2018/11/22 15:24
阅读:131
分享:方案摘要:
方案详情:
摘要
氨基酸分析(AAA)常被用作蛋白质组学和食品质量检测中测定样品中氨基酸(AA)准确组成的工具。为了及时分析样品,需要分析周期短;为了测定有限量的样品需要高灵敏度的方法;为了提高实验室效率,需要自动化的方法。本文报道了用新开发的1.8 μm 粒径色谱柱测定氨基酸的新方法。这种专利的填料经过专门设计,其产生的反压比市场上任何其它亚2 微米填料都小,可以在400 bar HPLC 系统以及耐压更高的仪器上使用。我们采用惠普/安捷伦公司1988 年首次推出的OPA/FMOC化学衍生法,并改善了以前方法的精密度、分析时间、柱寿命和耐用性。
引言
氨基酸的检测和定量分析一直是蛋白质和食品分析的重要部分,1951 年Moore 和Stein 研制出了第一台氨基酸分析仪,将未衍生的氨基酸(AAs)用离子交换色谱分离后,用茚三酮进行柱后衍生,在可见区检测。1958 年由Beckman 开发并推出了全自动分析仪。它成为蛋白质分析的里程碑,并在1972 年诺贝尔化学奖核糖核酸酶的研究中发挥了重要作用。以前需要几周完成的分析,用该方法不到1 天就可以完成。Beckman新一代的氨基酸分析仪已将分析时间缩短到大约110 分钟,但用茚三酮灵敏度仍然有问题。用邻苯二甲醛(OPA)和巯基乙醇进行柱后衍生反应有一些可能,但却只能检测一级氨基酸(见图1a)。1971 年首次报道了用OPA对氨基酸进行柱前衍生。衍生物相当不稳定,但这一过程可以实现自动化。灵敏度得到了提高,特别是使用荧光检测(FLD)时。OPA不发荧光,其衍生物有很强的荧光,但二级氨基酸仍不能检测。另一种衍生化试剂氯甲酸9-芴基甲酯(FMOC)和一级、二级氨基酸都能反应生成稳定的衍生物,但其本身却具有很强的UV 吸收和荧光(见图 1b)。衍生反应结束后还需要进行提取或与疏水性很强的胺进行反应,以除去过量的FMOC和反应副产物。这种方法也可以作为自动化柱前衍生方法,但商品化时存在问题,与没有使用反提取的系统相比,相对标准偏差(RSD)较高。
1986 年惠普/安捷伦将这两种化学反应依次结合,不用反提取实现了蛋白质水解液氨基酸的全自动衍生、色谱分离、检测和报告。1988 年开发并销售了商品化的分析仪,总分析时间只有36 分钟,灵敏度达到飞摩尔水平。这对于生物技术公司和大学的研究人员来说,无疑是迈向正确方向的一步,因为他们的样品非常有限,尤其是在药物研发的早期阶段。为了使其在商业上可行,需要进行一些化学上的改进:将硫醇换成3-巯基丙酸(MPA)使OPA衍生物更稳定;所有一级氨基酸先与OPA反应,将一级氨基酸从下一步的反应中定量除去;然后加入FMOC,FMOC只与二级氨基酸反应。由于FMOC、FMOC衍生物和反应副产物比任何OPA衍生物的疏水性都强,所以它们不会干扰任何一级氨基酸的检测。因为只有几种FMOC衍生物,所以可以使用简单的两段梯度将这些氨基酸与反应副产物和FMOC分离。详见图1 和图2。相应于各个色谱峰的化合物名称见表1。
结论
本工作对氨基酸分析方法进行了各方面的改进。使用1.8-μm粒径色谱柱可使分析周期缩短一半,从35分钟左右缩短到13.5 分钟左右。最早洗脱的天门冬氨酸和谷氨酸的峰形都得到了改善。提高了二级氨基酸,以及反应最慢的氨基酸,如赖氨酸的重复性。线性良好(r2 接近1),平均峰面积重复性低于2%。报道了各种内径( 从2.1 到4.6 mm) 的新快速分离高通量Eclipse Plus C18,1.8-μm柱的使用。新的流动相和进样器条件非常简单,只要简单地改变流速就可以在 2.1-到3.0-或4.6-mm 内径柱之间进行转换。也可以使用快速分离高通量Eclipse Plus C8 或快速分离高通量Eclipse XDB-C18 或-C8 柱(数据未显示)。
扫描下方二维码,关注“安捷伦视界”微信公众号,获取更多解决方案资讯。
下载本篇解决方案:
更多
使用 Agilent 8697 顶空进样器和 8850 GC-FID 系统进行制药行业的残留溶剂分析
活性药物成分 (API) 的生产过程可能导致成品中存在残留溶剂。根据法规要求,生产商需要监测并控制溶剂残留的含量。在本研究中,按照 USP 方法 ,结合使用Agilent 8850 气相色谱 (GC) 系统与 Agilent 8697 顶空进样器进行溶剂残留分析。使用氦气和氢气载气对系统的检测能力、分离度、定性准确度和定量分析精度进行了验证。
制药/生物制药
2024/10/16
利用透射拉曼光谱对软凝胶胶囊进行定量与鉴定测试
透射拉曼光谱 (TRS) 是一种广受认可的技术,可用于对口服固体剂型 (OSD) 药品进行含量均一度检测 (CU)、含量测定和药品鉴定 (ID) 测试。Agilent TRS100 拉曼药物分析系统可快速无损地分析片剂和胶囊,无需化学品前处理和熟练的化学分析人员,提高了质量控制 (QC) 实验室的操作效率。
制药/生物制药
2024/10/11
检测婴儿配方奶粉、牛奶和鸡蛋中的 30 种全氟烷基和多氟烷基化合物
本应用简报介绍了婴儿配方奶粉、牛奶和鸡蛋中全氟烷基和多氟烷基化合物 (PFAS) 的多组分分析方法的开发和验证。该方法采用 QuEChERS 萃取,随后通过 Agilent Captiva EMR PFAS Food II 小柱进行 EMR 混合模式通过式净化,然后进行 LC/MS/MS 检测。该方法的样品前处理过程简单、高效,LC/MS/MS 检测灵敏度高,且使用纯标准品校准曲线实现了可靠定量。新型 Captiva EMR PFAS Food II 小柱专为动物来源的食品以及植物来源、含种子的干燥食品中的 PFAS 分析而开发和优化。根据 AOAC 标准方法性能要求 (SMPR) 2023.003,对该方法的适用性、灵敏度、准确度和精度进行了验证。结果表明,该方法能够满足分析婴儿配方奶粉、牛奶和鸡蛋中的四种核心PFAS 目标物(即全氟辛烷磺酸 (PFOS)、全氟辛酸 (PFOA)、全氟壬酸 (PFNA) 和全氟己烷磺酸 (PFHxS))以及其他 26 种 PFAS 目标物所需的定量限 (LOQ)、回收率和重复性 (RSD) 要求。
食品/农产品
2024/10/11
利用 Agilent 5900 SVDV ICP-OES 实现快速可靠的 US EPA 方法 200.7 合规分析
Agilent 5900 SVDV ICP-OES 采用了独特的智能光谱组合技术 (DSC) 光学组件,能够在一次读数过程中同时采集轴向和径向观测数据。与其他所有 ICP-OES 仪器相比,5900 的样品测量时间缩短了一半,并且能够在最短的时间内提供最准确的结果,同时单个样品的氩气消耗量最低。通过控制单次分析成本,您的 ICP-OES 可处理更多样品,从而满足不断增加的实验室需求。
环保
2020/04/02