您好,欢迎访问仪器信息网
注册
赛默飞色谱与质谱

关注

已关注

钻石23年 钻石

已认证

粉丝量 0

400-611-9236

仪器信息网认证电话,请放心拨打

当前位置: 赛默飞色谱与质谱 > 解决方案 > iCIEF-HRMS在线直连技术用于蛋白质药物电荷异质性分析

iCIEF-HRMS在线直连技术用于蛋白质药物电荷异质性分析

2023/02/14 11:51

阅读:142

分享:
应用领域:
制药/生物制药
发布时间:
2023/02/14
检测样品:
生物药品药物研发
检测项目:
电核异质性
浏览次数:
142
下载次数:
参考标准:
/

方案摘要:

在整个制药行业中,重组单克隆抗体 (mAb) 为生物治疗产品在销售额和临床份额的快速增长起到了重要作用。最近,因为独特的治疗效果,复杂的蛋白质包括抗体-药物偶联物 (ADC)、双特异性抗体和融合蛋白等重新获得了科学家们的特别关注。在蛋白质药物的关键质量属性(critical quality attribute, CQA)评估过程中,电荷异质性需要对蛋白分子进行深入的结构表征,以确保其安全性、有效性和效力。 此外,对电荷变异体的监测也是蛋白质药物质量控制(QC)中必要的步骤。目前,主要有两种检测蛋白质药物电荷变异体的方法:离子交换(IEX) 色谱和成像毛细管等电聚焦(iCIEF) 或 CIEF,两者传统上都使用 紫外(UV) 作为检测器。UV检测虽然具有良好的稳定性和灵敏度,但受限于其定性能力,无法对分离后的电荷变异体进行更深入的鉴定。为了分析电荷异构体的成因,必须进行准确的定性分析。高分辨率质谱(HRMS)是定性蛋白质分析的有力手段之一。然而,由于所用溶液体系的限制,传统上IEX 和 iCIEF 不能直接与质谱连接。鉴于iCIEF在蛋白质电荷变异体分析中具有分辨率高、通量高等优点,已经逐渐成为生物制药行业生产与质量控制阶段的金标准。因此,科学家们也在尝试各种将iCIEF与高分辨质谱直接连接的技术。其中一种方法是基于芯片的直连技术,然而该方法是使用化学试剂形成pH梯度,稳定性有所欠缺,且分辨率会下降;其他的直连方法在通量、稳定性以及与质谱离子源连接的便利性等方面均有不足。 本文中所使用的CEInfinite (Advanced Electrophoresis Solution Ltd., AES) iCIEF平台,与该公司的专利卡柱和两性电解质配合使用,对mAb、ADC等分子的电荷变异体均可实现高分辨率分离,且兼具良好的稳定性。更为重要的是,所用溶液体系中无甲基纤维素、尿素等,两性电解质也与质谱兼容,这使得iCIEF与高分辨质谱在线直连测量电荷变异体完整蛋白分子量成为可能。该平台与质谱离子源部分连接简单,无需额外接口(图1),不同工作模式切换简便。

产品配置单:

分析仪器

赛默飞三合一高分辨质谱Orbitrap Ascend

型号: Thermo Scientific™ Orbitrap Ascend Tribrid 质谱仪

产地: 美国

品牌: 赛默飞

面议

参考报价

联系电话

方案详情:

文献分享:iCIEF-HRMS在线直连技术用于蛋白质药物电荷异质性分析

原创 飞飞 赛默飞色谱与质谱中国

关注我们,更多干货惊喜好礼

张晓夕

在整个制药行业中,重组单克隆抗体 (mAb) 为生物治疗产品在销售额和临床份额的快速增长起到了重要作用。最近,因为独特的治疗效果,复杂的蛋白质包括抗体-药物偶联物 (ADC)、双特异性抗体和融合蛋白等重新获得了科学家们的特别关注。在蛋白质药物的关键质量属性(critical quality attribute, CQA)评估过程中,电荷异质性需要对蛋白分子进行深入的结构表征,以确保其安全性、有效性和效力。

