时间峰位置。所得到的IGM峰时间可以在等效时间采样测量的背景下解释为延迟为零。通过在这些峰之间线性插值,我们可以在测量期间的所有时间获取两个脉冲列之间的光延迟。通过后续IGM峰之间的时间波动(对应于周期抖动),可以分析所获得的光延迟轴的准确性。尽管可以通过IGM峰获得此抖动(这是我们用于自适应采样的THz-TDS测量本身的方法),但通过[46]的方法获得PN-PSD的相位噪声功率谱密度可以获得更多关于激光器时间特性的信息,如图3(b)所示。通过 PN-PSD 的加权积分是得到周期抖动的一般方法。对于一个由相位 Φ(t) 描述的信号和对应的单侧相位噪声功率谱密度 ,周期抖动可以表示为 [48]中给出公式:其中是采样频率 Δf 相关的加权因子,fmin 和 fmax 是 PN-PSD 中偏移频率 f 的积分限。在ETS的背景下,相位Φ(t)通过与时变重复频率差联系在一起,并且标称周期由给出,其中表示平均重复频率差。然而,在这种情况下,周期抖动可能会具有误导性,因为它受到缓慢漂移的影响,即使自适应采样也会纠正这些漂移。为解决这个问题,我们确定自适应采样无法纠正的周期抖动部分。由于混叠效应,高于Δfrep的高频噪声部分被部分投影到低于Δfrep的频率上,这是TJ-PSD在这些频率上仍存在有限贡献的原因。与其为每个重复频率差Δfrep设置执行实验,我们可以根据参考文献[44,46]直接从击拍测量获得的相位Φ(t)中提取信息。为了模拟自适应采样步骤,我们计算了校正相位其中是在网格点之间的连续相位Φ的线性插值。在图5(a)中,显示了不相关的时间抖动功率谱密度以及模拟重复频率差为1 kHz、5 kHz和22 kHz时对应的自适应采样校正的功率谱密度。对于不同的采样频率应用周期抖动形式化方法会得到图5(b)呈现的曲线。对于自由运行的双梳激光器,我们发现在重复频率失谐Δfrep>18 kHz时,经过自适应采样后光学延迟轴的RMS时间误差低于1 fs,在重复频率失谐Δfrep>1 kHz时低于10 fs。需要注意的是,在1 kHz以下的技术噪声可以在机械优化的系统中得到缓解,因为当前的设置是在一个光学面包板上使用标准的反射镜支架和5厘米高的支撑柱搭建的。在下面讨论的THz-TDS应用演示中,我们以两种配置运行双梳激光器:在Δfrep= 22 kHz时,这些技术噪声源完全可以忽略不计,而在Δfrep = 1 kHz时,自适应采样周期抖动值10 fs仍然比预期的zui快时间特征>200 fs(考虑到zui大THz频率为5 THz)要小得多。图5:(a)不相关自由运行双梳的时间抖动功率谱密度(TJ-PSD)在不同自适应采样条件下的情况。显示了三种不同的自适应采样情况(对应于Δfrep值为1 kHz、5 kHz和22 kHz)。 (b)在不同采样频率(即重复频率差Δfrep的设置)下自适应采样后光学延迟轴的周期抖动,用于自由运行双梳激光器。4. 太赫兹时域光谱学在太赫兹实验中,我们将两个梳的光直接引导到两个自由空间光电导天线上(图1(c))。在发射器器件的有源区域内,每个激光脉冲会产生一个局部电荷云,该电荷云在两个电极之间的50微米间隙中受到偏置电场(40 kV/cm)的加速,从而产生脉冲太赫兹辐射。所使用的掺铁InGaAs材料平台的超快捕获时间使得太赫兹脉冲的频率范围高达>6 THz [49]。在THz实验中,我们将两个梳的光线直接照射到两个自由空间光电导天线上(图1(c))。在发射器器件的活动区域内,每个激光脉冲会生成一个局部电荷云,通过偏置电场(40 kV/cm)在两电极之间的50 µm间隙中加速并产生脉冲THz辐射。铁掺杂InGaAs材料平台的超快俘获时间使得产生具有高达>6 THz频率内容的短THz脉冲成为可能[49]。产生的THz辐射通过一对硅球透镜(直接安装在光电导天线上)和金属偏离轴抛物面镜进行聚焦并重新聚焦到接收器器件上。在接收器器件中,第二个梳的光脉冲作为门用于光电子采样THz波。更具体地说,每个光脉冲在10 µm的天线间隙中生成一个电荷云,被THz波的电场加速,从而在nA-µA范围内引起小电流,被转移阻抗放大并检测在示波器上。为了确保THz光电导天线和激光振荡器之间没有光学反馈,两个自由空间光路都包括法拉第隔离器(EOT,PAVOS +)。发射和接收臂中的光功率由一对半波片和偏振分束器控制。光束在发射器上被聚焦到亚50 µm的斑点(1/e2直径),用f=50 mm的非球面透镜,在接收器上聚焦到亚10 µm的斑点,用f=20 mm的透镜。由于透明光学元件和隔离器晶体的正色散,加上由啁啾镜提供的负色散(总计约为-4000 fs^2),以确保在光电导器件上压缩77 fs脉冲。为了进行平均处理,我们使用IGM信号(在第3节中描述)实现THz时间迹线的自适应采样,并使用光学延迟轴的线性插值。2秒积分或约44000次平均的结果如图6所示。主要的THz峰在零光学延迟处重复出现,其重复频率为1/Δfrep≈850 ps(标志着扫描窗口的末端),然后是由自由空间THz光束路径中水蒸气自由感应衰减引起的振荡,其长度约为30 cm。通过傅里叶变换得到的频谱域中,吸收特征更加清晰可见,使用500 ps的缩窄窗口进行调制。我们使用这个缩窄窗口来抑制关于光学延迟为600 ps的THz时间迹线上的特征,这个特征在第4.2节中进行了更详细的讨论。减少的光学延迟导致THz频谱中的频谱分辨率为2 GHz。在这些条件下,我们在THz功率谱密度中发现35 dB的峰动态范围,可以解决高达3 THz的光学频率吸收特征(图6(c))。噪声水平是通过对仅将接收器装置照明而不产生THz辐射的单独时间迹线进行确定的。背景迹线的处理与信号迹线的处理相同,但在频率域中进行zui终的平滑处理,采用移动平均方法。