您好,欢迎访问仪器信息网
注册
天津市兰力科化学电子高技术有限公司

关注

已关注

银牌19年 银牌

已认证

粉丝量 0

当前位置: 天津兰力科 > 解决方案 > 天津兰力科:生物镁合金腐蚀降解行为研究

天津兰力科:生物镁合金腐蚀降解行为研究

2017/11/08 18:12

阅读:400

分享:
应用领域:
钢铁/金属
发布时间:
2017/11/08
检测样品:
检测项目:
可靠性能
浏览次数:
400
下载次数:
参考标准:

方案摘要:

近几十年来,已有多种硬组织植入材料被成功地开发。金属由于具有比陶瓷 或聚合物更高的机械强度及韧性,在修复或替换骨组织的生物材料方面扮演着重要角色。现有的医用金属生物材料主要包括不锈钢,钛合金及镍钴铬合金。而这些合金存在一些弱点,一是经过腐蚀或磨损会释放有毒的金属离子或者粒子,导致生物相容性的降低。二是现有金属材料的弹性模量与骨组织不匹配,导致新骨生长减慢及变形。三是现在广泛使用的金属植入板、螺丝钉等,当组织愈合后需通过第二次手术将其取出。镁合金是一种潜在的人体植入材料。镁的密度、弹性模量等综合力学性能与人体骨骼相近。更重要的是,镁与人体的相容性极好,溶解的镁离子正是人体必需的元素。Ca是人体中最重要的阳离子,是人体硬组织骨的主要组成之一,镁钙合金中富钙相的腐蚀溶解将引起局部钙浓度升高,从而促进羟基磷灰石或可作其前驱物的其它磷酸钙陶瓷的形成,有利于新生硬组织在合金表面沉积。本课题研究一种可降解的硬组织植入材料——MgCa合金,可望在腐蚀降解的同时诱导新骨生长,最终被新骨完全取代,达到彻底治愈硬组织损伤的目的。 本课题研究了纯镁及镁合金在体液浸泡实验中的腐蚀降解情况。通过金相观 察、腐蚀失重分析、pH值分析、X衍射分析、析氢速率测试、扫描电镜形貌分析、电化学腐蚀速率测量,找出了镁合金在仿生溶液中的腐蚀降解规律。最后对试样进行了细胞毒性等生物学性能测试及硬度等力学性能分析。实验结果表明: (1)自行设计、冶炼含0~2.0%Ca的镁合金。通过控制中间合金的加入量,分 别得到Mg-0.7Ca、Mg-2.0Ca、Mg-0.74Ca-0.35Y、Mg-1.9Ca-0.45Y及Mg-2.0Ca-1.2Y五种不同组分的镁基合金。其中,含0~1%Ca的镁基合金在国内是首创。 (2)上述五种合金与99.9%纯镁、Mg-Zn合金对比,在本实验仿生体液中浸泡 后检查分析,结果显示,在以上所有合金中,Mg-0.7Ca合金的平均失重率最低,其值为1.11%/d;pH值变化最为缓慢;电化学腐蚀速率为2.298mA/mm2,仅次于纯镁的2.086 mA/mm2;显微硬度HV为85,较纯镁及其他合金均高;细胞毒性为0~1级,满足细胞毒性的要求。因此,Mg-0.7Ca合金具有最佳的耐蚀性能、生物相容性等综合性能。 (3)最佳组分配比的Mg-0.7Ca合金,在仿生体液浸泡前时显微组织均致密、 细小,XRD分析显示,浸泡前主要为α-Mg及Mg2Ca相,浸泡后其表面主要为α -Mg及TCP[Ca3(PO4)2]相,且随着时间增加,表面物相出现非晶化趋势。同时,宏观可见致密、均匀的白色物质并与基体结合良好。这些特征表明该合金在仿生体液环境下的腐蚀降解行为导致它良好的骨诱导性能,同时,该合金表面出现非晶化趋势白色钝化膜及生物TCP陶瓷,是该Mg-Ca合金耐蚀性能提高对原因之一。 (4)热力学计算证明,由于钙的标准电势低于纯镁,当钙固溶于镁中,或者 以单质形式析出时,合金内部产生微电化学反应,钙成为牺牲阳极,从而加速合金的腐蚀。而铸态的镁合金由于非平衡结晶钙形成了Mg2Ca。因此,铸态的Mg-Ca合金将拥有较好的耐腐蚀性能。