此外,对电荷变异体的监测也是蛋白质药物质量控制(QC)中必要的步骤。目前,主要有两种检测蛋白质药物电荷变异体的方法:离子交换(IEX) 色谱和成像毛细管等电聚焦(iCIEF) 或 CIEF,两者传统上都使用 紫外(UV) 作为检测器。UV检测虽然具有良好的稳定性和灵敏度,但受限于其定性能力,无法对分离后的电荷变异体进行更深入的鉴定。为了分析电荷异构体的成因,必须进行准确的定性分析。高分辨率质谱(HRMS)是定性蛋白质分析的有力手段之一。然而,由于所用溶液体系的限制,传统上IEX 和 iCIEF 不能直接与质谱连接。鉴于iCIEF在蛋白质电荷变异体分析中具有分辨率高、通量高等优点,已经逐渐成为生物制药行业生产与质量控制阶段的金标准。因此,科学家们也在尝试各种将iCIEF与高分辨质谱直接连接的技术。其中一种方法是基于芯片的直连技术,然而该方法是使用化学试剂形成pH梯度,稳定性有所欠缺,且分辨率会下降;其他的直连方法在通量、稳定性以及与质谱离子源连接的便利性等方面均有不足。

本文中所使用的CEInfinite (Advanced Electrophoresis Solution Ltd., AES) iCIEF平台,与该公司的专利卡柱和两性电解质配合使用,对mAb、ADC等分子的电荷变异体均可实现高分辨率分离,且兼具良好的稳定性。更为重要的是,所用溶液体系中无甲基纤维素、尿素等,两性电解质也与质谱兼容,这使得iCIEF与高分辨质谱在线直连测量电荷变异体完整蛋白分子量成为可能。该平台与质谱离子源部分连接简单,无需额外接口(图1),不同工作模式切换简便。

图1. CEInfinite iCIEF平台质谱直连模式工作原理图

(点击查看大图)


在本文中,我们对NIST mAb(NIST8671)、bevacizumab和pembrolizumab,以及T-DM1这一赖氨酸偶联的ADC药物进行了iCIEF-HRMS在线直连分析。根据每个分子及其电荷变异体的pI分布,我们选择了不同范围的两性电解质(表1),目的在于实现不同电荷变异体之间更好的分离。

表1. 样品配制

对于每个分子,我们也根据其不同性质优化了iCIEF实验条件,详见表2。

表2. iCIEF分离条件


实验条件的优化

由于每个蛋白及其电荷变异体的等电点(pI)分布范围存在差异,为了在直连质谱时得到最好的分离效果,需要进一步优化iCIEF分离条件。优化时,先用pH范围较宽的两性电解质分析目标蛋白得到初步结果,然后再根据初步结果中每个组分不同的pI分布范围,选用相应的窄pH范围两性电解质(优化过程数据未展示)。


在iCIEF的聚焦过程中,蛋白会在电场形成的pH梯度中迁移,直至到达pH=pI的位置,迁移停止。由于蛋白在pI处停止后易沉淀,通常会加入一定浓度的尿素助溶。然而尿素与质谱不兼容,为了解决这个问题,我们的实验中换用甲酰胺代替尿素,在助溶的同时,也与质谱兼容;对于每个样品,甲酰胺的浓度同样也进行了优化(数据未展示),对于大部分样品,10%(v/v)甲酰胺是最适合的条件。


在iCIEF-MS直连模式中,需要两路辅助溶剂。一路被称为mobilization solution(蛋白从卡柱上被推出的溶液,由iCIEF系统配备的蠕动泵完成),该溶液通常为10mM醋酸溶液或0.1-0.5%甲酸水溶液;另一路为make-up solution(由HPLC的泵模块提供,在柱后与mobilization混合) ,通常使用0.1%甲酸,水:乙腈=1:1的溶液。

因为这两路溶液的流速会对实验结果造成影响,我们同样对这两个流速分别进行了优化,mobilization solution流速优化范围30-100nL/min, make-up solution流速优化范围1-10μL/min,发现mobilization solution流速在40-50nL/min之间iCIEF分辨率最好,50-100nL/min分辨率会下降;mobilizaiton solution= 5μL/min,质谱灵敏度最好。


iCIEF-MS直连模式的重复性

在本实验中,NIST mAb被用于系统稳定性测试。如图2所示,图2A为NISTmAb三针平行进样结果,可见质谱总离子流图(total ion current, TIC chromatogram)和主峰解卷积结果均具有良好的重现性;图2B对NIST mAb的TIC和iCIEF-UV谱图进行了对比,可见iCIEF分离出的五个电荷异质体峰均可与TIC中的峰一一对应。需要注意的是,由于系统直连的模式,iCIEF分离后的峰是按照pI由大到小的顺序依次被引入质谱离子源的,故TIC图上最先被检测到的是pI值最大的碱峰,TIC与iCIEF-UV谱图中峰的分布呈镜像关系。

