您好,欢迎访问仪器信息网
注册
牛津仪器科技(上海)有限公司

关注

已关注

白金23年 白金

已认证

粉丝量 0

科学仪器行业售后服务十佳企业

400-860-2711

仪器信息网认证电话,请放心拨打

当前位置: 牛津仪器 > 公司动态
公司动态

快速响应,专业耐心,牛津仪器Oi Service高效助力用户平台取得成功——访北大生命科学学院公共仪器中心覃思颖

近年来,中国成像设备市场蓬勃发展,相关用户数量激增,而大量增加的业务和客户量对仪器厂商的服务提出了更高的要求,售后业务也迎来新的机遇和挑战。在仪器性能满足需求的前提下,售后服务质量成为了用户采购仪器时越来越关注的因素。为促进产业交流,优化仪器售后服务市场,为用户提供更优质高效的售后服务,仪器信息网特邀请用户代表为科学仪器行业售后服务现状与未来发声。近日,仪器信息网采访了北京大学生命科学学院公共仪器中心覃思颖工程师。访谈中,覃老师介绍了北大生命科学学院公共仪器中心的工作领域,高度评价了牛津仪器客户服务及时响应以支持用户,其值得信赖的服务态度和技能水平为单位平台的科研工作提供了不可或缺的支持。覃思颖,北京大学生命科学学院公共仪器中心工程师,在光学成像平台负责共聚焦显微镜、超分辨显微镜、原子力显微镜、流体力显微操作系统等大型仪器的技术支持与运行管理,在生物荧光成像与图像分析处理、多尺度生物样品的原子力制样与成像检测等方面有着丰富的经验,为校内外100余课题组提供测试服务,支持课题组在Nature、Cell、Nature Cell Biology等国际一流期刊发表论文70余篇,第一发明人专利1项,两项技术与应用案例入选2023年中国仪器仪表学会科研仪器案例库。Q1:请您简要介绍您所在行业领域?您的主要工作研究内容以及其意义?覃思颖:我所在的北大生命科学学院公共仪器中心是公共测试平台,我在光学成像平台为校内外的师生用户提供生物荧光成像与图像分析处理等科研与技术服务,结合课题背景、测试需求、样品制备等多方面来制定实验方案,培训与指导用户使用显微镜获得理想的成像照片以及可靠的数据分析,助力解决科研问题。Q2:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?覃思颖:主要使用的牛津仪器设备是转盘共聚焦显微镜Dragonfly和数据分析软件Imaris。由于我们是公共测试平台,我们首先考虑是否能满足各种不同课题组的实验需求,以及设备的稳定性,设备的操作是否简单易学,设备的售后服务响应速度,设备的维护成本等。Q3:您使用过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?覃思颖:目前使用过牛津仪器提供的远程与现场技术支持、仪器培训等服务。牛津仪器的售后服务响应很快,硬件和软件工程师的专业水平高,能够及时解决问题。Q4:对于牛津仪器在线商城、仪器培训、应用支持、维护保养、升级服务、设备搬家、远程在线智能支持等提供的售后服务,您有哪些印象深刻的案例分享?(该问题比较关键,辛苦您着重描述一下,可举例1-2个)覃思颖:我们平台的设备是24小时开放预约使用,特别是Dragonfly,由于其性能出色、易于使用,预约量非常饱和,设备常常是24小时连轴转。有时候在晚上或者非工作日遇到设备使用问题,工程师都能快速提供技术支持,非常负责认真地远程指导并解决问题,让用户顺利完成拍摄实验。由于生物实验有很强的时效性,能够快速解决问题、不影响实验的进程对于用户获得理想的数据非常的重要。在2022年我们的Dragonfly进行了一次搬家,工程师提前规划运输路线,测量会经过的各个位置的宽度与高度是否能顺利通过,合理安排新位置的设备摆放,在运输过程中全程跟进,确保万无一失,到达新实验室后调试设备至最佳状态,整个搬家过程非常顺利。安装在北大生命科学学院公共仪器中心的牛津仪器Dragonfly,搭载Imaris数据分析软件Q5:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?覃思颖:牛津仪器客户服务无论是现场服务还是远程支持,都有着很高的专业素养和认真负责的服务态度,无论我们遇到的问题大小,都能很耐心、细心地对我们进行指导,给予专业的技术建议,协助我们解决问题,在交流过程中我们也能更进一步了解设备的原理与构造。Q6:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?覃思颖:希望在仪器和软件升级方面提供更多优惠方案,配件维修能够更快更及时。听说牛津仪器目前正在国内建立本地备件库,希望进一步加强零配件需求的时效性,减少维修的时间成本。

媒体关注

2024.05.27

响应设备更新政策 | 2024 WITec多功能联用共聚焦拉曼系统选型指南

WITec 专业研发制造高分辨率、高灵敏度的共聚焦、快速拉曼成像显微系统。WITec 模块化的产品设计,可实现与 AFM、SEM、SNOM、SHG、超低温强磁场等多场技术联用,实现对同一样品进行光学分析、化学组分分析及2D/3D 结构表征,不仅能按需满足您当前的科研需求,还可以扩展功能助您应对未来挑战。1alpha300 系列 拉曼成像显微镜alpha300 系列:拉曼成像( alpha300 R )、原子力( AFM )、扫描近场光学显微镜( SNOM )及其联用系列高共聚焦、高分辨率、高灵敏度拉曼显微系统,以其优异前沿的成像技术倍受认可。灵活的模块化设计,还可以结合更多成像技术,为您定制个性化解决方案,实现原位化学组分分析和纳米级别表面形貌分析等科学研究。alpha300 SHG 将偏振谐波显微成像结合非线性光学效应与偏振共聚焦显微系统,已经广泛应用于科研领域。基于模块化的产品设计,不仅可以实现常规偏振 SHG / THG 测量及成像分析,还可以拓展为低温与磁场等极端条件下的非线性分析,实现传统及新型二位铁电材料与器件的精细分析表征。实验室排布2alpha300 apyron - 全自动拉曼成像显微镜alpha300 apyron 采用高精度自动化硬件控制和预设置光路模块,将易用性和高性能结合起来,扁平化实验工作流程,适用于:兼具不同操作水平和多功能需求的实验室要求高重复性试验场景、注重时效性的工业实验室有高级成像需求的拉曼新手寻求更高性能标准的资深拉曼光谱学家需远程操作的研究人员,如密闭环境操作3alpha300 Ri - 倒置拉曼成像显微镜alpha300 Ri 采用倒置光路对样品从下到上进行化学表征,既保留了 alpha300 系列共焦拉曼成像显微镜的功能,又引入全新的倒置光路设计,便于观察研究水溶液和大尺寸样品。 其独特的几何学设计,尤其适用于生命科学、生物医学和地质领域的研究。4alpha300 Semiconductor Editionalpha300 Semiconductor Edition 半导体定制版是一款专门为半导体材料行业研发的高端共聚焦拉曼显微镜。它能帮助研发人员加速对半导体晶圆和器件的晶体质量、应力与掺杂以及失效分析的表征工作。该款拉曼显微镜搭载大尺寸扫描台,可满足12英寸(30厘米)晶圆的大面积拉曼图像,配备主动隔振台和自动聚焦模块,保证其在测量期间可以对不同形貌样品进行大面积扫描或长时间采集。整套系统全部自动化,可远程控制,以保障工业标准流程测量。关键特性:高性能共聚焦拉曼显微镜,同时兼具快速、高灵敏度和高分辨率高端波长优化光谱仪 ,高信号灵敏度和光谱分辨率大面积扫描 (300 x 350 mm) ,适用于大尺寸晶圆检测大面积测量时实时追踪聚焦 (TrueSurface)主动隔振高度自动化远程控制和可重复性工作流程高级数据处理与分析软件5RISE - Raman - SEM 联用显微镜RISE 显微镜将拉曼成像与扫描电子显微镜功能集成到一台设备,可以进行超微结构表面特性与分子化合物信息关联分析。RISE 显微镜的应用领域可涵盖:材料科学纳米技术高分子地质科学生命科学制药产业6cryoRaman - 超低温强磁场拉曼显微镜cryoRaman 将极限空间分辨率的拉曼成像带到超低温-强磁场研究领域,强势助力低温磁场下材料新物理特性的研究,可轻松进行低至 1.8K 的强磁场实验。多功能关联成像测量:拉曼光谱及成像,荧光及其寿命及成像,二次谐波成像、微区光电流等。多领域应用:量子光学材料的磁光效应拉曼效应磁光材料结构相变、磁相变和磁振子激发研究低温磁场下材料相变的光谱特性磁场对光电材料的能带及载流子漂移影响半导体量子点发光的多体问题7alphaCART: 移动式光纤耦合共聚焦拉曼系统alphaCART 是一款移动式共聚焦拉曼系统,该系统可实现将“实验室”搬到检测现场,为您拓展特殊样品环境下的更多科研应用。alphaCART系统延续了alpha300系列拉曼显微镜的先进光学和模块化设计,并同样受益于WITec在光纤耦合技术方面的长期专业积累。通过光纤将激光器、探头和光谱仪连接,确保系统的高光通量和最佳的光束形状。因此,alphaCART 能提供与 WITec alpha300系列系统相媲美的衍射极限空间分辨率、高共聚焦性和优越的信号灵敏度。alphaCART 可搭载不同配置,以满足您对激发波长和光谱仪设置的特定要求。系统配备白光照明和彩色摄像机,以实现样品观察与定位,通过最新的 WITec Suite 软件 采集数据并完成数据后处理。alphaCART 系统还可以完整装入定制的可移动外箱(可选配)中,方便且安全地带到测试现场。此外,也可将系统的拉曼探头连接到实验室的标准 alpha300显微系统上,以拓展更多应用。

企业动态

2024.04.15

响应设备更新政策 | 2024 低温强磁场设备选型指南

近日,国务院常务会议审议通过《推动大规模设备更新和消费品以旧换新行动方案》。在国民经济高质量发展,以及重大基础科学创新中都扮演了重要角色的科学仪器行业,迅速掀起了设备更新浪潮。牛津仪器纳米科学部,作为一家设计并提供具有专业技术的仪器供应商,助力量子技术、纳米技术、先进材料和纳米器件等领域的开发与研究。此次我们也将积极把握政策机遇,为客户提供便捷的设备更新服务。为此,我们整理出了一份选型指南,以帮助老师们快速完成申报。如需要进一步交流与咨询,欢迎您随时联系我们,我们将在第一时间与您联络。1►TeslatronPT无液氦超导磁体低温系统•集成的变温插杆可提供的样品温度范围为:1.5 K-300 K•结构紧凑,标准配置的最高磁场强度为14 T,可选配矢量旋转磁体•选配不同的插件可获得更低的温度:HelioxVT选件可获得•低振动 — 适用于多种敏感测试 •分立式密封样品腔,可快速简单地更换样品,且无堵塞系统冷却回路的风险 •低功耗 — 使用单脉冲管制冷机 •敏感样品周围无气体流动:系统采用静态交换气冷却样品,避免制冷气流引起的脆弱样品或者测量样品杆的振动 •通过顶部样品杆可实现快速更换样品。可在系统处于低温状态时更换样品,无需复杂的负载锁定机制来重新装载变温插件•系统使用内部冷阱来过滤污染物,无需使用液氮2►TeslatronPT低温插杆• 可选配连接到样品的直流和射频线 • LCC样品托和通用接口,轻松实现样品的快速更换。兼容低温插杆系统• 最低温• 最低温3►KelvinoxJT插杆式稀释制冷系统插杆式稀释制冷系统,采用Joule-Thomson冷凝单元可同时兼容湿式及干式低温恒温器。•能与我们多种产品兼容,包括TeslatronPT低温恒温器,湿式Integra磁体系统,任何液氦存储罐或任何样品管直径不小于50 mm的VTI等 •带有数据可视化和远程控制软件的自动化气体处理系统 •具有自动控制热交换气体的内部真空层(IVC) •IVC使用真空脂或CAF胶密封(不需要铟) •备有一个6 mm直径的直通孔用于安装实验接线4►Cryofree®ProteoxMX型模块化稀释制冷机Cryofree®ProteoxMX型模块化稀释制冷机5►Cryofree®ProteoxLX 多比特数量子计算专用无液氦稀释制冷机•超大样品空间,最多256根SMA接头同轴线•可联系牛津仪器,定制高密度同轴线方案•能够容纳大量输入和输出同轴线以及低温微波器件 •全面兼容Proteox稀释制冷机二级插件 •设备经过低振动技术优化,有效减少量子比特相干时间扰动 •基础温度低于7mK,并且在20 mK时的制冷功率大于25µW,双脉管冷头设计可以在4 K盘提供大量富余的制冷功率6►Proteox5mK•Proteox5mK是一台商用连续工作稀释制冷机,可提供小于5mK的极低温环境,@20mK制冷功率大于25 µW;采用刚性支架和柔性波纹管以及平移共振峰来降低脉管冷头的机械振动及其谐振信号•制冷机内部排布合理,便于进行实验组装 •同轴线和直流线可以安装在总共六个直通孔和九个非直通孔之中 •气隙热开关系统可以在8小时内将样品从30 K 降至最低温7►ProteoxS稀释制冷机小型化的快速表征平台,性能毫无妥协•专利设计的底部换样装置,无需停机即可实现快速换样•全新的设计更使安装层高要求减小到 •可搭载 12T单轴磁体和 6,1,1T 三轴矢量磁体•提供多路直通孔和非直通孔接头,仍可安装多至 22 路半刚性同轴线缆及多种直流线、Thermocoax、光纤等8►稀释制冷机二级插件二级插件不仅仅是传统意义上的接口, 它还可以容纳完整的实验装置,包括直流引线、 高频同轴线和低温微波器件。•灵活的模块化设计增强了各种应用需求的兼容性 •二级插件包含—个117 mm x 252 mm大型矩形通道。这可以配置为—个自定义平台,或是配备2个1S0100端口和—系列标准选项 •可选择搭载配备牛津仪器设计的底部快速传样装置的二级插件,在集成超导磁体的系统中可以实现快速换样9►SpectromagPT无液氦光学超导磁体系统•结构紧凑,水平磁场强度达7T •可在系统处于低温状态时更换样品 •超导磁体采用市面上最高规格的超导线材结合先进技术制造,性能高效可靠。 •多种实验插件可满足多种应用及研究需求 •通过顶部装载样品杆实现快速换样 •平行和垂直磁场方向优良的光学通路 •可实现样品全角度旋转测量 •采用闭循环制冷方式,减少样品交换气污染风险和气路堵塞问题10►Integra低损耗液氦杜瓦磁体系统•低损耗杜瓦配备液氮保温层和超导磁体电极,有利于降低液氦蒸发 •最高20T磁场•使用变温插件(VTI),变温范围为1.5至300 K•兼容VTI与KelvinoxTLM•磁体可与3He制冷机插件或极低温稀释制冷机集成,低温可达15mK以下11►KelvinoxTLM顶部取样式稀释制冷插件

企业动态

2024.04.09

多渠道及时响应,全力保障用户设备平稳运行——访大连理工大学工程学院副院长董旭峰

随着科学仪器行业的蓬勃发展,近年来,中国分析仪器市场蓬勃发展,相关用户数量激增,对应售后服务市场在近十年来发展迅速,售后市场又迎来新的机遇和挑战,而大量增加的业务和客户量对仪器厂商的服务提出了更高的要求。在仪器性能满足需求的前提下,售后服务质量成为了用户采购仪器时越来越关注的因素。为促进产业交流,优化仪器售后服务市场,为用户提供更优质高效的售后服务,仪器信息网特邀请用户代表为科学仪器行业售后服务现状与未来发声。近日,仪器信息网采访了大连理工大学工程学院副院长董旭峰教授。访谈中,董教授介绍了大连理工大学的材料分析测试中心的研究方向及应用,高度评价了牛津仪器客户服务及时响应以支持用户,其值得信赖的服务态度和技能水平为单位平台的科研工作提供了不可或缺的支持。董旭峰老师董旭峰,大连理工大学与工程学院教授、副院长,大连市高端人才,材料测试分析中心主任。主要从事智能复合材料及生物医用复合材料研究,主持国家级项目/课题7项(国家重点研发计划课题2项,国家自然科学基金2项),发表SCI期刊论文 150 余篇,出版英文著作一部,授权国家发明专利14项,PCT国际专利1项,在国际/国内学术会议做大会报告及邀请报告20余次,曾获辽宁省自然科学学术成果二等奖(排名第一)。仪器信息网:请您简要介绍您所在行业领域?您的主要工作研究内容以及其意义?董旭峰老师:我们大连理工大学的材料分析测试中心是公共测试平台,现开展材料的化学成分分析,材料显微组织分析,力学性能及物理性能检测,材料微结构表征,微区成分、表面形貌分析,多晶体相分析、腐蚀行为检测等。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?董旭峰老师:主要使用的仪器是牛津仪器的能谱仪EDS和电子背散射衍射仪EBSD。在采购这类设备的过程中首先考虑的是设备功能可否满足当前的科研需求,另外售后服务的水准及响应速度也是非常重要的考量因素。大连理工大学分测中心配套牛津仪器能谱及EBSD的FIB及SEM仪器信息网:您使用过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?董旭峰老师:使用过牛津仪器的在线支持、现场技术支持和仪器培训等服务,牛津仪器的售后服务响应快、专业程度高。工程师上门时现场举办的应用讲座和上机操作演示也为广大师生提供了很好的交流学习机会。仪器信息网:对于牛津仪器在线商城、仪器培训、应用支持、维护保养、升级服务、设备搬家、远程在线智能支持等提供的售后服务,您有哪些印象深刻的案例分享?董旭峰老师:印象比较深的有一件事情,由于我们平台是24小时开放预约测试,由于设备使用强度高,运转时间长,在设备使用过程中难免会遇到一些紧急问题。有一次晚上九点多钟,学生使用电镜时样品台撞到EBSD探头,造成EBSD探头无法退回。我们马上联系牛津仪器的售后服务,虽然时间很晚了,工程师还是非常负责地远程指导检查设备,提出应急方案,并且随后安排了上门服务,很好地解决了问题。仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?董旭峰老师:无论是工程师远程提供技术支持或者上门服务,都能感受到他们认真负责的态度和较高的专业素养,通常他们都是先详细地了解设备状态,诊断故障原因,然后针对存在问题提供有效的解决方案,帮助用户尽快解决问题。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?董旭峰老师:希望牛津仪器在本地备件库可以更加丰富,进一步加强零配件需求的时效性。另外希望未来牛津仪器快速地响应售后需求的同时,在现场或者在线技术交流方面探索更多的模式,更好地提升用户体验。

