您好,欢迎访问仪器信息网
注册
上海昊量光电设备有限公司

关注

已关注

金牌12年 金牌

已认证

粉丝量 0

400-860-5168转2831

仪器信息网认证电话,请放心拨打

当前位置: 昊量光电 > 公司动态
公司动态

FFR在冠状动脉介入治疗中的应用简介

FFR在冠状动脉介入治疗中的应用简介冠状动脉介入治疗是一种利用导管等器械,通过皮肤穿刺或小切口,沿着血管或其他管道进入人体,对狭窄、闭塞、扩张或畸形的管腔进行修复或重建的治疗方法。相比于传统开放手术,具有创伤小、恢复快、并发症少、费用低等优点。它可以减少患者的术后疼痛和感染风险,缩短住院时间,是一种低创伤的治疗方案。一、冠状动脉心脏从根本上说是一个泵。心脏由特殊的肌肉组织组成,称为心肌。心脏的主要功能是将血液泵到全身,使身体组织能够接收氧气和营养物质。像任何泵一样,心脏需要燃料才能工作。心肌需要氧气和营养物质,就像身体的其他组织一样。流经心腔的血液只是在流向身体其他部位的过程中经过。该血液不会为心肌提供氧气和营养物质。心肌从位于心脏外侧的冠状动脉接收氧气和营养物质。图1.心肌冠脉示意图二、冠状动脉疾病冠状动脉疾病(CAD)是冠状动脉(向心肌供应氧气和营养物质的血管)狭窄,由动脉壁内脂肪物质积聚引起。这一过程导致动脉内部变窄,限制了富氧血液对心肌的供应。经皮冠状动脉介入治疗(PCI)是冠状动脉粥样硬化性心脏病的重要治疗手段,对于急性冠状动脉综合征(acute coronary syndrome, ACS)患者可以有效地改善其心肌缺血和临床预后,然而在慢性冠状动脉综合征(chronic coronary syndrome,CCS)即稳定型冠心病患者中的应用价值一直伴随着争议。评价CCS患者中PCI和理想的药物治疗策略对主要心血管不良事件(major adverse cardiovascular event, MACE)影响的COURAGE与ISCHEMIA两项研究均显示,在CCS人群中,与理想的药物治疗相比,PCI未能降低病死率。然而,进一步的分析显示,CCS患者中,靶病变对心肌供血的影响程度是PCI能否使患者获益的重要影响因素。因此,如何在CCS患者中制定合适的治疗策略成为近年来探索的热点。图2.医用压力导丝在手术中的应用三、FFR应用与发展冠脉FFR(Fractional Flow Reserve),全称冠状动脉血流储备分数,是利用特殊的压力导丝精确测定冠脉内某一段的血压和流量,以评估冠脉血流的功能性评价指标。20世纪90年代,FFR技术的出现,迅速成为导管内评估心肌缺血的重要指标,DEFER、FAME、FAME2等几项研究奠定了FFR作为评估冠脉临界病变的功能学意义并指导血运重建策略的“金标准”地位。相对于传统的CAG,FFR指导下的血运重建治疗策略可减少自发性心肌梗死的比例,改善临床预后,并且有效降低卫生经济负担。近年来,PCI技术在我国得到迅速发展,然而在导管室内有关心肌缺血功能学评估的应用方面尚有明显的提升空间。相关数据显示,欧美、日韩等发达国jiaPCI中FFR使用率超过30%,而我国FFR使用率不足5%,仍处于起步阶段,国内大部分医学中心尚未启动或开展功能学相关技术。结语:基于FFR的评估原理,近年来诞生了一些新的冠状动脉功能评价技术。如基于压力导丝等器械的非充血性压力指数(non-hyperemic pressure ratio, NHPR),基于造影的定量血流分数(quantitative flow reserve, QFR)以及基于冠状动脉CT血管成像(CTA)的FFR CT等技术都在不同层面推动着功能学技术的快速发展,而国内大部分同行对此领域还缺乏深入、全面的理解以及规范应用。因此,加快冠状动脉功能学评估的推广、规范与普及应用是亟待解决的临床问题。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.01.11

使用Moku自定义实时数字滤波器实现降噪与去尖峰

使用Moku自定义实时数字滤波器实现降噪与去尖峰在本应用笔记中,我们利用 Moku 云编译和多仪器模式来解释常用移动平均滤波器的开发。我们使用示波器和频率响应分析仪来检测有限脉冲响应(FIR)滤波器。然后,我们使用Moku:Pro、Moku:Lab或Moku:Go设备开发、部署和检测五点中值滤波器。以这种方式组合线性和非线性滤波器,可用于抑制许多控制或传感应用中的尖峰并降低噪声。Moku云编译Moku云编译(Moku Cloud Compile, MCC)是Liquid Instruments的一项功能,可让您快速编译自定义硬件描述语言(HDL)代码并将其部署到Moku设备。MCC将Moku内的FPGA开放,可以自定义代码,并允许特定的功能和特性。我们提供一系列示例和支持来帮助您部署自定义功能。移动平均滤波器移动平均滤波器是n个连续信号样本的平均值。方程为:其中x(t)是离散时间序列输入信号,y(t)是输出信号。例如,当n = 4时:这种滤波器在降低信号噪声方面具有非常有用的应用。对于不相关的白噪声,此移动平均函数z适合抑制噪声并保留尖锐的阶跃响应,但阻带性能较差。在硬件中实现这一点仅需要加法器和一次除法,因此在硬件资源有限的情况下非常有用。在硬件中,除以任意数字在FPGA中并不简单。通常,该滤波器是通过确保n是2的幂(即n =2N)来实现的,从而将除法减少为右移N个二进制位。图1 二进制按位移位示意图直接硬件实现如图2所示。图2 以一系列加法器实现移动平均此方案需要2N个加法器,硬件成本比较昂贵。深度加法器还可能需要时钟寄存器来满足合理的时序性能。我们可以通过以下方式改进这一点:因此,图3更概括地说明了这一点:图3 累加器实现这说明每个输出取决于先前的输出和当前的输入。现在,我们已将移动平均简化为一个累加器、一个减法器和一个n级移位寄存器,后者用于2N除法的按位右移。当N > 4时,硬件明显有了节省,限制因素是2N级移位寄存器。此外,不需要更多的时钟元件来满足时序限制。VHDL实现图4显示了VHDL实现的核心。这个过滤器的核心非常简单,只有12行代码。p_moving_average是最后N个样本的时间历史记录,其中第8行在前面添加最新的输入并删除最旧的输入。在第9行,累加器r_acc正在添加新的输入,而第10行正在生成输出所需的按位移位(除法器)。编译和部署编译该VHDL代码非常便捷。首先,上传代码,然后选择构建。Liquid Instruments服务器将生成一个文件或比特流,定义FPGA上实现代码所需的硬件配置。对于Moku:Go和Moku:Lab,编译大约需要5分钟;对于 Moku:Pro,由于 FPGA 的尺寸更大,该时间接近20分钟。测试MCC移动平均滤波器为了测试该移动平均滤波器,我们使用Moku:Go的多仪器模式(MiM),如图5所示。在此模式下,我们可以部署两台采样率为31.25 MHz的仪器。我们同样可以在Moku:Pro,Moku:Lab上测试该滤波器。插槽1插入MCC移动平均滤波器,插槽2插入示波器仪器。我们使用示波器观察从输入1输入的的已滤波和未滤波信号。示波器还具有一个集成波形发生器,用于生成测试信号。在本例中,我们使用示波器的内置波形发生器生成2 kHz 的方波,并将其连接到输出1。我们在外部将信号衰减 60 dB,使其接近Moku:Go的本底噪声。然后我们将该信号路由回输入1。 图 5:多仪器模式下的滤波器测试设置在图6中,我们可以在蓝色轨迹中看到衰减后的噪声方波。红色迹线显示移动平均器的输出,具有明显更干净的方波。这是一种十分有效的降噪技术,我们使用了MiM,并在一个插槽启用了MCC功能。 现在我们转为关注噪声功率,我们知道该平均滤波器将噪声功率降低了2N倍;噪声幅度降低了2N/2。我们的实现使用N=8,因此噪声幅度应减少到原始值的6.25% (1/16)。因此,这种z简单的滤波器对于降低噪声很有用。它的计算量也非常小,只需要累加器、减法器和按位移位。这意味着它可以以非常高的速度运行,在 Moku:Pro 上为 312.5 MSa/s,在 Moku:Go 上为 31.25 MSa/s。图7显示了 Moku:Go 输入噪声(蓝色线)和幅度分别为161.2 mV和9.162 mV的移动平均滤波器信号(红色线)。由此我们可以看出,滤波器后的噪声幅度接近于原始噪声的预期因子1/16,即 9.162/161.2 = 0.057。该过滤器正在运行并满足我们的期望。图7 输入噪声与滤波后信号频率响应我们可以使用Moku频率响应分析仪(FRA)仪器轻松确定移动平均滤波器的频率响应。FRA在其输出上驱动扫频正弦波,并测量其输入上产生的幅度和相位。图8显示了测试设置: 图 8:频率响应分析仪设置图9显示了MCC滤波器的频率响应结果。与图10(理想移动平均滤波器的MATLAB图)相比,我们发现移动平均滤波器没有提供特别好的阻带衰减。图9 移动平均滤波器的频率响应 图10 理想移动平均滤波器的MATLAB图中值滤波器中值滤波器是一种非线性滤波器,用于确定小移动窗口的中值。输入样本通过窗口,输出给定任何时间样本的中值。移动平均滤波器适合过滤均匀分布的随机噪声,中值滤波器适合滤除非常短的尖峰或脉冲噪声。虽然它经常部署在图像处理中,但它在更一般的信号处理中也很有用。通常,为窗口长度选择奇数个样本:3、5或7个点。这意味着输出只是值排序窗口的中间样本。VHDL实现图11显示了VHDL五点中值函数的实现。在时钟信号的每个上升沿,图11中的函数将五个输入样本从低值到高值排序。这种排序发生在第12行到第20行的两个嵌套“for"循环中。因此,中位数是排序窗口中的第三个样本;这被分配给第22行的输出。 图 11:中值VHDL代码我们可以使用示波器和云编译器插槽以及示波器的波形生成器,以与移动平均滤波器相同的方式分析中值滤波器的时域性能。图12显示噪声峰值显着降低,未滤波噪声的峰峰值测量值从 3.66 mV 降低至滤波后的305 μV。这减少了1/12,不如移动平均滤波器(1/16)有效。 图12 中值滤波器时域性能由于中值滤波器的一个关键功能是消除脉冲噪声,因此我们还使用带有附加脉冲的方波来检查其性能。图13显示了具有前沿尖峰和低电平中途尖峰的方波(蓝色线),滤波信号显示中值滤波器去除尖峰后的方波(红色线)。图13 去除尖峰噪声的中值我们在Moku:Go上编译并测试了这个中值滤波器,它的MCC时钟速率为31.25 MHz。然而,在为Moku:Pro测试此示例时,由于时钟速率增加到312.5 MHz,我们需要调整我们的示例。图 11 中的实现使用带有变量的嵌套 for 循环。这合成了一个复杂的组合逻辑网络,其转递延迟(图14)超过了Moku:Pro时钟速率的3.2 ns周期。为了满足时序要求,时钟元件之间的逻辑转递延迟必须小于时钟周期。 图 14:通过逻辑的传递延迟我们需要将大型逻辑块分成由寄存器或时钟元件分隔成段。在VHDL中,我们通过使用信号而不是变量来实现这一点。在本例中,为了便于编码,我们将逻辑分为五个阶段。这意味着输入到输出的延迟约为五个时钟周期,这适合我们的应用程序。图15显示了该五阶段线性中值算法的一个阶段。 图15 VHDL代码部分示例Moku:Pro 中值滤波器测试我们使用MiM中的Moku:Pro和任意波形发生器(AWG)来创建带有噪声尖峰的方波。然后,我们将AWG的输出连接到MCC中值滤波器,并使用示波器观察效果。此MiM设置如图16所示。我们配置了AWG,如图17所示。它的输出将模拟信号驱动到Moku:Pro的输出 3,而该信号又通过同轴电缆环接到输入3。中值滤波器部署在MCC中,并使用示波器来观察性能。图16 Moku:Pro中值滤波器测试系统  图17 任意波形发生器,带有脉冲的方波最后,我们观察中值滤波器的性能,如图18所示。中值滤波器消除了尖峰,同时保留了方波的尖锐边缘。由于插入分级时钟线程而导致的处理延迟导致大约44 ns的延迟。图 18:Moku:Pro中值滤波器现象总结在本应用笔记中,我们讨论了移动平均滤波器和中值滤波器的实现。为了实现这些,我们利用Moku Cloud Compile来构建过滤器并将其部署到Moku:Go。然后我们修改了设计以确保与增加的Moku:Pro时钟速率兼容。为了验证MCC滤波器,我们使用多仪器模式连接wan全可定制的滤波器、示波器和任意波形发生器。这种实现方式可以有效降低噪声,同时保留数字信号处理应用中的信号边缘。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2024.01.05

数字锁相环技术原理

数字锁相环技术原理摘要:数字锁相环(DigitalPhase-LockedLoop,简称DPLL)是一种基于反馈控制的技术,用于实现精确的时序控制和相位同步。通过相位比较、频率差计算、频率控制、滤波和循环控制,它能够完成两个信号相位同步、频率自动跟踪的功能。数字锁相环不仅具有可靠性好、精度高、环路带宽和中心频率编程可调等优点,还解决了模拟锁相环的直流零点漂移、器件饱和及易受电源和环境温度变化等缺点,此外还具有对离散样值的实时处理能力。数字锁相环广泛应用于物理和工程领域,包括用于测量和跟踪信号频率、提取原始信号的给定频率分量并在同时消除噪声和杂散分量,或者基于输入信号合成新信号。此外,数字锁相环在调制解调、频率合成、FM立体声解码、彩色副载波同步、图像处理等各个方面得到了广泛的应用,已成为锁相技术发展的方向。1.锁相环基本原理锁相环(PLL)技术也称自动相位控制技术,主要由鉴相器,低通滤波器(LPF),压控振荡器(VCO)和参考频率源(晶体振荡器)组成。当压控振荡器的频率fv,由于某种原因发生变化时,必然相应地产生生相位变化。这个相位变化在鉴相器中与参考晶体振荡器的稳定(对应于频率fR)相比较,使鉴相器输出一个与相位误差成比例的误差电压ud(t),经过低通滤波器,取出其中缓慢变动的直流电压分量uc(t),并加到VCO的控制端,使压控振荡器的输出频率fv不断改变且向参考频率fR靠拢,直至fv=fR为止,从而使得uv(t)、us(t)两信号的频率相同而相位差保持恒定(同步),即实现频率自动跟踪和相位锁定。这就是是锁相环路的基本原理。 图1锁相环组成结构图2.全数字锁相环的基本原理全数字锁相环由数字鉴相器、数字环路滤波器、数控振荡器三部分组成。锁相环是一个相位反馈控制系统,而在数字锁相环中,由于误差控制信号是离散的数字信号,而不是模拟电压,因而受控的输出电压的改变是离散的而不是连续的;此外,全数字锁相环的环路组成部件也全用数字电路实现。其中可逆计数器及N分频器的时钟由外部晶振提供。全数字锁相环不使用VCO(电压控制振荡器),同时采用系统可编程芯片实现,这大大减轻温度及电源电压变化对环路的影响,有利于提高系统的集成度和可靠性。3.全数字锁相环的实现全数字锁相环是模拟锁相环系统的数字化,全数字锁相环的基本结构如图2所示。主要由数字鉴相器、K变模可逆计数器构成(模数K可预置)、加减脉冲控制器和除N计数器构成。K变模可逆计数器和加减脉冲控制器的工作频率分别为Mf0和2Nf0,f0为锁相环的中心频率。一般情况下M和N均为2的整数幂。时钟2Nf0经除H(H=M/2N)计数器得到。实际应用中一般在压控振荡器与鉴相器之间加入可控的变模分频器,来得到固定的或是可变的输出频率,输出频率与输入频率之间成比例关系。 图2全数字锁相环路结构图3.1数字鉴相器的实现常用的数字鉴相器有三种类型EXOR鉴相器、JK触发型鉴相器和边沿控制鉴相器。数字鉴相器的作用是鉴别两个数字信号相位的差别,并通过信号将这种差别表示出来。数字鉴相器在很大程度上决定着锁相环的性能,选择的原则要从适用条件、线性鉴相范围、设计难易程度等角度综合考虑。其中EXOR鉴相器,它适用于波形对称的情况,线性鉴相范围为±Π/2,线性增益Kd=2/Π(V/rad)。通过比较输入信号u1(t)和反馈输入信号u2’(t)的相位产生一个误差信号ud(t),其作为K变模可逆计数器的加减方向控制信号,相位差为θe(θe=θv-θR)。环路锁定时,输入信号和输出信号之间没有相位误差时,输入和输出信号的相位刚好相差90°,经过异或门,产生占空比为50%的输出信号,该信号和输入信号波形相同,频率刚好是前者的两倍。这种情形如图3(a)所示。在这种情况下,可逆计数器加和减的周期是相同的,此时只要可逆计数器的k值足够大,其输出端就不会产生进位或借位脉冲。当输出信号u2’滞后于参考信号u1时,相位误差为正。这种情形如图3(b)所示。 图3 EXOR鉴相器的波形图(a)零相位误差(θe=0时波形)(b)零相位误差(θe>0时波形)3.2数字环路滤波器的实现K变模可逆计数器是最重要的数字环路滤波器之一。这种环路滤波器通常和EXOR或者JK触发鉴相器一起工作,它由两个互相独立的计数器组成,这两个计数器通常被称之为加(UP)计数器和减(DN)计数器。实际应用中,这两个计数器总是向上计数的,K为这两个计数器的模,也就是说,这两个计数器的计数范围都是[0,K-1],其中K是由模K控制输入端控制,而且,一般是2的整数次幂。时钟信号(K时钟)的频率定义为ADPLL中心频率fo的M倍,M通常取8、16、32等。它对数字鉴相器输出的相位差信号进行加减运算,当运算结果达到由模值控制器所预设的模值时,计数器输出一个溢出信号,加减溢出判断电路对溢出信号进行判断:若是加溢出则输出进位脉冲;若是减溢出则输出借位脉冲。进位和借位脉冲可用来控制DCO(数控振荡器),使得DCO输出的脉冲数根据进位和借位来加上或者是删除一些脉冲,实际上也就改变了DCO的输出频率。可逆计数器的模值由K模值控制器控制,一般为2的整数幂,当模值控制器变化范围为4b0001~4b1111时,对应的模值的变化范围为23~217。即可根据模值的大小调整可逆计数器的长度来实现数字编程控制。3.3数字振荡器的实现数控振荡器由加减脉冲控制器和除N计数器组成。加减脉冲控制器的作用是实现对输入信号频率和相位的跟踪和调整,最终使得输出信号锁定在输入信号的频率和相位上,它是由D触发器和JK触发器组合实现的。当没有进位脉冲和借位脉冲输入时,即锁相环路稳定时,加减脉冲控制器对输入时钟进行二分频后输出,从而保持u1(t)和u2’(t)的正交;当有进位脉冲时,加减脉冲控制器除了将信号2分频,还会在2分频的过程中加入半个时钟周期,当有借位脉冲输入时,则是减去半个时钟周期,这个过程是连续发生的。由于实际门电路中延迟的影响,有可能在逻辑输出的信号中存在毛刺,从而产生不可预知的问题,所以可以通过时钟控制的D触发器来消除这些毛刺所带来的隐患。由此可见,加减脉冲控制器就是通过这种方式来调节相位以使闭环系统最终达到锁定状态。Moku:Pro的PID/PLL Moku:Pro的PID/PLL(相对于参考时钟)多达四个输入信号,从1 kHz到300 MHz的精度优于6 μ弧度。基于数字实现的锁相环架构,Moku:Pro的PID/PLL提供了动态范围、零死区和测量精度,超过了传统锁相放大器和频率计数器的性能。 Moku:Pro的PID/PLL特征 •四个独立的相位计通道输出选项,跟踪和记录两个独立信号的相位,频率和幅度。•锁相输出选项,使您可以产生正弦波锁相输入。•使用相位计的集成频谱分析工具包在频域观察测量数据。•锁相环跟踪带宽从10hz到10khz。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2024.01.02