图6:(a) THz信号时间迹线的前50 ps的放大图(b),得自对双脉冲激光的重复频率差为~22 kHz的全光学延迟范围1/Δfrep = 850 ps的2秒积分时间或约44k次平均值。发射器施加的偏压为200 V,到达发射机和接收机的平均光功率分别为80 mW和30 mW。注意,应用了数字带通滤波器,将信号限制在THz频率范围内[50 GHz,5 THz]。前50 ps延迟范围表明自由空间THz光束路径中的吸收导致了明显的自由感应衰减。(c)由(b)通过傅里叶变换和500 ps调制窗口得到的THz信号功率谱密度,得到2 GHz的频谱分辨率和35 dB的动态范围。(d)通过改善放大器噪声,以更低的更新速率Δfrep = 1 kHz,在2秒积分时间内获得了动态范围增加到55 dB的THz谱。在两种情况下,平滑背景是从相应的分离时间迹线中获得的,在这些时间迹线中,自由空间THz光束路径被阻断。明显的吸收特征来自空气路径中水的吸收。请注意,由于两次测量的不同湿度条件((c)为晚夏,(d)为初冬),吸收强度发生了变化。在这种高更新速率(Δfrep ≈22 kHz)下获得的THz频谱动态范围很大程度上受到转阻放大器的噪声系数的限制。使用高重复率差操作激光需要足够的射频(RF)检测带宽来读取接收器设备的输出。光学THz频率根据等效时间缩放因子Δfrep/frep映射到RF频率范围内。为了探测高达5 THz的THz频率,需要93 MHz的射频带宽。用高增益带宽低噪声的放大器放大弱信号是有挑战性的。在我们的检测方案中,我们使用一个3 dB带宽为200 MHz,传输增益为104 V/A的转移阻抗放大器(Femto HCA-S),然后是一个带宽宽的低噪声电压放大器(Femto DUPVA-1-70),其电压增益为30 dB。zui后,在数字化之前,我们使用一个200 MHz的抗混叠滤波器(Minicircuits BLP-200+)和示波器(Lecroy WavePro 254HD)。关于这些条件下获得的动态范围的详细讨论在第4.1节中提供。为了证明放大器对动态范围的限制,我们进行了额外的测量,更新速率为1 kHz,因此对射频检测带宽的要求放松到约4.2 MHz(对于高达5 THz的THz频率)。同时,自由运行的双频激光器的低噪声性能和自适应采样步骤导致周期抖动小于10 fs(第3节)。为了确保频率Δfrep≈22 kHz和Δfrep≈1 kHz),THz谱都显示出相同的尖锐吸收峰,可以被识别为水吸收。图7显示了这些吸收峰在Δfrep=1 kHz的情况下与HITRAN预测[47]的比较。测量位置和吸收峰的相对强度与HITRAN预测的非常好的一致性表明,在我们的自由运行双梳THz测量中,光延迟轴经过了良好的校准和线性化。图7:(a)比较通过THz-TDS测量的约30厘米自由空间路径的吸收特征和HITRAN预测的水(H2O)蒸汽浓度为1.1%的吸收谱。 THz-TDS吸收谱是通过减去THz频谱包络(详见附录)从透射谱(图6(d))中获得的。吸收峰的位置非常吻合。对于高频率,当预测的峰吸收强度超出THz-TDS测量的动态范围时,吸收强度会有所偏差。(b)缩放到1 THz和1.3 THz之间的区域,以说明THz-TDS测量的约1.2 GHz的光谱分辨率可以很好地采样每个吸收峰。 THz-TDS测量是在重复频率差异 Δfrep= 1 kHz下进行的,总积分时间为2 s。4.1.讨论THz-TDS测量中的动态范围在考虑信号强度、光延迟范围和积分时间时,参考文献中的数值非常重要。在我们的实验中使用的设备,进行了参考测量,使用了驱动波长为1550 nm和脉冲重复频率为80 MHz的激光器。在这些测试条件下,获得的峰值THz信号电流强度为500-700 nA,光学功率为20 mW(发射器和接收器均为此值)。在这里,我们首次使用Yb激光技术探究这些掺铁PCA器件的运行情况。尽管配置大不相同(1050 nm波长和1.2 GHz重复频率),但我们获得了相似的THz信号电流(515-550 nA)。发射器上的平均光功率为80 mW,接收器上为30 mW,对应的脉冲能量远低于光电导器件的脉冲能量损伤阈值,这是由于激光的高GHz重复频率,与80 MHz的脉冲重复频率的测试测量相比。我们实验中所需的增加光功率,可以通过1550 nm和1050 nm驱动器之间的光子数缩放来解释。虽然我们的信号强度与参考测量值相当,但我们获得了显著较低的动态范围。一篇类似的光电发射机和接收机对的THz功率谱报道了105 dB的高动态范围,该谱通过光延迟60 ps和总积分时间60 s的机械延迟扫描获得[50]。相比之下,我们在Δfrep≈ 22 kHz配置下获得了35 dB的动态范围,而在Δfrep≈ 1 kHz配置下获得了55 dB的动态范围。这种差异可以部分地解释为平均值的数量。我们扫描了更长的延迟范围,这降低了动态范围(DR)。为了比较我们的结果,请注意,THz-TDS测量的DR随着测量积分时间Tmeas和时间光延迟范围Trange缩放,对于我们的平滑窗,Trange= 500 ps,因此具有2秒示波器跟踪的有效测量时间为2 s⋅500/850 = 1.18 s。因此,(Tmeas/T2range)大约要小3530倍(35.5 dB)。部分的误差可以通过测量的电子底噪来解释,这与所使用的跨阻放大器有关。基于机械延迟线的系统涉及到光延迟的较慢扫描,将检测到的射频频率限制在几十kHz以内。在这些条件下,低噪声跨阻放大器的输入等效噪声电流可以低至43 fA/√Hz,跨阻增益为107 V/A,而在Δfrep=22 kHz的测量中,相应的噪声电流为4900 fA/√Hz。