(A)

(B)

图2.iCIEF-MS系统稳定性测试。

 (A),NIST mAb三针平行进样。

(B),NIST mAb 质谱总离子流图(TIC)与iCIEF-UV谱图对比。

(点击查看大图)


iCIEF-MS分析bevacizumab

图3展示了iCIEF-MS分析bevacizumab的结果。从图3A的iCIEF-UV谱图中可以看出,总共有六个电荷变异体的峰被分离并鉴定到,包括三个酸峰(A1-A3),两个碱峰(B1-B2)和主峰(M),均可在TIC-MS谱图中找到对应的峰。图3B为使用Thermo Fisher Biopharma Finder 5.0 (BPF 5.0)软件对各个电荷变异体进行解卷积之后的结果,可见在两个碱峰中,主要的电荷变异体分别为重链末端保留一个赖氨酸(B1)和两个赖氨酸均被保留(B2)的形式;在酸峰中,主要观察到的电荷变异体为糖化(+162Da)。

表3列出了iCIEF-MS鉴定到的bevacizumab电荷变异体。对于酸峰中常见的脱酰胺化修饰,由于其修饰后分子量仅增加0.984Da,通常需要在肽图层面上进一步确认。

(A)

(B)

图3. iCIEF-MS分析bevacizumab。

(A), TIC-MS与iCIEF-MS谱图对比。

(B), 经iCIEF分离后的bevacizumab电荷变异体质谱数据解卷积结果。

(点击查看大图)

表3. iCIEF-MS鉴定到的bevacizumab电荷变异体


iCIEF-MS分析pembrolizumab

下图4及图5展示了我们使用iCIEF-MS直连技术分析pembrolizumab电荷变异体的结果,可见即使是pI仅差0.02的碱峰B1和主峰,也可以在iCIEF上得到基线分离(图4A),随后的高分辨质谱分子量测定结果显示该碱峰与主峰相比,主要差异是其中一条重链的N端未发生焦谷氨酸环化(图5B-C)。另外观察原始质谱谱图不难发现,得益于Orbitrap高分辨质谱的灵敏度,即使是强度比主峰低2~3个数量级的碱峰B3,仍可得到糖型分布清晰的谱图,并可通过解卷积观察到该峰中各个组分的分子量,例如重链末端丢失GK(-185Da)的电荷变异体也在碱峰B3中被鉴定到(图5D)。表4展示了iCIEF-MS直连测得的每个峰中主要的电荷变异体种类。

(A)                                  (B)

图4. (A), pembrolizumab iCIEF- UV 分离谱图。(B), pembrolizumab各个电荷变异体百分含量,上样量为柱上1.6μg。A1-A4, 酸峰; Main, 主峰; B1-B3, 碱峰。

(点击查看大图)

图5. iCIEF-MS分析pembrolizumab电荷变异体质谱图及解卷积谱图。

(A),主峰与所有碱峰原始质谱图对比。

(B),碱峰B1(pI=7.59)与主峰(pI=7.57)解卷积结果镜像图对比。

(C),基于肽图得到的主峰和碱峰B1重链N端焦谷氨酸环化比率。

(D),碱峰B3解卷积结果。

(点击查看大图)

表4 iCIEF-MS在线直联鉴定pembrolizumab电荷变异体。HC,重链。


iCIEF-MS分析ADC

ADC是一类经过细胞工程设计,将小分子药物通过linker分子偶联至mAb分子特定氨基酸位点上,通过mAb对细胞表面的靶点精确识别后,将小分子药物定向导入癌细胞中,以实现精准杀灭癌细胞,减少对正常细胞杀伤的一类蛋白质药物。由于小分子药物的偶联增加了产品的复杂性,故在质谱分析之前,通过各种分离技术对偶联了不同数目小分子药物的ADC进行预分离,可大大降低质谱数据的复杂度和解析难度。图6展示了iCIEF-UV分析ADC的谱图,可见由于偶联小分子药物的数目不同,ADC的电荷异质性也不同,可以在iCIEF层面上得到分离。图7展示了iCIEF-MS分析ADC的质谱谱图及解卷积结果,可见iCIEF将对偶联了不同数目小分子药物的ADC根据其电荷异质性进行分离后,能够减少质谱谱图中相邻信号之间的干扰,从而降低质谱谱图的复杂度,使质谱谱图的解析更精确和便利。