Lumencor固态光源在生命科学中的应用

Lumencor固态光源在生命科学中的应用教育 Education细胞和分子水平的知识是现代生物科学教育课程的核心。光学显微镜和其他光学技术是这些知识的源泉,因此,使用它们的实践经验是任何全面课程所不 可 或 que的。在教学实验室环境中使用时,当然希望在各个工作站之间显微镜的性能可以保持一致,并且易于使用和低维护成本也是bi 不 可少的。Lumencor的固态照明光源有LED、光管和激光器所组成,在各个方面都非常合适。 常用产品型号SOLA、MIRA、PEKA活体成像 Intravital Imaging活体成像可使用一系列对比机制,包括荧光、磁共振、超声和X射线,有时也可以相互结合使用。在所有情况下,目的都是在不同水平的空间分辨率上非侵入性地描述活体生物的形态特征。光对活体组织的穿透仅限于几毫米,zui大的穿透发生在波长为近红外时(650-990nm)。如果对于距离表面更远的区域感兴趣,则必须通过内窥镜传输以及接收光。Lumencor的固态照明器是光源的理想之选,可满足这些和其他技术规范的活体成像应用。 常用产品型号SPECTRA、SPECTRA X光遗传学 Optogenetics光遗传学技术可以提供有关神经网络功能复杂性的空间和时间分辨率数据,同时避免了使用微电极进行侵入性的检查。光遗传学中的“光"指的是将光转换为感兴趣细胞中的电活动。而“遗传学"是指转换-光激活离子通道蛋白的转基因表达。用于光遗传刺激的照明光源必须在光谱、空间和时间的输出特性方面满足严格的要求。特别来说,由于神经冲动发生在几毫秒的时间尺度上,光源的输出必须在同一时间尺度上可控。光引擎的输出光谱和光激活离子通道蛋白的作用光谱能zui大重叠积分(475 nm用于刺激光敏感通道蛋白,575 nm用于抑制盐细菌视紫红质)是对于输出光谱的基本要求。Lumencor的固态光引擎内置光源,提供这些以及更多功能,使其在神经科学和其他应用的光遗传学光传输中得到广泛应用。 常用产品型号CELESTA、SOLA、SPECTRA、SPECTRA X、RETRA 药物研发/HCS Drug Discovery/HCS在全细胞或完整组织切片中进行的检测允许监测对特定化合物或药物靶标的大范围细胞反应,因此被认为是“高内涵"分析(HCA)或“高内涵"筛选(HCS)。高内涵分析可以应用于药物研发过程的各个阶段,对于评估候选药物的脱靶活性尤为重要。使用多路荧光标记,可以同时监测多个目标,例如感兴趣的信号通路组成部分。监测蛋白质的表达和易位以及其他空间定义的细胞特征可提供常规生化分析无法提供的信息。高性能Lumencor光引擎的度du 特优势在于:1. 宽光谱成分——提供多个荧光团的激发以定位多个细胞目标。2. 稳定输出——确保数千个样本的数据质量始终如一。3. 电子控制——大规模多路复用分析自动化所需。 常用产品型号CELESTA、SOLA、AURA、SPECTRA 基因表达分析 Gene Expression Analysis基因表达分析技术是基于高度多路复用测量。其分析性能对于精确度和灵敏度有很高的要求。在目前一种被广泛采用的策略中,分子“条形码"和单分子成像被用来检测和计数单个反应中数百种du 特的转录本。经过近十年的实践经验和完善,这项技术今天已成为了一个被广泛采用和验证的平台,基于高于制定的试剂设计、自动化样品处理和精密仪器。Lumencor设计、开发并制造显微镜成像系统和光学硬件,驱动这些仪器的荧光激发和检测。空间分辨转录组是一系列技术的总称,用于在单细胞所在组织的空间背景下对其进行分子水平表征。MERFISH(多重容错性荧光原位杂交)就是这样一种成像技术,能够基于识别每个细胞数千个RNA转录本来分析细胞群。 常用产品型号CELESTA、AURA、SPECTRA显微镜 Microscopy光学显微镜是细胞生物学的一项核心研究技术。然而,它的应用远远不止如此,而是遍及到需要微米尺度结构信息的所有研究、制造和测试领域。光学显微镜包括多种特定的技术,下面列出了其中的一些。Lumencor的固态光引擎在所有这些方面都表现出色。宽场荧光显微镜是荧光显微镜中zui不专业也是zui常见的一种。用于显微镜的汞弧光源和金属卤化物光源多年来无处不在,但因其性能不稳定而备受困扰,如今它们已在很大程度上被无汞、清洁和绿色的高性能固态光引擎所取代。固态光源又分为白光输出和选色输出两种。白光光源是汞弧灯和金属卤化物等的直接替代品,具有优越的稳定性,更长的使用寿命,更灵敏的控制特性和更低的运行成本。而可以选择颜色输出的光引擎消除了多色成像方案中机械式滤光片切换的需求,从而实现更快的数据采集。共聚焦显微镜通过对激发光进行空间限制来提供三维空间信息。因此,与宽场显微镜相比,共聚焦显微镜需要更高的初始光强。因此,在共聚焦显微镜的应用中,激光光源通常比LED更受青睐。超分辨率显微镜提供20 - 200nm范围内的空间分辨率,超出了宽视场荧光显微镜(~ 200nm)的限制。与共聚焦显微镜一样,需要空间受限的激发光,通常shou选激光光源。透射光学显微镜通常需要比荧光显微镜更低的光强,因此可以使用更小的被动冷却光源。多年来占主导地位的卤钨灯已经被固态显微镜光源所取代。很大程度上是相同的原因,固态显微镜光源在宽视场荧光显微镜也已经取代了汞弧灯。特别是,固态光源的光谱分布(色温)不随输出光强而变化,这是保持色彩一致性的一个重要优势。暗场显微镜利用空间滤波排除未散射的光,从而提供样品的散射光图像。在暗场(DF)的照明下,平坦的表面呈现暗色,而裂缝、孔隙和蚀刻边界等特征则会增强。因此暗场照明可以用于检测不透明、未染色材料(如半导体晶圆)中的缺陷。由于照明必须经过空间滤波,因此需要比透射光学显微镜所使用的光源输出强度更高的光源。 常用产品型号CELESTA、ZIVA、SOLA、AURA、SPECTRA、SPECTRA X、MIRA、RETRA、PEKA、LIDA关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.28

一篇文章看懂:什么是SENIS集成3轴磁传感器?

一篇文章看懂:什么是SENIS集成3轴磁传感器?为了测量电磁铁和永  jiu磁铁产生的从 10-6 到 102 T 的非均匀磁通密度,通常使用带霍尔探头的特斯拉计。为了同时测量磁通密度的三个正交分量,需要使用三轴霍尔探头。根据目前传统的的技术水平,三轴霍尔探头由三个霍尔板组成,这三个霍尔板分别位于一个小立方体的三个相互正交的面上。单个霍尔板的尺寸及其定位公差严重限制了可实现的空间分辨率和测量磁通密度矢量的角度精度。此外,连接霍尔装置的导线中的电磁感应也限制了这种霍尔探头的有用带宽。此外,平面霍尔效应通常会产生额外的误差。在基于量子阱的霍尔板中,平面霍尔效应很弱,但问题依然存在。 为了解决这个问题,在一个点上检测三个方向的磁性。SENIS开发了一种划时代的“集成3轴磁传感器",使之成为可能。这就是“集成的三轴磁传感器"。 该传感器可以在所有情况下测量精确的3D矢量,例如永磁体的邻近磁场、小线圈产生的磁场和时间变化,这在过去是不可能的。图1. 传统的霍尔片3轴探头(左)和SENIS集成3轴磁传感器(右)3轴磁性探头的配置传统的霍尔片3轴探头SENIS集成3轴磁传感器磁化位置3个位置一个位置(单点)磁感应位置的错位量取决于传感器位置(约0.5mm~10mm)无错位传感器的相对角度误差通常不标注(过大)±0.1°以内温度传感器无安装在传感器芯片中探头形状约1~2种8种类型+定制自由一、 专li技术的SENIS集成3轴磁传感器二、 SENIS集成三轴磁传感器的功能除了磁传感器外,集成的3轴磁传感器还集成了偏置电路和放大器,以提高频率特性和抗噪性,甚至在宽度仅为 0.64 m 的单个芯片上集成了温度传感器,用于因温度变化而进行灵敏度校正。1.敏感区域仅为0.15mm × 0.1mm × 0.15mm2.3个方向相对角度误差在±0.1以内3.频率响应:高达25Khz(-3db)4.温度特性±100ppm/°C三、 SENIS集成三轴磁传感器放大图四.SENIS集成三轴磁传感器详细信息图2. 磁性传感器内部有5个感磁区域。通过取BZ1和BZ2的平均值,虚拟地求出By传感器位置的Bz磁场。同样地,通过取Bx1和Bx2平均值来求出By传感器位置的Bx磁场,可在同一点上收集Bx、By、Bz。五.搭配SENIS集成三轴磁传感器的霍尔探头类型:六.搭配SENIS集成三轴磁传感器的高斯计/特斯拉计汇总类型: SENIS数字特斯拉计/高斯计基于SENIS®的模拟磁场传感器电子设备,其顶部添加了数字模块,具有显示器,通信端口,数字数据校正等。SENTIS提供不同类型的特斯拉计,具有不同的磁性分辨率,精度,f带宽,噪声水平和功能和处理选项(手持式,台式,机架式)3MH3特斯拉计,适用于工业和实验室应用,具有良好的精度,分辨率和f带宽3MH6台式特斯拉计,用于实验室应用,具有非常高的分辨率和精度以及良好的f带宽3MTS 手持式特斯拉计,探头支架坚固,精度高1 轴、2 轴或 3 轴 Nanoteslameter 3NTA1,用于极低磁场SENIS®已通过ISO 9001和ISO 22301(业务连续性管理)认证。我们的校准实验室已通过ISO17025:2017认证。上海昊量光电作为SENIS公司在中国大陆地区主要的代理商,为您提供专业的选型以及技术服务。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.28

WaveCam:振动测量领域的全新视频振动分析解决方案

WaveCam:振动测量领域的全新视频振动分析解决方案视频振动分析是一种利用高速摄像机捕捉目标物体的运动,并通过图像处理算法计算其振动特性的方法。昊量光电昊量光电全新推出的我们的振动视觉增强影像系统/振动运动放大成像技术WaveCam软件就是一款利用先进的光流和人工智能(AI)算法,从视频数据中自动提取振动位移,无需设置传感器或电缆。不仅如此,WaveCam不仅可以分析高速相机录制的视频,任何智能手机录制的视频均可以分析结果!相比于传统的振动测量手段如加速度计、激光测振仪(单点的、扫描的)测量方法对比参数如下表格所示,接触式的加速度计对于布置传感器非常不方便,WaveCam振动分析软件可以不用布置任何传感器,WaveCam振动分析软件可以利用普通的相机或高速相机,通过视频采集和数据处理,实现对任何可见的物体或结构的振动测量,无需安装传感器或电缆,节省了时间和成本。WaveCam振动分析软件是一款专业的视频振动分析解决方案,可以用于各种工业和科学领域,如机械、航空、汽车、建筑、医疗等。WaveCam振动分析软件的主要特点有:l 非接触式测量:WaveCam振动分析软件只需要一台高速相机和一台电脑,无需安装传感器或电缆,可以远距离、全面地测量目标物体的振动模式和频率。l 高分辨率和高帧率:WaveCam振动分析软件可以根据不同的应用需求,选择合适的分辨率和帧率,可以捕捉到微小的振动细节和变化。l 时域和频域分析:WaveCam振动分析软件可以同时显示时域和频域的数据,方便用户对比和分析振动的特征和规律。用户也可以自定义分析参数,如滤波、傅里叶变换、功率谱等。l 数据导出和报告生成:WaveCam振动分析软件可以将测量结果以多种格式导出,如视频、图片、表格、文本等,方便用户进行后续的处理和分享。用户也可以利用软件内置的报告模板,快速生成专业的振动分析报告。WaveCam-振动视觉增强影像系统/振动运动放大成像技术解决方案导出的结果:导出变形形状的动画-结果清晰易懂市场上也有同样视频分析振动的方法,相对于WaveCam振动分析软件有很多无法弥补的缺陷,对比分析请看下表: WaveCam-视频振动分析软件解决方案特点:§ 使用任何相机捕捉振动数据,包括手机§ 节省设置、测量时间和设备成本§ 快速学习、直观操作、易于配置§ 直观的执行和测量分析§ 在时域和频域中分析数据§ 操作期间的振动测量,具有亚像素精度的测量分辨率§ 无需准备被测表面§ 导出视频中的偏转形状§ 改进的光流和人工智能 (AI) 算法WaveCam-视频振动分析软件解决方案应用范围:§ 工作变形形状 (ODS)§ 固有频率检测§ 质量保证§ 研究和发展§ 故障排除,根本原因分析§ 预测性维护§ 结构振动§ 瞬态事件产品技术问答:1. 为了正确的分析振动数据,我需要考虑什么?§ 根据您的相机的帧速率,需要蕞小帧速率 FPS = 2 xf max才能捕获感兴趣的蕞高频率 f max。§ 手机足以满足低频应用(当前蕞大 960 fps)。注意:手机可能会在慢动作录制的开始和结束时增加几秒钟的正常速度。§ 高帧率导致低曝光时间 -> 需要额外的无闪烁照明§ 以 Gpx/s(例如 Chronos 1.4)为单位的高速相机性能权衡 - 帧速率与分辨率§ 边缘和特征点有帮助,但不是本质§ 使用未压缩的视频格式——在 WaveCam 中剪切视频§ 使用角度,例如 45°,因为仅显示平面振动以与参考进行比较考虑 90° 旋转§ 记录不同的角度§ 测量时间受相机 RAM 限制(降低 fps 或增加分辨率)§ 瓶颈是数据传输 RAM->SD 卡 + 处理时间2. WaveCam-振动分析软件解决方案与传统方法比较如何:使用加速度计和 LDV 交叉验证幅度和频率内容使用soundcam Mikado和近场声全息 (SONAH)交叉验证模式形状关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.22

SDTR一种薄膜面内各向异性热导率的测量方法

SDTR一种薄膜面内各向异性热导率的测量方法近年来,随着半导体行业的迅猛发展,半导体元件的体积急剧减小,对芯片或薄膜材料的热物性探究至关重要,这样给予针对超小尺寸的热物性探测技术提供了发展需求,而其中基于光学的热反射法的发展使得小尺寸(亚微米)样品的热导率测量变得容易。在频域热反射法FDTR测量中:锁相放大器的参考相位需要被精确计算以减小对相位滞后信号的影响。SDTR - (SpecialDomain ThermalReflection)空间热反射同样是基于激光泵浦-热反射的探测技术,可以针对小尺寸薄膜样品的面内热物性的测量方法。相比于其他激光泵浦探测方法(如:TDTR,FDTR)它的优势是可以测试薄膜样品的面内热物性,且成本低廉;同FDTR一样是基于连续激光,不过目前的FDTR的调制频率通常在5 kHz以上,因此只能测得10 W/mK 以上的面内热导率,但SDTR通过改变泵浦和探测光斑的空间位置获得相位和幅值信号,可以测量低于10 W/(m·K)的面内热导率。1. SDTR测试图1所示为 SDTR 的实验系统光路图。一束泵浦激光经正弦波调制后聚焦在样品表面,对样品进行周期性加热;另一束波长不同的探测激光透过偏振分光棱镜(透过率可通过调整线偏振方向变化),透过光聚焦在样品表面,探测样品表面的温度响应,探测光可以透过二向色镜照射并聚焦至样品并反射,携带样品表面的周期性变化的热反射率信息,泵浦光在二向色镜处反射并聚焦至样品处对样品进行周期性加热,样品表面因周期性的热场而生成周期性变化的热反射率。光电探测器将探测光光信号转换成电信号,然后传输给锁相放大器以提取信号的幅值和相位。可以通过锁相放大器输出一个给定频率的正弦信号或者通过外部信号发生器输出给锁相放大器和泵浦激光器,传输给泵浦激光器用以调制泵浦激光,传输给锁相作为内部参考,实现对采集信号的锁相分析。在SDTR实验测量中,样品表面需要镀一层约100 nm 厚的金属膜作为温度传感层。通过调节光路中将光束反射至样品的反射镜的角度,可以调整样品表面泵浦光斑相对于探测光斑的位置,同时锁相放大器记录下幅值和相位信号随样品表面的泵浦光斑和探测光斑之间偏移距离xc的数据。以xc=0时的相位和幅值信号为基准,对任意xc处的相位信号取其差分值,对幅值信号取其归一化值,同时拟合差分相位信号和归一化幅值信号,即可提取样品沿光斑偏移方向的面内热导率kx和该方向的激光光斑尺寸Wx。图1:SDTR光路简约示意图图2:表面镀有100 nm钛的熔融石英样品在150 Hz泵浦调制频率和11.5 μm光斑尺寸下的SDTR测试相位(a)和归一化幅值(b)数据图。图2中所示为在150 Hz 泵浦调频下,镀有100 nm钛膜的熔融石英样品的测量数据和拟合曲线。通过对图2(a)中相位差信号进行拟合,其中采用文献中提供的熔融石英的体积比热容等数据后拟合而得出熔融石英沿光斑偏移方向的面内热导率为1.4W/(m·K)。SDTR所测得的热导率与文献值十分接近;同理,若通过改变泵浦光斑和探测光斑相对于样品的的偏离方向可以测得沿表面的各个方向的各项异性的热导率(不过实例中的熔融石英是各向同性材料,没有必要进行不同方向的各向异性测试)。图2(a)还展示了的z佳拟合值变化±30% 所对应的曲线,在图中用虚线表示,展示了该信号对的敏感性。而另一方面,图2(b)所示的归一化幅值信号通过拟合幅值信号可以精确地得到沿偏移方向的激光光斑尺寸为11.5 μm。2. 敏感度分析图3展示了图1的测量信号对系统中不同参数的敏感性系数。这些参数包括了传感层和基底材料的不同方向上的热导率kxm、kym、kzm(其中角标m表示为金属传感曾的物理性质)和kx、ky、kz,体积比热容cm和c,金属传感层的厚度hm,界面热导G,泵浦光斑样品表面上不同方向上的激光光斑尺寸wx、wy。图3:调制频率9KHZ,100nm AU/ sapphire样品的SDTR测试结果对样品各个热物性的敏感度示意图。(a)相位梯度信号对于不同参数的敏感度;(b)幅值半高宽对不同参数的敏感度。图3中显示:沿样品表面x方向的热导率kx和样品的体积比热容c对的敏感度较高,因此对与得到较为准确的热导率结果,需要事先知道较为准确可靠的样品体积比热容c;x方向的光斑尺寸wx对幅值半高宽敏感度较高,因此可通过幅值半高宽较为准确地确定样品表面光斑尺寸wx,其中受到其他的样品参数影响较小。3. 测试结果图4: SDTR进行的一系列标准样品的面内热导率的测量结果与文献参考值的比较。利用SDTR方法分别对对蓝宝石、硅、二氧化硅、高定向热解石墨(HOPG)及x-切割石英的面内热导率进行了实验测量,其结果如图4所示,其中所得结果均与文献参考值高度一致,误差均小于5%。相关文献:[1] P. Jiang, D. Wang, Z. Xiang, R. Yang, H. Ban, A new spatial-domain thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity, Int. J. Heat Mass Transfer, 191 (2022) 122849.[2] 宋尚智, 张可欣, 江普庆, 新型光学交流量热法准确测量小尺寸样品的面内热导率, 能源科学与技术, 1 (2022) 33-38.关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.21

激光在医疗领域的应用

激光在医疗领域的应用随着激光技术的飞速发展,激光在医疗领域中的应用得到了日益广泛的关注。由于其具有无接触、精度高、损伤小、便携性和操作灵活等优点,激光医疗极大地丰富了临床医疗的技术手段,在部分疾病的治疗中逐渐取代了传统方法,提升了医疗行业整体的技术水平。当前,激光医疗的市场 占you 率不断增加,发展前景十分广阔。本文介绍了激光医疗技术和医用激光系统的要求,重点对激光医疗在各临床科室中的应用研究现状进行了全面阐述,zui后针对我国激光医疗领域存在的问题给出了建议。激光具有ji  高的相干性、单色性和方向性,能够将能量集中在很小的空间范围内,实现ji端的光与物质相互作用。鉴于材料吸收激光能量后会发生熔化与气化,激光zui早被用于各种材料的加工,如打孔、切割与焊接。随后人们发现,特定的生物组织结构在激光辐照下升温,可以达到对有害物质的消融和去除等目的,从而催生了激光医疗的新概念。激光医疗具有无接触、精度高、损伤小、便于携带和操作灵活等优点,得到了广泛的关注与研究。激光医学经过多年的发展,已初步成为一门体系完备的交叉学科,在医学领域发挥日益重要的作用。激光医疗自被国内外药品监督管理部门批准用于临床应用以来,广泛应用于各医疗学科中。图1.激光在医疗领域的应用激光医疗由于其du 特的优势,被越来越多的医师和患者接受,在部分疾病的治疗中逐渐取代了传统的治疗方法,所占的市场 份e也越来越大。根据The Business Research Company发布的市场研究报告,2026年全qiu激光医疗市场规模将增长至93.1亿美元,2022-2026年期间复合年增长率高达 13.7%。我国激光医疗领域起步较晚,技术水平相对落后,临床应用大多依赖进口设备。尽管如此,近年来我国激光医疗领域的基础研究和技术创新发展迅速,2019年度国jia自然科学基金的82项国jia重大科研仪器研制项目中就有16项与激光医疗相关,相应资助金额约占全部资助金额的20.44%。随着我国在激光医疗关键技术和核心零部件等方面不断取得突破,国产医用激光器和激光控制系统的关键指标持续提升,激光医疗设备的国产化进程稳步加快。表1.不同类型的激光器在不同疾病中的应用随着激光器性能的不断提升,激光器的各项参数指标日益优化,如激光波长范围扩大、平均功率增加、体积缩小和系统稳定性增强等,激光在医疗领域中的应用范围也不断增加。表1显示了不同波长、模式和功率的激光器在不同疾病中的应用。医用激光器不同于工业激光器,它对激光有特定的要求,如激光波长、脉冲宽度、工作方式、输出功率、设备尺寸和安全监测等。针对不同人体组织对激光的吸收和穿透效率的差异,需要选择不同波长的激光器;针对一些高精密的治疗应用,需要严格控制脉冲宽度、工作方式和输出功率;激光体积要小,重量要轻,便于携带和操作;对于需要将光纤伸入身体的手术,光纤的直径要足够小;为减少对正常组织造成的损伤,激光器模块需带有温度反馈、红光指示、光功率监测和光纤接入监测等功能,保证治疗过程中的参数稳定。伴随着我国经济的飞速发展,居民生活水平日益提升,同时老年人口增多,国民对于先jin医疗技术的需求日益强烈。我国的激光医疗产业主要包含中小型民营企业,管理相对灵活,在技术研究上有很好的创新土壤,容易形成原创性技术突破。在我国激光医疗产业集中的区域内,未来将形成一个大规模的产业集群,激光医疗产业的发展前景广阔。随着“一带一路"建设的深入,中国激光医疗产业也将目光投向了全qiu市场,获得美国食品药品监督管理局和欧洲统一医疗资质的国内激光医疗设备和企业越来越多,海外市场亟需开拓。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.21