动态范围的影响可以通过噪声水平的平方比例来获得,对于22 kHz的配置,这对应于(4900/43)2≈40 dB。考虑到这个电子因素和时间缩放因子,我们报告的35 dB的动态范围在参考文献[50]中使用的条件下应该理论上缩放到35 dB+40 dB+35.5 dB=110.5 dB。对于Δfrep=1 kHz的配置,实验采用的跨阻放大器具有10倍更低的输入等效噪声电流(480 fA/√Hz),这产生了预期的20 dB提高THz功率谱密度(Figs. 6 (c,d))。对于这种配置,我们得到类似的缩放,从测量中得到55 dB的动态范围,35 dB的时间缩放因子,以及(4900/480)2=21 dB的放大器。虽然这些计算解释了主要影响,但应注意,动态范围也可能受到接收天线本身的限制,因此进一步改进放大器必须在实验中进行测试。4.2.THz脉冲反射和高精度厚度测量接下来,我们展示了THz前端测量样品在自由空间THz光路中插入的光学和物理厚度的能力。在这里,我们将一块(2.0±0.2)mm厚的c切割蓝宝石窗口插入光路中。图8显示了单次延迟扫描的THz时间跟踪图与光学延迟的关系,在激光器设置的重复率差Δfrep为1 kHz时更新率为1 kHz,经过2秒的平均处理后,包括有和没有额外蓝宝石窗口的情况。请注意,时间零点对于两种情况都没有改变,并由红外干涉仪的干涉信号触发确定。这使我们能够识别主THz脉冲的延迟τ1到τ3,包括蓝宝石窗口在零光学延迟周围的分镜效应(如图8(b)所示)。此外,我们可以确定在光学延迟约为600 ps处的延迟τ4到τ6,它对应于THz脉冲在总共三次而不是一次(如图8(c)所示)的发射器和接收器之间的自由空间区域传播。这是因为少量的THz光被接收器反射回自由空间路径,传播回发射器,再次反射向接收器。从窗口的光学和物理厚度对观察到的不同延迟的贡献总结在表1中。我们通过大似然拟合物理模型,发现蓝宝石窗口的物理厚度l=(2.094±0.007)mm和光学频率约为1 THz时的群组折射率ng=3.109±0.010。所述误差对应于拟合的1σ误差。两个值都与窗口的机械厚度公差和文献报道的群组折射率相符。此外,自洽拟合结果几乎没有不确定性,证实了没有蓝宝石窗口的原始THz时间跟踪中在约600 ps光延迟处的伪影来自于THz波形在THz自由空间路径上的接收器和发射器器件上的反射。 表1:将蓝宝石窗口插入自由空间THz光束路径中导致THz波形光延迟的贡献。ng表示蓝宝石在其c轴上的群折射率,L表示窗口的物理厚度,c表示真空光速。图8:测量2mm的C切割蓝宝石窗口的物理厚度和群组折射率。窗口相对于红外干涉图和空气间隙的波纹反射提供了THz波形的光延迟(见示意图)。强反射在每个光延迟扫描的时间跟踪中清晰可见,该扫描的更新率为1 kHz(a)。在(b)和(c)中指示的延迟τ1到τ6的值在表1中提供。请注意,对于延迟范围600ps到750ps,(c)中的信号轴进行了比例尺变化,以增加仅在平均后才与噪声信号分辨出来的相应信号的可见性。对于所有跟踪,已应用数字带通滤波器,将信号限制在[50 GHz,3 THz]的THz频率范围内。讨论我们首次展示了以GHz重复频率泵浦的空间多路复用单腔双光梳激光器,其受到空间单模二极管的激励。共聚焦腔设计与在反射配置下操作的双棱镜允许重复频率差异宽泛可调,达到±175 kHz,脉冲持续时间为77 fs,每个光梳激光器的平均功率为110 mW。超低噪声性能使得计算定位自由运行的激光器梳齿线输出成为可能,这反过来又使得协同平均双光梳光谱学具有接近1 GHz的谱分辨率。我们通过对乙炔气体池的原理性光谱学实验展示了这些功能,可以在1040 nm周围解决所有转动振动吸收特征,与HITRAN的预测完全一致。此外,我们直接应用双光梳激光器输出进行高效的时域THz实验,探测标准空气的光谱特征,直到3 THz的频率,并在蓝宝石窗口上进行精确的层厚度测量。THz实验从全0.85 ns延迟扫描的多kHz更新速率中获益。我们的结果首次表明,针对1550 nm的zui佳操作设计区的掺铁InGaAs基光电天线可以通过GHz重频的1050 nm激光驱动达到zui先jin的信号强度。我们获得的55 dB动态范围可以很好地解释为THz信号强度(与兆赫级1550 nm激光器的参考测量相当)、长延迟扫描范围(0.85 ns)以及电子放大器的噪声。此外,与在约100 MHz重复频率下运行的传统系统相比,GHz重复频率下降低的脉冲能量允许更高的平均功率运行。因此,考虑到重复频率可扩展性达到10 GHz [32]以及使用功率可扩展的Yb掺杂增益介质[44],我们预计这种高性能THz-TDS实验的低复杂度单腔固态双梳激光平台,特别是在考虑到重复频率可扩展性的情况下,将会有显著的益处。关于生产商:K2 Photonics专注于开发利用光学频率梳的强大技术的前沿应用。我们的专家团队在该领域拥有丰富的经验,并不断研究这种强大技术的新的实际应用可能性。上海昊量光电作为K2 Photonics在中国大陆地区du家代理商,为您提供专业的选型以及技术服务。对于K2 Photonics有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 如果您对单腔双光梳激光器有兴趣,请访问上海昊量光电的官方网页:https://www.auniontech.com/details-1800.html欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。References1. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "carrier-envelope offsetphase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,"Appl. Phys. B 69, 327–332 (1999).2. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz,"Controlling the Phase Evolution of Few-Cycle Light Pulses," Phys. Rev. Lett. 85, 740–743 (2000).3. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "CarrierEnvelope Phase Control of Femtosecond mode-locked lasers and Direct Optical Frequency Synthesis,"Science 288, 635–639 (2000).4. T. Fortier and E. Baumann, "20 years of developments in optical frequency comb technology andapplications," Commun. Phys. 2, 1–16 (2019).5. N. Picqué and T. W. Hänsch, "Frequency comb spectroscopy," Nat. Photonics 13, 146–157 (2019).6. S. Schiller, "Spectrometry with frequency combs," Opt. Lett. 27, 766–768 (2002).7. I. Coddington, N. Newbury, and W. Swann, "Dual-comb spectroscopy," Optica 3, 414–426 (2016).8. K. J. Weingarten, M. J. W. Rodwel, and D. M. Bloom, "Picosecond optical sampling of GaAs integratedcircuits," IEEE J. Quantum Electron. 24, 198–220 (1988).9. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, "Pump/probe methodfor fast analysis of visible spectral signatures utilizing asynchronous optical sampling," Appl. Opt. 26, 4303–4309 (1987).10. N. Hoghooghi, S. Xing, P. Chang, D. Lesko, A. Lind, G. Rieker, and S. Diddams, "Broadband 1-GHz midinfrared frequency comb," Light Sci. Appl. 11, 264 (2022).11. O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, "Dual-comb spectroscopy in thespectral fingerprint region using OPGaP optical parametric oscillators," Opt. Express 25, 32713–32721(2017).12. C. P. Bauer, S. L. Camenzind, J. Pupeikis, B. Willenberg, C. R. Phillips, and U. Keller, "Dual-comb opticalparametric oscillator in the mid-infrared based on a single free-running cavity," Opt. Express 30, 19904–19921 (2022).13. S. Vasilyev, A. muraviev, D. Konnov, M. Mirov, V. Smoslki, I. Moskalev, S. Mirov, and K. Vodopyanov,"Video-rate broadband longwave IR dual-comb spectroscopy with 240,000 comb-mode resolved datapoints," arXiv:2210.07421 (2022).14. D. R. Bacon, J. Madéo, and K. M. Dani, "Photoconductive emitters for pulsed terahertz generation," J. Opt.23, 064001 (2021).15. Naftaly, Vieweg, and Deninger, "Industrial Applications of Terahertz Sensing: State of Play," Sensors 19,4203 (2019).16. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, "Terahertz spectroscopy ofexplosives and drugs," Mater. Today 11, 18–26 (2008).17. M. Yahyapour, A. Jahn, K. Dutzi, T. Puppe, P. Leisching, B. Schmauss, N. Vieweg, and A. Deninger, "FastestThickness Measurements with a Terahertz Time-Domain System Based on Electronically Control LED OpticalSampling," Appl. Sci. 9, 1283 (2019).18. E. Pickwell and V. P. Wallace, "Biomedical applications of terahertz technology," J. Phys. Appl. Phys. 39,R301–R310 (2006).19. M. van Exter, C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor,"Opt. Lett. 14, 1128–1130 (1989).20. R. B. Kohlhaas, S. Breuer, L. Liebermeister, S. Nellen, M. Deumer, M. Schell, M. P. Semtsiv, W. T.Masselink, and B. Globisch, "637 μW emitted terahertz power from photoconductive antennas based onrhodium doped InGaAs," Appl. Phys. Lett. 117, 131105 (2020).21. U. Puc, T. Bach, P. Günter, M. Zgonik, and M. Jazbinsek, "Ultra-Broadband and High-Dynamic-Range THzTime-Domain Spectroscopy System Based on Organic Crystal Emitter and Detector in transmission andReflection Geometry," Adv. Photonics Res. 2, 2000098 (2021).22. S. Mansourzadeh, T. Vogel, A. Omar, M. Shalaby, M. Cinchetti, and C. J. Saraceno, "Broadband THz-TDSwith 5.6 mW average power at 540 kHz using organic crystal BNA," (2022).23. D. Saeedkia, ed., Handbook of Terahertz Technology for Imaging, Sensing and Communications, WoodheadPublishing Series in Electronic and optical materials (Woodhead Publishing, 2013).24. F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, "Electronically controlled optical sampling using 100MHz repetition rate fiber lasers," in Commercial and Biomedical Applications of Ultrafast Lasers VIII (SPIE,2008), Vol. 6881, pp. 139–146.25. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, "Optical sampling by laser cavitytuning," Opt. Express 18, 1613–1617 (2010).26. M. Kolano, B. Gräf, S. Weber, D. Molter, and G. von Freymann, "Single-laser polarization-controlled opticalsampling system for THz-TDS," Opt. Lett. 43, 1351–1354 (2018).27. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, "Ultrafast time-domainspectroscopy based on high-speed asynchronous optical sampling," Rev. Sci. Instrum. 