图6. iCIEF-UV 分析T-DM1谱图,上样量1.6μg。D0-D10, 小分子药物偶联数目。

(点击查看大图)

图7. iCIEF-MS分析T-DM1质谱谱图及解卷积结果(分离后未偶联小分子药物的组分,D0)。iCIEF分离大大降低了谱图复杂度。

(点击查看大图)


基于iCIEF分离的

蛋白电荷变异体离线馏分收集

 iCIEF-MS可以从完整蛋白层面上提供蛋白电荷变异体的分子量信息,如需更多修饰位点层面的信息,可以对iCIEF分离的蛋白电荷变异体离线馏分收集后进行酶解,随后使用HPLC-MSMS进行肽图表征。图8展示了pembrolizumab蛋白电荷变异体离线馏分收集的iCIEF-UV谱图,更多详细信息可参考已发表文献[1]。

(A)

(B)

图8. Pembrolizumab 电荷变异体离线馏分收集及确认。

(A) 离线馏分收集。iCIEF-UV为10针平行进样的重叠,插入表格为每个峰以峰面积计算的相对含量和10针平行进样的CV。

 (B) 峰纯度确认,每个峰均为5针平行进样,同一个pI收集峰的混合。

(点击查看大图)


在生物医药行业中,快速且准确的电荷变异体分析是关键需求之一。本文中使用的iCIEF在线直连高分辨质谱工作流程,能够克服CE-MS在灵敏度、重现性等方面的不足,特别是我们使用的CEInfinite平台可以灵活的在不同工作流程之间转换,实现蛋白质电荷变异体表征中的“一站整合式” iCIEF分析。


参考文献

[1] X. Zhang, T. Chen, V. Li, T. Bo, M. Du, T. Huang, Cutting-edge mass spectrometry strategy based on imaged capillary isoelectric focusing (iCIEF) technology for characterizing charge heterogeneity of monoclonal antibody, Analytical Biochemistry 660 (2023) 114961.

如需合作转载本文,请文末留言。




下载本篇解决方案:

资料文件名:
资料大小
下载
12月15日-文献分享iCIEF-HRMS在线直连技术用于蛋白质药物电荷异质性分析.docx
2215KB
相关仪器

更多

赛默飞三合一高分辨质谱Orbitrap Ascend

型号: Thermo Scientific™ Orbitrap Ascend Tribrid 质谱仪

面议

Orbitrap Ascend Editions Tribrid系列超高分辨质谱仪

型号:Orbitrap Ascend Editions Tribrid系列超高分辨质谱仪

面议

Thermo Scientific™ Stellar™质谱仪

型号:Thermo Scientific™ Stellar™质谱仪

面议

Vanquish™ Access HPLC系统

型号:Vanquish Access HPLC 系统

面议

相关方案

高压离子色谱Inuvion快速测定自来水中的常见阴离子

水中常见阴离子如氟离子、氯离子、亚硝酸根、硝酸根、溴离子、硫酸根、磷酸根等的含量,与水质密切相关。在《GB5749-2022 生活饮用水卫生标准》中,氟化物、硝酸盐、氯化物、硫酸盐作为生活饮用水水质常规指标,并给定了限值。在《GB8537-2018 食品安全国家标准 饮用天然矿泉水》中,对氟化物、硝酸盐、亚硝酸盐给与了限度要求。与传统离子检测方法,如分光光度法、电位滴定法、容量法和离子选择电极法等方法相比,离子色谱具有分析速度快、操作方便、选择性好、灵敏度高、性能稳定等优势,在水质分析中得到了广泛应用[1-20]。涉及到阴离子检测的标准及检验方法,大多使用离子色谱对多个阴离子进行同时测定,如《GBT 5750.5-2023 生活饮用水检验方法》、《GB 8538-2022 食品安全国家标准 饮用天然矿泉水检验方法》、《GBT 39305-2020 再生水水质氟、氯、亚硝酸根、硝酸根、硫酸根的测定离子色谱法》、《GBT14642-2009 工业循环冷却水及锅炉水中氟、氯、磷酸根、亚硝酸根、硝酸根和硫酸根的测定 离子色谱法》、《GB 13580.5-1992 大气降水中氟、氯、亚硝酸盐、硝酸盐、硫酸盐的测定离子色谱法》等国标方法,以及大量行业标准和地方标准。 在常规条件下,7种不同的阴离子,需要在10-30分钟内完成分离。近10年来,多款高压离子色谱产品及多种小粒径阴离子色谱柱相继推出,使离子色谱进入了新时代,也使高效、快速的阴、阳离子分离方法有了实现的可能。本篇AN使用赛默飞2023年发布的高压离子色谱新品Inuvion,开发出了一种快速分离的方法,搭配4 m的IonPac AS18小粒径柱,7分钟内完成7种阴离子的分析,灵敏度高,分离度好。