高光谱成像塑造可持续回收的未来

高光谱成像塑造可持续回收的未来将废物有效回收成可重复使用的原材料是我们必须采取的重要努力之一,以阻止全qiu变暖和过度开采自然资源。回收利用的环境效益是显而易见的。回收利用可以保护自然资源,减少温室气体和污染,以及在能源生产中使用化石燃料。它可降低塑料能耗约70%,钢材能耗降低约60%,纸张能耗降低40%,玻璃能耗降低30%。一个重要的价值在于可重复使用的材料。然而,我们离回收目标还很远。大部分收集的废物仍然用于能源生产并在发电厂燃烧 - 而不是重复使用。价格通常是回收率低的一个因素,因为用原材料生产新产品通常比回收材料便宜。为了使回收不仅在生态上而且在经济上可行,重复使用材料需要比使用原始材料更便宜、更容易。通过适当的材料处理方法,可以有效地回收不同的材料并转化为利润。这就是高光谱成像可以发挥作用的地方。当前在高效回收方面面临的挑战典型的废物管理过程包括在回收设施中收集废物,分离成不同的废物部分,清洁以及zui终分类为放置在垃圾填埋场,燃烧或根据类型和纯度回收的材料。分拣过程是回收的关键步骤。更好的分拣精度意味着更好地分离不同等级的材料,从而提高回收率。典型的分拣过程基于多种技术的混合,不能只依赖于一种检测技术。所使用的检测技术通常会限制可以分类的收集材料的类型和数量。大多数回收厂使用不同的技术,从条形码阅读器和RGB相机到X射线和涡流系统。虽然它们在一定程度上是有能力的技术,但它们并不是wan 美的解决方案,因为它们识别材料的能力有限。例如,如果塑料瓶缺少条形码,则无法检测它是PET还是HDPE。电涡流检测器可以分辨导电金属,但不能分离塑料或纸浆。RGB相机可以将瓶子分为透明,黑色和彩色,但无法区分一种塑料类型与另一种塑料类型。当回收部分的纯度不足以再利用时,我们就会失去可回收材料来填埋或能源生产。糟糕的分类结果也会导致利润损失,这使得回收无利可图,并且依赖于公众的支持。不同的废物流需要不同的检测和处理方法才能有效回收,而目前的回收方法不够灵活、高效和信息丰富,无法应对这一挑战。为了弥补检测技术的不足,仍然使用人力。手工分类垃圾缓慢、不准确、昂贵且危险,并且将不同的塑料类型彼此分开仍然是不可能的,因为人眼无法区分它们。为了高效、盈利和安全地工作,回收工厂必须配备能够可靠、高纯度地分离不同材料的传感器。胸超成像为准确和可持续的废物回收提供了强大的技术。高光谱相机如何提高回收效率?高光谱相机可以根据材料的化学成分准确可靠地区分材料。它们测量和分析从材料反射或通过材料透射的光谱。当测量称为近红外(NIR)的可见光区域以外的光谱时,我们看到化学上不同的材料具有du 特的光谱。多光谱技术改善了这种情况;但是,它有其局限性。多光谱相机通常采集一到三个光谱数据,或者在某些相机中zui多采集8个光谱波段,这意味着在每个分拣位置,它只能识别一些基本材料。结果的纯度也经常受到限制,因为材料流中存在干扰因素。直到zui近几年,高光谱成像在垃圾分类中的使用一直受到高光谱相机在速度、空间分辨率、坚固性、连接性和高成本方面的性能不足的限制。zui近的发展提高了高光谱相机的速度和分辨率,而它们的实施成本现在符合商业解决方案的投资回报率标准。此外,现在还提供用于实时处理高光谱相机产生的大量数据的算法和解决方案。对于在线分选应用,线扫描高光谱相机是唯yi实用且正常工作的解决方案,因为它只需一次扫描即可同时精确地从生产线中的每个像素捕获整个材料流的整个光谱数据。线扫描(推扫式)高光谱热像仪可以安装在现有和新的分拣线上,具有适当的照明和实时数据处理解决方案,就像任何线阵扫描热像仪一样。逐个像素的材料识别结果可通过商业机器视觉系统的标准接口获得。然后,结果可用于控制空气喷嘴或拣选机器人。与传统传感器技术相比,高光谱相机解决方案在各种废物处理过程中具有zhuo 越的性能和多种优势,如表1所示。表 1.高光谱成像在分类不同类型废物流方面的附加值当与其他技术结合使用时,高光谱相机通过提供有关材料类型的精确信息来提高分拣精度。新一代的高光谱相机可以将回收材料的纯度提高近100%。将再生塑料的纯度提高几个百分点,其价值就会翻倍。提取更多可回收材料也意味着我们在垃圾填埋场处    理的废物更少。与具有固定光谱波段的多光谱相机相比,高光谱相机具有灵活性,可以适应各种废物流的分类。当新的排序算法可用时,它还可以采用它们。高光谱成像在塑料回收中的优势在所有制造的塑料中,只有9%被回收利用。12%被焚烧发电,79%用于垃圾填埋场或自然。据估计,到2050年,海洋中的塑料将超过鱼类。大多数不可回收的塑料废物来自无法可靠地将不同类型的塑料分开。不同的聚合物在近红外光谱区域中具有可识别的光谱特征,因此可以进行分类。然而,许多光谱特征彼此接近。在这里,高光谱相机的高光谱分辨率是高分选精度的关键。例如,使用 PP、PE 和 PET 塑料,纯度可以达到接近 99%。使用高光谱相机分拣黑色塑料很大一部分可回收塑料由黑色塑料组成,特别是在汽车和电子工业中,它们添加了碳基颜料以产生深灰色或黑色。黑色塑料类型很难识别,到目前为止,还没有可靠的传感器技术来对这些材料进行分类以供重复使用。即使是近红外高光谱相机也在苦苦挣扎,因为黑碳基颜料几乎吸收了所有的近红外光。除近红外区域外,不同的塑料在称为中波红外(MWIR)的较长红外区域中具有特征光谱特征,其中大多数黑色颜料比NIR区域“更少"(吸收性较低)。因此,中波红外光可以穿透黑色材料并从黑色材料反射,从而使其光谱识别成为可能。使用在中波红外区域运行的Specim FX50高光谱相机,我们可以分拣纯度接近99%的黑色ABS塑料。它是目前市场上唯yi一款在中波红外地区运行的高光谱相机,具有工业在线使用所需的速度、分辨率和灵敏度。以下是在实验室中使用 Specim FX50 高光谱相机测量的黑色塑料分选示例。测量了 34 块 ABS 和 PE 以及 50 块 PS(共 <> 块)。对于每个样品组,一半的样品有光泽,另一半样品具有漫反射表面。下图显示了由 ABS、PS 和 PE 制成的样品可以使用 Specim FX<> 进行准确分类。高光谱成像在纺织品回收中的优势与焚烧和填埋相比,纺织品回收减少了对环境的影响。如果可以根据使用的纤维类型正确分类和分离,那么几乎 100% 的纺织品和服装都可以回收利用。增加纺织品回收的一个障碍是,构成服装的各种纤维使再加工和回收成为一项挑战。虽然可以使用人力进行分类,但这在经济上几乎不可行,并且会带来很多错误来源。近红外光谱区域中的高光谱相机可以分离zui常见的纺织部分类型,从而实现自动机器人化加工。基于近红外高光谱相机的纺织品分拣具有多种优势:· 非接触式,适合应用于传送带· 提供有关纯材料和混合材料的信息(定性和定量分类)· 分类对使用的颜色或染料不敏感· 易于配置不同的分拣线和新材料· 为了获得精确的颜色信息,高光谱相机可以取代RGB相机。棉花在水、杀虫剂和杀虫剂方面是一种资源ji其密集的作物。使用再生棉花可以节省大量自然资源并减少农业污染。一些材料如棉和亚麻可以回收用于汽车绝缘或堆肥,但石油基纤维如聚酯几乎没有重复使用的机会。焚烧材料特性尽管材料回收率正在增加,但仍有必要焚烧某些不可回收材料的部件。这些“废物转化为能源"发电厂从商业、建筑、家庭和工业等各种来源接收材料,并将其用于垃圾衍生燃料 (RDF) 发电厂的发电。RDF的值来自热含量(图像KK) - 由材料类型决定。某些材料,如玻璃、岩石或泥土,热值为零。含水量和冰也会影响该过程。精确的燃烧过程控制和热值只能基于正确的材料识别来计算。近红外区域的高光谱成像为此提供了在线解决方案。高光谱成像塑造了回收的未来提高分拣精度可提高回收材料的纯度和价值,以及可重复使用的废物百分比。为了提高分拣精度,我们需要更好的检测系统。高光谱成像对回收行业和社会的潜在影响是巨大的。高光谱相机是一种准确、可靠、无损、非接触式的检测工具,可提高操作效率、提高材料纯度并提高盈利能力。先jin的高光谱相机技术、分析软件和光谱库已经可用,并在现代回收机器和废物分类设施中使用,并且由于解决以前不可行的分类任务的需求不断增长,预计未来还会增长。上海昊量光电作为芬兰Specim中国地区的代理商,为您提供专业的选型以及技术服务。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.21

266nm深紫外单纵模连续激光器简介

266nm深紫外单纵模连续激光器产品简介:AUT-FQCW-266系列DPSS连续型深紫外激光器在266nm的单频工作下,输出功率可达2W。与其他266nm连续激光器相比,AUT-FQCW-266系统相干长度大于1000m,窄线宽小于300kHz,功耗小于200W(平均100W),占地面积仅为380×270mm。该即插即用紫外激光器带有一个控制单元,可以通过串行(RS232和USB)接口进行按钮控制或远程控制操作。  该266nm激光器具有优良的光束质量,M2266nm激光器产品特点:低噪声TEM00单纵模窄线宽:高功率:可达2W,可调可选  长相干长度:1000米  高光束质量:M2266nm激光器产品参数:266nm连续激光器产品应用:半导体晶片检测紫外光谱紫外全息检测光纤光栅刻写半导体检验拉曼光谱光纤布拉格光栅关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2023.12.21

Moku 3.1版本升级!Moku:Lab、Moku:Pro新增支持逻辑分析仪

Moku 3.1版本升级!Moku:Lab、Moku:Pro新增支持逻辑分析仪多仪器并行模式支持同时多窗口界面交互!Liquid Instruments宣布发布Moku 3.1 版本重要升级。此次更新对Moku:Pro、Moku:Lab 和Moku:Go三个平台的多仪器并行模式都进行了升级,支持同时打开多个仪器窗口以便多仪器之间同时进行交互。Moku 版本 3.1 还在Moku:Pro 和 Moku:Lab平台新增逻辑分析仪,将 Moku 平台上可用仪器功能增加到了13种!此外还对仪器功能进行了一系列增强和改进,以优化从工程和锁相检测到自定义仪器开发和精密数据记录等各种应用。Moku 设备多仪器并行模式,全新的多窗口功能Moku版本 3.1 为 Moku 平台多仪器并行模式带来了重大改进。现在,用户可以使用 Moku 桌面应用程序同时打开4个仪器界面同时进行多仪器测试配置。不同插槽之间的仪器能实时交互,通过多窗口界面调整一个仪器的设置就能立即在其他仪器的测量中看到效果。这一升级使用户可以全面部署实验设置,能够更快地响应关键测试变化并实时进行必要的调整。例如,您现在可以调整波形发生器的设置,立即可以同时在时域和频域中观测结果,同时用频率响应分析仪监测系统的闭环响应。还需要监控您用 Moku 云编译自定义的仪器的输出吗?那就只需要在您微调自定义仪器的寄存器设置时启用示波器实时查看变化。仅需软件升级,实现更多仪器功能Moku 3.1版还为我们设备现有的仪器套件带来了更多全新的功能,彰显了我们提供新型现代化测试解决方案的承诺,并且这些功能也在随着用户的需求不断的改进。逻辑分析仪现在可用于所有 Moku 硬件,包括嵌入式协议分析仪功能中新增 I2S 协议此次升级,Moku:Pro 和 Moku:Lab 设备新增支持逻辑分析仪。现在逻辑分析仪可用于所有 Moku 硬件平台,以确保一致的用户体验,并提高 Moku 产品组合中定制代码的可移植性。这一新增功能使 Moku 产品系列的可用仪器总数达到 13 个。Moku逻辑分析仪一个主要优势是嵌入式协议分析仪,此次升级还包括在嵌入的协议分析仪功能中的新增I2S 协议。它为用户提供了更灵活的方法来监控、解码和调试高速串行接口。现在,所有Moku设备的多仪器并行模式下可以部署逻辑分析仪。您就可以将仪器连接到定制测试系统中,同时分析数字编码和解码以及模拟特性的混合信号。或者,使用它来用于激励和监控使用 Moku 云编译编写和部署的自定义仪器 。I2S协议被全球广泛用户采用,我们也将这个功能内嵌到了我们的逻辑分析仪中。您可以利用这一功能来解码音频测试系统、汽车设置和其他实验中的音频数据。通过将逻辑分析仪与多仪器并行模式中的示波器和频谱分析仪相结合,您可以轻松监视输入音频 CODEC 的数字数据,以及生成的模拟信号。所有 Moku:Pro 和 Moku:Lab 全套件包用户现在都可以免费升级软件获取逻辑分析仪。对于基础套件用户,可联系上海昊量光电进行下载。显著改进数据采集中的长时间数据记录和深度存储我们增强了数据记录器和使用嵌入式数据记录的仪器(包括相位表、锁相放大器、PID 控制器、数字滤波器和FIR 滤波器生成器)在深度存储模式下的数据捕获能力。此外,您现在还可以使用 Moku:Pro 示波器以 5 GS/s 的速度可靠地捕获和保存超过 6000 万个数据点。客户端轻松上传和加载 Moku 云编译比特流我们还改进了 Moku 云编译的用户体验,使您能够直接从桌面和 iPad 应用程序部署 Moku 云编译比特流。此更新可让您更轻松地与同事共享自定义功能,或将其部署到多个 Moku 设备上。PID控制器仪器输出新增电压限制功能您现在可以对 PID 控制器的输出设置限制,以避免对外部设备或装置潜在过载。例如,现在更容易保护压电传感器(PZT) 执行器免受过压损坏,支持为正电压和负电压设置不同的阈值。Moku:Go锁相放大器的最高解调频率提升到 30 MHz通过这次更新,Moku:Go 增强的性能使得用户可以解调更高的信号频率,并扩展锁相放大器辅助输出。Moku:Go锁相放大器不仅兼具性价比并且性能更加出色。您可以通过联系我们来随时为您的Moku:Go 设备添加锁相放大器功能。借助 Moku:Pro 的新功能,加速您的测试流程Moku:Pro是我们针对最严苛的实验研究和工程应用而设计的旗舰设备,我们致力于不断改进来进一步提升噪声性能。我们对ADC 混合算法进行了优化, 从而降低了输入噪声,特别是在 20 kHz 以下。我们还改进了风扇速度控制,以确保在敏感的实验室环境中运行更加安静。所以现在噪音更少,更小!免费升级您现有的仪器套件对于Moku设备全套件用户,这些新功能仅需通过简单的软件更新免费获取。如果您是Moku:Pro 或 Moku:Lab 基础套件用户,并想获取逻辑分析仪或添加其他仪器功能,请与上海昊量光电联系。  我们期待在未来为您带来更多Moku 平台的zhuo 越更新,帮助您加速研究进展。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2023.12.21

高精度DLP光学引擎在DLP-3D生物工程方面应用

高精度DLP光学引擎在DLP-3D生物工程方面的应用--高功率、高精度、易操作3D打印作为一种ge 命 性的制造技术,已经广泛应用于各种工业领域,如航空航天、生物医学、消费用品等。其中,数字光处理(DLP)型光固化3D打印技术由于打印精度高、速度快而备受人们的关注。DLP 3D打印是yi 疗领域应用广泛的技术之一,这种制造方法的实施具有巨大的生物医学应用潜力,比如一些应用包括药物开发、移 zhi以及再生和个性化医疗等。DLP光学引擎(DLP,即Digital Light Processing的缩写)是基于Texas Instruments的DLP投影成像技术开发的一种高性能投影光机,配以高质量透镜组模块,且其结构紧凑,体积小巧,操作简单等特点,广泛应用于三维测量,生物3D打印,增材制造等科研及工业领域。如何获得高质量的DLP-3D打印呢?    ---高精度的DLP光学引擎!!!如下是5款高精度的DLP光学引擎:主要产品特点:1、 高分辨率透镜组(可选);2um to 165um ;2、 独立的LED光源控制模块(多种波长可选择);3、 依托于TI的开发控制程序,方便客户二次开发;4、 体积小巧,易于集成进设备中;借助于我们的高精度DLP光学引擎产品,我们可以实现如下精度的DLP 3D打印能力:2um to 165um !应用领域:应用示例介绍:A、 Firebird -DLP光学引擎:用于连续血糖监测的微针3D打印 (合作单位:The Austrian Institute of Technology-奥地利理工学院) B、IKARUS II  -DLP光学引擎: 软组织再生-3D打印(合作单位:Tufts University- 塔夫茨大学)C、Helios -DLP光学引擎 : 癌症研究 -高分辨率系统  (合作单位:Cambridge University-剑桥大学)D、TwoWave -DLP光学引擎: 增材制造E:Phoenix-DLP光学引擎:  心脏泵转子打印如有相关需求,可联系我们,我们提供相关技术服务帮助您实现高精度的DLP-3D打印。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.21