媒体关注

2024.04.08

响应设备更新政策 | 2024 牛津仪器生命科学产品选型指南

‍‍科学相机及光谱解决方案(Andor Technology)科学相机、显微成像系统、模块化光谱仪和多维可视化图像分析软件的开发和制造商,为学术、工业和政府客户提供多种高性能科学成像解决方案。1►多功能台式共聚焦显微镜仪器特点:集共聚焦显微技术、宽场显微技术、透射光显微技术于一体适合生物学家的高速共聚焦成像技术强大而直观的采集及图像分析软件主要应用:细胞生物学发育生物学神经科学组织成像扩展阅读:BC43台式共聚焦,快到桌面上来--轻松获取大组织和活细胞多维数据2►Dragonfly转盘共聚焦成像系统200系列,适用于倒置和正置显微镜:•共聚焦速度高达400 fps •Borealis™增强型照明 •适用于大而平坦的视野 •ClearView-GPU™去卷积;•双相机采集 •选择变焦和针孔尺寸600系列提供所有成像模式和扩展功能。包含Dragonfly 200所有功能,并在其基础之上加入了SMLM、3D超分辨模块、B-TIRF和变焦照明等。扩展阅读:共聚焦和光片显微镜将继续成为光学显微技术基石—牛津仪器ANDOR谈高端光镜  升级服务 | 升级到全新转盘共聚焦成像系统Dragonfly获得全新体验!3►IMARIS 多维显微图像可视化与分析软件 产品特点:多维重构与渲染, 定量分析大数据图像拼接对共定位区域可视化和量化分析AI驱动的丝状/网状结构分析 (适用于神经网络、血管网络等数据)细胞及细胞内含物分析运动轨迹追踪及量化分析多维结果展示与组间分析GPU加速的反卷积支持多线程数据批处理扩展阅读:限时特惠 | Imaris触手可及的AI图像分析4►亚细胞光刺激系统MicroPoint利用激光的高能量密度,光束质量好等优点,诱导模式动物形成血栓模型,从而进行一系列药理学,病理学方面的研究;利用高强度激光定向的杀灭模式动物比如线虫、斑马鱼等的特定功能的神经元,研究神经生物学上的功能特性等。可用于生物学与生物化学、临床医学、生物医学工程、分子生物学与遗传学、神经系统学与行为学、免疫学、精神病学与心理学、微生物学、药理学和毒物学等学科领域。可实现任意点、线及区域激光损伤、漂白及光活化, 满足 Laser Ablation / FRAP / FRET / Photoactivation / Photobleaching / Photoswitching / Photoconverting / Cell Regeneration/ Degeneration / Release of Caged Compounds / Drug Delivery / Thrombosis / Free Radical Release 研究要求。‍‍

企业动态

2024.04.08

响应设备更新政策 | 2024 台式核磁共振产品选型指南

磁核共振 (Magnetic Resonance) 提供了一系列台式核磁共振 (NMR) 仪器。我们的产品组合包括:用于有机物结构鉴定及反应监控的X-Pulse台式高分辨率核磁共振波谱仪;用于含氢/氟/锂物质含量及物理参数测量的MQC+ 系列核磁分析仪,以及用于石油勘探及碳封存领域样品检测的GeoSpec岩芯分析仪等。1X-Pulse 核磁共振波谱仪仪器特点 宽带多核探头:实现 1H, 19F, 13C , 31P, 7Li, 11B, 23Na, 29Si 等原子核自由选择组合;超强的磁场稳定性:采用分体式设计、高质量稀土永磁体和多项专利控温技术,确保测试结果准确性及稳定性; 高级脉冲序列:仪器标配脉冲场梯度、整形脉冲和脉冲序列编辑,提高测试效率,满足客户高功能实验需求; 全面的配件模块:仪器可配备流动化学、自动进样器、变温探头( 0~65℃ )和宽带升级,满足不同阶段核磁分析需求 。主要应用 有机化学中间体及产物结构确证;化学合成反应实时在线核磁监控;药物化学中间体及产物结构解析;电池电解液配方研究;聚合物结构确证。2MQC+ 核磁共振分析仪仪器特点 精确度高,重复性好:核磁技术采用整体性测量,非光学表现测试; 检测效率高:仪器测试仅需几分钟,可快速批量处理样品,测试结果可快速反馈; 使用方便:样品仅需极少的前处理,无需有毒有害试剂,简单培训即可操作; 样品无损伤:仪器为非破坏性测试,样品可留样或进行其他测试。  主要应用食品:快餐食品含油量,巧克力总脂肪含量,食物中的脂肪和固体脂肪含量 ( SFC );聚合物:聚丙烯中的二甲苯可溶物,PVC 中的增塑剂,聚合物的密度和结晶度,橡胶中的油和氟含量; 农业:油籽及其残留物中的油和水分含量,干橄榄酱中的油含量,干棕榈中果皮里的油含量; 石油:燃油中的氢含量,蜡中的油含量,石化产品中的蜡含量;消费品:织物洗剂和牙膏中的氟含量。3GeoSpec 磁共振岩心分析仪仪器特点 市场占有率高:应用于全球几乎每个大型石油生产商的岩心分析实验室;行业标准适用性:2MHz仪器是常规岩石样品弛豫分布测量的行业标准; Q-Sense技术:仪器回波时间短,信噪比和灵敏度更高,可以测试更小孔隙;全面的产品线:用户可根据需求选择所需的磁场强度、样品大小及脉冲梯度场。主要应用孔隙几何形状;孔隙度及大小分布 ;自由流体指数(FFI) ;渗透率;浸润性;毛细管压力。

企业动态

2024.04.02

牛津仪器携多款产品和解决方案亮相慕尼黑上海光博会

仪器信息网讯 慕尼黑上海光博会于2024年3月20-22日在新国际博览中心(上海)盛大举行,慕尼黑上海光博会以国际化的视角呈现光电行业的全方位产品内容,专为满足中国市场的独特需求。作为亚洲激光、光学、光电行业的盛会,此次展会有近1200家企业参展,吸引了55000余位专业观众莅临现场。牛津仪器Andor科学相机部门也积极参与了本次盛会,并在展会中设立了展位(展位号:W4.4215)。展位上,牛津仪器展示了在科学相机、光谱解决方案以及显微分析检测等领域的全面解决方案,吸引了众多观众前来了解产品。展位前人潮涌动,观众们络绎不绝,对牛津仪器的产品表示出浓厚的兴趣。牛津仪器在此次展会上携带了多款独具特色的产品,其中包括Kymera 328i成像光谱仪、iKon-XL 231超大靶面 CCD 探测器、Balor 17F-12、Sona sCMOS系列、Zyla sCMOS系列等。这些产品各具特色,不仅彰显了牛津仪器在科学相机及光谱解决方案领域的卓越地位,还充分展现了其在技术创新和产品优势方面的实力。跟随小编的笔触,一同了解这些特色产品的亮点吧!01 Kymera 328i成像光谱仪自适应聚焦(专利)、四光栅塔伦 & 射频识别技术、双入双出选项、TruResTM光谱分辨率增强技术、兼容 μ-Manager 软件/显微光谱、Andor提供紫外-近红外的各类CCD,sCMOS探测器以满足不同实验需求。02 iKon-XL 231超大靶面 CCD 探测器 1680万像元数传感器 (CCD231-84)、-100 oC 热电制冷(ColdSpaceTM 技术)、2.1 e- 超低读出噪声、350,000 e- 满阱容量、标准硅基或者深耗尽型芯片、无需液氮或者其他制冷冷媒、16 位或 18 位数字化。03 Balor 17F-12低噪声sCMOS、16.9 MP - 超大视野、18.5毫秒超快单幅读出时间、采集帧频高达54fps、真空密封、无需机械快门。04 Sona sCMOS系列-精确定量活细胞成像超高灵敏度,量子效率高达95%、UltraVacTM专利真空密封、水循环制冷模式,制冷温度低至-45℃、99.7%超高测量精度,挑战精确定量神经元成像、对角线高达32mm的成像视野,捕获神经细胞或脑组织的广阔视野、具有12-bit低噪音模式。05 Zyla sCMOS系列-突破性灵敏度和清晰度新一代 sCMOS 芯片可将 QE 进一步提升10%,可提供优异的可见/近红外波长覆盖范围、Zyla高效的数据传输效率和12位高速模式相结合,通过 USB 3.0接口可提供53 fps 的帧率、Zyla 4.2 PLUS 智能算法可提供 > 99.8%的线性值,整个动态范围内提供定量测量精度、LightScan PLUS–将滚动快门扫描模式,应用于扫描光片显微成像和线扫描共聚焦等应用、FCS–模式 最高 可达 26,041 fps,适光关光谱。

媒体关注

2024.04.01

响应设备更新政策 | 2024 牛津仪器物理科学产品选型指南

科学相机及光谱解决方案(Andor Technology)科学相机、显微成像系统、模块化光谱仪和多维可视化图像分析软件的开发和制造商,为学术、工业和政府客户提供多种高性能科学成像解决方案。满足您所有需求的解决方案:1. iXon Ultra 单光子灵敏度EMCCD量子效率>90%13um或16um像元尺寸1024x1024或512x512芯片格式TE制冷至-100°C6fps最大帧率SRRF-Stream+实时超分辨能力2. Sona Extreme系列 sCMOS 相机-精确定量活细胞成像超高灵敏度,量子效率高达95%UltraVacTM专利真空密封水循环制冷模式,制冷温度低至 -45℃99.7%超高测量精度,挑战精确定量神经元成像对角线高达32mm的成像视野,捕获神经细胞或脑组织的广阔视野具有12-bit低噪音模式3. Zyla sCMOS系列-突破性灵敏度和清晰度新一代 sCMOS 芯片可将 QE 进一步提升10%,可提供优异的可见/近红外波长覆盖范围Zyla高效的数据传输效率和12位高速模式相结合,可选择USB3.0或Cameralink接口可提供最高100fps的全画幅帧率Zyla 4.2 PLUS 智能算法可提供 > 99.8%的线性值,整个动态范围内提供定量测量精度LightScan PLUS–将滚动快门扫描模式,应用于扫描光片显微成像和线扫描共聚焦等应用FCS–模式最高可达 26,041fps,适用于高速光谱采集4. iKon系列深制冷慢扫描大像元CCD多种芯片格式可选1kx1k, 2kx2k, 4kx4k及6kx6k提供多种QE曲线,可针对紫外至近红外不同波段进行优化TE制冷最低可至-100°C,卓越的暗噪声性能适应各种稳态弱信号如天文光度学的长曝光采集                       5. Balor 17F大靶面sCMOS相机,近地空间物体观察的选择低噪声sCMOS16.9 MP - 超大视野18.5毫秒超快单幅读出时间采集帧频高达54fps真空密封无需机械快门                                                6. Kymera 328i成像光谱仪自适应聚焦(专利)四光栅塔伦 & 射频识别技术双入双出选项TruResTM光谱分辨率增强技术兼容 μ-Manager 软件/显微光谱Andor提供紫外-近红外的各类CCD,sCMOS探测器以满足不同实验需求

企业动态

2024.03.27

响应设备更新政策 | 锂离子电池材料表征解决方案

‍‍锂离子电池随着消费者对新能源汽车需求的不断提高,高性能锂离子电池的竞争日益激烈。为提升锂离子电池的安全性、比容量等关键技术参数,在严格控制现有原材料质量的基础上,还需不断开发出新型正负极、隔膜和电解质材料。牛津仪器的多技术联用解决方案为锂电行业的材料研发提供了全面、可靠、多维的分析结果。Part 1应用案例AZtecLive:EDS 技术能够准确地测定三元正极材料中过渡金属元素的含量配比AZtecWave:基于 SEM 的能谱、波谱一体化解决方案表征掺杂元素的准确定量及分布图AZtecBattery:自动清洁度检测系统,可快速进行正极颗粒的形态学参数统计,并一键获得等效圆直径、拟合椭圆长径比、圆度等信息EBSD:定量分析正极材料的结晶状态、晶粒尺寸、晶界分布、取向分布、应力状态、循环相变等行为RISE 联用分析正极材料烧结后的物相、极片尺度上的物相分布、正极材料循环相变动态原位电池测量能够在电池工作的同时(充电放电)对电池的组件进行表征: • 实验测量的同时通入实际有关的气体 • 在电池充放电的过程中提供稳定观测手段 • 在电池工作同时观测电极结构变化原位负极电沉积测量: • 实时表征负极材料薄膜的形貌与粗糙度 • 观测不同电压下的电池化学反应• 调控实验环境,如通入气体、温度及湿度Part 2应用案例快速反馈电解液配方组成,表征扩散系数、电导率及离子迁移数等关键性能参数实现电解液快速质量控制及失效分析EBSD 可用于研究固态电解质晶粒的形态及晶体择优学取向,为从显微结构层面优化固态电解质的服役性能提供指导Extreme 无窗 EDS 系统可有效探测锂元素,并采集锂元素的面分布图RISE 拉曼-电镜联用:充放电前后隔膜差异性分析隔膜上疏水区域和亲水区域可透过 AFM 的相位成像技术捕捉 AFM 可用来研究 SEI 复杂的形成过程并改进 SEI 以实现更好电池效能与寿命‍‍