78, 035107 (2007).28. O. Kliebisch, D. C. Heinecke, and T. Dekorsy, "Ultrafast time-domain spectroscopy system using 10 GHzasynchronous optical sampling with 100 kHz scan rate," Opt. Express 24, 29930–29940 (2016).29. S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. D. Domenico, S. Pekarek, A. E. H.Oehler, T. Südmeyer, U. Keller, and P. Thomann, "Fully stabilized optical frequency comb with sub-radianCEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser," Opt. Express 19, 24171–24181(2011).30. A. Klenner, M. Golling, and U. Keller, "High peak power gigahertz Yb:CALGO laser," Opt. Express 22,11884–11891 (2014).31. T. D. Shoji, W. Xie, K. L. Silverman, A. Feldman, T. Harvey, R. P. Mirin, and T. R. Schibli, "Ultra-lownoise monolithic mode-locked solid-state laser," Optica 3, 995–998 (2016).32. A. S. Mayer, C. R. Phillips, and U. Keller, "Watt-level 10-gigahertz solid-state laser enabled by selfdefocusing nonlinearities in an aperiodically poled crystal," Nat. Commun. 8, 1673 (2017).33. S. Kimura, S. Tani, and Y. Kobayashi, "Kerr-lens mode locking above a 20  GHz repetition rate," Optica 6,532–533 (2019).34. M. Hamrouni, F. Labaye, N. Modsching, V. J. Wittwer, and T. Südmeyer, "Efficient high-power sub-50-fsgigahertz repetition rate diode-pumped solid-state laser," Opt. Express 30, 30012–30019 (2022).35. H. A. Haus and A. Mecozzi, "Noise of mode-locked lasers," IEEE J. Quantum Electron. 29, 983–996 (1993).36. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, "Optical phase noise and carrier-envelopeoffset noise of mode-locked lasers," Appl. Phys. B 82, 265–273 (2006).37. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, "Dual-combmodelocked laser," Opt. Express 23, 5521–5531 (2015).38. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, "Kerr-lens mode-locked bidirectional dual-comb ringlaser for broadband dual-comb spectroscopy," Optica 3, 748–753 (2016).39. S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, "Real-time dual-comb spectroscopy with afree-running bidirectionally mode-locked fiber laser," Appl. Phys. Lett. 108, 231104 (2016).40. B. Willenberg, B. Willenberg, J. Pupeikis, J. Pupeikis, L. M. Krüger, F. Koch, C. R. Phillips, and U. Keller,"Femtosecond dual-comb Yb:CaF2 laser from a single free-running polarization-multiplexed cavity foroptical sampling applications," Opt. Express 28, 30275–30288 (2020).41. J. Pupeikis, B. Willenberg, F. Bruno, M. Hettich, A. Nussbaum-Lapping, M. Golling, C. P. Bauer, S. L.Camenzind, A. Benayad, P. Camy, B. Audoin, C. R. Phillips, and U. Keller, "Picosecond ultrasonics with afree-running dual-comb laser," Opt. Express 29, 35735–35754 (2021).42. S. L. Camenzind, T. Sevim, B. Willenberg, J. Pupeikis, A. Nussbaum-Lapping, C. R. Phillips, and