使用Moku:Pro同时实现窄线宽激光系统的锁定和表征应用案例

使用Moku:Pro同时实现窄线宽激光系统的锁定和表征应用案例利用Moku:Pro 的多仪器并行模式,用户可以使用激光锁频/稳频器将激光锁定到光学腔,无需额外的测试设备或布线又能同时使用频率响应分析仪(FRA)测量 Bode 图。通过向误差信号施加干扰并使用 FRA 测量传递函数,可以检查闭环增益、相位裕度和环路干扰抑制性能。用户可以在频率响应分析仪和激光锁频/稳频器之间快速切换,方便灵活地调整 PID 参数同时并优化环路性能,从而确保稳定性并最大限度地抑制干扰。在分子和原子物理等高精度测量应用中,具有动态频率噪声抑制的激光系统因其良好的长期稳定性而得到广泛应用。要实现稳定的激光锁定,需要高度优化的反馈控制,这尤其涉及到包括测量: 1) 控制环路的传递函数,确保低频时有足够的增益,同时保持较低的单位增益频率,以维持环路的稳定性;2) 干扰抑制,即通过测量干扰耦合到激光器中并且穿越整个系统后的传递函数评估系统抗干扰性能。传递函数通常可以绘制成Bode图,表征在设定频率范围内的环路增益和相移。测量闭环系统干扰抑制的主要挑战是在不中断反馈控制的情况下注入噪声。通常,系统设置非常复杂,不仅需要噪声源作为注入干扰,又需要网络分析仪来测量响应。在这篇应用说明中,我们将演示如何使用 Moku:Pro 的多仪器并行模式来表征激光稳定系统的开环和闭环性能。通过 Moku:Pro,我们可以将激光锁定在腔体上,注入干扰,并同时测量开环、闭环和扰动传递函数。此外,还可以实时调整 PID 参数来优化环路配置,以确保稳定性、增强干扰抑制和抑制频率噪声。Moku:Pro 为激光稳定和特性分析提供了紧凑高效的解决方案。反馈控制基础知识为了更好地理解激光锁定系统,我们首先需要简要回顾一下通用反馈控制原理。通过分析和推导本节中的干扰抑制方程,我们可以确定在何处注入干扰以及在 Pound-Drever-Hall (PDH) 锁定过程中探测环路响应的位置。一般来说,我们可以将控制系统分为两种类型,即开环控制系统和闭环控制系统。主要区别在于前者的控制方式与系统的输出无关,而后者的控制方式依赖于输出[1]。通用反馈控制环路的基本概念是利用当前工作点与参考点之间的差值作为误差信号,将系统的输出维持在一个恒定的设定点上运行[1]。用于激光稳定的 PDH 锁定技术利用腔反射产生误差信号,并反馈给激光器以保持光源在特定频率下发射激光,同时将激光频率噪声降至zui 低。这被视为闭环控制 [2]。基本的反馈控制系统通常由三个部分组成,如图 1 所示,即被控对象(需要控制的对象)、传感器(测量被控对象的输出)和控制器(产生反馈输入)。 图 1:典型反馈控制系统框图。它由三个主要部分组成:被控对象 (P)、测量特定信号的传感器 (S) 以及为被控对象生成输入的执行器或控制器 (C)。我们可以利用拉普拉斯变换推导出控制系统的传递函数,对于给定的时域信号 f(t),其定义为 F(s)。 对于图 1 所示的系统,三个组件都有自己的传递函数,分别用P(s)、S(s) 和 C(s)表示为被控对象、传感器和控制器。 为了简化下面的推导,引入了一个额外的内部信号并标记为U(s)。 输入信号为 X(s),我们可以计算出经过这样的系统后的输出信号: 根据公式 (2) 和 (3),反馈系统(H(s))的传递函数可以通过输出拉普拉斯变换与输入的比值求得: 其中 C(s)P(s)S(s) 是系统的开环增益(有时也称为返回比),方程 (4) 称为闭环增益。 到目前为止的分析主要集中在信号的变换上,而在实际情况中,噪声的抑制更令人感兴趣。 噪声可以从环路内的任何地方引入,但这里我们考虑从被控对象引入的噪声(其他噪声源也可以通过相同的步骤分析)。 当引入噪声 (N(s))进行分析, 系统输出被修正为: 对于具有较大控制增益 (C(s) -> ∞)的系统, 系统的输出接近输入, 也称为单位增益。由外部干扰引入被控对象的噪音也被大幅抑制至零点。这类干扰的传递函数也被称为干扰抑制(或灵敏度函数), 这表征了一个控制系统应对被控对象输出出现干扰的灵敏度。和开环传递函数相似, 干扰抑制也与频率相关。当干扰抑制的幅度超过单位增益, 这类噪声抑制变得无效, 相应的频率因此被称为单位增益频率。更重要的是, 当开环增益的相位达到180度 (这是 1 + C(s)P(s)S(s) = 0 时的闭环极点), 噪声将被放大, 导致系统不稳定, 尤其是当 C(s)P(s)S(s) 接近 -1 时。这个转换点是反馈系统的另一个关键参数, 称为相位裕度。闭环控制的带宽受单位增益频率和相位裕度的限制, 如果相位裕度出现在低于单位增益频率的频率上, 系统将无法稳定。激光反馈控制下面的激光稳频系统相当于上一章节讨论的反馈控制回路。在这篇应用笔记中, 激光通过使用PDH锁频方法的反馈控制回路被锁定到一个光学腔上。图 2 说明了激光稳频过程的反馈回路, 由外部伺服控制与内部 PZT 触动器相结合形成。图 2:概念框图显示将激光波长锁定在腔谐振上的反馈控制回路。PID 控制器控制激光器内部的 PZT 传感器。这里稳频系统可以理解为激光器是被控对象,其频率是系统输出(Y(s))。系统试图稳定的设定点是光学参考腔的谐振频率。输出在光学鉴频器上与设定点做比较。一个传感器测量这些信号的差值(S(s)), 其中包括光信号和光电信号, 生成的误差信号被控制器进一步处理。一般控制器也被称为伺服控制(C(s))。它针对被控对象的特性,提供控制信号以减少位置误差并优化驱动过程中的过冲。这里使用的激光器(Plant 被控对象)一般都是可调谐激光器, 它的频率能够根据控制信号通过内置的 PZT 触动器来调制。所以, 控制信号被输入至激光器后生成最终的输出波长。最后这个输出信号被反馈回去并刷新反馈信号。基于触动器的响应, 需要仔细设定控制器的响应和 PID 设置来保证稳定的反馈和足够的噪声抑制。为了更好地理解, 可以通过测量干扰抑制来表征整个系统的闭环控制响应。我们可以通过在 Vin 处注入扫频信号和在 Vout 处得到输出信号。推导出的相对应频率响应为: 其中 C(s)、P(s) 和 S(s) 表示控制器(伺服控制)、被控对象(PZT 触动器)和传感器的作用。公式6中的表达式提供干扰抑制, 公式7表示互补灵敏度函数, 公式8是控制系统的开环增益。实验设置在这个实验里, Moku:Pro不仅用作锁相放大器, 也表征了系统的闭环控制响应。图3显示了完整的系统搭建, 图4演示了多仪器并行模式下的仪器配置。为了达到我们的目的, 我们在4个独立的插槽上部署了4个仪器功能: 分别是激光锁频/稳频、锁相放大器、PID控制器和频率响应分析仪。图 3:鉴定激光稳定系统回路干扰抑制的实验装置。使用频率响应分析仪直接测量和生成干扰抑制,同时使用Moku:Pro 的激光锁频/稳频器将激光锁定到外部参考腔。通过将PID 控制器比例增益设置为 0 dB 实现的注入Injection或加法器Adder。图 4:多仪器并行模式下的 Moku:Pro 配置。请注意,由于四个插槽wan 全相互独立,因此添加到插槽中的仪器功能顺序并不重要。干扰在误差信号解调之后但在传输到控制器之前被注入。所以我们将激光锁频过程分成两个单独的过程: 锁相放大器 (LIA) 通过 Out1 生成调制信号给电光调制器 (EOM), 同时来解调误差信号; 激光锁频/稳频 (LLB) 跳过解调过程并只提供伺服控制或者控制信号传输回激光器。Out2, 来自于 LLB 里的快速PID控制器, 随后被直接连接到激光器的压电陶瓷来精确地调控激光器的频率, Out3 被接到激光器的温度控制。同时我们用频响分析仪 (FRA) 来测量闭环系统的干扰抑制, 这里它生成一个正弦扫频偏移信号并使用PID控制器作为加法器来注入 PID 控制环路信号 (In 1)。为了实现这个求和效果, 我们通过设置一个输入矩阵如作为加法器来配置 PID 控制器并且比例增益设置为0dB。加法器的输出被分成两路, 一路提供误差信号给激光锁频/稳频, 另一路被接到  FRA的通道 B来测量闭环控制的频率响应。FRA的通道 A则在注入正弦波之前记录 PID 控制环路的频率噪声。激光锁频/稳频器提供伺服控制。通过三角波扫描来监测PDH误差信号, 然后我们调节慢速 PID 偏置来让光学参考腔的谐振频率接近扫描范围的中点。然后在系统稳频前打开积分器饱和来避免过度补偿。我们再选择载波的过零点作为锁频点并使用“Lock Assist"功能来进行锁频, 从而启动快速 PID 控制。最后, 我们禁用积分器饱和来以启用全部的积分效应以在低频段获得更多增益。您可以在此处找到激光锁频/稳频的详细说明。在我们成功锁定激光器频率到光学腔上后, 我们切换仪器到频率响应分析仪, 在那里我们在两通道上用一个足够小的输出信号(5 mVpp)配置成(In ÷ Out)的测量方式。通过在感兴趣的频率范围上进行扫频源的扫频, 我们生成了与公式 6-8 相关的传递函数。实验结果观察图5 的测量结果。 图 5:测量的传递函数,显示整体闭环响应(红色)、闭环干扰抑制(蓝色)和计算出的激光锁定系统的开环增益(橙色)。干扰抑制的单增益频率约为 24 kHz。红色轨迹曲线显示测得的互补灵敏度传递函数(公式7), 蓝色轨迹曲线显示了干扰抑制(公式6)。通过使用数学计算通道(ChA ÷ ChB ),我们能够动态地计算开环控制的传递函数,如图5里的橘色轨迹曲线。从蓝色轨迹曲线(或者橘色轨迹曲线)我们能够看到稳频控制环路拥有高达 ~24kHz的单位增益频率,同时相位裕度略大于90度。该系统的稳频控制带宽限制来自 PZT 的机械谐振频率。我们能够从这个图观察到有一个 ~63kHz的机械谐振频率。所以,进一步调节系统到一个更高的增益可能会激发共振,这会导致在这个特殊频率点上的正反馈并破坏系统的稳定性。另外,我们能够从开环控制响应(橘色轨迹曲线)观察到低频增益达到了60dB。这与蓝色轨迹迹曲线中的 -60 dB 扰动抑制相对应,同时表明激光锁频/稳频仪器能够提供足够的伺服控制增益来充分抑制激光频率噪声并维持稳定的锁定。结论Moku:Pro基于现场可编程门阵列 (FPGA) 的灵活方法解决了传统固定功能测试和测量硬件的许多缺点。基于FPGA 的架构提供了可以在仪器间动态切换的能力。它还提供了同时使用多个仪器功能的能力, 例如用 频率响应分析仪表征激光锁频控制环路的传递函数时用 激光锁频/稳频其维持一个稳定的锁频过程。多仪器并行模式使优化闭环控制配置的过程更加直接和高效。直观的用户界面极大地降低了实验搭建的复杂性, 提供了更易于访问和灵活的解决方案。此外,虽然本应用笔记显示了一个利用 PDH 锁频方案的示例, 但这种验证控制环路响应的方法适用于其他锁频技术, 例如 DC 锁频、边缘侧锁频(fringe-side locking)和倾斜锁定(tilt locking), 这些技术在激光稳频领域具有广泛的实际应用。 关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.21

搭建简易1GHz低噪声光频梳系统

搭建简易1GHz低噪声光频梳系统光学频率梳因其具有高精度、高灵敏度、高分辨率的特性,为光学原子钟、精密光谱测量、阿秒科学等领域提供了一种可靠的光波-微波转换工具。飞秒光梳本质上是一组特殊的飞秒脉冲光,它在时域上是一系列时间宽度在飞秒级别的超短脉冲,在频域上是一系列间隔相等、位置固定、具有极宽光谱范围的单色谱线。飞秒光梳实现了其频率覆盖范围内所有波长的直接锁定并溯源至微波频率基准,建立起了光波频率和微波频率的直接联系。基于飞秒锁模激光器,目前一般可以通过锁定其重复频率(frep)和载波包络偏移频率(fceo)来使得光梳梳齿稳定。虽然工作频率接近100 MHz重复频率的光频梳正在成为一种成熟的技术,但重复频率为GHz的梳子仍然存在着大量挑战。首先,传统的激光器架构很难构建低噪声且重复频率> 0.5 GHz的谐振结构。然而近期,Menhir Photonics提出其MENHIR-1550飞秒激光器可以作为飞秒脉冲光梳的稳定光源模块。其可以在100 MHz至5 GHz的重复频率下产生超低噪声的锁模脉冲,且生成的每一根频率梳线功率都大于50 μW。根据其实验室所提供的资料,利用该激光器所形成的光梳可以做到线宽 70 dbc。图1    频率梳线示意图其次,锁定fceo的f-2f自参考过程通常要求激光拥有至少1 nJ的脉冲能量(即frep频率= 1 GHz时,平均功率> 1 W),这样才能方便与干涉仪进行高精度对准。而zui近,OCTave Photonics与Vescent Photonics合作,开发了一项新的整合与封装技术。利用该项技术,光频梳偏频锁定模块(COSMO)为检测激光频率梳的载波包络偏频提供了一种紧凑的单箱解决方案。COSMO模块利用纳米光子波导技术将光限制在~ 1 μm的模式直径。借助强烈的非线性光学效应,使得COSMO模块允许以小于200 pJ (即frep频率=1 GHz时,平均功率ceo。zui后,由于1 GHz重复频率的频率梳的fceo可以从DC变化至500 MHz,因此为激光提供快速反馈所需的电子设备并非微不足道。新的Vescent Photonics SLICE偏移锁相(SLICE-OPL)盒提供了一种直接的反馈解决方案,可在高达10 GHz的频率下反馈稳定fceo。图2    1 GHz 1550 nm简易光频梳系统搭建Menhir Photonics、Octave Photonics和Vescent Photonics的这三种突破性技术结合在一起,便简单形成了一个1 Ghz低噪声飞秒激光频率梳系统。在这个系统中,wan 全稳定的激光频率梳可以在几分钟而不是几天内构建出来。各个光学模块间由保偏光纤相互连接,以简化组装难度并减少热漂移。我们将放大器输出连接到COSMO模块,并调整放大器以提供zui强的fceo信号。在300 kHz分辨率带宽下,fceo的信噪比约为36 dB,在100 kHz分辨率带宽下,信噪比约为42 dB(图3)。这样的信噪比数据对于fceo所需的精确可靠的锁定来说绰绰有余。然后,我们将fceo电信号连接到Vescent SLICE-OPL并开始反馈控制,这使得我们能够将fceo锁定到任意RF频率(图3,右侧蓝色曲线)。当我们增加反馈的增益时,我们看到fceo的中心变窄,“相干尖峰"出现在中心(图3,右侧橙色曲线)。这表明我们实现了fceo的精确锁相。在fceo锁中观察到的环内剩余相位噪声如图4所示,证实了对频率低于40 khz的相位噪声有很强的抑制作用。图3    使用COSMO单元检测载波包络偏移频率fceo峰值图4    锁定fceo的环内相位噪声利用Menhir Photonics的MENHIR-1550激光器,Octave Photonics的光频梳偏频锁定模块(COSMO)和Vescent Photonics的SLICE-OPL锁相反馈模块,可以轻松构建简易的超低噪音光学频率梳系统。这一实验也表明目前这些模块化的专业产品能够以更低的尺寸、重量和功率要求实现zui先jin的性能。上海昊量光电作为国内专业的光电设备代理商,针对光频梳、微腔光频梳、fceo测量模块、锁相环、高重频脉冲振荡器等各类光电设备都可以提供选型及各项技术服务,并且与Menhir Photonics、Octave Photonics保持着长期稳定合作。对于任何产品有兴趣或者有任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。上海昊量光电作为Octave Photonics与Menhir photonics在中国大陆地区的代理商,为您提供专业的选型以及技术服务。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

新品

2023.12.21

非球面镜和球面镜的差别及应用

非球面镜和球面镜的差别及应用球面镜球体是旋转对称的光学器件,其形状对应于球面的截面(图1)。曲率半径与几何中心的距离是不变的。这意味着只需zhi 定一个参数,即半径R,就可以描述光学有效的表面。由于这个参数在整个表面上是恒定的,球体在制造方面具有成本优势。图1:用半径表示球面的光学有效面积球面的制造优势在生产成本方面,球面取得了明显的优势。这要归功于它的几何形状。球体表面的均匀形状确保了简单的制造过程和更短的生产时间,特别是对于小直径的产品,因为在一个支撑体上可以同时制造多个光学器件。这也适用于光学检测和测量的过程,因为可以在整个表面上测量出均匀的、可以快速生成的结果。触觉测量方法(如轮廓仪或三维坐标测量机),但也有光学测量方法,如干涉仪和计算机生成的全息图(CGH)被用于测量球面。与其他光学方法一样,测量仪器的选择是基于成本和效益的比较,以便能够决定使用哪种方法。球面的应用领域球面的应用范围很广,例如在计量学、航空航天(安装在卫星内的光谱仪)或医疗技术(用于检查眼睛前段的裂隙灯)。由于低制造成本、快速生产时间和广泛的光学应用的结合,球体是光学市场的一个组成部分,并以非常好的价格性能比来说服人们。球面单透镜的应用优化根据不同的形状,球体的收集、散射或聚焦特性被用来将入射光线折射到所需程度。例如,在成像系统中,高图像质量起着决定性作用,并伴随着低成像误差。此外,它还可以通过考虑各种因素来提高--取决于现有系统的要求。这些因素包括,例如,所用光源的位置或有效孔径的选择。通过使用几个球体也可以提高图像质量,但这是一个关于镜头形状和光学系统现有空间条件的问题。通过选择有效光圈,也可以减少球面像差。其原因是对周边入射光线的阻挡。如果没有光圈,外围增加的曲率和由此产生的更强的光线折射会促进球面像差的发展。多球面透镜组合消色器是由一个或多个收集和分散透镜组合而成的。通常使用一个低折射率的正凸透镜和一个低折射率的负凹透镜,并将其粘合在一起。这样就形成了一个光学系统,改善了球差和色差。例如,在摄影领域的摄影镜头中,就使用了消色差。非球面透镜如果在一个光学装置中必须考虑各种因素,如高图像质量、数值孔径或zui大限度地节省空间,非球面是好选择。非球面透镜是旋转对称的光学器件,其曲率半径在径向上偏离透镜的中心。由于这种特殊的表面几何形状,与球面透镜相比,非球面可以显著提高光学系统的成像质量。它们不同的曲率半径导致了对球面的偏离(图2)。图2:球面与非球面相比的光学有效面积仔细观察镜头外围的平坦半径,就会发现与球面形状的偏差。一般来说,以下说法比较合适: 当一个透镜的半径偏离球面形状时,它就是一个非球面。透镜的半径是以这样的方式确定的--如图3所示--有一个入射光线的束缚,它们相交于一个共同的焦点,从而防止球面像差。因此,非球面是一个优化的聚焦光学器件。相比之下,球体的入射光线随着与光轴的距离增加而发生更强烈的偏转,并且不在一个共同点上相遇(图3)。由球面引起的像差的结果是稍微模糊的、不清晰的图像。因此,非球体可以用来改善图像质量。图3:用非球面矫正球差非球面的数学描述关于他们的光学设计,非球面与球体相比有更多的自由度,这意味着可以创造出更复杂的表面。传统上,旋转对称非球面的光学有效表面是由以下非球面公式定义的:具体参数如下:z = 表面的弧度h = 垂直于光轴的距离(入射高度)。R = 半径k = 圆锥常数A2i = 校正多项式的非球面系数如果非球面系数为零,则表面形状对应于旋转对称的圆锥截面。表示如下:自从2015年出版的ISO 10110更新后,对非球面有了另一种描述。它基于一组正交的多项式,即所谓的Qbfs多项式,它对非球面的z佳拟合球面的偏转差进行建模。表面商在以下公式中给出:新描述的优点是描述表面形状所需的有效数字更少。此外,zui大的挠度偏差可以通过将zui大的系数Am乘以这个系数的阶数的zui大振幅来估计(见图4)。图4:Qm的图形描述用非球面缩小光学系统与传统透镜相比,非球面透镜的另一个优点是可以减少光学系统的总长度。在光束扩展领域可以找到一个例子,就是来自ashericon的单片式光束扩展器。仅由一个单一的透镜组成,通过两个透镜表面中的一个非球面化,可以实现非焦点系统,它可以扩展光束,甚至更大的光束直径,而没有开口误差。由于该系统的非焦距特性,几个单片可以连接成一排。这允许减少光学系统,同时,改变总光束直径。由ashericon开发的光束扩展系统a-BeamExpander与传统系统相比,总长度缩短了50%。下图是一个10倍放大率(M=10)的开普勒和伽利略望远镜。这是与放大率相同但长度减半的a-BeamExpander的比较。图5:BeamExpander与开普勒和伽利略望远镜的比较系统减少的现象也可以在其他光学排列中发现,例如在摄影镜头内。另一个有利的副作用是重量的减少。在 "每克都很重要 "的情况下,可以实现巨大的节约,例如在卫星检查中,如哨兵-4卫星。由欧盟和欧空局的哥白尼计划发起,哨兵-4卫星通过两个高分辨率光谱仪为欧洲和北非的环境管理提供可靠的实时数据。非球面的生产和测量就像球面一样,非球面也可以通过各种方法生产,例如通过研磨和抛光。长期以来,人们认为非球面镜只适用于实验室、研发项目或原型建造,大批量使用不经济。随着现代制造和测量技术的发展,非球面也可以以可重复的精度进行系列生产。通过增加批量,分配设置成本,zui终导致单价降低。asphericon公司wan 全 数字化的生产shi界是全shi界独yi无二的。从第1次与客户接触到zui终光学系统的出货,所有的过程、信息和制造步骤都由内部开发的基于软件的控制工具进行数字化控制。因此,生产流程可以得到显著的优化,通过简单的数据分析(目标/实际)提高产量,并组织数据运输,没有损失。与此相伴的是制造过程的日益自动化以及对供应商和物流过程的数字化控制。由于在选择工具方面具有高度的灵活性,可行的光学形状的范围也大大增加。因此,非球面镜片的几何形状对成本的影响越来越小。除了材料的选择和光学元件的直径外,表面形状偏差和表面质量是影响制造成本的主要因素。近年来,非球面镜片的测量也变得更快、更不复杂。诸如用CGH测量、干涉测量法和使用探针的触觉测量等技术已被进一步优化,制造过程本身也是如此。此外,新的测量方法已经被开发出来,如倾斜波干涉测量。这个过程使用不同的倾斜波面,只需20到30秒就能完成对光学表面的测量。测量系统在许多子孔中无接触地获取光学元件,将这些元件的干涉图案组合成一个表面形貌,并确定与目标形状的偏差。使用非球面镜由于非球面具有纠正球面像差的能力,因此非球面的应用范围很广,例如在计量和成像方面,以及在激光应用方面(见 "用非球面缩小光学系统 "一节中的激光扩束实例)。例如,它们是对现代荧光显微镜、投影系统或激光系统的光学设置的补充。由于在光学系统中用非球体代替球面镜,具有系统缩小的特殊优势,可以额外减轻重量,这在航空航天领域起到了决定性的作用。例如,通过减轻重量,在发送地球观测卫星时可以降低燃料消耗。球面VS非球面zui后对比非球面镜在成像质量方面明显占优势,但这仍然反映在较高的生产/测量工作上,因此与球面镜相比成本较高。然而,这被单个透镜的节省所抵消了。下表显示了两种透镜几何形状的比较。上海昊量光电作为Asphericon在中国大陆地区的代理商,为您提供专业的选型以及技术服务。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.21