企业动态

2024.03.26

焕新发展,牛津仪器中国售后业务再升级——访牛津仪器中国区总裁何峻、服务总监王方

随着技术创新的不断发展,科学仪器行业也在发生的重大的变革,复杂、精密的科学仪器也在不断的进入更多的实验室,帮助科学家进行前沿的科学发现的同时也成为日常的检测手段,实现科研和生产的生产力。随着用户技术需求和仪器的更新换代的快速迭代,不断提升用户体验,实现业务结果,成为用户对仪器行业的期望。近年来,牛津仪器中国不断加强服务团队,投资服务业务,并逐步成功转型,成为一个覆盖中国,以用户为中心,跨事业部整合的牛津仪器中国服务团队。2024年初,牛津仪器对服务业务的重视程度不断加码,在科学仪器行业具有丰富服务业务经验的王方先生加入牛津仪器担任中国服务业务总监,统筹管理牛津仪器中国服务业务。在此背景下,仪器信息网近期走进牛津仪器北京办事处,有幸与牛津仪器中国区总裁何峻先生和新上任的中国区服务总监王方先生进行了深入交流和探讨。上任两年余,在中国为“Horizon”战略注入新活力自2017年起,牛津仪器推出“Horizon地平线”战略,该战略其中一个重点是以用户为中心,提升服务能力,提升用户体验,促进服务业务的增长。2021年7月,何峻先生正式出任牛津仪器中国区总裁,上任两年多以来,“Horizon”战略在中国不断被注入新的活力。何峻表示,自己一直致力于为这一战略注入新的本土化内涵和赋能中国团队,通过战略顺利落地和有效实施,助力中国用户成功和牛津仪器长期发展。 综合考虑中国市场的需求和用户的期望,“Horizon”战略的本土化改善体现在多个方面:以客户为中心:牛津仪器不断推动自身服务的升级,打造Oi Service服务品牌,适应行业的全新发展和用户需求的升级,形成良性的生态循环,不断应用创新技术结合本土用户习惯,建立了整合的服务接入平台。牛津仪器中国用户可以选择微信,网站,公众号及小程序,网络商城,电话和邮件多种方式接入牛津仪器服务平台,获得热线技术支持,预约维修,合同续约和消耗品采购。定期举办的网络直播,售后培训,不断完善的仪器维护使用微百科,都在全面支持用户,打造完整使用生命周期的使用体验。技术创新:紧密关注中国市场和客户需求,根据需求进行创新。当新材料研究等领域的客户对仪器性能提出要求时,牛津仪器会迅速作出相应的技术革新。提升运营效率:通过运营的优化,和库存管理,更快速地响应客户需求。在全国范围内,牛津仪器的用户下单后可以在72小时内收到常用消耗品。人才战略:在不断投资扩大人员规模的同时,加强员工技能培训,提升他们的行业应用知识和服务水平,全国性服务网络可以更快和更好地满足客户需求。何峻将这些变化归结为两点,一是聚焦行业用户需求,以实际市场趋势为导向,确保产品创新真正为行业用户创造价值;二是坚定以客户为中心,持续优化售后服务体系,确保高效响应,为用户提供卓越的服务体验。通过打造牛津仪器整体服务体系的品牌,牛津仪器获得了用户的认可,也在市场竞争中不断领先。“Horizon”本土化获成效:业绩逆势增长 前沿领域突破显著“Horizon”改善的本土化实施为公司带来的正向收益正在逐步显现,不仅成功实现了业务增长的目标,更显著提升了整体运营效率,为公司的健康、稳定发展奠定了坚实基础,也助力牛津仪器打造了一个实力强大、充满活力和热情的团队。得益于优秀的企业文化和管理策略,公司的人员主动离职率常年保持在5%以下,确保了团队的稳定性和连续性。此外,在疫情期间,牛津仪器业绩也实现了逆势增长,这背后牛津仪器也采取了系列创新举措:首先,公司提升了运营效率,有效应对了疫情带来的挑战;为了保障中国区的业务连续性,其次,牛津仪器积极采用线上数字化的营销手段,通过每月定期的远程直播等方式与用户保持紧密沟通;还加强了对客户的远程服务流程,资深工程师在线提供技术支持以响应用户需求,进一步增强了用户黏性。最后,牛津仪器的员工展现出了极高的敬业精神,坚持以用户为中心,为用户提供及时、优质、专业的服务。牛津仪器凭借其卓越的市场敏锐度和深厚的技术积累,在新能源、半导体和生命科学等前沿领域也实现了业绩的显著增长。 “无论是电池还是化合物半导体,其核心都是材料的创新。而牛津仪器正是这一领域的佼佼者。”牛津仪器提供创新而高效的解决方案,帮助科学家们将材料的创新转化为行业的生产力。 何峻谈到,“正是因为用户的肯定和信任,才使得我们的业务实现了稳健的增长。”服务业务继续升级,为业绩持续增长注入动力2024年初,牛津仪器中国设立服务业务总监一职,有多年行业经验的王方加入牛津仪器,负责提升牛津仪器用户体验和推动服务业务。关于加盟牛津仪器,王方说道:“吸引我加入牛津仪器有三个原因,首先是牛津仪器在业界领先的尖端技术;其次是牛津仪器独特的企业文化,强调以人为本,追求中长期的成功;最后,基于我个人的职业背景,之前的工作履历主要负责售后工作,深知及时高效服务的重要性,加入牛津仪器后,我能充分发挥自己的专长,进一步完善和优化公司的服务体系,为用户带来更加系统化、高效的服务体验。”经过两年余的积极努力与持续发展,牛津仪器服务业务已在多个方面取得了显著成就。公司成功推动了跨部门合作,形成了高效协同的工作机制,。打造了专业、高效的专家服务团队,全国服务网络,热线支持建立了客户关爱中心,一站式接入,全面提升了客户体验和满意度。未来,牛津仪器服务业务计划陆续推出更多创新的服务产品,,持续提高本土化的服务能力,以便更及时的地为中国用户提供全方位的支持,提供更加便捷、高效的服务体验。牛津仪器中国区总裁何峻先生和服务业务总监王方先生

媒体关注

2024.03.25

响应设备更新政策 | 半导体制造工艺、结构与表征解决方案

‍‍半导体制造工艺电动汽车等高新技术领域对高效动力转换的需求与日俱增,碳化硅与氮化镓材料扮演关键性角色,有效降低能耗并提升动力转换效率。牛津通过原子层沉积(ALD)与原子层刻蚀(ALE)技术优化了器件工艺。ALD工艺出色的 AlN/Al2O3/SiO2 钝化薄膜有效降低器件中的阈值电压漂移。而ALE低损伤与原子等级的厚度精准控制更对纳米等级栅槽的形貌达成完美的诠释。   ‍‍应用案例全自动刻蚀和沉积设备在 3D Sensor 批量生产中的应用原子层沉积(ALD)与原子层刻蚀(ALE)使碳化硅与氮化镓功率器件更高效                                          提供 MicroLED 芯片制造解决方案                                                虚拟实境 ARVR 光学衍射组件制造技术 筛选低阈值 FET,用于低功耗低温电子器件半导体结构与表征摩尔“定律”在过去 50 年间持续推动半导体行业向器件小型化趋势发展,对半导体材料、制造工艺和检测技术提出了更高要求。EDS 和 EBSD 技术已被广泛应用于半导体器件的微区结构表征工作,如异物分析、无损膜厚测量、晶粒尺寸分析、应变表征、位错类型及密度分析等。 应用案例研究淀积金属薄膜的晶粒尺寸及均匀性、织构分析化合物半导体外延层中晶体学缺陷的密度对半导体器件中的关键层进行高分辨率元素成像快速分析不同位置薄膜生长表面形貌,提供后续工艺调整方向检测刻蚀前后表面微结构以及表面粗糙度的变化检测半导体晶圆的应力分布GaN 晶体中的应力场 3D 拉曼成像多功能328mm焦长光谱仪,配置UV-NIR探测器,可通过拉曼或者光致发光的方法对晶圆进行应力,翘曲以及缺陷检测

企业动态

2024.03.25

响应设备更新政策 | 2024 牛津仪器全系列设备选型指南

牛津仪器1959年创建于英国牛津,为工业和科研客户提供分析设备、半导体设备、超导磁体、超低温设备等高科技解决方案及相关服务和支持。在六十年的发展过程中,牛津仪器公司凭借自身的科研优势、出色的技术管理和产品服务为全球科技发展作出了贡献。此次大规模设备更新和消费品以旧换新活动,跟随牛津仪器一起来挑选适合您的设备吧!扩展阅读:响应设备更新政策 | 2024等离子刻蚀及沉积工艺设备选型指南扩展阅读:响应设备更新政策 | 2024 纳米显微分析产品选型指南扩展阅读:响应设备更新政策 | 2024 低温强磁场设备选型指南扩展阅读:响应设备更新政策 | 2024 台式核磁共振产品选型指南扩展阅读:响应设备更新政策 | 2024 WITec多功能联用共聚焦拉曼系统选型指南扩展阅读:响应设备更新政策 | 2024 原子力显微镜选型指南扩展阅读:响应设备更新政策 | 2024 牛津仪器 Andor 生命科学产品选型指南

企业动态

2024.03.22

谈高校分析测试平台对科学仪器售后服务的几点需求——访东北大学分析测试中心副主任周轶然

随着科学仪器行业的蓬勃发展,近年来,中国分析仪器市场蓬勃发展,相关用户数量激增,对应售后服务市场在近十年来发展迅速,售后市场又迎来新的机遇和挑战,而大量增加的业务和客户量对仪器厂商的服务提出了更高的要求。在仪器性能满足需求的前提下,售后服务质量成为了用户采购仪器时越来越关注的因素。为促进产业交流,优化仪器售后服务市场,为用户提供更优质高效的售后服务,仪器信息网特邀请用户代表为科学仪器行业售后服务现状与未来发声。正值一年一度的315消费者权益日,仪器信息网采访了牛津仪器设备的忠实用户东北大学分析测试中心副主任周轶然老师。访谈中,周主任介绍了他的研究方向及应用,高度评价了牛津仪器客户服务值得信赖的高服务水准,为单位平台的科研工作提供了不可或缺的支持。周轶然老师周轶然,东北大学分析测试中心副主任,主要负责分析测试中心物理部的管理工作与扫描电镜类仪器的分析测试工作。参与东北大学金属材料方向的国家和省部级项目6项。在Transactions of Nonferrous Metals Society of China等期刊发表论文,获辽宁省大型仪器共享平台先进个人称号等荣誉。仪器信息网:请您简要介绍您所在行业领域?您的主要工作研究内容以及其意义?周轶然老师:我的主要研究方向是材料显微分析技术以及高性能变形铝合金组织性能控制。材料显微分析技术是材料科学研究中的重要分析方法,通过该技术可以了解材料的微观形貌、元素成分和组织性能,对材料的基础理论研究有重要的意义,可以促进新材料的开发研究。另一方面,我利用材料显微分析技术针对铝合金的组织性能控制进行了针对性研究。铝合金在航空航天、交通运输、轻工建材、通讯、电子等领域有广泛的应用,针对其组织性能的研究可以开发出强度更高、韧性更好、更耐高温的先进铝合金材料。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?周轶然老师:经常使用的仪器主要是背散射电子衍射仪和能谱仪,去年我中心还采购了一台牛津仪器的原子力显微镜。在采购仪器时会考虑其功能是否满足本校及辽沈地区的研究测试需求,同类设备在本校的保有量,技术指标是否处于国际领先行列,售后和升级服务是否有保障,以及设备价格等因素。东北大学分析测试中心2023年购置的牛津仪器Cypher ES 原子力显微镜仪器信息网:您使用过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?周轶然老师:我们经常使用的售后服务包括仪器培训、在线支持、维护保养、应用支持及耗材网上商城等。牛津仪器公司的售后服务非常关注用户体验,只要提出服务需求,公司会及时响应,迅速派出资深工程师到场来解决所有问题。使用线上支持服务时工程师也非常耐心的帮助客户解决问题,迅速排除仪器故障。仪器信息网:对于牛津仪器在线商城、仪器培训、应用支持、维护保养、升级服务、设备搬家、远程在线智能支持等提供的售后服务,您有哪些印象深刻的案例分享?周轶然老师:牛津仪器可以说是从多个维度上帮助用户使用设备,每年组织仪器培训,我校师生参加的积极性都非常高;除了牛津仪器公司自有的应用工程师外,牛津仪器还会邀请客户中一些仪器操作方面比较资深的老师介绍他们在分析测试过程中的一些宝贵经验,比如牛津仪器的服务直播讲堂,也对我们的工作非常有帮助。在遇到一些技术问题或出现故障时,牛津一起公司总是为客户提出最快速便捷的解决办法。去年年底我中心的EBSD探头发生故障后,设备需要送到总部维修,牛津仪器的售后为我们协调到公司的演示机给我们继续使用直至维修设备返回,即便牛津仪器总部返修的速度很快,但为了不耽误中心的测试服务,牛津仪器客户服务工程师也多次来到我们中心为我们更换探头,最终保证了我们中心测试服务几乎没有间断。配有牛津仪器能谱仪和EBSD的扫描电镜仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?周轶然老师:对牛津仪器的售后工程师的印象主要是比较专业,好多工程师都是连续在牛津仪器工作多年的老工程师,经验非常丰富。对于客户提出的问题基本是立刻就可以给出答复。并且也具有足够的耐心,不会留下故障隐患,对客户的指导也非常具体,具有较强的可操作性,让客户的技术水平有较大的提高。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?周轶然老师:希望牛津仪器在本地备件库可以更加丰富,进一步加强零配件需求的时效性。需要更换的零配件能够直接在本地进行替换和维修,不必每次都返回牛津总部去维修,加快维修速度。同时希望牛津仪器在仪器升级方面提供更多优惠的方案。

媒体关注

2024.03.18

牛津仪器透射EBSD(TKD)技术为冲击结构的研究提供关键证据

来自超高速撞击构造的粒状锆石可以用来估计撞击过程的压力和温度等热力学条件,还可以通过U-Pb年代学来估计撞击事件的时间。新生粒状锆石的形成有两种模型:一种涉及锆石—莱氏石固态相变,另一种涉及锆石的熔解和析出。由于缺乏中间转化步骤的纳米尺度观测结果,导致这两种模型一直难以区分。简介中国地质大学(武汉)赵佳伟博士和肖龙教授等发表在《Earth and Planetary Science Letters》的文章,(doi:10.1016/j.epsl.2023.118507)研究了Chicxulub冲击结构,其中涉及莱氏石到粒状锆石的成核和演化。研究证实,新生锆石颗粒可以直接由锆石固态相变为莱氏石。                                     文章摘选在研究中,主要使用了TKD和TEM的技术手段,分析Chicxulub冲击结构样品中的粒状锆石。在含熔体角砾岩的冲击锆石中,观察到了与莱氏石孪晶有关的层状和透镜状结晶习性。在莱氏石片层中进一步观察到了新形成的纳米级锆石颗粒,并使用TKD技术测量了纳米锆石颗粒的晶体取向。TKD技术在研究中,主要为冲击岩中粒状锆石的成核和演化提供了纳米尺度的关键观测证据。通过Symmetry EBSD可以轻松方便地采集高空间分辨率TKD信息,清晰展示样品中优于50nm的纳米锆石颗粒的晶体取向。纳米锆石颗粒的晶体取向与莱氏石—锆石相变模型预测的取向相匹配,证实了它们直接由莱氏石固态相变为锆石。图一:初生锆石、莱氏石片层及次生锆石之间的取向关系和极图研究还观察到其他粒状锆石晶粒,它们保留了新生锆石颗粒之间的系统取向关系,进一步支持新生颗粒取向来自固态相变的概念。图二:具有莱氏石—锆石固态相变取向关系的粒状锆石结论该研究使用TKD技术采集高分辨率结晶取向结果,确定新生锆石颗粒间存在特定取向关系,为解释涉及锆石的系统高压相变的本质提供了直接证据,对揭示地球或其他行星体大碰撞中锆石相变的压力-温度历史具有启示意义。