环保

2024/07/25

高压离子色谱Inuvion快速测定生活饮用水中的亚氯酸 盐、溴酸盐、氯酸盐、二氯乙酸和三氯乙酸

生活饮用水消毒过程中,消毒剂(如氯、氯胺、二氧化氯和臭氧)与无机物或有机物发生反应时,会产生消毒副产物(Disinfection by-products,DBPs)。一些消毒副产物已经被证实具有致癌性、生殖和发育毒性等,对人群健康构成潜在威胁[1]。在《GB 5749-2022 生活饮用水卫生标准》中,有5种消毒副产物作为生活饮用水水质常规指标,并给定了限值。其中,溴酸盐的最高含量不允许超过10 g/L,亚氯酸及氯酸盐含量均不得超过0.7 mg /L,二氯乙酸和三氯乙酸的最高含量分别不允许超过50 g/L和100 g/L。 饮用水中除含有消毒副产物外,还含有多种常规离子,如氯离子、硝酸根离子、碳酸根离子、硫酸根离子等,含量可达数百ppm,对消毒副产物的分离和检测有一定干扰。《GBT5750.10-2023 生活饮用水标准检验方法第10部:消毒副产物指标》中,给出了推荐的色谱条件,使用KOH作为淋洗液,梯度洗脱,分析方法时长约为40 min。 近10年来,多款高压离子色谱产品及多种小粒径阴离子色谱柱相继推出,使离子色谱进入了新时代,也使高效、快速的分离方法有了实现的可能。本篇AN使用赛默飞2023年发布的高压离子色谱新品Inuvion,开发出了一种快速分离的方法,借助于4m的IonPac AS19小粒径柱,21分钟内完成生活饮用水中亚氯酸盐、溴酸盐、氯酸盐、二氯乙酸及三氯乙酸,与国标推荐方法相比,效率提升100%。Inuvion的卓越性能,使该方法在分离度、准确度、稳定性均符合要求的前提下,检出限远低于国标限度要求,可满足用户对于生活饮用水中的消毒副产物快速、高通量的检测需求。

环保

2024/07/25

Thermo Fisher Scientific iCAP TQe ICP-MS/MS测定土壤和沉积物多种元素

本应用指南重点介绍了根据第三次全国土壤普查和环境监测方法 HJ766 和 HJ803 进行的土壤样品分析1,2。特别是,证明了Thermo Scientific™ iCAP™ TQe 三重四极杆 ICP-MS/MS 具有可靠的性能保证,提供了一种简单直接的分析方法,该方法仅使用氧气作为反应气体,具有出色的干扰消除能力和更高的灵敏度,达到了以单碰撞模式为主的SQ ICP-MS工作效率。

环保

2024/02/27

赛默飞色谱质谱土壤污染物分析解决方案-助力全国第三次土壤普查

万物土中生,土壤是人类赖以生存的物质基础。近年来频发的土壤污染事件频发,对食品安全、人居环境和人体健康都构成严重威胁,土壤污染防治工作迫在眉睫。 在“土十条”、“土壤环境质量标准”基础上,2022 年2 月,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自今年起开展第三次全国土壤普查,全面深入推进耕地质量监测、评价、建设和保护等工作。 土壤环境监测作为检测土壤质量的有效手段,通过对土壤中重金属、有机污染物等污染物监测,能为土壤环境污染治理和预防提供参考依据。赛默飞土壤污染物解决方案,紧贴国家标准,涵盖仪器、软件、色谱柱、耗材和应用,我们采用行业前沿方案帮助解决您所面临的棘手的土壤污染物分析挑战。

环保

2024/02/27

推荐产品
供应产品

赛默飞色谱与质谱

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 赛默飞色谱与质谱

公司地址: 上海市浦东新区新金桥路27号3& 6& 7号楼 联系人: 赛默飞 邮编: 201206 联系电话: 400-611-9236

仪器信息网APP

展位手机站