光纤耦合LED光源应用

光纤耦合LED光源应用LED正迅速成为生命科学、医疗、工业和科学领域各种应用的shou选光源。与激光相比,LED具有许多优点,包括易于使用、成本较低和更全面的光谱覆盖范围。与汞灯和氘灯相比,LED效率更高,使用寿命更长,占地面积更小,并且具有“即时开启"的性能。 昊量光电新推出的NewDEL™光纤耦合LED光源包括17个窄带型号,从紫外UV到近红外NIR光谱区域,以及两个白光LED和一个连续光源。这些型号结合了高性能和完整的可配置性,从脉冲宽度到触发水平再到操作模式,因此任何级别的用户都可以设置理想适合他们需求的光源。 NewDEL™光纤耦合LED光源可以应用在以下领域:光谱学、光遗传学、光动力疗法 (PDT)、荧光引导手术、荧光激发、基于紫外线的化学和生物分析、光固化/光聚合、紫外线杀菌辐照(UVGI)研究、光催化领域、抗菌蓝光(aBL)治疗等 1. 光谱学spectroscopy光谱学是一种非破坏性的光学技术,通过将反射光谱或透射光谱与已建立的光谱特征相匹配,来识别和定量样品中的各种化学成分。该技术用途广泛,应用于工业、生命科学、医疗和科学等一系列市场领域。近红外光谱(NIRS)用于食品和饮料生产、制药制造和聚合物合成等行业的原材料和zui终产品的质量控制和无损检测。该技术支持从验收测试到过程控制的所有内容的快速、无损分析。正在开发的小型近红外光谱装置将使消费者能够监测食物中的成分,在超市检查食物的新鲜度,并验证药物质量。功能近红外光谱(fNIRS)利用近红外光(650-1000 nm)对组织氧合进行无创、连续监测。这项技术zui初是为了检测大脑中的血红蛋白变化来评估氧饱和度而开发的。颅骨阻挡可见光,但近红外光可以穿透。早期的研究集中在脑功能测绘上,但fNIRS现在在医学诊断和治疗方面有了应用。随着这些初步努力的成功,研究人员正在使用近红外光谱来评估身体其他部位组织的氧合情况。在半导体工业中,光谱反射法(380nm - 1050nm)广泛用于薄膜测量和等离子体蚀刻端点控制。该技术可即时准确地提供定量结果。它通常应用于主流制造设置。半导体工厂的停机时间每小时可能花费100万美元或更多,这使得设备可靠性至关重要。光纤耦合LED的使用寿命可达50,000小时。通过用LED光源取代汞弧灯,制造商可以减少计划外停机时间并保持产量。 NewDEL光纤耦合LED光源在光谱学领域的优势:可提供两种白光模式,以及连续光源操作模式的选择-手动到wan 全可编程的遥控器高度可配置,包括脉冲或触发操作推荐型号:X3312、W4270、W5790 2. 光遗传学Optogenetics光遗传学涉及到利用光来控制细胞和结构,这些细胞和结构已经被基因改造,以加入光敏蛋白。只要用适当的波长照射神经元、细胞,甚至细胞的某个区域,就能被激活。这项技术已经显示出从绘制大脑功能到控制刺激和反应的各种应用前景。zui近的光遗传学临床试验正在研究它减轻视力丧失、耳聋、疼痛和其他疾病的能力。自该技术问世不到20年以来,许多顶ji医学杂志都将其描述为人类未来的核心技术。光纤耦合LED是光遗传学领域的优xiu光源。它们使研究活的和自由活动的动物对通过可植入导管的光纤传递的单色光刺激的反应成为可能。 NewDEL光纤耦合LED光源在光遗传学领域的优势:用户配置触发器和脉冲宽度来定制应用程序的操作7个窄带模型,从深蓝色到红色光谱区域为常见视蛋白推荐型号:N405、N425、N475、N490、N530、N595、N630 3. 光动力疗法Photodynamic Therapy (PDT)在PDT中,光激活一种药物,这种药物优先集中在肿瘤组织中,引发光化学反应,杀死癌细胞。药物可以通过输注或局部应用。因为这个过程需要在有氧气的情况下进行,所以zui初的调查主要集中在皮肤癌上。内窥镜检查和光纤耦合光源使得这项技术可以应用于喉部、食道、气道、肺部甚至内部组织的肿瘤。光源的输出特性是成功的关键。每种PDT药物都有一个特定的激活波段。由于光在组织中的穿透深度是波长的函数,因此也可以选择激发波长来针对不同的层-表面病变的蓝光和表面下生长的红色/近红外光。在破坏肿瘤细胞的同时保持健康组织不受损害是一种需要可变辐射功率的平衡行为,因此光源必须具有良好的调光特性。NewDEL光纤耦合LED光源在光动力疗法领域的优势:窄带信号源的广泛选择脉宽调制(PWM)调光wan 全控制辐射功率没有波长漂移推荐型号:N405、N425、N475、N630、N680、N750、N810 4. 荧光引导手术 fluorescence Guided Surgery在癌症手术中wan 全切除恶性细胞大大提高了患者的存活率,但将癌细胞与健康组织区分开来是ji 具挑战性的。荧光引导手术(FGS)为外科医生提供了一种强大的工具,可以清晰地观察肿瘤边缘,从而zui大限度地去除残留的癌细胞。在FGS中,特别设计的荧光团优先在肿瘤中积聚。当用适当波长的光激发时,这些材料发出荧光,以对比的伪色实时显示肿瘤和其他结构。这支持更完整的肿瘤切除和更好的患者预后。大多数FGS荧光团被650-810 nm光谱范围内的单色光激发。那些具有近红外照明的荧光特别有效,因为更大的穿透深度可以显示地下生长。此外,一些临床批准的染料被紫色(405 nm)和青色(490 nm)输出激发。由于短波长的穿透深度有限,这些材料通常应用于表面病变。传统上,荧光成像系统包含激光,这可能是昂贵的,复杂的,而且往往喜怒无常。光纤耦合LED在这种应用中的优势首先是坚固性——当生命受到威胁时,系统不会失败。LED足够坚固,可以承受在医院环境中移动时的冲击和振动。光纤耦合LED结合了高辐射功率、窄带输出和低成本的紧凑外形。后一种特性对于在手术台上使用的系统尤其重要,因为手术台上的空间总是很宝贵的。它们的长寿命也使它们对注重成本的医疗保健组织具有吸引力。 NewDEL光纤耦合LED光源在荧光引导手术领域的优势:各种直径纤维的zui大输出功率wan 全可配置的脉冲宽度脉宽调制(PWM)调光wan 全控制辐射功率没有波长漂移推荐型号:N405、N490、N680、N750、N810 5. 荧光激发fluorescent excitation当光激发光活性物质时,就会产生荧光。通常,该材料吸收高能量(波长较短)的光子并发射低能量(波长较长)的光子。发射自发发生,产生非相干输出。荧光在生命科学中用于通过用特定颜色的光刺激荧光材料来无损地跟踪或分析生物分子。细胞中的一些蛋白质或小分子是天然荧光的。或者,分子可以用外部荧光团(一种荧光染料)“标记"。荧光激发和生命科学有两种常见的应用:荧光显微镜已成为细胞生物学和医学诊断的重要工具。例如,在免疫荧光中,与特定类型的细胞、结构或蛋白质结合的抗体被荧光团标记。当样品暴露在抗体中,然后用适当波长的光照射,任何标记的细胞或材料都会发出荧光,产生高分辨率的图像。研究人员将该技术应用于可视化组织、细胞、单个细胞器和细胞内大分子组装的动态。医疗保健专业人员使用图像来检测某些病原体或某些自身免疫性疾病的细胞或蛋白质特征。荧光成像是一种非侵入性技术,应用荧光来帮助可视化发生在生物体中的生物过程。荧光成像技术包括实时聚合酶链反应(PCR)和western blot成像。实时聚合酶链反应使用荧光染料检测核酸用于诊断目的。一个重要的应用是临床检测病毒、癌症和人类基因异常。Western blotting使鉴定蛋白质混合物中的特定蛋白质分子成为可能。它提供有关蛋白质的存在、大小甚至相对浓度的信息。光纤耦合LED为汞蒸气弧光灯提供了很好的替代品,由于环境原因,汞蒸气弧光灯开始被淘汰。光纤耦合LED可以产生高辐射功率,可以控制变暗,以zui大限度地提高信号,同时防止样品损坏。汞蒸气灯通常由外部转换器调制,这增加了尺寸、复杂性和故障点。光纤耦合LED是电子调制的,使它们能够实现更高的频率,同时消除了剪切器的缺点。LED光源的小尺寸适用于国产或OEM台式分析仪。zui后,在停机时间、更换灯泡和维护方面,长寿命降低了操作成本。 NewDEL光纤耦合LED光源在荧光激发领域的优势:17种窄带型号高辐射功率,支持广角成像推荐型号:N365、N395、N475、N490、N530、N550、N595、N630、N680、N750 6. 基于紫外线的化学和生物分析UV-Based Chemical and Biological AnalysisUV-C LED正在改变化学和生物分析系统,在高性能液相色谱(HPLC)和紫外荧光法等应用中取代氘灯。在高效液相色谱中,仪器通过充满分离介质的柱泵送悬浮在溶剂中的未知化合物。因此,不同的组分以不同的速率通过色谱柱。当它们按顺序退出时,将进行检测和分析。多年来,氘灯一直是HPLCzui常见的来源。它们产生稳定的输出,但在相对较宽的光谱带上,需要带通滤波器或衍射光栅进行波长选择。因为它们是放电源,所以在运行前需要一段预热期。相比之下,UV-C LED是即时开启的,效率高,光谱稳定性好,占地面积小。此外,它们可以产生窄带输出,消除了对滤波器或衍射光栅的需要。紫外荧光法使用光学技术来分析样品发出的荧光信号。应用包括生物分析和水测试。石油和其他碳氢化合物等毒素以及某些病原体具有紫外线荧光特征,使紫外线荧光测定法成为在线水质监测的理想技术。在这里,氘灯也正在被光纤耦合UV-A LED所取代,这种LED的工作波长为365nm。占地面积小,易于使用和坚固性使它们成为工业监视器和台式实验室仪器的实用替代品。高光输出可以支持十亿分之一的痕量检测。NewDEL光纤耦合LED光源在基于紫外线的化学和生物分析领域的优势:各种直径纤维的zui大输出功率wan 全可配置的脉冲宽度脉宽调制(PWM)调光wan 全控制辐射功率没有波长漂移推荐型号:N275、N280、N365 7. 光固化/光聚合Photocuring & Photopolymerization光聚合物或光活化树脂是一种暴露在光线下会改变性质的材料。照明,通常是紫外线或可见光(蓝色)波长,触发聚合物交联,将液体或凝胶转化为固体。光聚合化学具有广泛的商业应用,包括印刷、涂料、粘合剂、密封剂、印刷电路板和光刻。zui近,UV LED技术已经成为3D打印的头条新闻。光纤耦合LED的点固化用于研究,用于非常精细的特征的3D打印,或者像医疗设备组装这样的细节工作。光纤耦合LED在点固化应用中比弧光灯具有显著的优势。LED的衬底温度较低,使其成为固化热敏材料的理想选择。LED固化系统通过其即时开启的特性提供能源效率,无需预热。由于寿命长,LED的拥有成本也较低。 NewDEL光纤耦合LED光源在光固化/光聚合领域的优势:高辐射功率和稳定的光谱输出可靠的结果一个波长范围来固化不同的材料防止氧抑制的280 nm模型推荐型号:N280、N365、N395、N405、N475 8. 光生物调制Photobio modulation人们正在探索红光和近红外光(600-1000纳米)通过改变细胞水平的功能来解决各种医疗问题的潜力。该技术被称为光生物调节,目前正在研究用于伤口治疗、组织修复、疼痛管理、创伤性脑损伤治疗等。虽然一些结果很有希望,但可能的机制仍然存在争议,大多数研究都集中在动物模型或体外样本上。静脉血液照射是另一种低强度光治疗方式。它在多种条件下的使用历史悠久。需要进行更多的研究和严格的临床试验来建立坚实的科学基础,而这正是光纤耦合LED发挥作用的地方。早期的工作使用激光光源,但功率水平有可能导致组织损伤。焦点已经转移到LED上。红色和近红外光纤耦合LED提供高度可配置的窄带输出,可以使研究人员进行良好控制的研究,以确定哪些参数将提供可重复的结果。 NewDEL光纤耦合LED光源在光生物调制领域的优势:高辐射功率和脉冲操作模式易于控制的参数,如脉冲宽度推荐型号:N630、N680、N750、N810、N850、N940 9. 紫外线杀菌辐照(UVGI)研究Ultraviolet Germicidal Irradiation (UVGI) ResearchUV-C杀菌辐照是一种用于空气、表面和水消毒的成熟技术。UV-C光具有杀菌性能。它会破坏DNA,削弱病原体的繁殖能力。传统上,UV-C光源使用汞蒸气灯。水银灯体积大,带宽宽,并产生全向输出,其中大部分被丢弃。相比之下,UV-C LED (275- 280nm)具有高度的方向性,节能,紧凑,操作成本更低。它们也是环保的,消除了对汞处理的担忧。因此,UV-C LED正在获得越来越多的市场 份e,特别是在使用点水净化领域。光纤耦合UV-C LED为在这一关键领域开发新技术和解决方案的研究人员和创新者提供了有用的资源。 NewDEL光纤耦合LED光源在紫外线杀菌辐照(UVGI)研究领域的优势:高辐射功率和脉冲操作模式稳定的光谱输出,可靠的结果推荐型号:N275、N280 10. 光催化研究Photocatalysis Research光催化剂是一种光活性材料,它通过贡献从入射光中收集的能量来促进化学反应。适当波长的光照使光催化剂进入激发态。它将能量传递给前体元素和分子,从而使反应发生得更快,或者在更低的温度或压力下进行。在这一点上,光催化剂放松回到稳定状态,准备下一个循环。光催化有许多重要的工业、生命科学和科学应用:水分解,一种无污染的方法来生产用于氢燃料电池的清洁氢抗菌和抗病毒领域的空气,表面和水消毒癌症治疗,特别是纳米光催化剂和光氧化还原催化用于对抗缺氧肿瘤合成复杂的,通常是高度功能化的分子,用于开发新的药物和农用化学品支持“循环化学",追求零浪费的“循环经济"光纤耦合LED为研究和产品开发环境提供了理想的光源。它们紧凑,高效,并提供窄带光谱覆盖范围从UV-A光谱区域到可见光波长(365-600纳米)。 NewDEL光纤耦合LED光源在光催化研究领域的优势:可编程和高度可配置的系统,可以支持各种实验高辐射功率稳定的光谱输出可重复的结果推荐型号:N365、N395、N405、N425、N475、N490、N530、N550 11. 抗菌蓝光(aBL)治疗Antimicrobial blue light (aBL) therapy随着全qiu抗生素耐药性的上升,医疗界需要新的方法来治疗持续性感染。蓝光(400- 470nm)照射作为一种替代方法,在基于药物的治疗方案已经用完的情况下显示出了巨大的前景。与UVGI相比,aBL的杀菌效率较低,但它可以在对微生物致死的水平上使用,而不会影响暴露的哺乳动物细胞。用aBL治疗微生物感染对人类或动物几乎没有副作用。研究表明,aBL可以有效对抗细菌、真菌、病毒和寄生虫。全qiu正在进行研究,以量化剂量和波长,以获得很好的效果。一些研究表明,有效性取决于所涉及的细菌菌株,但aBL仍然是治疗人类和动物的重要新武 qi。 NewDEL光纤耦合LED光源在抗菌蓝光(aBL)治疗领域的优势:高辐射功率脉宽调制(PWM)调光严格控制辐射功率与稳定的输出波长推荐型号:N405、N425、N475 上海昊量光电作为NewDEL光纤耦合LED光源在中国大陆地区du家代理商,为您提供专业的选型以及技术服务。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.21

一种快速无损确定苹果收获期的光谱检测方法

一种快速无损确定苹果收获期的光谱检测方法背景介绍为了使苹果早上市卖高价,将未成熟的苹果过早提前采摘,会严重影响苹果的产量和质量,降低苹果的贮藏性能。要增加果农的生产效益,必须提前采收苹果。适期采摘是保证苹果优质高产,提高果品贮藏力的重要环节。图1.不同成熟度,不同品种的苹果苹果适期采收,分期采收,是提高苹果内在品质,外观品质和贮藏性的有效措施。判断果实成熟与否和确定采收期的方法很多,传统的办法主要是根据果品重量,果皮底色,果肉硬度,计算果实从盛花后到果实成熟的生长天数,果实的呼吸跃变期发生时间,果实淀粉含量,气候条件,品种等因素来判断采收期。论述我们讲述的是一种能够在果园中使用光学和无损测量来确定收获日期的方法。以前的光学方法可以测定果皮色素的变化以及糖含量和干物质含量。Streif指数所依据的强度指数无法在果园中使用光学方法进行非破坏性测定。因此,应通过光的散射特性找到确定成熟度的进一步措施。基于这些特性,可以获得有关细胞结构的知识,这反过来又是保质期的影响因素。德国博登湖水果生产发展中心(KOB,Kompetenzzentrum Obstbau-Bodensee)将使用光谱仪测量 Elstar(伊思达)、Gala(嘎啦) 和 Jonagold (乔纳金)品种的苹果。图2.快速无损检测方法获取苹果zui 佳采摘时间(初代原型机)在 Streif 指数中,可溶性干物质(糖)(以 °Brix 为单位)、果肉的硬度(以 kg/cm² 为单位)以及淀粉降解程度均采用 1 至 10 的评分标准来确定。根据计算出的指数(硬度/(糖度 x 强度)),zhi 定了特定品种的收获窗口。该数据是在多年的研究工作中凭经验收集的。自 2016 年以来,KOB 一直致力于各种项目(Big Apple 和 Melon 项目),寻找新的收获确定方法,使果实保持完整。用于水果的光学手持式测量设备已经上市,可以提供苹果皮zui初几毫米的数据。 根据设备类型的不同,收集的数据量存在很大差异,例如在处理干扰性环境光方面。 有些设备可以计算阳光的影响。 光谱仪数据用于计算果皮颜色(绿色、黄色和红色色素)的信息,并使用特殊模型计算水果的糖含量或干物质含量的信息。 然而,仅凭这些数据无法确定收获日期。因此,在“Big Apple"项目中,可以从已经商用的光谱仪设备收集的数据与影响储存寿命的其他已知因素的数据相结合,并结合起来形成对zu i佳收获日期的预测。 这些包括,例如,水果挂,叶果比、钙施肥和上一收获日期。由于每年的种植条件差异很大(主要是由于天气),因此模型需要不断收集更多的数据,以便能够开发强大的预测工具。 此外,光学数据也存在较大的年度波动。 例如:叶绿素值与基本颜色相关,可以作为zui 佳收获日期的指标。 然而,我们每年在zu i佳收获日期用光谱仪测量不同的值。 因此,叶绿素值目前不能作为确定收获的唯yi参数新型的光谱检测仪器 Melon 项目的目标是开发一种光谱仪,为确定zui 佳收获日期提供新的见解。 与德国INSION公司以及其他研究机构合作,从头开始开发了光谱仪并进行了测试。 为此,制造了不同类型的外壳,并在智能手机上编写了数据分析软件。 为了能够检查所收集数据的质量,铸造了模型(具有确定光学特性的半球),并用其进行了参考测量。 光源是光谱仪的心脏。 为此,新开发的 LED 被安装在一个环中。 所开发的光谱仪(参见图3)不仅能够确定光的反射,还能够在第二光源的帮助下确定散射(参见图4)。图3.手持式光谱仪图4.快速无损检测方法获取苹果zui 佳采摘时间光谱仪在现场测试中进行了测试,水果也在另外两个光学传感器实验室装置上进行了测试。 该项目的目的是开发一种实用且廉价的现场测量设备,该设备还可以检测苹果的散射特性。图5. 光线(黑色箭头)照射到苹果时产生的效果示意图。虽然小部分已经在表面反射,但大部分光线可以深入到牙髓中。 在那里它被分散几次(即改变其方向)并重新出现,相应地减弱,偏移到照射点。 根据光的波长(颜色),部分光被苹果吸收。 发射光的光学测量可以识别颜料,或者通过附加模型确定可溶性固体。 这些照片显示了光线如何通过苹果中的点光源传播(左侧没有外部光源,右侧有额外的外部光源)该试验于2018年至2020年在Gala、Elstar、Jonagold和Braeburn品种上进行,以便在一个时间内覆盖从早到晚的整个收获期。生长季节覆盖晚熟品种。 同时,KOB 使用常规实验室方法确定了收获的Streif指数,并与我们自己的经验值进行比较,以确定长期储存的zui 佳收获时间。在对新型光谱仪原型机的研究中发现,从苹果到收获期间,散射系数逐渐减小,并且存在品种差异。 该项目的进一步结果必须在后续测试中进行检查。 目前,现有的数据和分析技术不足以借助新开发的光谱仪来预测zui 佳收获日期。 然而,KOB 已大大扩展了该应用的专业知识,并且通过正在进行的工作,有可能小规模且非破坏性地预测收获日期。核心光谱模块该光谱仪器采用了德国Insion公司的UV VIS SENS系列光谱仪,具有灵敏度高,成本低,稳定性高和台间差小等特点,适合大批量手持式光谱仪采用。图6. UV VIS SENS S 光谱仪模块(德国INSION公司)上海昊量光地设备有限公司作为德国INSION在中国地区唯yi的代理合作商,常年活跃在国内分子光谱,近红外光谱圈,给更多的客户带来优质的产品和服务。针对insion系列光谱仪,公司备有各种型号的样品供客户测试评估,还可以帮助搭建实验原型机,各种光谱测量系统等。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.08