应用实例

2024.02.21

推动AFM技术向前一步,再向前一步——访牛津仪器PLC首席技术官Roger Proksch博士和牛津仪器AR部门市场总监Akemi女士

Asylum Research始于1999年,2012年加入牛津仪器,成立牛津仪器Asylum Research部门,一直专注于原子力显微镜(AFM)的研究,不断推动AFM市场的技术革新。值此25周年到来之际,牛津仪器Asylum Research重磅推出干涉式原子力显微镜Vero,再次将AFM的可信度与准确性推向了新高度。近日,借助牛津仪器举办“全新一代原子力显微镜Vero技术研讨会”契机,仪器信息网走进牛津仪器上海演示中心,有幸就AFM产品研发及市场动向等话题与牛津仪器PLC首席技术官Roger Proksch博士和牛津仪器AR部门市场总监Akemi女士进行了深入交流。△ Asylum Research联合创始人、牛津仪器PLC首席技术官Roger Proksch博士在线向中国客户介绍Vero AFM中的QPDI技术 △ 牛津仪器AR部门市场总监Akemi女士与Vero合影Vero推动干涉式原子力显微镜向前迈进一大步Vero原子力显微镜的名字取自拉丁词根“ver”,意思是“真相”。据Roger Proksch博士介绍,Vero基于Cypher平台打造,不仅继承了Cypher系列的高稳定性和高分辨率,还凭借内置的正交相位差分干涉仪(QPDI),确保了数据的精确性和可重复性。一直以来,AFM主要依赖于光杠杆检测(OBD)技术,它测量的是悬臂梁偏转的角度,而非探针的实际位移。Vero的问世,改变了这一现状。Vero采用的QPDI技术,能直接、准确地测量探针位移,而不是从悬臂角的变化来间接推断。虽然受到各种干扰后悬臂弯曲仍有可能发生,但Vero通过特殊的设计,完全不受这些因素影响。此外,与传统的OBD技术相比,QPDI技术将悬臂梁检测噪声降低了10倍甚至更多,提高了测量的灵敏度;QPDI技术测量纯粹的垂直探针位移,避免了垂直与平面力之间的串扰;通过光的波长精确校准,避免了与OBD校准相关的假设和不确定性。Akemi女士补充到,干涉式探测器在AFM设计早期就被提出过,但是相较于OBD探测器,因其成本和复杂性基本被放弃。直到2015年,牛津仪器Asylum Research推出Cypher IDS。Cypher IDS是一款与外部干涉仪耦合的商用AFM,为存储器、光子计算、能量存储和生产、体声谐振器等MEMs器件和2D材料等领域提供了纳米级性能测量。Vero的出现,标志着干涉式AFM的发展又向前迈进了一大步。重视中国市场,积极推进AFM的先进应用Vero于2023年11月在美国市场首次发布,中国市场的发布几乎与美国同步,而在日本和欧洲市场的发布时间相对较晚,这足以证明牛津仪器Asylum Research对中国市场的重视。Roger Proksch博士讲到:“中国市场一直是Asylum Research布局业务的一个极具吸引力的地方。我们在进入中国市场之前,曾投入大量的时间去了解中国市场,之后便成为了中国市场的重要参与者。从那时起,中国客户的热情、勤奋和聪明就给我留下了深刻印象。每当我来中国旅行或与客户见面时,总能从中汲取到很多能量。”关于Vero在中国市场的预期,Akemi女士表示:“压电与铁电材料是中国的一个热门研究领域,而Vero在压电与铁电材料领域的应用非常广泛,尤其在检测微弱信号方面具有独特优势。我们对Vero在中国市场的推广充满信心。”“考虑到中国是压电力显微镜(PFM)的全球第一大市场,我们在中国市场推广Vero的一个重要策略就是,首先要让中国的PFM客户知道Vero原子力显微镜在应用上的先进性和特殊性,然后通过PFM群体来迅速打开市场。”此外,Akemi女士讲到:“与全球其它地区相比,中国在基础研究方面的投入仍然非常强劲。我们将继续与中国科研人员紧密合作,以确保未来推出的产品能够充分满足中国客户的需求。另外,我们正在中国组建一支强大的牛津仪器Asylum Research团队,以便更好地支持中国客户。相信凭借我们在产品研发和客户资源方面的积累,牛津仪器Asylum Research将有望占据中国AFM领域的第一市场份额。”持续投入研发,不断推动AFM技术革新回顾AFM技术发展历史,Roger Proksch博士认为最重要的一点是,AFM技术研发从原来由高校科研人员主导,转向更加工业化的方式进行。例如,用于闭环扫描仪的极低噪声位置传感器、实现各种测量模式的灵活数字控制器、以及现在的紧凑型极低噪声干涉探测器等,这些器件的推出使AFM的性能得到了大幅提升。牛津仪器Asylum Research作为AFM技术发展长河中的重要推动者,几十年来持续努力让客户能够进行前所未有的测量。从推出解决无法精准测量力曲线弊病的MFP-1D,到快速扫描产品Cypher、全功能视频级扫描产品Cypher VRS,再到能够利用单一扫描器同时提供全自动、多功能、高扫描速度和高精度的大样品AFM Jupiter XR,以及现在的干涉式原子力显微镜Vero,牛津仪器Asylum Research一直引领着AFM市场的技术革新。Roger Proksch博士认为:“因为我们可以满足客户对我们的期望,所以我们能够始终保持领先于竞争对手。同时,客户的支持也是我们能够取得这一成就的重要原因。”最后,Roger Proksch博士说到:“AFM是一种强大的工具,不仅可以提供形貌图像,还可以在不破坏样品的情况下,在纳米尺度上测量力学、电学、磁学和热特性。但是,由于AFM的悬臂易收到干扰而产生形变,从而影响到成像的准确性和分辨率。如果想让AFM像电子显微镜、光学显微镜等这些更成熟的显微镜技术一样得到应有的使用地位,我们就必须要解决此问题。这也是牛津仪器Asylum Research未来5年到10年要实现的重要目标。”

媒体关注

2024.02.19

利用AFM研究单个气溶胶颗粒

海洋会向大气释放巨量的气溶胶。它们选择性地吸收太阳辐射,参与云团的成核,进而影响全球的气候和环境。为了更好地理解气溶胶的作用,科学家需要有合适的工具,对单个气溶胶颗粒进行亚微米级别的表征。最基本的一点是,科学家需要知道这些气溶胶是以什么状态存在的,气态、液态、抑或是固态?通过牛津仪器MFP3D原子力显微镜,爱荷华大学的科学家研究了不同种类的海洋气溶胶,其中包含无机盐颗粒、有机酸颗粒以及糖类颗粒。他们将不同种类气溶胶沉积在硅片上,使用轻敲模式进行扫描。MFP3D原子力显微镜的高分辨率能够精确地测定气溶胶的形貌参数。测试在MFP3D配套的湿度样品腔中进行,可以在测试过程中保持已知、稳定的湿度环境。形貌测试之后,科学家通过AFM力曲线测量了颗粒的粘弹性性质,力曲线所提供的纳米力学信息可以用确定这些颗粒的物态。AFM结果表明,颗粒的形貌和物态之间存在相关性。因此,仅仅通过形貌测试,就可以半定量地辨别颗粒的状态,这提供了一种快速鉴别气溶胶颗粒的新方法。Measurements of individual sea spray aerosol particles showed correlations between viscoelastic properties, morphology, and phase state that could lead to quicker and simpler assessment of particle phase state. Sea spray is one of many atmospheric aerosols that impact climate and the environment by absorbing solar radiation, nucleating clouds, and other mechanisms. To model these effects more accurately, tools capable of characterizing individual, sub-micrometer-sized aerosol particles are needed. In particular, techniques to assess a particle’s phase state—whether it is liquid, semisolid, or solid—would be valuable but remain rare.Towards this goal, University of Iowa researchers examined several different components of sea spray aerosol including inorganic salts, organic acids, and saccharides with an AFM methodology. Nanomechanical measurements revealed correlations between a component’s viscoelastic response distance (VRD), relative indentation depth (RID), and phase state. Morphology imaging further showed that particle aspect ratio could be directly linked to VRD and RID, and thus to phase state.The results therefore indicate that phase state can be semi-quantitatively evaluated by morphology imaging alone, without prior knowledge of chemical composition. This ability provides a new strategy for rapidly assessing aerosol components that may prove useful for a range of atmospheric studies.Instrument usedMFP-3DTechniques usedAFM measurements were made on aerosol particles deposited on silicon wafers. Specifically, components comprised inorganic salts (NaCl and MgSO4), organic acids (malonic, glutaric, azelaic, and palmitic acids), saccharides (glucose, sucrose, and raffinose), lipopolysaccharide from Escherichia coli, and inorganic–organic binary chemical mixtures (NaCl–malonic acid, NaCl–glucose, and MgSO4–glucose). Force curve measurements and tapping mode imaging of topography and phase were performed on the MFP-3D AFM. MFP-3Ds provide the highest performance and lowest-noise force measurements at a low price point. With the Humidity Sensing Cell, a constant relative humidity of ~20% was maintained throughout the experiments. Citation: K. Ray, H. Lee, M. Gutierrez et al., Correlating 3D morphology, phase state and viscoelastic properties of individual substrate-deposited particles. Anal. Chem. 91, 7621 (2019).https://doi.org/10.1021/acs.analchem.9b00333Note: The data shown here are reused under fair use from the original article, which can be accessed through the article link above.

应用实例

2024.01.30

STEM-EDS分析GaN晶体管栅极的元素分布

自硅基半导体作为一个规模庞大的产业发展起来后,集成电路单位面积上晶体管的数量增加趋势始终遵循摩尔定律[1]。目前,硅基半导体中的关键尺寸(线宽或特征尺寸)已经降低到到10nm以下[2]。相比于硅基半导体,化合物半导体如SiC和GaN基半导体可以满足更苛刻的工作条件(高击穿电场、高热导率、高电子迁移率、高工作温度等),具有更大的输出功率和更好的频率特性,市场需求方兴未艾。化合物半导体的应用场景面向射频、高电压大功率、光电子等领域,不追求硅基半导体级别的先进制程工艺。如GaN制程的基本线宽在0.25~0.50µm ,生产线以4英寸为主[3]。图1 电子束和样品的相互作用区域及逸出的信号半导体器件结构的微细化演进对电子显微镜视野下的微区元素分析带来了很大的挑战。在电子显微镜中,电子束照射在观察区域上,形成水滴形的相互作用区域,如图1 所示。从该区域中会逸出多种信号,如观察表面形貌的二次电子(SE)、区分成分衬度的背散射电子(BSE)和分析成分的X射线。电子显微镜会配置不同的探测器来接收这些信号进行成像。能谱仪(EDS, Energγ Dispersive Spectrometer)以X射线为信号源分析微区成分分布。图1也显示,这几种信号源的深度不同,SE最浅,BSE次之,X射线最深。不同信号源的逸出深度可以解释同样条件下SE、BSE和EDS成像的空间分辨率差异。

应用实例

2024.01.30

AFM剖析类病毒颗粒以帮助抗击丙肝病毒

丙肝病毒(hepatitis C virus,HCV)会导致慢性肝炎,甚至发展为癌症。针对丙肝病毒的疫苗尚未研发成功,而类病毒颗粒(Virus-Like Particle,VLP)因其无传染性的自我组装结构,成为了疫苗发开路线的潜力股之一。在这篇文献中,澳洲的研究者使用Cypher ES原子力显微镜,对四类丙肝类病毒颗粒进行了形貌表征和纳米力学测量,表征了它们的生物功能和纳米级机械性质等信息来研究HCV,提高这些纳米级颗粒的基础理解,是开发有效的丙型肝炎疫苗的基础工程。 实验目的与方案: 形貌扫描和机械性能表征都通过牛津仪器Cypher ES AFM,在缓冲液中进行,全程使用小振幅成像,以适应纳米级结构;此外,对每种类型的完整病毒样颗粒,研究者们测量了超过100条力曲线/每个颗粒。 Cypher ES具有特别设计的机械回路,实现了高空间分辨率、超低底噪声、以及精确的力控制及高灵敏度,可以对类病毒颗粒进行精准、无损的测量。同时,Cypher ES的封闭样品腔可以最大限度避免溶液的挥发,保持缓冲液的离子浓度、pH、以及温度恒定,进一步确保了测量的重复性和准确性。系统自带的软件简化了弹性模量的模型拟合与计算,大大方便了力曲线分析处理。 结果与分析: 在本文中,作者们使用了多种方法来探测和压片类病毒颗粒,包括原子力显微镜(AFM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等。这是第一次使用振幅调制(AM)-AFM和力谱对所有四种HCV VLPs(基因型1a,1b,2a和3a)进行形态和生物力学特征描述,揭示了这些粒子的表面形貌、粗糙度、电荷分布等特点。根据细胞进入实验测定,所有HCV VLPs都被认为是具有生物学功能,并且都装饰有类似于天然HCV的高甘露糖型N-连接糖,这是疫苗开发的基础。HCV颗粒是由核酸和蛋白质外壳组成的,类病毒颗粒的尺寸小于200nm,表面富含柔软的脂质。如图1所示,可以观察到HCV核心或包膜糖蛋白的一些结构组织细节,但就像袋子里的豆子一样。表面粗糙度的变化可能影响病毒与宿主细胞的相互作用,从而影响病毒进入细胞的能力。此外,电荷分布也可能影响病毒与宿主细胞膜的结合能力。因此,了解HCV粒子的表面特性对于研究病毒的传播机制、疫苗设计和抗病毒药物的开发具有重要意义。图1 上:展示了HCV病毒颗粒和VLPs的组装图解。将野生型HCV颗粒与VLPs中间截开,可以看到都具有E1/E2蛋白和脂质膜,但VLPs不含遗传物质。 下:通过AFM获得了不同表型的HCV的纳米尺度图像。VLP的几何特征以1b中的两个颗粒来突出显示。实验中观察到许多具有这种特征的颗粒,这里展示了表现出异质性、多形态表面形态的颗粒,以更准确地表示整个VLP制剂。标尺为50 nm。 对单个粒子进行原位形态成像和纳米机械性能测量,不仅指出不同基因型的粒子大小存在显著差异,而且所有基因型间的平均模量大小存在显著差异。如图2所示,VLPs的弹性模量在十几MPa的范围内,与其他报道的病毒或VLP相比,本文中的弹性模量相对较低;实际上这个结果与脂质体的模量类似,这可能是某些包膜病毒的特征。  图2 左:对测得的HCV VLP基因型进行粒度分析,统计直径分布。所有基因型都显示出大致正态分布,但尾部较长,代表有少量较大的颗粒。右:拟合压痕曲线测算弹性模量(E)。使用Hertz/Sneddon方法进行拟合的实验方案,为进行说明,测量了在硬云母表面上获得的数据(黑色线) 以及基因型1a的数据(蓝色圈)。最终得到了每个基因型的平均弹性模量。 总的来说,这篇文章为我们提供了关于丙型肝炎病毒类颗粒表面特性的详细信息,有助于我们更好地理解这一领域的现状和未来的研究方向。通过使用不同的探针和压力条件,研究人员可以更深入地了解这些粒子的表面特性,这对于理解病毒的传播方式、疫苗设计以及抗病毒药物的研发等方面具有重要意义。 引用:S. Collett, J. Torresi, L. Earnest-Silveira et al., Probing and pressing surfaces of hepatitis C virus-like particles. J. Colloid Interface Sci. 45, 259 (2019). https://doi.org/10.1016/j.jcis.2019.03.022

应用实例

2024.01.30

低电压下纳米颗粒的能谱EDS元素分析方案

‍‍传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。 ‍‍

应用实例

2024.01.29

全新Ergo KPFM让表面电势的测量简单又准确

作为材料重要的特性之一,功函数常使用符号φ来表示,即在真空环境中,电子从材料表面逸出所需的最小能量。若材料表面与电子间的结合能定为零,那么功函数即为费米(束缚)能级与「自由」真空间的能量差。对各种光子器件、光伏、腐蚀、催化、电池存储等领域来说功函数是关键参数,功函数越高,材料越稳定。测量材料的功函数的方法有很多,其中最著名的是开尔文探针技术。将开尔文探针的概念与原子力显微镜(AFM)相结合,即为如今常见的KPFM。KPFM是为数不多能在纳米级空间分辨率下表征样品功函数的技术。流程简单Asylum Research新推出的Ergo KPFM模块让实验变的极其简单。甚至不用额外的培训,只要遵照软件中的工作流程,逐步设置,即可使用KPFM表征材料表面电势。调整参数如下:无需手动调整参数无需手动调谐探针自动设置KPFM参数Ergo Autopilot™优化扫描参数测量KPFM也能「随机应变」Ergo KPFM包含了三种扫描模式:Heterodyne,Sideband与Amplitude Modulated KPFM根据需求轻松切换三种模式比传统的2 pass KPFM速度提高两倍。Heterodyne/Sideband KPFM为较平的样品提供更高分辨、更准确的测量结果Amplitude Modulated KPFM适用于起伏较高的样品KPFM工作原理KPFM并不直接测量功函数,而是测量样品与探针(功函数已知)间的功函数差异,也就是接触电势差(CPD)。如下图示例,有两种金属:样品Al(功函数4.2eV)以及镀金探针(功函数5.2eV),在两者不导通时,它们各自有其费米能级。若是两者导通,电子会从高费米能级往低费米能级流动,直到样品与探针的费米能级变为相同。这个由于费米能级改变导致的功函数变化,即为CPD。此外,探针与样品之间还会因为电子的流动产生电场以及静电力。此时施加一个额外的直流偏压,抵消电场,让电子恢复原始状态,那么这时的偏压即与CPD等值了。KPFM可以透过测量长程的静电力,或是力场的变化梯度来获得CPD;而又根据实现测量的手段不同,可以分成Amplitude Modulated,Heterodyne以及Sideband KPFM。注:Ergo软件所适用的AFM机型需要和AFM工程师进一步确认。