产品配置单:

分析仪器

天津兰力科电化学工作站LK98BII

型号: LK98B II型

产地: 天津

品牌: 兰力科

面议

参考报价

联系电话

下载本篇解决方案:

资料文件名:
资料大小
下载
生物镁合金腐蚀降解行为研究
9482KB
相关方案

天津兰力科:罐头中铅检测(电化学工作站)

利用不除氧电位溶出分析法成功地测定了溶出电位相近的铅、锡两元素。以0. 05mol·L - 1草酸为介质,调节溶液pH 1. 0 ,以溶解氧作氧化剂,静止溶出,两元素均有分离清晰的平台出现。铅、锡的线性范围分别为2. 0 ×10 - 9~2. 0 ×10 - 7mol·L - 1和2. 0 ×10 - 8~2. 0 ×10 - 6mol·L - 1 。 当富集时间为4min 时,铅、锡的检出限分别为5. 0 ×10 - 10mol·L - 1和5. 0 ×10 - 9mol·L - 1 。此法已成功地应用于测定罐头食品中痕量铅和锡。

食品/农产品

2017/11/18

天津兰力科:直接甲醇燃料电池(DMFC)阳极催化材料的研究

直接甲醇燃料电池(DMFC)以廉价的液体甲醇为燃料,不需要燃料重整设备,运行温度较低,燃料来源丰富,易携带和储存,是便携式电子设备、电动汽车的理想动力源。但其阳极催化剂采用贵金属Pt及PtRu合金,成本高,催化活性低,难以商业化。因此,降低贵金属Pt用量、提高Pt催化剂的活性和利用率,是重要的研究课题。本文采用微乳液法,以聚苯胺-石墨复合材料为载体,成功制备了具有纳米分散性的Pt/PANI-G、Pt-Ni-Zr/PANI-G阳极催化剂。 (1)通过微乳液法成功合成了聚苯胺-石墨导电高分子催化剂载体,并应用FT-IR、TG、XRD、TEM、导电性和电化学性能测试表征了结构与性能。结果表明石墨含量为10wt%时载体具有较好的导电性能,石墨与聚苯胺之间存在键合作用,聚苯胺-石墨复合材料比聚苯胺具有更大的比表面积。 (2)通过A to B和A+B两种微乳液法成功制备了Pt(20wt%)/PANI-G和Pt-Ni-Zr/ PANI-G电催化剂,采用XRD、TEM、XPS等手段对催化剂进行表征。结果表明A+B 微乳液法制得的催化剂具有更好的结构和性能。微乳液的ω、前驱体的浓度对催化剂粒径存在显著的影响,当ω=8.71、前驱体浓度为0.0192mol/L时制得的催化剂Pt粒径4.0nm,以0、+2和+4氧化态存在,电化学活性面积15.99 m2/g,对甲醇的电化学氧化峰电流为282.04μA·㎝-2、氧化峰电位为0.603V。Pt-Ni-Zr/PANI-G催化剂中金属之间形成较好合金结构,催化剂金属以0、+2等多种氧化态形式存在,Pt粒径大小在3nm左右;Pt11Ni6Zr3/PANI-G催化剂中Pt具有较大的电化学活性面积和较高的热稳定性,对甲醇也有较高的电催化活性且随甲醇浓度和温度的升高而增强,常温时Pt11Ni6Zr3/PANI-G催化剂在1mol/L甲醇+0.5mol/L硫酸溶液中的氧化峰电流为440.94μA·㎝-2、氧化峰电位0.539V。