用微型光谱仪验证“透明镜片”对眼部紫外线防护效果

用微型光谱仪验证“透明镜片"对眼部紫外线防护效果背景长时间的眼部紫外线照射会影响长期的眼部健康。虽然通常可以通过纺织品或涂抹防晒霜来有效保护皮肤,但对眼睛敏感组织和周围皮肤进行有效的日常紫外线防护是一项技术挑战。太阳镜构成了当前眼睛抵御紫外线的标准保护。 澳大利亚太阳镜标准是常见的紫外线防护基准,这些标准将 315 至 400 nm 范围内的光定义为有害 UVA。 尽管在阳光明媚的天气下在户外佩戴太阳镜是社会可接受的,但在所有潜在的紫外线暴露条件下(例如阴天条件下以及室内),其使用并不普遍被接受。 此外,实际原因限制了(矫正)太阳镜在相当长期的紫外线暴露情况下的使用,因为频繁更换矫正透明眼镜很麻烦,此外还需要存放一副额外的眼镜。 但有害的紫外线照射并不仅限于在阳光明媚的天气下长时间在户外停留。 相反,紫外线暴露不断发生,无论是在上班途中(例如上班途中)的短期阳光照射期间。 作为乘客在车内,通过侧窗暴露在外,甚至在室内也是如此。 因此,如果透明镜片也能有效减少紫外线照射,就能达到zui 佳的紫外线防护效果。实验安排来自于德国Tuebingen大学眼科研究学院的KATHARINA RIFAI研究员在2018年的研究中详细描述了实验设计过程和数据分析,基本的实验安排如下:人眼的辐照度由放置在扩散板后面的光谱传感器收集,扩散板放置在假人头部左眼的位置,放置在角膜的自然位置。提供人体模型,配备眼镜架。如下图2。图2. a) 光谱仪光纤和 PTFE 扩散板的眼形安装座,箭头指示光纤(浅红色)和扩散板(深红色)的位置,b) 人体模型头部的机械旋转安装座,c) 头部旋转示意图, d) 配备眼镜架和传感器的人体模型头部照片。光源经过D65校准后,距离人体模型眼部(光谱仪探头)距离是2.9米,另外一个光谱仪作为参考,有小部分光经过分束镜反射回来到参考光谱仪。原理图如下图3.其中光源用的是OSRAM公司的氙灯光源,光谱传感器用的是德国INSION公司的UV VIS SENS系列光谱仪。图3.左侧: 实验测量原理示意图;右侧; insion公司的UV VIS SENS系列光谱仪下图4显示了受测透明镜片相对于肉眼的眼部辐照度的清晰图片。 18% 的入射辐照度已被框架过滤。 在剩余的辐照度中,绝大多数(肉眼处总辐照度的 79 ±3%)通过空眼镜框进入眼睛。 当镜架配备透明眼镜镜片 L0 Basic 时,Idirect 的贡献占裸眼总辐照度的 32 ±4%,而总辐照度为裸眼总辐照度的 83 ±5%。 因此,尽管减少了,但大部分紫外线仍然通过眼镜进入眼睛。 在我们的示例中,肉眼处的总辐照度中只有 3.1 ±2.6% 来自绕过框架的间接光。图 4.  350 - 400 nm 范围内到达眼睛的紫外线辐照度实验数据概述。Idirect、Iindirect、Iback 作为空镜框以及四种不同透明镜片的堆叠条形图。实验总结在这项工作中,根据透明镜片对眼睛紫外线防护的效率进行比较。通过在位于人体头部内的眼睛的真实几何模拟中模拟和测量眼睛的紫外线辐照度来评估对整体紫外线暴露的贡献,配备相应的眼镜镜片。 实验和模拟评估了类太阳光源在眼睛位置的紫外线辐照度。 辐照度由扩散板后面的光谱传感器测量。 对于所有实际的光入射角,分别确定以下对紫外线照射的贡献:通过透明眼镜镜片进入眼睛的紫外线(I直接)、绕过眼镜镜片和镜框进入眼睛的紫外线(I间接)以及紫外线光线通过镜片表面的背反射 (Iback) 进入眼睛,见图 5。评估了旨在zui大限度地减少眼部紫外线照射的三种眼镜镜片的影响:第1种眼镜镜片,zui大限度地减少了通过镜片的紫外线透射 (Idirect)高达 400 nm(L1UV 阻挡)、第二个眼镜镜片,通过眼镜镜片背面的增透膜(L2 Back-UV)zui大限度地减少紫外线背向反射,以及结合了两者的第三个眼镜镜片(L3 组合).图 5. 辐照度方案,a) C1,贡献 Iindirect,b) C2,贡献 Iback,c) C3,贡献 Idirect。实验结果表明,眼镜镜片 L1 紫外线阻挡可zui大限度地减少 Idirect 的影响,相对于肉眼,将整体紫外线暴露量降低至 7%。 肉眼总曝光中只有 1% 来自背反射,而 L2 Back-UV 眼镜片将这一比例降至 0.3%。 L3 眼镜片结合了这两种优点,可将紫外线暴露减少至 6%。结论模拟了三种可zui大程度地减少眼睛处紫外线辐照度的眼镜镜片(紫外线阻挡、后紫外线和组合),并随后对眼睛处的太阳辐照度进行了实验评估。 紫外线辐照度通过放置在扩散板后面的光谱传感器进行评估。 与从镜片表面反射回来的光相比,通过眼镜镜片到达眼睛的辐照度高出一个数量级以上。 因此,带有定制紫外线吸收剂的透明镜片可有效保护眼睛免受紫外线侵害,补充太阳镜佩戴以实现全天保护新品推荐Insion推出全新的透射解决方案,采用分辨率更高的aMSM UV VIS SENS HR光谱仪模块,波长范围可以覆盖280nm~1050nm,配合宽波段LED光源,覆盖280nm~950nm,可以更好的测量镜片/玻璃/血液等行业的透过率。LED光源光谱图:图 6. 宽带LED光源光谱响应图透射光谱系统:图 7. BASkit透射光谱测量系统SC30杂散光算法:图 8. SC30杂散光算法校准线性度3片不同厚度滤光片透射测量的吸光度经过SC30杂散光算法校准以后线性度大于3AU。上海昊量光电设备有限公司作为德国INSION在中国地区唯yi的代理合作商,常年活跃在国内分子光谱,近红外光谱圈,给更多的客户带来优质的产品和服务。针对insion系列光谱仪,公司备有各种型号的样品供客户测试评估,还可以帮助可以搭建实验原型机,各种光谱测量系统等。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.08

新一代科研和工业用多通道光谱可调LED光源

新一代科研和工业用多通道光谱可调LED光源背景介绍光是我们工作生活中很重要的组成部分,很多科学研究和工业都需要用到光源,包括日常照明用的光源、工业照明用的标准灯箱,校准用的标准光源等。但是,现有的对应的光源产品通常仅仅提供有限几种光谱、色温和强度,例如现有工业上常用的色彩视觉评价标准光源箱,通常包含标准的日光、CWF、TL84、A光源等几种固定光源,强度不可调,且无法增加新的光源;随着LED技术的不断发展,各种各样的光源光谱在市场上都非常常见,并且应用在人类生活的各个场景。 所以现有的光源产品难以满足现在研究和工业的需求。为了解决上述问题,昊量光电提供了一个zui终的解决方案-光谱可调LED光源,可以实现任意光谱曲线的复现,从而达到复现各类照明环境的模拟。现有标准灯箱方案核心技术和产品昊量光电的新一代多通道光谱可调LED光源采用多种覆盖可见光至红外的几十种高功率LED和wan 全自主研发的控制软件,可以实现对任意光谱功率分布的模拟,包括高品质的日光(显色指数CIE Ra 99, 同色异谱指数A)、黑体辐射轨迹(2000-20000K)和zui 新的LED标准光源,照度强度可调节,无预热时间,稳定性强,寿命长,可自校准等优点。灵活的安装方式可以按照客户要求定制大空间光环境照明光源。LED通道光谱功率分布曲线新一代多通道光谱可调LED光源灵活安装方式技术规格应用照明研究通常需要提供各种色温、光谱和强度模拟研究用的照明场景,并进行相关的实验,找到zui 佳的特定场景下的照明参数,包括健康照明、医疗照明、中间视觉、光的非生物效应、物体显色性、白度评价、农业照明等各种色温模拟计量和认证光源产品已经在计量院做过计量和检测这款光源应用的场景众多。想要了解更多应用可以联系我们。主要涉及到:医疗照明研究,手机厂商光谱可调光源,汽车色彩视觉评价光源房,相机及传感器校准和测试,照明场景模拟等。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

新品

2023.12.08

用于现场苜蓿水分测量的近红外光谱系统的设计和性能评估

用于现场苜蓿水分测量的近红外光谱系统的设计和性能评估一, 介绍近年来,人们在农产品物理特性评价技术的研究和开发方面做出了巨大努力。 例如,作物的水分含量 (MC) 是定义正确储存过程的重要物理参数,应在收获和储存过程中进行监测。在不合适的条件下储存农作物可能会导致可怕的后果,包括火灾。因此,有必要在储存前和储存期间测量湿度水平。 静态(即储存)和动态(即收获)条件下的湿度测量显然存在不同程度的难度。在储存期间,水分测量可以通过取样并使用水分分析仪进行分析来进行,或者使用湿度测试仪进行不太准确的分析。 由于必须执行测量的操作条件,收获期间的水分测量要困难得多。首先,获取信息的时间是有限的,并且取决于收割机。其次,许多有影响的变量,例如机械振动、电气和光学干扰以及一般的灰尘或污垢,都会严重影响测量。此外,为了不妨碍和/或减慢收割机的操作,水分测量应在农作物捆运动时进行,非接触式测量方法将是可取的。(图片来自网络)迄今为止,有两种技术可以实现非接触式水分测量:微波衰减和近红外光谱 (NIRS)。di一种技术提供了比第二种技术更大的检查深度来检查样品的可能性,但是它对电磁环境和铁磁结构的存在非常敏感。来自摩德纳·雷焦·艾米利亚大学的Luigi Rovati和Giovanni Gibertoni在2022年发表了一篇论文中评估了NIRS方法进行水分测量的可行性。作者设计了一种新型便携式半自动近红外光谱系统,该系统可用于收割机。并且对测量系统的性能进行了评估,其中介绍了校准、反射灵敏度、预热以及重复性测试。苜蓿草中的水分可以通过利用水在近红外光谱区域的吸收峰来评估,并且设计并实现了田间作物水分测量原型。二,系统描述左上角橙色区域为光学部件外壳,右侧蓝色区域为电子部件外壳。里面包含卤素灯光源,INSION近红外光谱仪,光学快门,蓝宝石漫反射窗口和控制单片机,散热风扇等图1.近红外光谱测量系统的组成和结构系统框图所开发的测量系统的框图功能图如图 2 所示。蓝宝石光学窗口放置在非常靠近采集加工线上的待测样品 (SUT) 表面的位置,可永 jiu保护光学元件免受灰尘和外部环境污染。 此外,可打开和关闭的翻板机构允许控制三个不同的测量阶段(暗背景测量,参考光谱测量和样品光谱测量)。微控制器单元用于收集和预处理光谱数据,zui终将这些数据发送到 PC,在 PC 上,LabVIEW GUI 可以监视和控制采集过程。图2. 所开发的测量系统的框图功能图1.1 光源照明部分该系统采用 20 W 卤素灯 DECOSTAR 51 ALU(OSRAM)。 该装置除了保证低成本外,还具有足够长的平均寿命,即4000小时。 选择卤素灯和光学窗口之间的距离,以保证样品表面上的zui大辐照度和足够的照明均匀度。1.2 光谱仪部分为了检测漫反射光谱,该仪器采用德国INSION公司的微型近红外光谱仪 NIR1.7,其测量范围为 900 nm~ 1700 nm,像素分辨率为 8 nm(光学分辨率16nm)。 该光谱仪基于InGaAs阵列探测器(128像元)和预集成读出电子器件,在精度、灵敏度和信噪比 (SNR) 方面提供高性能。 光谱仪的所有参数都可以由用户设置和优化,以满足不同应用的具体要求。NIR1.7 OEM模块包括基于16位分辨率的模数转换器的读出电子器件 (BIM-NIRP)。 光谱分析通过空腔波导设计进行,无任何移动部件,出厂后无需再校准。 如图 3 所示,光通过光纤耦合到光谱仪,直至光谱仪入口狭缝。图3. Insion近红外光谱仪 NIR1.7 S OEM光谱仪模块三,系统性能系统组装完成后,各功能模块的功能和作用对整个系统进行了验证。之后,对该系统进行了仔细校准,并在以下方面进行了表征:(i)预热,(ii)线性,(iii)可重复性。通过将测量的反射率与经认证的反射率标准目标进行比较来执行校准和表征程序。在预热期间,系统测得的平均反射率下降,近似呈指数衰减(R2 = 0.9876)。 观察到的平均反射率降低约为 1.4%,衰减常数为 13.6 S。瞬态结束时,测量误差为 0.6%。以测量值相对于参考值的均方根偏差计算的积分线性误差为 0.93%。重复性验证如下图:图4, 重复性测试在 13 小时的时间内进行。 * 蓝色标记代表 S050 反射率测量。 红色点划线是平均反射率值,浅绿色区域对应于整个集合的标准差界定的区域。测量结果显示平均值为 49.76%,样本标准偏差为 0.71%。四,现场结果对采集的数据进行预处理后,确定了待测样品水分预测的光谱带 BOI。 通过分析参考变量(即待测样品水分和密度 ρ)与预测变量(即 LASUT(λ) 的一阶导数)之间的系数来选择相关波长。图5显示了获得的水分和ρ系数相关性作为辐射波长的函数。图5,参考变量(即待测样本水分和ρ)与预测变量(即LASUT(λ)的一阶导数)之间的相关系数。虚线与测样本水分有关,橙色虚线与待测样品ρ有关。浅蓝色区域定义了感兴趣的光谱带(BOI),其中LASUT的一阶导数(λ)与SUT MC的相关性zui大,与待测样品ρ的相关性zui小。图 6 显示了从校准中获得的 PLS 响应变量作为水分参考值的函数,而从验证数据集获得的结果如图 10 所示。为了完整起见,每个图都显示了 PLS 响应变量,即水分的对数变换(ln(MC(%)) (a),以及线性标度中水分的相应值 (b)。表 1 报告了开发的 PLS 模型的统计数据,而图 8 显示了水分的均方根相对误差估计 Er (MC)%。尽管我们对少量样本进行了分析,但结果令人鼓舞,表明该仪器如何能够以 7.1% 的平均相对误差估计作物的水分。开发的PLS模型利用了 NIRS 吸收光谱的对数变换,该相对误差在拟合范围内保持相当恒定。图6,校准 PLS 响应变量作为参考值的函数 (a)。校准数据集的预测水分含量与参考水分含量 (b)图7,参考值函数的 PLS 响应变量的验证 (a)。验证数据集的预测水分含量与参考水分含量 (b)。图8,水分估计的均方根相对误差。 (a) 为校准数据集获得的结果,(b) 为验证数据集获得的结果。 红色虚点线是单次测量的平均值:(a) 中的 C_MEAN_ERR 和 V_MEAN_ERR。表1 PLS模型的统计结果。C-RMSE和C-R2是指校准数据集的均方根误差和R平方值; V-RMSE 和 V-R2请参阅验证数据集的等效项。 C_MEAN_ERR 和 V_MEAN_ERR 分别是校准和验证数据集的平均相对误差。五,结论用于田间作物水分测量的 NIRS 测量系统已经开发出来,并对新鲜收获的苜蓿样品进行了初步测试。该系统的设计和实现非常谨慎,必须能够在作物收获阶段在田间运行。未来的实验阶段应包括将仪器直接组装在收割机上。这将使我们能够直接对农作物捆进行水分测量。六,应用Insion光谱仪以其you秀的抗振性和稳定性等特点,已经在多种农业机械中有应用,比较典型的是青贮收割和饲料搬运铲车等,不但可以有效的检测农作物,农产品,饲料的水分信息,还可以同步检测纤维,淀粉,粗蛋白等含量给到机械作业工人,机械作业工人会根据即时检测的信息判断收割,搬运农产品/农作物的品质信息,实现精细化,智能化的管控。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.08

Moku:Pro的频率响应分析仪

Moku:Pro的频率响应分析仪1. 介绍本文主要介绍如何使用新的In÷In1测量模式。Moku:Pro的频率响应分析仪(FRA)旨在用扫频正弦波驱动被测器件(DUT),并通过直接变频接收器检索幅度和相位响应。在 2.4.0 软件更新之前,测得的幅度响应可以表示为以 dbm 为单位的绝对幅度或以 dBm 为单位的相对输入÷输出幅度。动态参考模式现已在zui 新版本的Moku软件的Moku:Pro上可用。在这种模式下,幅度响应以In÷In1(dB)为单位测量,它使用输入1上的信号对每个输入信号进行归一化。因此,FRA可以连续测量DUT输入端的驱动信号幅度,并动态改变分母以进行相对幅度计算。在这篇文章中,我们将介绍如何使用In÷In1测量模式来隔离多级滤波器中单个组件的频率响应,并通过整形驱动信号来增加测量的动态范围。具体参数如下:2. 隔离多级滤波器的频率响应在许多设计中,电子滤波器是通过将多个滤波器组合成多级滤波器制成的。In÷In1模式允许用户连续探测DUT输入端的驱动信号,并将其用作相对幅度计算的参考。因此,后续DUT的频率响应可以与系统的整体频率响应隔离开来,而无需改变驱动点。在本例中,使用两台多仪器模式(MiM)的数字滤波盒仪器创建了一个两级滤波器。在每个滤波器级之后部署FRA来探测频率响应,如图1所示。图 1:创建两级滤波器并由 FRA 以 MiM 为单位进行测量如图2(a)所示,通过在In÷Out模式下配置FRA,测量了第1级(红色)和整体传递函数(蓝色)。通过切换到In÷In1模式来检索第二级的隔离频率响应(蓝色),如图2(b)所示。图 2:具有 (a) 输入÷输出 (dB) 和 (b) 输入÷输入 1 (dB) 模式的两级滤波器测量的频率响应3. 扩展测量动态范围决定动态范围的电压上限和下限受输入范围和模拟前端噪声的限制。对于具有高衰减的DUT器件,高振幅驱动源可提高DUT的zui小响应。因此,可以以dB为单位测量非常高的衰减。另一方面,高驱动电压可能会使低衰减的DUT的输入饱和。对于幅度响应随频率变化较大的DUT,使用恒定驱动源很难测量高动态范围内的频率响应,如图3所示。在Moku:Pro的输入和输出之间连接了一个带通滤波器。用2 Vpp驱动输出捕获稳定的红色迹线,用100 mVpp驱动输出捕获微弱的红色迹线。较高的输出幅度在100 kHz以下提供了明显更好的底线。但是,测量在通带处被削波。图 3:带通滤波器的频率响应,具有 2 Vpp(稳定红色)和 100 mVpp(微弱红色)驱动信号在本例中,FRA的扫频正弦波首先由另一个仪器插槽中的数字滤波器整形,而不是使用恒定输出功率,允许DUT的阻带具有更高的输出功率,而在DUT的通带中具有较低的输出功率,如图4(a)所示。然后,整形输出作为参考发送回FRA的输入A,并发送到输出1以驱动DUT。启用In÷In1模式后,测量频率响应的动态范围显著改善,如图4(b)所示。图 4:带通滤波器与成形扫频正弦波的频率响应。(a) MiM配置和过滤器设置;(b) 测得的高动态范围频率响应4. 总结FRA中的In÷In1模式可以将子组件的频率响应与更复杂的系统隔离开来,并塑造正弦扫描输出以提供更大的测量动态范围。要了解有关 2.4.0 更新的新功能的更多信息,请联 系我们。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量  子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2023.12.06