参数原理

2024.01.29

原子力显微镜助力光伏新时代

随着全球能源需求的不断增长,可再生能源技术成为人们关注的焦点。其中,基于光伏(photovoltaic,PV)材料的技术实现了将光能转化为电能的难题,具有广阔的应用前景。然而,太阳能电池技术的商业化仍面临着成本高、功率转换效率低以及器件寿命短等挑战1。无论要克服哪方面的问题,成功的关键都依赖于表征技术的提高,尤其是对高空间分辨率的要求更加严苛。以顺应目前先进制造下微米及纳米尺度特征的材料所需(例如钙钛矿薄膜中的多晶体、有机半导体中的体异质结网络和纳米结构化的光捕获层)。牛津仪器原子力显微镜(AFM)以实现纳米级的高空间分辨率著称,可为其他成像技术补充材料器件更多维度的信息2。它不仅可以测量结构,还可以测量功能响应,从而深入了解结构性质、处理流程和表观性能之间的关系(图1)。本文中,我们将探讨牛津仪器AFM在表征两种新兴光伏材料(如钙钛矿和有机半导体)各方面性质的应用。值得注意的是,其他材料,包括无机半导体(Si、CdTe灯),黄铜矿(CIGSSe、CuInSe2等)以及具有多个吸收体的串联系统,也可以从AFM表征中受益。通过AFM,我们可以更好地理解这些材料的性能和潜力,为未来的太阳能电池技术发展提供有力支持。图 1:观察MAPbI3中纳米尺度光响应光伏电池性能指标,如短路电流Isc通常在宏观尺度上测量,但纳米尺度下的表征,可以揭示微结构对性能的关键影响。上图显示在约0.07 W/cm2的照度下,甲基铵铅碘化物(CH3NH3PbI3或MAPbI3)薄膜上的短路电流ISC叠加在三维形貌图的结果。通过光导电AFM(pcAFM)获取了从偏置电压0到+1 V的电流。然后,通过图像每个像素位置的I-V曲线中确定Isc的值,最终生成短路电流-形貌图。使用MFP-3D BIO AFM获得,扫描范围为3微米3。 1 钙钛矿型新材料有机-无机混合型钙钛矿材料的太阳能电池技术因其转换效率的快速提升(仅用了七年时间到>22%的转换效率)而备受关注1,4。更重要的是,该技术可以通过相对简单和廉价的溶液处理技术(例如旋涂)进行制造。目前的研究重点在于测量基本属性并提高长期稳定性。通过AFM的表征,有效推动二者的共同发展。1.1理解晶体结构评估钙钛矿薄膜的微观结构对于基础研究和实际应用都具有重要意义。例如,它可以揭示光电响应与晶粒尺寸之间的极敏感的依赖关系,并帮助解决大规模制造中的难题,如钙钛矿如何从前驱体状态结晶等。为了满足这些需求,AFM探测了表面高度和形貌的三维定量图(图2)。形貌图显示了薄膜属性,包括覆盖度和均匀性,并允许快速计算表面高低起伏特性,如粗糙度,以便快速比较不同薄膜。AFM形貌图可以在轻敲或接触模式下获得的,通常可以分辨出纳米以下的垂直特征结构。实际上,当前少数AFM可以实现垂直分辨率达到几十皮米,从而完成晶体和分子的晶格级成像。牛津仪器新型AFM自动化程度高,可大大减少实验设参时间并简化数据采集。当钙钛矿暴露于不同环境条件时,氧化或其他化学反应可能对微观结构和其他材料性能造成不可逆损伤。使用专门的环境控制模块,将样品保护在经过净化的惰性气体环境中进行AFM实验,可以防止这种退化。环控组件还可以提供惰性气体的湿度控制。更有甚者,通过将整个AFM放置在手套箱中以完全隔离大气(参见图5),来实现更严格的环境控制。图 2:晶格结构变化溶液处理技术已被成功应用于生成具有均匀表面覆盖的致密钙钛矿薄膜。然而,这些薄膜的晶粒通常非常细小,导致晶界损失增加,从而降低了光转换效率。为了解决这个问题,研究人员开发出苄基硫代酸根(GUTS)的前驱体处理方法,以增加薄膜的晶粒尺寸。左侧图片中,我们可以看到未经处理的MAPbI3薄膜的形貌,右侧图片是使用GUTS/异丙醇溶液(4 mg/ml,GUTS-4)处理后的薄膜的形貌图。可见通过处理以后,已成功地将平均晶粒尺寸从纳米级别提升到了微米级别。此外,使用GUTS-4处理的薄膜制备的太阳能电池的功率转换效率比未处理的薄膜高出约2%。扫描尺寸5微米5。1.2测量电和功能化响应光伏机制研究在很大程度上依赖于大量的光电数据,以全面理解其工作原理。钙钛矿薄膜的多晶结构极大地推动了在微观和纳米尺度上进行测量的能力。AFM的高分辨率电学测试技术能够揭示电荷传输、捕获和复合等过程以及相关行为。当在配置了样品照明功能的AFM上进行实验时,这些技术的作用更为明显。多模态和其他类似的研究方法也为我们提供了深入理解光伏材料的可能性。这些方法包括使用多种原子力显微镜模式(如KPFM、CAFM、EFM)以及其他表征工具,如扫描和透射电子显微镜(SEM和TEM)、光致发光(PL)和拉曼光谱,以获取获取多维度的数据。如图3(KPFM,CAFM和TEM)和图4(CAFM,KPFM和PL)所示。1.21导电模式(CAFM)测电流导电原子力显微镜(CAFM,在照明下实验时,称为光电导AFM(pcAFM))是常用的AFM电学检测模式。它们都利用导电探针来感知施加了直流偏压的样品中的电流。通过接触扫描或快速力图成像,可以获得局部电流图,进而揭示光诱导的载流子迁移变化、光电导率的局部变化以及其他相关性质。为了避免信号伪影,可以在pcAFM测量期间停用AFM检测激光。而改变测试参数,如偏置电压、照明强度、波长或极化,则可以提供更深入的信息。CAFM和pcAFM也可以获得具有纳米级分辨率的电流-电压(I-V)曲线。只需将探针移动到在用户自定义的位置,并在接触模式下施加偏置电压,就可以测量到电流。得到的I-V曲线可以揭示电荷的生成和注入、接触电阻以及退火或其他处理流程的影响等方面(图3)。由于CAFM和pcAFM在纳米级高分辨电流图方面表现出色,因此对AFM的能力提出更多特殊要求。例如,测量需要高灵敏度和低噪声,因为电流可以跨越六个数量级(皮安到微安)。此外,定量探针-样品的接触面积也需要先校准悬臂梁弹簧常数,完成这些校正之后,就能精确测量和控制施加的力了;如果没有高灵敏度,这些校正将难以完成。1.2.2 静电力(EFM)/开尔文探针力(KPFM)模式测电场静电力显微镜(EFM)和开尔文探针力显微镜(KPFM)是评估光电响应的另外两种独特模式。它们拥有纳米级的空间分辨率,能够深入探究单个晶粒、晶界以及晶粒之间的微观变化。EFM和KPFM都基于轻敲模式运行的,所以可以近似反映开路时的行为。EFM主要感知由长程静电力梯度引起的电场变化,因此对于检测嵌入导体或表面电荷不均引起的电容变化非常敏感。它通常是一种快速简易的方法,可以用来定性地获得电场和电容之间的对比。为了减少形貌变化的干扰,可以使用双通道扫描技术进行EFM扫描。相比之下,KPFM感知的是探针和样品之间的接触电势差(图3和4)。KPFM最关键的优点是能够定量测量功函数,这是许多光伏系统中电势变化的根本原因。使用KPFM进行功函数的纳米级成像可以得到关于能带弯曲、掺杂剂密度和光诱导变化相关的详细信息。KPFM通常采用双通道振幅调制(AM)方法进行操作,类似于EFM,但也可以在单通道频率调制(FM)模式下操作。FM-KPFM通常具有更高的空间分辨率,并包含来自悬臂梁高阶谐波响应的其他信息。图 3:研究晶界处的离子迁移钙钛矿材料具有许多令人着迷的性能特点,如磁滞和热电效应等,其背后的机制尚待深入分析。本图展示了多晶MAPbI3薄膜的表面电势(KPFM)与形貌结构的叠加。通过透射电镜获得的晶体学取向(未在此图中显示)与表面电势的关联性揭示了一个有趣的趋势:具有较大电位差异的晶粒之间的边界角度比那些具有较小电位差异的晶粒间的边界角度更高(如图中的△)。使用CAFM获取的局部I-V曲线显示出在高角度晶粒边界处存在较强的暗流磁滞,但在低角度边界处几乎没有磁滞。(蓝色和红色箭头分别代表加压和降压各一次)。这些结果表明,晶粒边界处的迁移速度远快于晶内迁移,并且对晶内迁移起到了主导作用。通过MFP-3D AFM获取,扫描范围为2微米6。图 4:关联局部光学和纳米电学特性理解钙钛矿材料空间异质性的起源对于提升光电转化效率至关重要。这项研究中,甲基铵铅溴化物(CH3NH3PbBr3或MAPbBr3) 沉积在玻璃(Glass) /碲化镉(ITO) /聚(3,4-亚乙基二氧硫)聚苯乙烯(PEDOT:PSS)等基底上制备薄膜。样品被安装在AFM样品并通过488nm激光束激发,生成局部相对光致发光(PL)强度图。通过CAFM获取的注入电流图像(偏压为+3.2 V)显示的行为与PL强度无关。尽管这些样品的形貌结构相似,但在虚线、点线和实线曲线表示的区域中,PL响应从暗到亮分别为高、中和低。此外,FM-KPFM表面电位图像并未显示出任何相关性。这一结果与裸玻璃上制备的MAPbBr3薄膜的结果形形成鲜明对比,表明异质性的来源并非在薄膜内部,而是在电极-膜界面上。使用MFP-3D AFM获取,扫描范围为7微米7。1.2.3压电力模式(PFM)表征铁电性此外,钙钛矿中的铁电性质可能会对光伏器件的性能有着多样化的影响。例如,极化场可以更有效地分离电子空穴对,带电的畴壁也可以作为额外的导电通路。铁电性还可以扮演开关功能,从而可以通过偏压控制光电流的方向。然而,我们对于特定反应条件和所得铁电性质之间关系的理解不足,阻碍了进一步探究这些行为如何影响器件性能的脚步。因此,提高表征能力,特别是在畴和晶粒大小这个关键尺度的表征水平,变得尤为重要。压电力显微镜(PFM)是表征铁电性质的强大技术。它对于静态和动态行为(例如畴的结构、生长和极化反转)的纳米级探索非常有用。通过测量机电响应以及形貌,PFM可以深入探究功能特征与结构-性质关系(图5)。在薄膜上进行PFM测量时,需要施加足够高的电压以获得良好的信噪比,但同时也要避免引起极化激活甚至损坏样品。为解决这个问题,推荐在悬臂梁的接触共振频率附近操作,这样可以在较低的驱动电压下实现更高的灵敏度,而牛津仪器Asylum系列的AFM标配该技术。图 5:检测材料铁弹性质通过溶剂退火制备MAPbI3(CH3NH3PbI3)薄膜的形貌图(左)显示,该薄膜是具有阶梯结构的微米级晶粒。相应的垂直PFM振幅图(右)在300 kHz(接近共振频率)处以+2.5V AC偏压获取,观察到了在形貌中不存在的规律间隔条纹畴,相邻畴的方向变化为90°。PFM图中红蓝色线段表明条纹呈周期性变化,范围约从100到350 nm。这表明该薄膜具有铁弹性质,其畴结构依赖于薄膜纹理和特定的制备路线。样品置于氮气环境保护,通过手套箱中的MFP-3D AFM获取的,扫描范围为7微米8。1.3界面层工程在太阳能电池的构造中,最基础的模型仅由两个电极间和中间钙钛矿吸收层构成。然而,为进一步提升电池的性能,通常需要引入其他的层次。在这个过程中,AFM展现出了独特的技术优势,它能够独立或与其他设备协同工作,对各层进行精确的表征。我们可以使用AFM导电探针从顶部接触器件,重构出平面视图来获取电导相关信息,或者在横截面中研究跨界面的行为。表面粗糙度等信息可以通过界面层的纳米尺度形貌成像获取;粗糙度会直接影响层与层之间的粘附性,并展现有机薄膜的相分离和分散等形态特征。CAFM和pcAFM等电学模式也具备广泛的应用价值,例如评估导电均匀性或识别电荷捕获或复合区域。KPFM表征因其对表面接触电势和功函数的敏感性而特别有益。由于设计界面层的目的通常是为了为载流子创造更有利的路径,使其远离吸收体并靠近电极,因此进行仔细选择,确保每个界面处的能级对齐,将从原理层面提高材料的性能。这一过程中,KPFM能够对带弯曲和功函数的空间变化进行成像(图6),为载流子路线的选择提供有益的反馈。图 6:通过多层堆叠改善稳定性为了更有效地利用电子传输层(ETLs),需要对其属性进行更好的控制。研究人员在NiOx上的MAPbI3(CH3NH3PbI3)薄膜上获取了表面电势图,在添加苯基-C71-丁酸甲基酯(PC70BM)和罗丹明101(Rh)层之前和之后获得的图显示了差异。通过钝化钙钛矿晶粒边界缺陷,Rh层显著减少了电势的空间变化。诱导表面光电压的结果显示,附加层降低了表面电势并减少了ETL/阳极界面处的带弯曲。这些结果有助于解释为什么带有Rh层设备的效率和稳定性会增加。在MFP-3D AFM上用双通道KPFM模式获取,扫描范围为1微米9。牛津仪器AFM特点1:软硬件设计与优化微观尺度的导电性能指导了材料设计方向,是光伏领域最常见的表征手段。要实现高分辨率,高灵敏度的电流测量范围,MFP-3D和Cypher系列采用了独特的ORCA模块。Orca在悬臂梁夹具中,集成了一个低噪声传输阻抗放大器,其操作范围从约1 pA到20 nA,并提供了多种增益选项。而更高级的双增益ORCA附件时,会同时激活两个独立的放大器,可以确保在更广泛的电流范围内进行高分辨率测量(约1 pA至10μA)。此外,软件中的Eclipse Mode通过双通道方法改善了Asylum AFMs上的光电流测量精度,并减少了光诱导伪影。其原理是,在第一次扫描中,以接触模式获取形貌信息。然后在第二次扫描中关闭AFM的检测激光,并在相同高度执行pcAFM测量。这时候探针所检测到的信号全部来自样本本征激发,不会耦合检测激光可能造成的光诱导。 同样,Asylum系列标配的GetReal功能使得对探针-样品接触力的理解和测量更加简单和精确。这个功能很轻易在采集软件的界面处找到,用户只需点击一下,就可以自动校准悬臂梁弹簧常数和光杠杆灵敏度,而无需接触样品;对于一些罕见探针,也可以通过输入探针形貌长宽特征的方式进行计算拟合。这个功能大大简化了传统的校正方式,促进力学领域相关探索。基于上述对软硬件的持续升级,电噪声屏蔽和力的精确控制能力大幅加强。Cypher系列和Jupiter提供了新的快速电流成像模式,为柔软或脆性材料提供了强大的电流成像功能。当扫描速率高达1 kHz(Cypher系列)时,可以在不到10分钟内获取256×256像素的数据,且每个像素都包含完整的电流和力曲线信息,方便进一步分析处理。而在铁电研究领域,所有的Asylum Research AFMs都配备了高灵敏度、用于共振增强PFM测量的软件,其中包括双AC共振跟踪(DART)模式或Band Excitation选项。两个(或更多)追踪频率的引入可以减小由于形貌起伏带来的接触共振频率变化,确保针尖信号与形貌变化无关。DART模式扩大样品选取范围,使得形貌对结果的干扰降低了,同时减小了接触共振对探针-样品的磨损。压电响应的另一个问题就是新型材料(如氧化铪)的压电系数太小了,即使是AFM善于在纳米尺度观测突变,也很难实现清晰,高信噪比的扫描。所以牛津仪器Asylum Research针对性提供高压PFM模块。对于MFP-3D Origin+ AFM为±220 V,对于MFP-3D 和Cypher系列AFMs为±150 V,让原本皮米级别的响应变得更清晰可见。牛津仪器AFM特点2:优秀的环境控制许多材料会不可逆转地受到表面与周围氧气或水蒸气的影响,这可能导致样品退化或测量结果不可靠。在新能源与锂电池领域,保护样品,防止环境因素产生不可控变化显得显得尤为重要。对于MFP-3D系列AFM,可以使用封闭的流体腔来实现环境隔离。而对于Cypher ES AFM,则可以使用液体/灌注专用holder来实现环境隔离。这类设计可以确保在测量过程中,样品不会同周围的环境之间有任何直接接触,从而保证材料的原始状态,提高测量结果的准确性和可靠性。而通过更换载物台(PolyHeater或者CoolerHeater),可以实现对样品最低从0°C到最高250°C的环境温度控制。如果样品在大气下极不稳定,需要更极致的环境隔离方案,则可以选择将AFM整机置于充满保护气体的环境中进行测试。Turnkey Glovebox Solutions为MFP-3D和Cypher系列AFM提供了完全的环境隔离解决方案。牛津仪器AFM特点3:MFP-3D 对于光伏领域的特别支持为了适应愈发灵活的光伏检测体系,并改进对光活性材料系统的表征,MFP-3D AFM有特别的选配方案,并构建了一个灵活的光伏一站式平台。这个平台通过将可定制的样品照明激发模块,安装在AFM的底部,然后在MFP-3D已有的各种测试功能中集成照射样品激发功能,使得可以在多种AFM模式和环境中进行高分辨率表征。其参数及特点包括:光纤耦合LED允许最大照度> 1太阳,照度控制步长为1%(如图7所示)支持商用的适配器板,可以轻松容纳外部光源,例如Hg-Xe灯开放式设计允许在光路中插入Ø1〞组件,例如滤光片、偏振器和光阑快速释放适配器可让您在几秒钟内在多个光源和光纤之间切换与MFP-3D 所有的环控附件完美兼容,包括加热、冷却和湿度控制等MFP-3D PV(Photovoltaics)选配的光学元件放置在样品台下面的底座,带有铰链门,便于用内置的LED灯照明样品。样品可以用MFP-3D附随的LED照明器或是用户自己提供的光源照明。通过具有可调节聚焦的透镜将光聚焦到样品上,从而适应一系列不同厚度的样品。同时,插入点允许添加滤镜、偏振器和其他组件获得额外的实验灵活性。使用光伏选配方案,为可视化纳米尺度实时光电响应与定量分析光激发提供了有力的支持。在对新型光伏材料表征技术不断提出新需求的当下,建立了多模态联用的新思路。图 7:氧化铟锡(ITO)衬底上退火的聚(3-己基噻吩)和苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结层使用了ORCA模式,在-1V的偏压下对体异质结层样品进行成像。在测量过程中,打开和关闭530nm的照明光源,同时以1%的增量增加强度(全功率约为0.9 W/cm²)。图像的横截面显示了测量电流对光强度的依赖性,并且对光强度的微小变化具有很高的灵敏度。2 有机半导体以聚合物和有机小分子为基础的有机太阳能电池,作为下一代光伏技术,具有广阔的前景。其原料来源广泛,绿色环保,性能优秀,且可通过低成本的处理技术(如溶液处理或蒸镀)进行制造。目前,这些电池已达到最低的商用转换效率标准(>10%), 而要继续推进商业化,关键是增加电池寿命,突破只有几年的服役时长障碍 10。因此,理解其性能如何因光线、热量和其他环境因素而退化至关重要。AFM可以从微观尺度测量设备局部结构和性能变化等重要信息,有助于解决上述问题11。2.1体异质结(BHJ)形貌成像有机太阳能电池通常使用体异质结(BHJ)光吸收剂,这是一种自组装的纳米网络结构,由给体和受体材料组成。其转化效率强烈依赖于网络的特定相分离和连通性,不幸的是,现阶段预测给定合成路线所生成的结构,都仍然具有挑战性。更不用说,探究形态是如何通过各种老化机制发生改变的难题。因此,表征BHJ薄膜的微纳米尺度的形态,探究其中关联性是至关重要的。扫描电子显微镜(SEM)是一种广泛使用的选择,但要保证足够清晰的对比度通常会造成样品损伤。而AFM成像几乎是无损的,可以在各种环境条件下,揭示BHJ组分的大小和分散性,并探索处理流程中变量(例如溶剂蒸发速率和退火)的影响。(图8)。有机材料上的形貌图通常在轻敲模式下扫描,这种模式施加的横向和垂直作用力极其温和。较低的力不仅可以减小样品损伤,而且由于较小的探针-样品接触面积,还可以实现更高的空间分辨率。如果使用非常小的悬臂梁配合新型快速扫描AFM,则可以控制低至亚皮牛级的力,这对于易变形的脆性聚合物非常有帮助。BHJ形态也可以用感知力学性质的AFM模式进行表征。例如,轻敲模式的相位图可以区分在混合物不同组分之间精细的结构细节。通过力曲线获得的弹性模量图还可以显示相分离和分散(图9)。其他纳米力学模式不仅可以进行快速定性成像,而且还可以定量测量弹性和粘性响应。特别是,新型双模轻敲技术(例如AM-FM模式)可以实现高分辨率的快速成像14。图 8:氟化调节性能在共轭聚合物主链中用氟代替氢可以提高转化效率和耐用性。在这里,就探究这种效果进对四个窄带隙聚合物进行了系统研究:PF-0无氟,PF-1a和PF-1b具有中剂量氟和不同的区域选择性,而PF-2具有最多的氟12。使用不同剂量溶剂添加剂DIO获得了聚合物/PC70BM的溶液处理薄膜。PF-1a混合物的形貌图表明,少量的DIO增加了相分离,从而提高了功率转换效率,但更高DIO浓度产生了次优形态。图像显示,所有四个混合物的均方根粗糙度随着氟含量的增加而增加,这可能是因为团聚增强了。通过MFP-3D AFM在轻敲模式下获得,扫描范围为5微米12。图 9:评估分子量效应本研究旨在探究不同聚合物链数平均分子量的PDPP4T-TT和苯基-C61-丁酸甲基酯(PCBM)混合物薄膜的杨氏模量分布。通过力曲线成像获取的分布图,可以区分出BHJ相。其中较低的模量对应于PDPP4T-TT,较高的模量对应于PCBM(插图显示了相应的轻敲模式形貌图)。对于中等分子量的薄膜观察到的大片PCBM域表明,在旋铸过程中通过垂直分离而产生的富含PCBM的表面。这个结果可以解释使用这种薄膜制造的晶体管测量到的异常低的串联电阻值。相比之下,其他薄膜中的相看起来很好地混合在一起,从而产生了具有更高的串联电阻。通过Cypher AFM获取,扫描范围为3微米13。2.2  纳米尺度光电响应成像理解有机半导体的电荷注入、传输、捕获和复合仍然是提高效率并减少性能退化的研究关键点。AFM在纳米尺度的光响应成像可以提供有关潜在机制的宝贵信息,并精确定位BHJ中每个过程发生的地点。使用CAFM和pcAFM对有机半导体成像可以在纳米尺度呈现,供体-受体混合物中获得光电流的状态和电荷传输网络。这些模式因此可以帮助确定微观结构各向异性、光强度或其他参数在光电转换中扮演的角色(图10)。然而,有机半导体的脆弱和相对柔软的特性使其容易受到传统接触式(CAFM和pcAFM)施加横向力的影响。同时,接触模式对样品和针尖的磨损会影响测量电流的稳定性,让数据难以重复,使图像的解释变得更加复杂。为了解决这些问题,近年来已经发展出了快速电流成像技术。快速电流成像技术会驱动悬臂梁在垂向上进行连续正弦运动,同时在横向方向进行移动扫描,最终形成一个快速力曲线阵列并在每一个点都记录了测量电流。当在光照下测量时,可以轻易地将形貌和电流数据相关联,从而揭示出局部结构-性质关系。事实上,只要保存过时间对电流和探针偏转的完整曲线,研究者们还可以通过软件对数据进行更高阶的分析。EFM和KPFM为有机半导体的电学表征提供了许多优势。使用EFM测量电容梯度的局部变化或使用KPFM测量表面电势,可以探索优化器件性能或提高长期稳定性的方法。这些基于非接触性质的模式大大减小了由探针功函数产生的能量屏障效应,因此可以实现开路响应的测量。然而,由于双通道扫描需要每行数据都扫描两次才能获得EFM和KPFM图像,这需要花费好几分钟的时间,所以它们更适合研究相对较慢的过程。对于更快的过程,例如毫秒到秒级别的电荷注入和载流子扩散,可能需要使用其他的电学模式进行研究。例如,FM-EFM以及悬臂梁振荡成像等技术,通过测量功率耗散和电荷捕获的局部变化,来研究光化学降解过程15。此外,还有一些更高阶的方法,如时间分辨EFM和混频KPFM,已经能够对有机半导体和钙钛矿中的局部载流子寿命、光诱导充电速率以及热退火效应进行动态研究15,16。尽管这些技术并非常规AFM的标准配置,但它们却突显了Asylum AFM基于开源软件平台的优势。事实上,Asylum的所有AFM都提供了开放控制架构,为优化数据采集和分析程序提供了无限可能,例如将测量与照明同步启动然后自动化批处理数据。图 10:探索P3HT:PCBM中光电流的异质性本研究测量了聚(3-己基噻吩) (P3HT)和PCBM混合物中的pcAFM电流图像,图像显示了具有较高和较低电导率的区域。并在暗处和照明时(~0.09 W/cm2, 530 nm)测量了画圈位置的I-V曲线。在这两种情况下,电流都随着电压低于-0.3 V时而增加,然后在正偏压下过渡到更高的电阻。其中一些位置,电流量取决于照明条件(黑色和蓝色圆圈),而在另一些位置(绿色圆圈)始终很高。使用PV选配方案和ORCA附件在MFP-3D AFM上获取,扫描范围为1微米17。。2.3 优化中间层有机太阳能电池通常包含附加层,用于提取和接收电荷以及控制表面重组。为了优化性能,先期使用AFM获得的纳米尺度信息,来设计界面层是不可或缺的步骤。例如,形貌图可以评估由于中间层加入而引起的BHJ形态变化,这将会影响载流子复合效率17。此外,EFM和KPFM的跨界面成像可以提供设计中间层所需的信息,使得中间层能够更好地排列从光吸收器到电极的电场和能级。中间层可以通过翻转几何形状或完全封装等方法来提高器件的稳定性。而要模拟设备失效和老化,环境控制功能十分重要,环控功能允许器件被惰性气体包围,并在现实或增强湿度条件下进行实验(图11)。温控是AFM环境控制的另一个重要方面;使用专门的载物台架可以实现高达几百度稳定、精确的温度变化。基于AFM环控功能在微观尺度对于设备稳定性和寿命研究,将推进设备商用化的进程。图 11:表征湿度相关效应P型金属氧化物可以作为有机太阳能电池中有效的空穴提取层,但不同环境条件对它们电学性能的影响尚不完全了解。本研究探究多晶NiOx薄膜在不同环境条件下的电学性能。KPFM结果发现在相对湿度变化时,表面电势呈现出纳米级空间变化。随着相对湿度的增加,表面电势的平均值降低,而形貌特征的平均尺寸增大。这种行为与水在薄膜表面吸附而导致的电荷屏蔽相一致。观察到的表面电势空间不规则性最可能是由于对暴露的不同取向晶粒的不均匀化学吸附引起的。通过Cypher AFM上获取,扫描范围为1微米。数据来源于橡树岭国家实验室纳米材料科学中心18。总结光伏技术的发展正逐渐满足世界日益增长的能源需求。基于钙钛矿和有机半导体的器件也迸发了更多的可能。实现原料丰富、低成本的可再生能源技术已经近在眼前,然而,要实现这一目标,我们需要更先进的表征手段来改进下一代光伏材料。牛津仪器AFM提供了多样模式,可以在黑暗和可变照明下呈现设备纳米级结构和功能响应。结合更高的空间分辨率、更快的成像速度和更完善的环境控制,这些优势将使AFM成为光伏领域不可或缺的工具。通过使用AFM,我们可以更好地了解光伏材料的性能和稳定性,从而为新一代光伏技术的研发提供有力支持。了解更多Asylum网站列举了AFM在常见研究方向中的应用。这些页面包括相关的应用笔记,网络研讨会和选定的出版物。详情请查看:“原子力为纳米尺度电学表征添砖加瓦” –http://AFM.oxinst.com/Nanoelectrical“原子力显微镜对压电铁电研究的进展” – http://AFM.oxinst.com/PFM参考文献1. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science 352, aad4424 (2016).2. E. M. Tennyson, J. M. Howard, and M. S. Leite, ACSEnergy Lett. 2, 1825 (2017).3. Y. Kutes, Y. Zhou, J. L. Bosse, J. Steffes, N. P. Padture, and B. D. Huey, Nano Lett. 16, 3434 (2016).4. J. Li, B. Huang, E. N. Esfahani, L. Wei, J. Yao, J. Zhao, and W. Chen, npj Quantum Materials 2, 56 (2017).5. N. D. Pham, V. T. Tiong, D. Yao, W. Martens, A. Guerrero, J. Bisquert, and H. Wang, Nano Energy 41, 476 (2017).6. Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016).7.  D. Moerman, G. E. Eperon, J. T. Precht, and D. S. Ginger, Chem. Mater. 29, 5484 (2017).8. I. M. Hermes, S. A. Bretschneider, V. W. Bergmann, D. Li, A. Klasen, J. Mars, W. Tremel, F. Laquai, H.-J. Butt, M. Mezger, R. Berger, B. J. Rodriguez, and S. A. L. Weber, J. Phys. Chem. C 120, 5724 (2016).9. J. Ciro, S. Mesa, J. I. Uribe, M. A. Mejia-Escobar, D. Ramirez, J. F. Montoya, R. Betancur, H.-S. Yoo, N.-G. Park, and F. Jaramillo, Nanoscale 9, 9440 (2017).10. J. R. O’Dea, L. M. Brown, N. Hoepker, J. A. Marohn, and S. Sadewasser, MRS Bull. 37, 642 (2012).11.  M. Pfannmoeller, W. Kowalsky, and R. R. Schroeder, Energy Environ. Sci. 6, 2871 (2013).12. J. Yuan, M. J. Ford, Y. Zhang, H. Dong, Z. Li, Y. Li, T.-Q. Nguyen, G. Bazan, and W. Ma, Chem. Mater. 29, 1758 (2017).13. A. Gasperini, X. A. Jeanbourquin, and K. Sivula, J. Polym. Sci., Part B: Polym. Phys. 54, 2245 (2016).14. M. Kocun, A. Labuda, W. Meinhold, I. Revenko, and R. Proksch, ACS Nano 11, 10097 (2017).15. R. Giridharagopal, P. A. Cox, and D. S. Ginger, Acc. Chem. Res. 49, 1769 (2016).16.  J. L. Garrett, E. M. Tennyson, M. Hu, J. Huang, J. N. Munday, and M. S. Leite, Nano Lett. 17, 2554 (2017).17.T.-H. Lai, S.-W. Tsang, J. R. Manders, S. Chen, and F. So, Mater. Today 16, 424 (2013).18. C. B. Jacobs, A. V. Ievlev, L. F. Collins, E. S. Muckley, P. C. Joshi, I. N. Ivanov, J. Photonics Energy 6, 038001 (2016).致谢感谢R. Giridharagopal, B. Huey, and H. Phan for valuable discussions and L. Collins, R. Giridharagopal, D. Ginger, A. Gruverman, I. Hermes, B. Huey, J. Huang, I. Ivanov, F. Jaramillo, D. Moerman, N. Pham, Y. Shao, K. Sivula, V. Tiong, H. Wang, S. Weber, and J. Yuan 等人提供的图像支持。

