您好,欢迎访问仪器信息网
注册
北京欧兰科技发展有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-860-5168转1446

仪器信息网认证电话,请放心拨打

当前位置: 欧兰科技 > 资料中心 > 自补偿型激光诱导白炽光(AC-LII)在测量颗粒物排放中的应用

自补偿型激光诱导白炽光(AC-LII)在测量颗粒物排放中的应用

2009-12-27 21:13

浏览:479

分享:

资料摘要:

Auto-Compensating LII (AC-LII) 􀁺 two-color pyrometry to determine the particle temperature — permits use of low-fluence — particles are kept below the sublimation temperature 􀁺 this new technique automatically compensates for any changes in the experimental conditions — fluctuations in local ambient temperature — variation in laser fluence — laser beam attenuation by the particulate matter — desorption of condensed volatile material AC-LII Features 􀁺in situ and nonintrusive 􀁺 signal is proportional to soot volume fraction 􀁺spatially resolved 􀁺 time resolved 􀁺 large measurement range — not limited by aggregate size 􀁺high precision and repeatability 􀁺 high speed data acquisition and analysis AC-LII Benefits 􀁺dilution of sample not required 􀁺stable measurement of elemental carbon 􀁺 insensitive to presence of other species 􀁺can operate at very low concentrations 􀁺real-time results 􀁺cycle-resolved measurements possible 􀁺can provide particulate morphology (size, size distribution, number density) when combined with scattering

下载本篇资料:

资料文件名:
资料大小
下载
自补偿型激光诱导白炽光(AC-LII)在测量颗粒物排放中的应用
2682KB

相关资料

湍流本质上具有三维(3D)立体结构属性。普通的二维(2D)包 括采用激光照明的成像测量无法在所有三个空间维度上分辨湍流 的结构。而利用多视角成像信息,采用层析重构技术则可以在三 个空间维度上同时捕捉记录复杂流动的瞬态结构。应用针对体像 素的三维(3D)相关处理技术,可以由时间相关的体成像数据计 算出瞬态三维空间的流场。 LaVision功能强大的,基于层析粒子成像测速(Tomo-PIV)和层 析粒子跟踪测速(Tomo-PTV)技术的FlowMaster激光成像系统, 能够以极高的空间分辨率记录强湍流,火焰以及喷雾对象的瞬态 体视流场。

Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which depends on the fish’s morphology and swimming movements. These fins also act as roll and pitch stabilizers for the swimming fish. In this paper, studies are performed on the flow induced by fins of freely swimming undulatory carangiform swimming fish (freshwater black shark, L = 26 cm) by an experimental hydrodynamic approach based on quantitative flow visualization technique. We used 2D PIV to visualize water flow pattern in the wake of the caudal, pectoral and anal fins of swimming fish at a speed of 0.5–1.5 times of body length per second.

Single-shot, tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow using volumetrically illuminated laser-induced fluorescence. The fourthharmonic output of an Nd:YAG laser at 266 nm is formed into a collimated 15 × 20 mm2 beam to excite the ground singlet state of acetone seeded into the central jet. Subsequent fluorescence is collected along eight lines of sight for tomographic reconstruction using a combination of stereoscopes optically coupled to four two-stage intensified CMOS cameras. The performance of the imaging system is evaluated and shown to be sufficient for recording instantaneous three-dimensional features with high signal-tonoise (130:1) and nominal spatial resolution of 0.6–1.5 mm at x/D = 7–15.5.

Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny.

推荐产品
供应产品

北京欧兰科技发展有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京欧兰科技发展有限公司

公司地址: 北京市海淀区上地十街1号辉煌国际中心1号楼1006室 联系人: 李俊杰 邮编: 100085 联系电话: 400-860-5168转1446

仪器信息网APP

展位手机站