看声光可调谐滤波器(AOTF)如何增强共聚焦显微镜的多功能性

看声光可调谐滤波器(AOTF)如何增强共聚焦显微镜的多功能性声光可调谐滤波器(AOTF)可以为共聚焦显微镜提供更加清晰的图像、逐像素波长的灵敏性以及精确的控制。Gooch & Housego(G&H)的生命科学部门副总裁Lars Sandström探讨了声光可调谐滤波将来的技术发展,以及如何进一步增强共聚焦显微镜在生命科学领域的多功能性。共聚焦显微镜,也称为共聚焦激光扫描显微镜(CLSM),在生命科学领域已经应用了数十年。从眼科到神经科学,共聚焦显微镜支持拯救生命相关的诊断、治疗和研究。如今,共聚焦显微镜的生物医学应用越来越依赖于声光可调滤波器(AOTF)。AOTF技术在精确控制、灵敏性和速度方面均有提升,增强了共聚焦显微镜的多功能性,从而进一步实现了科学创新。随着对更高图像清晰度和灵活性的需求增加,AOTF解决方案可能会变得更加复杂,并需要特定的综合专业技术和功能。AOTF在共聚焦显微镜中的运用与优势声光(AO)器件在共聚焦显微镜中有很多运用。您可以在调制、功率控制、激光切换、激光耦合和分光中找到它们的身影。对于单个扫描头来说,例如徕卡显微系统的STELLARIS 8,声光器件被广泛运用于其中。在它们之中,AOTF更是明星产品,提供了多种优势,包括:徕卡STELLARIS 8 扫描头更清晰的图像检查活体组织的一个挑战是在标本移动或着分子变化/损坏之前,足够快速地获取多光谱数据。AOTF的多功能性允许分析活细胞,这意味着科学家们就可以完整而又准确的监测动态细胞过程,而这是基于 AOTF 系统所允许的快速光强与波长切换功能。荧光漂白后恢复(FRAP)、荧光漂白损失(FLIP)和用户定义的小标本区域(感兴趣的ROI区域)等技术已经取得了很大进展。逐像素波长和功率控制显微镜专家可以保持高扫描速率,同时逐像素调整图像。通过为每个波长和激光分配不同的光强来实现不同信号电平的平衡。AOTF的一个用途是选择特定的激发波长并设置白光激光器的功率。此外AOTF还可以与激光多路复用技术相结合。AOTF通过选择系统中的激光源并控制其强度来控制波长和光强。声光效应允许快速并精确地控制传输和波长选择。这样AOTF就可用作激发光的滤波器,并且可以实现“动态"调整。这与传统的介质带通滤波器形成鲜明对比,任何调整都意味着需要购买新的滤波器,并且显微镜中可以安装的滤波器数量始终存在限制。环境稳定性共聚焦系统中的AOTF实现了对多条激光线路进行灵敏、快速的电子调谐和强度控制,消除了由温度或湿度变化引起的任何潜在频率漂移。而这些对于传统滤波转台/轮的机械调谐方案很难实现。AOTF技术与指标在AOTF中,射频驱动器输出的频率作用于压电换能器(通常是铌酸锂),从而产生声波并耦合到声光材料中,如二氧化碲(TeO2)。这就产生了一个衍射光栅,其中晶体的折射率随驱动器提供频率的变化而变化。当相干光束穿过晶体时,只有一窄带的频率满足相位匹配条件,并且以未衍射光束不同的角度离开晶体,而这便形成了衍射光斑。晶体的几何形状对于获得所需的性能至关重要。大多数声光器件都是按标准规格制造的,G&H是一家行业内领xian的专业公司,提供广泛的声光可调谐滤波器,覆盖从紫外到中红外的波长,带宽小于1nm。G&H的声光可调谐系统包括电子控制、可配置驱动器,以提高操作人员的灵活性和反馈稳定系统。无论工作环境条件如何,均可以保持波长的稳定性。G&H还运用了一项获得专li的旁瓣抑制技术,以提高频谱纯度。至关重要的是,G&H是唯yi一家自己生产优质二氧化碲(TeO2)晶体的光学系统开发商。这有助于保持一致性和可靠性,从而产生更加一致和可重复的AOTF产品。这种在G&H的美国工厂(符合ITAR标准)生长,抛光和制造晶体的能力确保了在行业内领xian的地位。下一代共聚焦显微镜的驱动力从OEM客户和zui终用户对共聚焦显微镜发展方向的反馈表明,多功能性是一个关键的要求。对单一系统内更大范围可调谐波长的需求正在增长,提供灵敏性,以及更好的使用价值。G&H已经可以提供单个滤波器可直接覆盖400-2400 nm的范围(而不是通常需要的三个滤波器),并且在实现驱动的灵敏性方面更进一步。温度效应的管理是另一个需要进一步创新的领域。AOTF对温度变化非常敏感。为了克服这个问题,G&H驱动器的设计基于一个可以保持温度的芯片,并且通过一个反馈系统调整输出以保持温度恒定,这个过程称为波长锁定。该集成系统还包含晶体结构、序列号等可访问信息。为了zui大限度地发挥AOTF系统的潜力及其对用户的好处,G&H在显微镜系统制造商设计下一代显微镜之初就开始与他们合作。这种协作方法使制造商能够提高他们的显微镜和超连续源的性能。总而言之,经验已经证明了采用渐进式而不是ge 命性的方法来实现AOTF和驱动系统制造和集成的优势。G&H将与显微镜行业携手合作,不断改进AOTF技术,以跟上生命科学和生物光子学应用的快速发展步伐。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.06

光束匀化在荧光成像平场照明中的应用

光束匀化在荧光成像平场照明中的应用荧光显微镜荧光显微镜属于光学显微镜家族,基于荧光的物理效应。利用了所谓的荧光染料的颜色特性,它们被特定波长的光激发,并以不同的波长再次反射吸收的光。荧光显微镜的应用荧光显微镜可以进行形态学研究、纳米范围内的测量值分析以及实时可见的大多数不同文化的过程。无论是在生物化学、生物物理学还是医学领域:快速、详细地检测明亮、多彩的荧光有助于荧光显微镜的测量过程,并为新发现奠定基础。zui 佳测量结果和zui 佳分辨率需要zui精确的光学器件——无论是通过光束路径的优化和聚焦、精确安装的滤光片还是高质量的镀膜。荧光显微镜的结构和功能原理允许个别波长通过的特殊滤光片可确保荧光显微镜下荧光的可视化。荧光显微镜的特殊滤光片包括:励磁滤光器发射过滤器二向色分束器单独的激发滤光片允许相应波长的光通过,这是激发待检样品中特定染料所必需的。二向色镜将刺激波长反射到物镜,物镜将光束集中到标本上。从标本反 射的光集中在物镜中,在其激发态通常具有比入射光更高的波长。通过二向色镜,反射光通过发射滤光片并降低到发射波长。尚未在二向色镜处停止的刺激光的残留物在发射滤光片处被过滤掉。理想情况下,只有发射光撞击显微镜内置的检测器,并以相应的颜色可见。zui 佳测量结果需要均匀的照明,尤其是当需要几微米或几毫米的大视野时。在不均匀照明的情况下,例如,可能发生待检查分子的不均匀激活。结果:中心的分子比入射照明光束外围的分子发出更强烈的荧光。如果周边没有与中心等同地照亮,则当单独记录的图像网格稍后合并时,阴影继续出现。因此,细胞和组织样本等测量不能用于可靠的分析。这些问题可以通过使用 a|TopShape a|BeamExpander 来解决。通过使用非球面可以实现这些元素在系统中。我们的系统以其紧凑的设计、精度和zui高的光学质量而令人信服。使用光学组件a|TopShape 和 a|BeamExpander 可以将高斯光束转换为均匀的平顶轮廓,从而在整个视野中实现均匀照明。所产生的平场照明具有高空间相干性、wu与伦bi的光学性能和 > 95% 的高均匀性。分子的均匀激发和zui小的图像重叠 (5%) 可以保证让您wan全满意。下图显示了荧光显微镜的工作原理和一般结构。荧光显微镜的工作原理荧光显微镜应用基于激光的荧光显微镜内的定量分析可能会因高斯光束轮廓产生的不均匀 照明而变得复杂。光源和照明光学等因素会影响均匀性。当要检查大视野 (FOV)时,这些功能尤其具有挑战性。测量图像由图像网格在荧光显微镜中生成。以边缘重叠的方式获取单个图像,并且可以在后处理中组合它们。如果照明不均匀,zui终图像的每个单独图像周围都会有变暗的边缘 - 细胞和组织样本的测量变得不可靠。光照不均匀的另一个缺点:分子激活不均匀。那些靠近光束中心的荧光比边缘的荧光更多。位于奥兰多的中佛罗里达大学光学与光子学院的一个研究团队通过将aphericon 的光束整形器 a|TopShape 和 a|BeamExpander 集成到显微镜装置中,从而克服了这些问题。平场照明 (FFI) 设置将高斯光束塑造成统一的平顶轮廓。a|TopShape 对入射激光束大小的变化具有ji高的容忍度 (± 10 %),并且以消色差方式运行。非常好的光学性能(均匀性 > 95%)可实现均匀照明,从而激活分子。此外,FFI 设置可实现无边界拼接成像,图像重叠zui小 (5%)。定量荧光成像的平场照明项目介绍:高斯轮廓的不均匀光照使得基于激光的宽视场荧光显微镜的定量分析具有很高的挑战性。许多因素,包括光源和照明光学有助于均匀性。当需要几百微米或毫米尺度的大视场时,这些特性尤其困难。获得一个图像网格,使边界重叠,并在后处理中将图像拼接在一起。如果光照不均匀,zui终拼接的图像在每个单独的图像周围都有暗淡的边界。因此,细胞和组织样本的测量是不可靠的。非均匀光照的另一个缺点是分子的不均匀激活。那些zui靠近光束中心的人比那些靠近边缘的人荧光更强烈。项目实施:来自美国佛罗里达州奥兰多市中佛罗里达大学光学与光子学学院的一个研究团队,在他们的显微镜设置中使用非球面 TopShape 和 BeamExpander 时,可以克服这些问题(b),这两个都是由非球面组成的非常紧凑和高精度的折光光学组件。因此,他们能够呈现平场照明(FFI),其中高斯光束被塑造成一个均匀的平顶轮廓(a)。光束整形装置非常容忍入射激光束的大小变化,接受±10%,同时也是消色差的(e)。FFI 的工作距离(f)长,空间相干性高,可以在多色单分子成像中实现均匀的 epi1 和 TIRF2 照明。所使用的光学器件具有吴与伦bi的光学性能,均匀性> 95%,允许均匀的照明(c & d),从而均匀地激活分子。此外,FFI 实现了zui小图像重叠(5%)的无界缝合成像。说明: 1,外延照明模式是指从样品的一侧进行照明和检测;关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.12.05

六轴位移台参数解读

六轴位移台参数解读六足运动平台在运动控制领域有着悠久的应用历史,但近年来,传统的6自由度(6-DOF)定位设备在面对行业对更高精度、更高可重复性和更好的几何性能的需求时显得有些不足。现对一些ALIO位移台参数细节做一些解读,以便您理解ALIO六自由度位移台对于传统六足位移台的提升。准确度(accuracy)准确度是指在特定三维空间中,实际位置与通过测量设备测量的位置之间的差异。对于测量设备而言,准确度受到反馈机制(如ALIO六轴位移台的光栅尺增量编码器)、驱动机构(如滚珠螺杆、导杆、线性电机)以及轴承路径的准确性的影响。重复度(Repeatability)可重复性被定义为在相同条件下,系统重复地被命令到同一位置时所达到的位置范围。单向可重复性通过从一个方向接近该点进行测量。双向可重复性是测量系统能够从两个方向返回到该点的能力。分辨率(Resolution)分辨率被定义为系统的zui小可识别位移量。也分辨率由反馈装置确定。zui小步长(Minimum Incremental Step Size)被定义为系统的zui小可行移动量,也被称为步进大小。俯仰(Pitch):俯仰是围绕水平平面上与行进方向垂直的轴的旋转。如果所测量的感兴趣位置不位于旋转中心,则俯仰旋转会引起两个维度上的阿贝误差。对于X轴,俯仰旋转会在X方向和Z方向上引起阿贝误差。对于Y轴,俯仰旋转会在Y方向和Z方向上引起阿贝误差。这些误差的大小可以通过将偏移距离的长度乘以旋转角度的正弦值和1减旋转角度的余弦值来确定横滚(Roll):横滚是围绕与行进方向平行的水平平面上的轴进行的旋转。如果所测量的感兴趣位置不位于旋转中心,则横滚旋转会引起两个维度上的阿贝误差。对于X轴,横滚旋转会在Y方向和Z方向上引起阿贝误差。对于Y轴,横滚旋转会在X方向和Z方向上引起阿贝误差。这些误差的大小可以通过将偏移距离的长度乘以旋转角度的正弦值和余弦值来计算。偏航(Yaw):偏航是围绕与行进方向垂直的垂直平面上的轴进行的旋转,即Z轴。如果所测量的感兴趣位置不位于旋转中心,则偏航旋转会引起两个维度上的阿贝误差。对于X轴或Y轴台。回程误差(Backlash):回程误差是由行进方向反转引起的定位误差。反向间隙是在行进方向反转时不会产生位置变化的指令运动部分。反向间隙是由传动系中元素之间的间隙引起的。随着间隙的增加,产生运动所需的输入量也会增加。间隙的增加导致反向间隙误差增加。反向间隙也会影响双向可重复性。ALIO位移台从系统设计上避免万向节消除了回程误差,大大提升位移台整体性能。直线度(Straightness):直线度是指在水平平面上,相对于行进方向的真实行进线路的偏差。平整度是指在垂直方向上,相对于行进方向的真实行进线路的偏差。对于ALIO位移台,直线度和平整度参数都与位移台的安装表面有关,请联系昊量光电了解详情。跳动(runout):跳动是旋转机械系统的不准确性,特别是工具或轴没有完全与主轴线一致地旋转。例如; 钻孔时,由于钻头偏心旋转(离轴而不是成一直线),跳动会导致孔大于钻头的标称直径。对于轴承,跳动会导致机器振动并增加轴承负载。跳动有两种主要形式:径向跳动(Radial runout):由于工具在平行于机器轴线的情况下发生平移,径向跳动沿机器轴线的各个点测量结果相同。 轴向跳动(Axial runout):由于工具或零件与轴线有角度,导致工具(或轴)尖端相对于基准位置偏离中心旋转。轴向跳动的大小取决于测量点与基准位置的距离。  ALIO的6-D 纳米精度工作台的核心是串联和平行运动学的结合,这使得传统的六足运动学过时了,在精度、路径性能、速度、刚度和更大的工作范围(几乎无限的XY行程,完全可编程的工具中心点位置)方面都有数量级的改进。 ALIO的Hybrid Hexapod®具有小于100纳米的3维6轴点精度重复性,使其成为激光加工、光学检测、光电子、半导体、计量和医疗设备领域以及所有微加工项目的关键任务应用的关键技术。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

参数原理

2023.11.30

您的“微流控”理想光源——来自各地权威实验室的案例介绍

您的“微流控”理想光源——来自各地权威实验室的案例介绍什么是微流控?微流控,又被称作芯片实验室或者微全分析系统。您可以想象在化学、医学以及生物研究中涉及到的样品制备、反应、分离、检测等操作步骤都集中在一块微米尺度的芯片上自动完成吗?微流控技术是指在至少有一维为微米甚至纳米尺度的低维通道结构中控制体积为皮升至纳升的流体进行流动并传质、传热的技术。由于通道尺寸很小,样品的消耗量很少,节约了能源的同时也提高了反应速度,实现微型化、自动化、集成化以及便携化的同时也具有高通量的特点。而来自Lumencor的LED白光光源SOLA系列,也在这个微“舞台”上占有一席之地。实验案例1:同时激发四种荧光蛋白酶底物,用于检测多重基质金属蛋白酶(MMP)活性来自新加坡—麻省理工学院研究与技术联盟以及新加坡国立大学的Ee Xien Nga , Myat Noe Hsua , Guoyun Sunb 和 Chia-Hung Che发表了一篇名为”Single-cell assays using integrated continuous-flow microfluidics”的文章。一种可用于生成和检测含有单细胞和FRET底物液滴的交叉结构微流控芯片在这篇文章中被构建。为细胞检测提供了高通量并且非侵入式的全新可能性。在微流控芯片的光学检测系统中,Lumencor的LED白光光源SOLA SE-II型被用于同时激发和测量四种不同波长的荧光信号。并通过多荧光检测单元以及PMT模块转化为电压信号,输出电脑后对多种蛋白的活性进行分析。实验案例2:表征高速脉动流体流动的粒子条纹测速法莫格里奇研究所的科学家Tongcheng Qia, Daniel A. Gil, Emmanuel Contreras Guzman等开发了一种结合了高速微流控的可调节泵(Adapt-Pump)平台,并发表论文“Adaptable pulsatile flow generated from stem cell-derived cardiomyocytes using quantitative imaging-based signal transduction”。内皮细胞(EC)在体内持续暴露于血液流动的机械微环境中,而流体剪切应力在EC行为中起着重要作用。通过定量成像的信号转导从人多能干细胞衍生的心脏球体(CS)中生成脉动流。该脉动流可以复制独特的CS收缩特性,准确地模拟对临床相关药物的反应,以及脉动流对EC分化和形态的影响。作者巧妙地通过荧光珠来表征流体剖面和剪切应力,以Lumencor的LED白光光源SOLA FISH(Ex/Em 480/520nm)作为荧光显微镜的照明以及激发光源。并zui终通过条纹测量提供流体在不同深度和压力下的瞬时速度和剪切应力,从而更好地模拟内皮细胞在体内所受到的机械刺激。实验案例3:利用三色荧光编码法在纳升液滴中鉴定微生物菌株由麻省理工的科学家们Jared Kehea, Anthony Kulesaa, Anthony Ortizc等的文章 “Massively parallel screening of synthetic microbial communities”介绍了一种名为kChip的液滴微流控平台,可以快速、大规模地构建和筛选合成微生物群落。其中整套荧光图像采集系统是由尼康的Ti-E的倒置荧光显微镜、Lumencor的LED白光光源SOLA以及滨松的ORCA-Flash 4.0 cmos相机。Lumencor的LED光源不仅仅起到对液滴进行照明作用,也同时起到荧光激发作用,图像可以在多达四个荧光通道上拍摄,为高通量下评估不同微生物菌株组合的功能性。实验案例4:基于链长的细菌微流控分选延时成像来自隆德大学Jonas O. Tegenfeldt教授课题组的这篇发表于Analytica chimica acta的论文“Separation of pathogenic bacteria by chain length”介绍了一种利用确定性侧向位移分选(DLD)的微流控技术来分离具有不同致病性的人类细菌病原体链球菌肺炎的方法。对于人类细菌病原体肺炎链球菌,细菌链长度和荚膜的存在是已知的毒力因素,具有引起严重疾病的能力。在实验中Lumencor的LED白光光源SOLA与尼康Eclipse Ti以及TS2倒置显微镜搭配使用,在GFP荧光蛋白的帮助下,对有荚膜肺炎链球菌D39 (血清型2)和无荚膜肺炎链球菌R6细胞的运动轨迹进行观察,并通过荧光和明场图像进行对比与识别。实验案例5:光谱编码的镧系纳米粒子(LNP)的成像斯坦福大学Polly M. Fordyce教授课题组发表在Nature methods上的文章“A bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation”介绍了一种名为BATTLES的新技术。该技术利用了生物机械力来启动T细胞触发的方法,进一步筛选能够诱导强烈T细胞反应的pMHC复合物。而这提供了一种简单、高通量、可调节的方法来模拟生理条件下T细胞识别抗原的过程,并为研究T细胞机械生物学和T细胞为基础的免疫治疗提供了新的工具。在筛选过程中通过光谱编码来标记与展示不同的pMHC复合物,可以在一个实验中同时检测多种pMHC复合物对T细胞的影响。光谱编码是一种利用镧系元素发出的不同波长的荧光来标记珠子的方法,每种pMHC复合物都对应一个特定的光谱编码。文中选择了Lumencor的LED白光光源SOLA作为光谱编码的镧系纳米粒子的成像的照明以及激发光源。SOLA能带给你什么?Lumencor的SOLA系列的LED白光光源可以很好满足在微流控中的多种运用。SOLA系列的LED白光光源容易集成,方便匹配主流品牌的显微镜。SOLA系列的LED白光光源具有高亮度与高稳定性,高效照明有助于形成高对比度与分辨率的图像,照亮您高通量测试下的每一处细节,保证实验的一致性。SOLA系列的LED白光光源具有多种型号可选,针对DAPI、GFP/FITC、YFP、Cy3、mCherry、Cy5 等光谱相似的荧光团起到激发作用。同样也有针对细胞遗传学检测实验中荧光原位杂交(fluorescence in situ hybridization,FISH)对475-600nm区域进行输出的SOLA FISH型号。以及提供zui广泛光谱覆盖范围,用于激发荧光团(Cy7和ICG)近红外输出的LED白光光源SOLA V-nIR 和 U-nIR。满足您各种所需波长的需求。Lumencor的LED白光光源拥有精确控制的快速调节,可以对光源的输出功率进行调节。LED光源所产生的热辐射较低,不会对于微流控反应器产生过多的热量影响,从而保证反应的精度和稳定性。SOLA系列的LED白光光源耗电量较低,即开即用,较长的使用寿命可以助您实验屡创突破。相关文献:1.Ng E X, Hsu M N, Sun G, et al. Single-cell assays using integrated continuous-flow microfluidics[M]//Methods in Enzymology. Academic Press, 2019, 628: 59-94.2.Qian T, Gil D A, Guzman E C, et al. Adaptable pulsatile flow generated from stem cell-derived cardiomyocytes using quantitative imaging-based signal transduction[J]. Lab on a Chip, 2020, 20(20): 3744-3756.3.Kehe J, Kulesa A, Ortiz A, et al. Massively parallel screening of synthetic microbial communities[J]. Proceedings of the National Academy of Sciences, 2019, 116(26): 12804-12809.4.Beech J P, Ho B D, Garriss G, et al. Separation of pathogenic bacteria by chain length[J]. Analytica chimica acta, 2018, 1000: 223-2315.Feng Y, Zhao X, White A K, et al. A bead-based method for high-throughput mapping of the sequence-and force-dependence of T cell activation[J]. Nature Methods, 2022, 19(10): 1295-1305.关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.11.30