应用实例

2024.01.29

用AFM统计定量研究纳米析出相

对新型电子和功能材料的重视,以及对更轻重量和更可持续结构材料的需求,大大推动了聚合物、2D材料和陶瓷等材料的研究。然而,从飞机发动机到家用电器的众多工程应用仍然依赖于金属的高强度和耐用性。因此,金属材料的研究一直持续进行中,而且新材料及其新工艺的开发仍是当下材料界的研究热点,包括高品质高强钢、不锈钢、耐热钢及高温合金等材料[1-4]。大多数金属材料工程应用中必须考虑其强度和韧性。纳米级的第二相弥散强化既能够提高材料强度,又能改善材料韧性的方法之一,因此它对开发新的高性能材料非常有帮助,引起研究者的兴趣。目前,已经有文献报道纳米析出相Nanoprecipitates(NPs)可以大大提高材料的力学性能、耐蚀性、高温性能等。金属材料的性能强化机理与第二相的特征参数及分布有着密切的关系,很多材料强度计算模型也是基于第二相尺寸及百分含量进行计算的。如Friedel和Orowan模型,Friedel切过机制模型:其中r为粒子半径,f为析出相体积分数Orowan绕过机制模型:其中d为粒子半径上述模型说明材料的屈服强度与其内部第二相粒子的平均直径密切相关。此外,纳米析出物类型、尺寸和数量等对疲劳、蠕变等力学性能也有较大影响。因此 NPs的定量表征工作尤为重要。特别是基于当前众多材料均是利用NPs改善材料的力学性能、耐蚀性能、耐热性能、韧性等,析出相定量工作具有较为广泛的实际应用意义,简便、高效定量测试方法的开发工作尤为必要。金属材料的表面形貌与材料的服役过程中表面摩擦行为、腐蚀行为等密不可分,因此对表面形貌的定量分析显得极为有意义。同时金属材料里面的纳米析出相的力学性能一直是材料力学表征的难点,主要受限于尺寸问题,使得众多力学测量设备无能为力。而标准AFM的探针曲率半径为10nm左右,牛津AFM的AMFM技术可以完美解决金属纳米析出物的定量力学问题。表面形貌的定量统计目前, 传统的金属材料NPs的研究主要使用XRD,SEM和TEM。其中,XRD可以表征NPs平均尺寸,但仅能给出粒度范围,尺寸定量精度有限,无法同时获得NPs在材料内的分布。SEM可以表征NPs,但统计结果容易受到表面起伏的影响。由于材料表面腐蚀原因造成某些部位凸起也有可能被统计成析出物颗粒。而TEM可以观察NPs,但在定量统计NPs含量存在问题,主要是纳米析出相在金属材料晶粒和晶界上随机分布导致部分NPs以及边界不明显,从而导致后面的统计出现较大偏差。如图1所示,通过SEM和TEM检测贝氏体钢析出相的尺寸存在明显差异。因此本文推荐使用原子力显微镜检测的方法对金属领域中NPs的定量进行快速且精确的表征。图1 贝氏体钢微观形貌(a)SEM结果(b)TEM结果原子力显微镜(AFM)是一种高精度、快速的表征样品表面特征的技术,可以用来定量表征金属中的NPs。它不仅可以测量颗粒的大小,还可以定量测量其力学和电学性能。技术的进步使得Oxford AFM成像比上一代原子力显微镜的速度更快,操作更容易,数据更可靠。此外,AFM的样品制备要求与其它技术相比更方便,实际使用极具有优势。AFM可以通过形貌、相位图以及材料的力学性质图直接分析NPs。图2给出了高温合金经过抛光之后的析出相的AFM形貌图和相位图,图中可以清楚观察到NPs呈弥散分布,类圆形,尺寸主要分布在10-50nm,该结果与TEM观察结果一致,也说明了AFM表征粒子尺寸信息的准确性。图2 高温合金AFM形貌图,相位图和TEM图