U. Keller,"Free-running Yb:KYW dual-comb oscillator in a MOPA architecture," Opt. Express 31, 6633–6648 (2023).43. J. Pupeikis, B. Willenberg, S. L. Camenzind, A. Benayad, P. Camy, C. R. Phillips, and U. Keller, "Spatiallymultiplexed single-cavity dual-comb laser," Optica 9, 713–716 (2022).44. C. R. Phillips, B. Willenberg, A. Nussbaum-Lapping, F. Callegari, S. L. Camenzind, J. Pupeikis, and U.Keller, "Coherently averaged dual-comb spectroscopy with a low-noise and high-power free-runninggigahertz dual-comb laser," Opt. Express 31, 7103–7119 (2023).45. J. Pupeikis, W. Hu, B. Willenberg, M. Mehendale, G. A. Antonelli, C. R. Phillips, and U. Keller, "Efficientpump-probe sampling with a single-cavity dual-comb laser: Application in ultrafast photoacoustics,"Photoacoustics 29, 100439 (2023).46. S. L. Camenzind, D. Koenen, B. Willenberg, J. Pupeikis, C. R. Phillips, and U. Keller, "Timing jittercharacterization of free-running dual-comb laser with sub-attosecond resolution using optical heterodynedetection," Opt. Express 30, 5075–5094 (2022).47. R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcisło, C. Hill, and J. S. Wilzewski, "HITRAN ApplicationProgramming Interface (HAPI): A comprehensive approach to working with spectroscopic data," J. Quant.Spectrosc. Radiat. Transf. 177, 15–30 (2016).48. S. Meninger, "Phase Noise and Jitter," in Clocking in Modern VLSI Systems, T. Xanthopoulos, ed., IntegratedCircuits and Systems (Springer US, 2009), pp. 139–181.49. B. Globisch, R. J. B. Dietz, R. B. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. T. Masselink,"Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor," J.Appl. Phys. 121, 053102 (2017).50. R. B. Kohlhaas, S. Breuer, S. Nellen, L. Liebermeister, M. Schell, M. P. Semtsiv, W. T. Masselink, and B.Globisch, "Photoconductive terahertz detectors with 105 dB peak dynamic range made of rhodium dopedInGaAs," Appl. Phys. Lett. 114, 221103 (2019).51. G. D. Domenico, S. Schilt, and P. Thomann, "Simple approach to the relation between laser frequency noiseand laser line shape," Appl. Opt. 49, 4801–4807 (2010). 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.04.26

< 1 2 3 ••• 9 > 前往 GO

上海昊量光电设备有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 上海昊量光电设备有限公司

公司地址: 上海市徐汇区虹梅路2007号远中产业园三期6号楼3楼 联系人: 昊量 邮编: 200235 联系电话: 400-860-5168转2831

友情链接:

仪器信息网APP

展位手机站