用Specim FX17高光谱相机测量棉制品水分含量

用Specim FX17高光谱相机测量棉制品水分含量水分的定量测试是许多工业和研究应用的关键。基于光谱学的定量模型对水分含量的监测是有效、无损和准确的。高光谱相机也可以显示水分的空间分布,而点光谱仪只能提供一般分布。在这项研究中,我们监测了一块棉布在其干燥过程中的的水分含量。NIR:    近红外(900 - 1700 nm)PLS:    偏zui小二乘法 PLSDA:偏zui小二乘判别分析NIR波段水的吸收峰生产中监测水分含量是非常重要的,例如,在食品、造纸和木材行业中。近红外光谱仪被广泛的使用在各类应用中。光谱学家依靠NIR波段内水的吸收峰,如下图所示,水会强烈吸收970nm、1150nm和1450nm的光。而specim FX17高光谱相机的光谱覆盖范围为900nm - 1700nm,非常适合检测水的吸水峰。此外,高光谱图片也能揭示水的空间分布情况。 在这项研究中,我们监测和测量了棉布的干燥时间。我们将约5厘米的圆形棉垫(通常用于卸妆)浸入水中,然后把它放在Lab scanner 40x20扫描台上。将其应用于标本实验室扫描仪40×20。我们用FX17高光谱相机监测其干燥情况,每4分钟测量一次,直到完全干燥。总共测量了67次花费了264分钟。然后使用Specim INSIGHT软件进行分析。干燥棉垫的光谱分析每张图片都通过暗噪声和白参考做了归一化。然后,通过将实验期间获得的67幅图像组合成一个文件,形成了一个组合图片。这幅镶嵌图片描绘了棉垫在不同干燥阶段的情况,从右上方非常潮湿的时候开始,到右下方干燥的时候。从左到右,从上到下,逐行填了镶嵌图。如图1a所示,在干燥过程中,可以从拼接图中明显的看到伪彩图的梯度变化。光谱曲线也显示出同样的趋势。与潮湿样品相关的光谱在970、1150和1420 nm处吸收zui多,而这些峰随着干燥时间的增长而消失。在3.5小时后(在zui后的10次测量中),干燥的加速也非常明显。图1:与棉垫干燥有关的伪彩图和NIR光谱。建模- PLS回归建立一个PLS回归模型来量化棉垫的干燥程度。回归变量称为“干燥”,范围从0到264(对应于干燥时间,以分钟为单位)。请注意,使用Insight软件,回归只能建立在样本上,而不管背景如何。为了训练模型,每一秒的图像都被考虑在内。模型的精度在所有其他的图片上估计。回归的预测性能如图2所示。对于每个棉垫,我们制作了一个代表干燥的热力图,突出了高光谱图像与描述水分分布的相关性。建立的模型具有很高的准确度,R2为0.98。对比实际值和预测值,非常湿的棉花的干燥过程更难以量化。图1c的光谱与此相关,表明在干燥开始时,与水有关的吸收峰深度只有轻微的变化。 我们建立了第二个模型,类似于之前展示的模型,但这次是基于每隔一分钟获取的61张图像。R2在这里是0.97。在第二个模型中,更关注潮湿样品,实际值与预测值表明,第二个模型在干燥过程开始时更准确。这突出表明,根据样本及其湿度水平,训练样本的选择对于建立准确的模型至关重要。A  PLS回归热力图(Min = 0;Max = 264)B  第1个回归模型的回归图片(每4分钟获取一次数据)C  第二个回归模型的回归图(每2分钟获取一次数据)图2:“干燥”回归模型的预测性能。使用Specim FX17高光谱相机+ LabScanner 40 x 20位移台光谱范围:NIR(900 – 1700 nm)光谱波段:224光谱分辨率:8 nm狭缝宽度:30 μm空间像素数:640像素大小:15x15 μm成像速度:全谱段采集为670 Hz, ROI波段选择后可达15000 Hz昊量光电推出了适用于科研端、工业端、地面实验室、机载航空等领域高光谱相机,Specim高光谱相机波长覆盖范围很广,包括400-1000nm,900-1700nm,1000-2500nm.2.7um-5.3um,8um-12um, 广泛应用于工业分选、精准农业、色差检测、食品检测、医学制药、文物保护、刑侦检测、环境监测等领域。Specim高光谱相机设备具有高速、强大和稳定的性能,易于安装和维护,并且保证每一个空间像素的光谱纯度,为客户提供真实准确可靠的高光谱数据, 同时具有高效的投资回报。结论Specim FX17适用于准确定量样品的湿度水平,这里是一个棉垫。同时,SpecimInsigh是一个很好的软件来执行这样的分析和建立回归模型。这个模型也可以加载到Spcim Cube上进行实时测量。zui后,本研究表明,训练样本的选择很大的影响着模型的预测性能。关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.11.30

PDH稳频系统可以这么简单的实现

PDH稳频系统可以这么简单的实现一. 简介本实验基于Liquid 公司moku:Pro和Stable laser公司的超稳腔系统,实现了对普通1064nm激光器的PDH稳频,获得了正确的调制边带和误差信号,并进一步对激光器进行锁频和PID锁定优化输出。二. 理论基础腔对于光场的反射率公式如下F(ω):r1,r2是前后镜面的反射率,E为光强,ω,∅为本振频率和调制频率。然后根据这两个公式可得从腔反射回的光场Er:反射光场打到光电探测器中,光电探测器相应的是光功率Pr=ErEr*经过计算有上式第一行是直流项;第二行第三行是由载波和边带之间产生的干涉项,频率为Ω;第四行是两个边带之间的干涉项,频率为2Ω。其中频率为 Ω的项中包含了在两个载波的参考下,激光频率偏离腔的谐振频率的失谐量。提取探测器的交流信息并且和调制频率的射频本振源混频并经过低通后(只剩频率为 Ω 的项和射频本振源混频的信号),就可以得到 PDH 技术的误差信号。在载波和腔近似谐振的情况下,边带几乎完全被反射,即 F (ω ± Ω) ≈ −1,此时F (ω)F (ω + Ω)|* − F (ω)*F (ω − Ω)| ≈ 2iIm[F (ω)],即可以忽略(1)式中的cosΩt项,只剩下sin Ωt 项。因此可以得到混频后(混频时需要使得本振源的信号和反射信号的相位差保持 90◦,以确保得到最大的误差信号。这可以通过在某一臂加入移相器或者简单的加长射频传输电缆的长度实现。)的误差信号为:PDH误差信号可以看出,若激光频率和光学腔共振频率一致时,PDH信号经过零点,当激光频率大于或小于光学腔谐振频率时,解调信号或正或负,满足鉴频特性,可以作为误差信号使用。通过光电探测得到激光和参考腔之间的频率误差信号,对激光频率进行实时补偿,使之紧紧地锁定在参考腔的谐振频率上。这其中,从误差信号的获取到最终反馈到激光频率之间,需要对误差信号进行滤波,放大,平均等处理以后才能对激光频率进行最佳的补偿,这个中间过程中需要用到环路滤波器。通过环路滤波器反馈到激光器来保证超稳激光长期稳频。三. 实验内容1064nm激光器首先经过一个光学隔离器,光学隔离器的作用是防止返回的光影响光的原有电磁场状态。然后来到一个分束器,分束器的作用是将一路光用来做PDH稳频,另外一路做稳频后的激光真实应用。用于PDH的稳频光路进入EOM调制器,再通过一个光纤环路器射入到超精细度超稳腔中,返回信号再耦合到光纤环路器中,由光纤环路器的另一端(part3)进入到探测器,然后产生反射信号。透射信号在超稳腔出射口位置放置。Moku:Pro在这个位置起到了波形发生器,混频器,低通滤波器,PID控制器(快反馈给PZT,慢反馈给了温度反馈)的作用,然而这些功能都集成在了Moku:Pro的Laser Frequency Box功能里面。通过Laser Frequency Box可以给EOM进行调制,也可以产生三角波扫描信号,并同时监视输入信号,输出信号,并与反射信号进行混频产生PDH误差信号。通过获得的反射信号,并对其扫描信号的中间位置,自动找到锁定点,轻轻一点,就可以完成锁定。再通过PID进行优化,即可完更精细的PDH稳频。实验光学设计图和电学设计如下图:超稳腔如下图在没有加EOM调制的情况下,我们得到了正确的入射信号和反射信号:加EOM调制后获得明显的边带通过示波器来观察误差信号,可以看到明显的误差信号的产生。通过锁定点锁定,获得了过零轴的误差信号,并成功锁定激光器的频率,再通过PID的优化调整输出稳定的激光功率。四. 总结本文通过学习PDH稳频的基础理论,了解了误差信号产生的原理以及数学表达。在实验中,通过使用1064nm激光器,光学隔离器,EOM,环形器,Stable laser 公司的超精细度超稳腔和Liquid 公司提供的Moku:Pro的laser Frequency Box 功能方便简洁的对整个系统的透射信号,反射信号,误差信号,以及PID反馈信号的监视和参数的调整,快速的获得了透射信号,反射信号,PDH信号,以及锁定后的PDH信号。本系统的搭建快速,简便,方便使用者能够快速入手。相关文献:1.https://zhuanlan.zhihu.com/p/451849194关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.11.30

热烈祝贺:昊量光电喜获瑞士Pi lmaging Technology公司中国独代

热烈祝贺:昊量光电喜获瑞士Pi lmaging Technology公司中国独代近日,上海昊量光电设备有限公司与瑞士Pi lmaging Technology公司成功签署了du家代理协议。后续昊量光电将作为瑞士Pi lmaging Technology在中国地区的du家代理商全 权进行中国地区的商业活动及售后服务。昊量光电凭借专 业的技术实力和全面周 到的服务赢得了广泛的客户好评和信任,也获得了瑞士Pi lmaging Technology公司的高 度认可和信赖,期待未来双方的合作能够带来更多的共赢和发展。昊量光电作为瑞士Pi lmaging Technology的du家代理商,将继续发挥自身优 势与探索精神为国内前 沿的科研与工业领域客户提 供优 质的产品,服务,支持,及系统解 决方案!助力中 国智 造与中 国创 造!瑞士Pi lmaging Technology的技术源于代尔夫特理工大学和洛桑联邦理工学院10年的潜心研究。它的核心是采用标准半导体技术设计的单光子雪崩二极管(SPAD),这使得PiImaging的光子计数阵列具有无 限数量的像素和适应性强的架构,并通过创建具有zui高灵敏度和zui低噪声的光子计数阵列来源源不断的推出创新产品。这些产品在生命科学和量 子信息等方面进行前 沿科学研究,开发出许多优 质的服务和前 沿的应用。相关产品■ 集成度高,即插即用■ 内置Time Tagging功能 ■ 空间分辨率与信噪比之间更平衡■ 网络协议传输,二次开发环境友好■ 长227.5px、宽145px、厚98.75px,体积小易携带■ 23个探测器,噪声低、传感面积大、扫描速度更快■ 暗计数:25cps ■ 传感器阵列:512x512■ 波长范围:400—900nm■ 耦合接口类型:C-mount■ zui小曝光时间步进偏移:17ps■ 单像素计数率zui大值:100kcps■ 峰值单光子探测效率:50%@520nm■ 填充因子:30-40% for colimated light ■集成度⾼,即插即⽤■内置TimeTagging功能■空间分辨率与信噪⽐之间平衡■⽹络协议传输,⼆次开发环境友好■320个探测器+tdc,噪声低 扫描速度更快■超过80%的填充因⼦■可直接悬置在显微镜上关于昊量光电:上海昊量光电设备有限公司是光电产品专 业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国 防、量 子光学、生物显微、物联传感、激光制造等;可为客户提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

经销代理

2023.11.23

用Specim高光谱相机检测胶水

用Specim高光谱相机检测胶水胶水和粘合剂广泛应用于许多工业应用,从包装和建筑到电子和航空航天等。胶水一般都是有些贵的,使用适量的胶水至关重要,因为它可以节省成本,增加产量,减少浪费。 使用过少或过多的胶水往往是造成质量问题的原因,如开裂等。涂太多胶水也会弄脏成品。在合适的地方使用适量的胶水,这个过程应该仔细检测。然而,检测胶水是比较难的,因为大多数胶水都是透明的,基于RGB相机的标准视觉系统无法看到它们。而高光谱相机则可以,高光谱相机提供了一个更合适的解决方案。 本案例演示了specim高光谱相机用于检测纸板和合成橡胶上的不同类型的胶水的效果。关键词:NIR=近红外(900 - 1700 nm)SWIR=短波红外(1000 - 2500纳米)MWIR =中波红外(2700 - 5300 nm)PCA=主成分分析PLSDA=偏最小二乘判别分析图1  三种胶水照片(左)和底板材料(右)我们用三个覆盖不同波长的specim高光谱相机测量了样本: specim FX17,近红外(NIR)相机,光谱范围为900 - 1700 nm 。specim SWIR,短波红外(SWIR)相机,光谱范围为1000 - 2500nm。 specim FX50, 是一款中波红外(MWIR)相机,光谱范围为2700 - 5300 nm。用specim FX17相机对胶水进行分析 首先用specim FX17相机在specim 40 x 20 Labscanner(见图2)上测量样品。在900 - 1700 nm的全部光谱范围内,光谱分辨率为8 nm。图像上的像素大小约为0.3毫米。图2  specim FX17高光谱相机和40 x 20 LabScanner位移台PCA分析和PLSDA模型分别应用于干的胶水和湿的胶水。值得注意的是,在纸板(顶部)和橡胶(底部)上,胶水是从左向右涂抹的。胶水1在左边,胶水2在中间,胶水3在右边。此外,对于各个底板上的每种胶水,顶部的“污染”点是指干燥的胶水,而底部的胶水是湿的胶水。图3显示了分析结果。(i) specim FX17相机可以更好地检测纸板上的胶水,(ii)它可以检测胶水3(环氧树脂),但对其他类型的胶水不太敏感。尤其是胶水1,它在橡胶上根本检测不到。这种现象的一个解释可能是胶水的用量。环氧树脂要厚得多,我们用的也多。因此,它的检测更容易。结果还表明,FX17对干胶和湿胶的区分不是很准确。图3  PCA可视化组件5(红色),3(绿色),4(蓝色)和PLS-DA预测使用specim FX17相机用Specim SWIR相机对胶水进行分析然后用specim SisuCHEMA上的specim SWIR相机测量样品(见图4)。在1000 - 2500 nm的整个波段内,光谱分辨率为12 nm。图像上的像素大小约为2.3毫米。图4  specim SWIR高光谱相机和SisuCHEMAspecim SWIR相机可以被视为specim FX17相机的扩展。因此,除了SWIR光谱的外,近红外光谱的观测结果也是有效的。 PCA分析和PLSDA模型分别应用于干的胶水和湿的胶水。图5显示了分析结果。作为提醒,我们看到了 (i) FX17在纸板上更好地检测胶水,ii)对胶水3(环氧树脂)最敏感,对胶水2中等敏感,对胶水1不太敏感。除了FX17的近红外光谱之外,SWIR相机提供的1700 - 2500 nm光谱范围的增加,(i)相当好的检测纸板上的所有三种类型的胶水,在橡胶上也有更好的性能(薄而干燥的橡胶上的胶水1可以开始检测);(ii)干胶和湿胶的分离也更准确,但有进步空间。图5  PCA可视化组件5(红色),3(绿色),4(蓝色)和PLS-DA预测通过specim SWIR相机用specim Fx50相机对胶水进行分析样品最后用specim FX50相机在specim 100×50 LabScanner上进行测量(见图6)。在2700 - 5300 nm的整个光谱范围内,光谱分辨率为35 nm。图像上的像素大小约为0.3毫米。图6  specim FX50高光谱相机和100×50 LabScannerSpecim FX50相机对胶水非常敏感。分析表明,无论底板材料是什么,胶水都能强烈地吸收3000到3500纳米之间的光。 再次,PCA分析和PLSDA模型应用于该数据。图7显示了分析结果。FX50对胶水的检测更加准确。我们甚至可以检测到非常薄的胶水层,和橡胶上的干胶水。图7  PCA可视化组件5(红色),3(绿色),4(蓝色)和PLS-DA预测通过specm FX50相机上海昊量光电作为芬兰Specim中国地区的代理商,为您提供专业的选型以及技术服务。结论 本研究使用三种光谱范围不同的specim高光谱相机检测纸板和橡胶上的三种胶水,湿的和干的。根据测量和分析,我们可以得出以下结论: 关于胶水的检测(见图8):在纸板上  这三种相机都有相似的性能。在合成橡胶上 specim FX17相机足以检测三种胶水中的两种。Specim SWIR相机稍微好一点,因为它可以开始检测FX17无法检测到的干胶薄层的存在。在这方面,specim FX50是最好的相机,它可以可靠地检测本研究中测量的所有三种类型的胶水。图8 3台specim高光谱相机对胶水的检测。给出了RGB图片和PLS DA模型的检测结果关于三种胶水的分辨(见图9):在纸板上 这三个相机都能把胶水分开。在合成橡胶上FX17和SWIR相机表现最好。对于FX50来说,胶水2和3的分离并不是很好。我们从光谱中看到,胶水2和3都非常显著地吸收了光,没有合适的特征光谱。这使得他们非常容易的从底板上突显出来,但他们之间的区分就比较难。  关于干湿胶水的区别(见图9):在纸板上 SWIR相机是最精确的,但只比FX50好一点点。在合成橡胶上  没有一个相机是完全可靠的。图9  FX17、SWIR和FX50相机的PLS DA模型预测。这些图与图3、图5和图7中的图相同。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.11.14

液晶空间光调制器常用的校准测量方式

液晶空间光调制器常用的校准测量方式不同的LCOS所能调制的范围不同,因此在使用之前,需要对每个LCOS都进行调制性能的标定。主要测量方法有功率计探测法、马赫—曾德干涉方法、径向剪切干涉方法、泰曼格林干涉方法、双孔干涉方法等。下面简单介绍几种。功率计直接探测法图1功率计直接探测法的原理图如图1所示,激光经准直扩束后照射在非偏振分束片上,其中透射光经LCOS调制后反射,反射光经反射镜反射后作为参考光,与待测的 LCOS调制后的光发生干涉后被功率计接收,记录光强的变化。测试方法非常简单,但是由于照射光不是严格的平行光,干涉后的光强较难保证完全均匀,导致测量结果精度不高,而且得到的相位调制特性结果为整个LCOS液晶层表面的平均结果,无法通过该方法得到液晶层特定表面的调制结果。马赫-曾德干涉方法 图2马赫-曾德干涉方法原理图如图2所示。激光经过第一个BS后将光分成两路,一路光由反射镜反射到第二个BS,另一路光透过液晶空间光调制器发生调制后,与参考光干涉。得到的干涉条纹的相对移动量即为液晶空间光调制器的相位调制量。马赫-曾德干涉仪通过计算干涉图的相对移动来得到液晶空间光调制器的相位调制情况。马赫-曾德干涉基于干涉原理进行测量,但是由于装置需要的参考光为严格的平面波,对实验装置的稳定性要求较高,此外该方法适用于测量透射式液晶空间光调制器。径向剪切干涉方法径向剪切干涉方法工作原理图如图3所示,该方法通过对液晶空间光调制器调制后的波面与本身错位后放大和缩小的波面产生干涉条纹,通过迭代算法分析得到干涉条纹,以得到液晶空间光调制器的相位调制特性。图3在剪切干涉光路中,将放大的波面作为参考光,避免了引入额外参考光所带来的误差,保持了系统的稳定性,具有较高的精度。在记录干涉条纹的过程中, 针对整个波面进行记录,只需要一幅干涉图即可。但缺点是若放大的波面畸变比较大时,将无法被视为平面波,干涉条纹将较为复杂,不利于后续的实验结果处理。 上海昊量光电设备有限公司代理的Meadowlark Optics的硅基液晶 (LCoS) 空间光调制器 (SLM) 采用模拟寻找,专为纯相位应用而设计。可以提供高速的响应时间和高相位稳定性。许多用于表征和校正像差的算法都基于Zernike多项式。然而,对圆形孔径的依赖不适用于描述正方形或矩形阵列的像差。美国Meadowlark Optics公司已经开发了基于SLM的干涉子孔径的替代方案,以确保SLM的有效通关区域上的像差可以被校正到λ/ 40或更好。如下图所示, 矫正后的MLO空间光调制器波前像差(波前畸变)变得很低。a)原始的1920 x 1200像素SLM波前(λ/ 7 RMS)(b)应用了像差校正的波前(λ/ 20 RMS)(c)未应用校正的像差曲面图。 (d)应用校正后的像差曲面图。上海昊量光电设备有限公司可以提供1920x1200分辨率的标准款纯相位液晶空间光调制器和1024x1024分辨率超高速的纯相位SLM。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。

应用实例

2023.11.14

< 1 2 3 4 5 ••• 9 > 前往 GO

上海昊量光电设备有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 上海昊量光电设备有限公司

公司地址: 上海市徐汇区虹梅路2007号远中产业园三期6号楼3楼 联系人: 昊量 邮编: 200235 联系电话: 400-860-5168转2831

友情链接:

仪器信息网APP

展位手机站