应用实例

2024.01.29

低电压下纳米颗粒的能谱EDS元素分析方案

低电压下纳米颗粒的能谱EDS元素分析方案传统的能谱EDS分析通常要求较大的工作距离和较高的电压,而利用扫描电镜对样品进行图像观察时,可能会根据观察目的来选择更短的工作距离及更小的加速电压。 日本钢铁工程控股公司佐藤博士对钢中细小夹杂物的分析工作很好地展示了不同扫描电镜SEM成像条件对电子图像的影响。图1所示为2.25Cr-1 Mo钢在不同加速电压及工作距离下所观测到的不同碳化物的衬度。图1中的i,ii,iii箭头所指(i代表M23C6,ii代表M6C,iii代表AlN)及圆圈内的位置(M2C)是不同种类的碳化物,总体而言,随着电压的降低和工作距离的缩短表面的碳化物逐渐显现其清晰的形貌及分布位置。 那么,EDS是否也可以去表征这些表面的结构呢? 传统能谱EDS分析需要在高电压、长工作距离下进行,为了获得好的电子图像而选择的工作条件(低电压、短工作距离)对于EDS采集来说就不甚友好,通常接收到的信号过低,传统能谱几乎采集不到过多有效的信息。牛津仪器Ultim Extreme采用了不同于传统EDS的设计,将接收特征X-Ray光子信号的晶体大幅前移使之更加靠近样品,因而大大提高了信号量;Ultim Extreme的几何设计也有利于在短工作距离下的EDS分析。图2所示为传统EDS及Ultim Extreme与电子束和样品的相对几何关系的示意图,Ultim Extreme的WD和DD(探测器至样品的距离)都更短。此外,Ultim Extreme采用了无窗设计,大幅提升了低能特征X-Ray的检测率。综合以上特性,牛津仪器Ultim Extreme对低电压、短工作距离下的EDS采集效率及效果有了显著的提升。 图3所示为一离子抛光后的样品的电子图像(左)及元素分布图(右),工作电压为3kV,工作距离为4mm,元素分布图使用牛津仪器Ultim Extreme采集。从右侧的元素分布图可以轻易区分出红色的基底(不锈钢)和至少3种第二相,它们分别为粉红色的富Ni相,绿色的富Cr相及蓝色的富Mo相。在左侧的电子图像中,由于抛光的缘故,富Cr相并不清晰,EDS可以帮助快速定位、区分不同的第二相,提供形貌之外的元素信息。 在实际样品分析中,除了参数设置及电镜和EDS探头的性能之外,样品的表面状态和样品漂移也会影响低电压下能谱元素分析的结果。 1. 表面的碳(C)沉积 样品的积碳效应在低电压下尤为明显,表面沉积的无定型碳或碳氢化合物会对样品的特征X光子有强烈的吸收效应,进而影响EDS效果。通过等离子清洗可减弱样品表面的C沉积现象,进而改善EDS分析的效果。 图4所示为对样品进行等离子清洗前后经过相同电压相同剂量电子辐照后的表面状态。经过等离子清洗后的样品(右图)经过电子辐照C沉积明显减少,此时进行低电压EDS分析将更有利于Ultim Extreme能谱仪接收低能端光子信号,改善结果。 2. 样品漂移 样品漂移会造成细微结构展宽甚至畸变,对于含量很少或者尺寸很小的结构也可能因为样品的漂移而不能检出或检出结果与真实结构偏差较大。通常引起样品漂移的原因及解决方案如下: 碳导电胶坍塌所引起的物理漂移 常用的导电胶带内有大量气孔,在真空中这些气孔坍塌胶带发生变化,粘在其上的样品也会跟着移动。使用液体碳浆可解决此类问题。图5所示为10kV下含Bi粉末撒在碳胶带上和用液体碳浆进行固定的EDS分析结果,结果表明,即使是导电的大尺寸样品,使用C胶带进行固定(图5ab)也会发生颗粒的形状变化或者展宽等,而固化后的C浆(图5cd)则具有很高的稳定性,EDS元素面分布结果与电子图像完全匹配(碳浆选购网站www.51haocai.cn)。 样品导电性较差导致放电 使用低电压或低束流使样品表面达到电中性即可解决部分样品的放电漂移现象。但有的不导电样品难以通过此方法完全消除放电,此时可选择表面喷碳来解决。高倍下机台的稳定性 此类问题无法根除,只能通过跟踪样品的漂移来解决。牛津仪器AZtecLive能谱分析软件中提供了多种样品漂移矫正(Autolock)的模式来进行样品跟踪,以期获得理想的分析结果,如图6所示,高倍采集时,使用Autolock与否对颗粒物识别影响巨大。 图6. 高倍下采集EDS时,不使用AutoLock(左)和使用AutoLock(右)的比较 总结 通过扫描电镜及能谱仪,对10nm左右的纳米颗粒进行EDS分析时,推荐在低加速电压并配合牛津仪器大面积甚至无窗型Extreme的能谱采集,同时需要样品稳定性高并配合AutoLock功能,可以获得更好的空间分辨率结果。 

应用实例

2024.01.26

谈微纳光电子领域对原子力显微镜的应用与售后需求—访南开大学物理科学学院王晓杰

近年来,中国分析表征仪器设备市场蓬勃发展。随着设备性能越来越完善,消费者在采购仪器时对于售后服务质量的考量比重也与日俱增。为提升仪器售后服务质量,促进中国分析表征仪器设备市场的健康发展,仪器信息网特邀请企业和用户代表为科学仪器行业售后服务现状与未来发声。近日,仪器信息网采访了南开大学物理科学学院的王晓杰老师。访谈中,王晓杰老师介绍了微纳光电子领域对相关研究设备售后服务的需求,并表示牛津仪器售后服务工程师的服务态度良好,专业水平高,为其科研工作提供了不可或缺的支持。南开大学物理科学学院助理研究员 王晓杰王晓杰,南开大学物理科学学院助理研究员,主要从事铌酸锂微纳光电子学相关的研究及大学物理实验教学研究。目前主持国家自然科学基金项目1项,省部级项目5项。在Applied Physics Letter、European Journal of Physics等期刊发表论文多篇,获全国科创项目式学习方案征集活动一等奖、南开大学教学育人先进个人等荣誉。此外,长期从事科普教育工作和科学教育研究,现为中国物理学会“蒲公英计划”科普宣讲团专家、Light科普坊科普作者、中级青少年科技辅导员。仪器信息网:请您简要介绍您所在行业领域?您的主要工作研究内容以及其意义?王晓杰老师:我主要从事微纳光电子学相关的研究,主要的工作内容是铌酸锂铁电畴结构的制备及其表征。在工作中利用原子力显微镜可以很好的完成铁电畴结构的制备、PFM表征以及电学测试,特别是可以在纳米尺度实现图案化的铁电畴结构直写,并且对铁电畴结构进行实时表征。目前这一研究在数据存储、传感器、光电器件等方面具有广泛的应用潜力。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?王晓杰老师:我主要使用的仪器是MFP-3D系列的原子力显微镜,主要用于材料形貌、电学和铁电方面的表征和测试。在采购设备时,首先关注仪器的性能和功能,确保它能够提供稳定和高分辨率的表征数据。其次比较关注售后服务和支持,主要考虑售后服务团队的专业程度、响应速度以及是否提供定期培训服务等。牛津仪器MFP-3D系列原子力显微镜仪器信息网:您体验过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?王晓杰老师:体验过牛津仪器的在线支持、仪器培训以及现场技术支持等服务。感觉牛津仪器的售后服务响应速度快、专业,微信几乎是全天在线,节假日无休。而且每年都会举办线上线下培训班,可以使课题组和实验室的新生及时得到来自厂家的专业的培训。另外我们也会定期从牛津仪器在线商城上购买原子力显微镜探针,目前商城里的探针已经足够满足我们的各种应用需求,商城中的探针选取指南使用起来也十分便捷。仪器信息网:对于牛津仪器提供的在线商城、仪器培训、应用支持、维护保养、升级服务、设备搬家、远程在线智能支持等售后服务,您有哪些印象深刻的案例分享?王晓杰老师:有两件事让我们印象深刻。第一个是疫情期间,我们实验室的原子力显微镜背板损坏,检修完发现需要送到总部维修,由于当时有一篇论文审稿回来需要补充数据,时间很紧张。和牛津仪器的工程师联系后,工程师紧急调用了一台备用仪器背板给我们使用。协调好仪器背板的相关事项后,突然被通知要封校,如果等到第二天就无法进校安装了。我们和工程师沟通后,工程师连夜打车将背板送到实验室并安装测试完毕,非常辛苦也非常敬业。第二件事是由于实验室调整,需要进行设备搬迁。牛津仪器工程师知道这件事情之后,很快和我们协调好搬迁时间,并告知我们提前需要准备的事项。搬家当天,牛津仪器派了经验丰富的工程师来校进行了拆装和测试,整个过程只用了不到一天就完成了。并且在拆装过程中,工程师不断和我们讲解一些需要注意的事项。安装后进行仪器测试,竟然发现机器性能比装机时的性能还要优秀。这完全得益于工程师专业的素养和极高的工作效率。在整个设备拆装过程中,工程师全程像朋友一样和我们沟通,感受非常好。仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?王晓杰老师:牛津仪器的售后服务工程师在与我们对接过程中展现了极高的专业素养:熟知设备内部结构和运行原理。在解决问题的过程中,能够迅速定位并诊断故障,提供有效的解决方案。此外,在与售后服务工程师的交流中,他们非常细心、耐心。无论是在现场支持、远程支持还是技术培训过程中,都能够详细解答我们的问题。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?王晓杰老师:听说牛津仪器目前正在国内建立本地备件库,希望可以进一步加强零配件需求的时效性。当设备需要更换零部件或者维修时,能够直接在本地进行替换和维修,减少因维修时间对于研究进度的影响。

媒体关注

2024.01.23

引领AFM技术革新——牛津仪器全新一代原子力显微镜Vero技术研讨会成功举办!

牛津仪器Asylum Research于近日重磅推出干涉式原子力显微镜Vero,其利用正交相位差分干涉技术(QPDI)可以精确测量探针的真实位移。2024年1月9日,牛津仪器在上海演示中心举办“全新一代原子力显微镜Vero技术研讨会”,采用现场演示及线上直播的形式,为国内用户介绍AFM前沿技术进展和相关应用成果。△ 研讨会现场△ 牛津仪器MAG中国区应用经理孟丽君博士主持会议△ 牛津仪器AR中国区销售经理刘长隆先生致辞△ Asylum Research联合创始人、牛津仪器PLC首席技术官Roger Proksch博士介绍Vero AFM中的QPDI技术据Roger Proksch博士介绍,Vero基于Cypher平台打造,不仅继承了Cypher系列的高稳定性和高分辨率,并且凭着QPDI技术,能够获得准确和可重复的数据。△ 牛津仪器干涉式原子力显微镜Vero一直以来,AFM主要依赖于光杠杆检测(OBD)技术,它实际测量的是悬臂梁偏转的角度,而不是探针的位移。Vero的推出,打破了这种局面。Vero采用的QPDI技术,直接测量真实的探针位移而不是悬臂梁角度,提高了数据的可靠性;QPDI可将悬臂梁检测噪声降低10倍或更多,大大提高了测量灵敏度;QPDI测量纯粹的垂直探针位移,避免了垂直和平面力之间的串扰;通过光的波长精确校准,避免了与OBD校准相关的假设和不确定性。可以说,Vero在一定程度上修正了迄今为止压电力显微镜(PFM)领域所缺乏的结果准确性和一致性。△牛津仪器AFM高级应用科学家竺仁博士分享Vero使用体验竺博士讲到,Vero可适配不同反射镀层、不同悬臂形状、不同基片厚度的探针,其光斑尺寸小于4um,支持小探针;可基于气相和液相环境、S扫描器和ES扫描器、blueDrive等配置升级;可选择力曲线、接触模式、轻敲模式,以及衍生出来的力学、电学、磁学等模式;保留了光杠杆检测,具有摩擦力模式、测向PFM模式,可以同时采集光杠杆和QPDI信号。此外,竺博士还详细讲述了Vero扫描周期性极化铌酸锂、氧化铪、硫酸钙晶体等实际案例。△ 牛津仪器高级应用科学家刘志文博士介绍AFM技术发展趋势及应用进展刘博士表示,当前AFM朝着低噪音、高分辨、数据准确性和可重复性、扫描速度更快、操作简单、扩展性好等方向发展,而牛津仪器的产品正引领着这些方向。随后,刘博士讲述了牛津仪器低噪音AFM、高分辨AFM、粗糙度数据的准确性和可重复性、高通量(原位)AFM、微波扫描电容显微镜新技术等方面的应用案例。△ 讨论环节本次研讨会设置了讨论环节,来自上海科技大学、复旦大学、上海交通大学、苏州大学、华东师范大学等科研单位的专家学者与牛津仪器团队进行了深入的技术交流。△ Vero原子力显微镜现场演示研讨会内容结束后,牛津仪器还安排了Vero原子力显微镜的现场操作及演示,以帮助用户更好地了解Vero系统的特点及优势。牛津仪器Asylum Research专注AFM研究近25年,始终致力于推动AFM技术的极限。从解决无法精准测量力曲线弊病的MFP-1D,到快速扫描产品Cypher、全功能视频级扫描产品Cypher VRS,再到能够利用单一扫描器同时提供全自动、多功能、高扫描速度和高精度的大样品AFM Jupiter XR,牛津仪器Asylum Research一直引领着AFM市场的技术革新。Vero的问世,再次印证了牛津仪器Asylum Research在AFM领域的卓越实力。

媒体关注

2024.01.10

半导体设备的稳定运行 卓越售后是关键——访武汉光迅科技股份有限公司高级芯片工艺工程师余兵

近年来,中国化合物半导体市场蓬勃发展,随着产业客户数量和设备装机量激增,客户也对设备厂商的服务水平提出了更高要求。在设备性能满足需求的前提下,售后品质成为了用户采购设备时越来越关注的因素。为促进产业交流,推动厂商为用户提供更优质高效的售后服务,仪器信息网特邀请用户代表为半导体设备行业售后服务现状与未来发声。近日,仪器信息网采访了武汉光迅科技股份有限公司的高级芯片工艺工程师余兵老师,余兵老师在访谈中介绍了半导体行业对生产设备及晶圆表征分析方面的需求,还提到牛津仪器售后服务工程师的专业与细心,以及高配合度。受访人:余兵余兵,武汉光迅科技股份有限公司,高级芯片工艺工程师;主要负责介质膜生长、金属镀膜、干法刻蚀、退火合金、晶圆减薄等芯片工艺。仪器信息网:请您简要介绍您所在行业领域?您的主要工作研究内容以及其意义?余兵老师:我所在的行业是光通信器件和光通信芯片。主要的工作内容是光通信芯片的研发和制造。光芯片在多个领域都有广泛的应用,如通信领域、光学测量领域和医疗器械领域等。在通信领域中,光芯片可以实现高速、高效、远距离的光信息传输和信号处理。在光学测量领域中,光芯片可以实现高精度、高稳定性的光学测量和传感。在医疗器械领域中,光芯片可以实现高精度、小型化的医疗设备和治疗方法。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?余兵老师:主要使用的牛津仪器设备包括:PECVD、RIE、ICP-RIE以及EDS能谱仪等。采购刻蚀这一类型的半导体工艺设备,我们一般会更加关注设备稳定性和生产一致性,当然服务支持的专业性和时效性也非常重要;如果是能谱仪的话,技术支持的及时性会考虑得更多。武汉光迅现场的牛津仪器PlasmaPro 100 Cobra ICP系统仪器信息网:您使用过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?余兵老师:使用过牛津仪器的远程售后支持以及现场的技术支持。牛津仪器在国内拥有较为强大的售后团队,售后人员均有较高的技术能力;线上和线下的服务响应度都很高,现场服务基本能够做到48小时内抵达现场。仪器信息网:对于牛津仪器在线商城、仪器培训、应用支持、维护保养、升级服务、设备搬家、远程在线智能支持等提供的售后服务,您有哪些印象深刻的案例分享?余兵老师:牛津仪器客户服务的现场支持工作是很到位的。有一次印象较深的是有一次周五设备下电极出现大的故障。由于设备生产任务较重,必须尽快恢复设备,和牛津仪器客户服务工程师沟通以后,他们自愿协调工作时间,周六加急上门帮忙处理故障,解了我们的燃眉之急。仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?余兵老师:牛津仪器的售后工程师,给我的最大的印象是专业、细心。半导体设备的维护和维修,首先要有专业的技能,能够熟知设备基本构造,并对设备的易故障点如数家珍,才能最快速地发现设备问题;其次,也需要有足够的细心,不会因为大意留下故障隐患,造成设备二次维修。除了优秀的职业素养之外,牛津仪器工程师们也提供了很多专业建议。比如平时工作中,出于研发需求,我们经常会针对工艺设备的一些特殊部位进行定制改造,需要牛津仪器提供详细的设备部件图,一般牛津仪器的工程师都会第一时间提供给我们,并且给出详细的改造建议,对我们的研发提供了非常大的支持。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?余兵老师:听说牛津仪器目前正在国内建立本地备件库,希望进一步加强零配件需求的时效性。后记:牛津仪器表示:武汉光迅科技股份有限公司的高级芯片工艺工程师余兵老师对牛津仪器客户服务的认可和信赖,代表了牛津仪器客户服务秉承着以客户为中心的理念,通过加速布局在中国发展,扩建遍布全国的客户支持网络,在快速增长的化合物半导体行业也能紧跟用户步伐,帮助客户取得成功。除光通信领域之外,牛津仪器等离子技术部在功率半导体领域也有诸多技术创新。高效的电源开关和电力转换器件使诸如电动汽车、本地电源和网络配电等新技术成为可能。利用诸如SiC和GaN等材料可提升器件性能并实现更低的能量损耗。牛津仪器对如何使用诸如原子层沉积、等离子体刻蚀及等离子体沉积的工艺解决方案制造更优化器件有深刻的理解。