能源/新能源

2017/11/08

天津兰力科:直接甲醇燃料电池有序功能铂基合金阳极催化剂的研究

能源的短缺和人类对能源的不合理运用,给人类自身的生存条件和自然环境造成了极大的破坏。燃料电池作为一种不经过燃烧直接以电化学方式将燃料的化学能转化为电能的发电装置,有望成为21世纪首选的洁净、高效的发电技术。直接甲醇燃料电池(DirectMethanol Fuel Cell)是燃料电池的一个重要的分支,以甲醇为燃料,具有无污染、能量转化率高、储存和运输方便等优点,有望在便携式电源、电动机车和野外电站等方面得到应用,但是目前阻碍DMFC发展的主要问题是甲醇氧化的电极材料活性不高且对甲醇吸附能力较好的铂的价格昂贵,本文的主要目的是制备出高催化活性且成本较低的甲醇电催化氧化的阳极催化剂。本论文采用了电化学方法,如循环伏安法,常规脉冲伏安法及X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线能量色散谱(EDS)表征等技术手段研究了铂基功能性系列阳极阵列催化剂的制备方法及对甲醇电催化氧化性能,并讨论了甲醇在催化剂上的催化氧化机理。所制备出来的普通铂基合金修饰玻碳电极、铂基多元纳米线阵列电极、铂基多元空心球和Nafion试剂修饰的玻碳电极对甲醇的电催化氧化性能有了很大的提高,且所用的电极材料(贵金属)相比普通铂电极成本明显降低,得到的实验结果对 甲醇燃料电池的商业化有一定的指导意义。 本论文综述了燃料电池的发展历史及其分类,重点介绍了直接甲醇燃料电池的工作原理及研究进展和应用前景,尤其是直接甲醇燃料电池的阳极催化剂研究进展以及对纳米电催化材料在甲醇燃料电池阳极催化剂中的应用前景进行了详细说明,由此得出本文的选题 依据,主要研究内容和结论如下:

能源/新能源

2017/11/08

天津兰力科:综合电化学工作站系统结构的设计

电池行业的发展对电池检测技术提出了更高的要求,迫切需要高效智能 的检测设备。本课题目的是设计一种满足功能和精度要求的综合电化学工作 站。综合电化学工作站在电池检测中占有重要地位,它将恒电位仪、恒电流 仪和电化学交流阻抗分析仪有机地结合,既可以做三种基本功能的常规试 验,也可以做基于这三种基本功能的程式化试验。在试验中,既能检测电池 电压、电流、容量等基本参数,又能检测体现电池反应机理的交流阻抗参 数,从而完成对多种状态下电池参数的跟踪和分析。本文从结构设计的角度,对综合电化学工作站进行了研究。根据恒电位测量、恒电流测量、交流阻抗测量三种功能的工作原理和相应的性能指标,提出以DSP处理器为控制核心的硬件结构体系。在该设计方案下,进行了大量的硬件设计调试工作和软件设计调试工作。本文的内容包括以下三点: (1)电化学工作站的系统分析。详细分析了电化学工作站三种基本功能 的工作原理和性能指标,确定了电化学工作站的硬件系统结构—以DSP处 理器为整个系统的控制核心,实现对六个通道的电池测量和控制,以及将数 据送往PC机进行储存和处理。 (2)系统硬件设计。硬件设计主要集中在DSP电路板、接口电路板、 测量控制电路板的设计上。DSP电路负责发出控制信号和处理测量信号; 测量电路直接与被测对象相连接,实现具体测量、控制;接口电路是DSP 电路板与测量控制电路板之间的桥梁。从电路结构、芯片选型到最后布局, 将各个功能电路进行细化,分步骤设计。 (3)系统软件设计。结合系统工作特点和硬件结构,确定了软件总体架 构。重点研究了过采样滤波软件算法和快速傅立叶变换(FFT)测算交流阻 抗软件算法。

其他

2017/11/08

天津市兰力科化学电子高技术有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 天津市兰力科化学电子高技术有限公司

公司地址: 天津市华苑产业园区榕苑路15号4-C-901 联系人: 孙建东 邮编: 300190

仪器信息网APP

展位手机站