媒体关注

2023.12.08

电镜的高效稳定运行 良好售后是保障——访重庆大学电镜中心副主任黄天林教授

随着科学仪器行业的蓬勃发展,对应售后服务市场在近十年来发展迅速,全球新冠疫情下,售后市场又迎来新的机遇和挑战。近年来,中国分析仪器市场蓬勃发展,相关用户数量激增。大量增加的业务和客户量对仪器厂商的服务提出了更高的要求。在仪器性能满足需求的前提下,售后服务质量成为了用户采购仪器时越来越关注的因素。为促进产业交流,优化仪器售后服务市场,为用户提供更优质高效的售后服务,推动中国科学仪器行业的健康发展。仪器信息网特组织相关专题活动,邀请企业和用户代表为科学仪器行业售后服务现状与未来发声。近日,仪器信息网采访了重庆大学电子显微镜中心副主任黄天林教授,黄教授介绍了背散射电子衍射仪(EBSD)和能谱仪在选购、售后方面需要注意的问题以及平台管理方面的一些经验。受访人:黄天林教授黄天林教授,重庆大学电子显微镜中心副主任、材料基因工程重庆市重点实验室副主任、重庆大学超瞬态装置实验室副主任。主要从事金属材料塑性变形机理及微观组织演变、大塑性变形金属的热稳定性和回复再结晶行为、纳米结构金属强韧化机理研究,以及电子显微学及先进表征技术的开发和应用研究。参与且成功研发世界首台具有三维晶体取向重构和衍衬像重构的三维透射电子显微镜,作为主研人员参与国家重点研发计划项目“材料基因工程关键技术与支撑平台-先进材料多维多尺度高通量表征技术”,参与开发了系列材料多维多尺度高通量表征技术,在Nature、Acta Materialia、Scripta Materialia等学术期刊上发表论文40余篇。仪器信息网:请您简要介绍您所在行业领域?您的主要工作或主要研究内容以及其作用或意义? 黄天林教授:我的主要研究方向是金属结构材料强韧化机制以及材料先进表征技术。强度和韧性是结构材料最为重要的评价指标,材料强韧化机制的研究将有助于我们提高强韧化理论水平,探索新的强韧化技术,开发强度更高、韧性更好的先进结构材料,满足汽车工业、国防、交通、航空航天等领域的迫切需求。另一方面,对强韧化机制的研究离不开对材料显微结构的精确表征,开发先进的材料表征技术将推动材料相关基础理论研究的进步,从而促进新材料的开发。同时,我也是重庆大学电子显微镜中心副主任,负责实验平台管理的部分工作。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素? 黄天林教授:经常使用的仪器主要是背散射电子衍射仪和能谱仪。其中EBSD用于微区取向分析,能谱仪用于元素分析。在采购这类仪器时会考虑设备的功能能否满足当前和将来的研究需求,售后服务和升级服务是否有保障,当然设备价格也属于需要综合考虑的因素之一。仪器信息网:您认为良好的售后服务应包含哪些内容?针对您所在行业领域,您比较看重哪些售后服务内容及原因?黄天林教授:设备高效稳定运行对我们非常重要。我们的实验平台采取的是预约制,一旦设备出现问题,不但会影响实验测试,而且售后维修的周期一般都很长,对后续的实验也会有很大的影响。良好的售后服务还应该包含设备维护保养、故障排除、仪器培训、技术指导、升级服务、设备耗材供应等。其中比较重要的是售后响应和故障排除的速度。仪器信息网:作为仪器用户,您认为本地化的售后服务有着怎样的积极意义?黄天林教授:本地化售后服务将缩短服务周期,及时高效响应客户售后需求。此外,本地化售后也有助于本地工程师售后水准的提升。牛津仪器这方面就做得很好,为了能够及时处理设备出现的问题,有部分工程师被调配到重庆、长沙、西安等地,这样就节省了工程师在路上的时间,有更多的时间为我们提供服务并解决问题。仪器信息网:您使用过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务? 黄天林教授:仪器培训、在线智能支持、维护保养是我们最常用售后服务。牛津仪器每年都会组织仪器培训,学生们的反响都非常好;我们遇到的一些容易解决的问题,通过工程师线上沟通就能够快速解决。印象深刻的一次是EBSD探头发生故障,设备需要送到总部维修,维修周期很长,牛津仪器的售后没有强调费用的问题,直接提供了最新型号的演示机给我们继续使用直至维修设备返回。这不仅没有影响我们的课题研究进度,而且由于演示机的性能显著优于旧机,所以提高了实验的效率及实验结果的准确性。后续电镜中心与牛津仪器签订了一份涵盖重庆大学所有牛津设备的服务合同,进一步巩固了合作关系。牛津仪器始终将解决问题放在首位,只要提出服务需求,公司就会立即派资深工程师前往,一次性解决所有问题。仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?黄天林教授:接触下来,感觉牛津仪器售后工程师专业水准很高,能及时解决常见故障,响应也非常及时,对仪器设备方面的技术问题热心给予解答。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?黄天林教授:现在的EBSD探头和能谱仪使用了近八年,我们也准备对当下仪器进行升级。EBSD方面,希望探头有更高的分辨率、更高的采集速率以及大面积拼接等最新的功能。能谱方面,主要是采集效率的提高。希望牛津仪器在仪器升级方面提供更多优惠的方案。后记牛津仪器表示:重庆大学电镜中心副主任黄天林教授对牛津仪器客户服务的认可和信赖,代表了牛津仪器客户服务秉承着以客户为中心的理念,通过加速布局在中国发展,扩建遍布全国的客户支持网络,打造远程智能服务等手段,丰富与客户的亲密体验,帮助客户取得成功。在产品端,牛津仪器也在不断创新研发,针对黄天林教授提出的更高分辨率、更快采集的EBSD,牛津仪器也推出了新的 Symmetry S3 ,采集花样可达到5700花样/秒,此时花样分辨率可达156x128像素。其最大像素可达1244*1024像素,将高速分析(>5700个花样每秒)与百万像素相结合,确保更加优异的性能,满足各领域内科研的需要。

媒体关注

2023.09.28

谈冶金行业对科学仪器售后服务的几点需求——访首钢集团检测分析技术首席孟杨博士

随着科学仪器行业的蓬勃发展,对应售后服务市场在近十年来发展迅速,全球新冠疫情下,售后市场又迎来新的机遇和挑战。近年来,中国分析仪器市场蓬勃发展,相关用户数量激增。大量增加的业务和客户量对仪器厂商的服务提出了更高的要求。在仪器性能满足需求的前提下,售后服务质量成为了用户采购仪器时越来越关注的因素。为促进产业交流,优化仪器售后服务市场,为用户提供更优质高效的售后服务,推动中国科学仪器行业的健康发展。仪器信息网特组织相关专题活动,邀请企业和用户代表为科学仪器行业售后服务现状与未来发声。近日,仪器信息网采访了首钢集团有限公司技术研究院检测分析技术首席工程师孟杨博士,孟杨博士在访谈中介绍了冶金行业对售后服务方面的需求,还提到牛津仪器售前和售后服务的坦率与诚信给她留下了很好的第一印象,在与牛津仪器工程师长期的接触中,感受到了牛津仪器以用户中心,响应快速、耐心专业的售后服务,为今后的长期合作打下了良好的基础。受访人:孟杨博士孟杨,首钢集团有限公司技术研究院检测分析技术首席工程师。从事微观分析技术的开发和显微分析自动化探索,涉及钢中显微特征包括奥氏体、带状、位错等的定量表征和标准化等。对钢中显微特征的分析工作发表于Materials Characterization、ISIJ International 等期刊。第一作者发表SCI收录论文6篇,EI收录论文2篇;以第一发明人获发明专利授权5项,主持或参与ISO标准、国家行业标准制(修)定12项。仪器信息网:请您简要介绍您所在行业领域?您的主要工作或主要研究内容以及其作用或意义?孟杨博士:我所在的行业属于冶金行业,平时主要负责钢铁及相关材料的微观分析工作,以及微观分析方法的开发,通过样品的检测和分析,主力于服务钢铁高质量发展。仪器信息网:您主要使用牛津仪器的哪些仪器设备?采购这一品类设备的过程中,您综合考量了哪些因素?孟杨博士:我们目前使用的扫描电镜、透射电镜、电子探针等都装有牛津仪器的能谱,此外还有牛津仪器的两台EBSD,未来还将采购的FIB也会配有牛津仪器的Symmetry S3®。因为之前采购的设备就有配备牛津仪器的产品,最重要的肯定还是牛津仪器的产品质量过硬、能够满足日常的使用需求,平时和牛津仪器的工程师有比较好的交流互动,所以一定程度上是习惯使然。我们平时检测的很大一部分是做钢中的夹杂物分析,由于牛津仪器的能谱是大面积的,而且能量分辨的灵敏度比较好,包括近年来牛津仪器夹杂物自动分析的软件进步也非常大,所以非常合适我们的需求。另外,在钢的EBSD分析方面,我们的检测量比较大,所以检测速度是一个很重要的因素,牛津仪器最早就推出了CMOS的相机,响应速度从每秒钟几十点逐步提升到1500点,到4500点,甚至到新一代Symmetry S3的5700点,都充分满足我们的需求。此外,牛津仪器不仅速度快,其软件核心算法的误标也相对较少。仪器信息网:您认为良好的售后服务应包含哪些内容?针对您所在行业领域,您比较看重哪些售后服务内容及原因?孟杨博士:售后服务其实包含很多方面,第一售后工程师的专业水平和沟通能力都很重要,售后工程师应该充分了解用户所购设备的情况、配置以及主要用途等信息,便于在服务时给用户提供充分、有效的服务;第二,售后与售前应保持良好的一致性,售前承诺和售后提供的服务一定要能保持一致,这也是用户和厂商之间建立长期合作的重要基础;第三,响应及时,用户在使用过程中难免会遇到技术问题或者维修维护方面的问题,工程师应该能做到快速响应用户的售后需求,帮助用户及时地解决问题;第四,长期的仪器培训,让用户能了解到所采购仪器的最新应用,这也便于用户结合自身需求进行后期的升级和更新换代。经过长期合作和接触,牛津仪器在以上几方面都可以说是可圈可点。仪器信息网:作为仪器用户,您认为本地化的售后服务有着怎样的积极意义?孟杨博士:本地化的售后服务的主要意义是两个方面,一个是提升了售后服务的效率,用户出现问题厂商能够及时响应,沟通相对顺畅。这两点牛津仪器的客户服务做得都很不错。遇到简单的问题,牛津仪器的工程师通过线上沟通就能够顺利解决;遇到较难解决的问题,牛津仪器本地的工程师也能够快速抵达,尽快帮助解决问题。二是节省了用户的售后成本,本地的工程师服务避免了工程师需要跨区域抵达用户现场的情况,帮助用户减少了仪器售后方面的支出。仪器信息网:您使用过牛津仪器哪些形式的售后服务?您如何评价牛津仪器的售后服务?孟杨博士:牛津仪器的培训、应用支持、升级、维修都有使用过。牛津仪器无论是在售前还是售后服务方面都能快速地进行响应,每次提出的售后方面的需求都能够顺利解决。具体来讲,首先,首钢集团的相关研究在业内是比较领先的,对相关仪器设备的运用也更加深入,随之与牛津仪器的技术沟通就比较频繁,有时一些紧急的项目也需要周末解决,牛津仪器在这方面都给予了很好的沟通配合。其次,双方经过长期沟通配合已经成为可以相互信赖的伙伴关系,比如牛津仪器甚至曾协助解决一些其他仪器设备比如电镜主机相关的一些技术问题。再次,双方的合作关系也是相互的,比如曾经牛津仪器遇到其他客户波谱安装技术问题时,首钢这边也给予了比对试验的协助等。总之,双方不仅是售后服务,已经形成互相信任的合作关系。仪器信息网:您对牛津仪器售后服务工程师有着怎样的印象?在与牛津仪器售后工程师的交流中有着怎样的收获?孟杨博士:牛津仪器的售后工程师十分专业且具有一贯性,十几年来都是康伟与姚志刚两位工程师为我单位提供服务,两位工程师对我单位设备情况了解清晰,发生设备故障时给出的建议都精准到位,并且与我单位实验室的各位同事都关系良好。经过和两位工程师的交流,不仅加深我们对设备的理解,拓展视野,也通过他们及时了解了仪器发展的进步。仪器信息网:针对您当下或者潜在的需求,您希望未来牛津仪器能够提供或进一步改善哪些售后服务?孟杨博士:牛津仪器各方面售后服务表现都很出色,希望未来他们能继续保持下去。

媒体关注

2023.09.27

探索全新扫描电镜成像技术——BEX

                 探索全新扫描电镜成像技术——BEX什么是BEX?BEX是集背射电子和X射线成像于一体的新型微区分析技术,可以在SEM下同步、高效采集背散射电子图像和元素面分布图。BEX技术能带来哪些新体验?此前,基于SEM的显微分析大多是静态的、逐步进行的,并且高度依赖用户经验。操作人员通常根据SE/BSE灰度图中的形貌或原子序数衬度进行样品导航,并借助EDS完成精细的成分分析。如果当前区域没有感兴趣的特征,则需要重复以上繁琐步骤。在BEX技术的支持下,即使样品台移动过程中也能实时呈现试样的形貌、晶体取向、原子序数和元素分布等信息,让复杂样品分析极尽简便迅捷之能。只需稍作停留即可获得高分辨、高质量的元素面分布图,无论是开展更精细的分析还是继续样品导航都如丝般顺滑。SEM成像技术发展二次电子成像自SEM诞生以来二次电子(SE)成像一直是最常见的成像技术之一。SE是样品与高能电子束发生非弹性散射后逸出试样表面的电子,其产额与入射角度相关。它们具有较低的能量(~50 eV)和逸出深度(~10 nm),能够提供丰富的形貌信息。Everhart-Thornley探测器是一种常见的二次电子检测装置,由带正电的法拉第笼、闪烁体和光电倍增管组成。二次电子(绿色)从样品表层逸出,当电子束入射角度偏离法线时,SE产额增加。SE图像的灰度反映样品表面的起伏情况。加速电压:20 kV,束流:1 nA,采集时间:15 s背散射电子成像入射电子经弹性散射逸出样品表面形成背散射电子(BSE)。与SE探测器不同,BSE探测器的核心结构是位于极靴正下方的p-n半导体,可以有效地采集能量更高、激发深度更深的BSE信号。BSE产额随试样的平均原子序数增加而升高,在BSE图像中,越亮的区域意味着更高的原子序数。通过逻辑运算,具有两个或多个分割区域的半导体BSE探测器还可以显示试样表面的起伏信息。背散射电子(红色)的逸出深度更深,BSE图像的灰度反映了样品的平均原子序数衬度。加速电压:20 kV,束流:1 nA,采集时间:15 sBEX成像BEX成像系统在极靴正下方集成了BSE与X射线传感器。后者通常是硅漂移探测器(SDD),用于分析特征X射线,其工作原理与EDS相同。软件算法能够自动识别谱图中存在的元素并进行配色,最终输出与BSE信号叠加的彩色图像。与SE或BSE成像技术相比,BEX成像技术在相同采集时间和工作条件下提供了更丰富的样品组成和元素分布信息。与常规EDS系统相比,BEX系统具有更大的立体角和更高的X射线计数率。此外,BEX系统的特殊设计消除了样品表面起伏在元素面分布图中产生的阴影效应,并拓宽了X射线成像时可用的工作距离范围。同步检测BSE(红色)和X-ray信号(蓝色);(b)BEX成像结果。加速电压:20 kV,束流:1 nA,采集时间:15 s

企业动态

2023.08.31

< 1 2 3 ••• 9 > 前往 GO

牛津仪器科技(上海)有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 牛津仪器科技(上海)有限公司

公司地址: 上海市徐汇区虹漕路461号虹钦园60号楼1楼 联系人: 牛津仪器 邮编: 200233 联系电话: 400-860-2711

仪器信息网APP

展位手机站