看了单晶炉的用户又看了
激光加热浮区炉是一种节省空间和资源的解决方案,用于先进的浮区晶体生长。这全功能的炉是理想的实验室和研究设施集中在晶体生长和先进材料的发展。真正使其与众不同的是其紧凑的设计,这不仅节省了宝贵的实验室空间,而且大大降低了购置成本。在其标准配置中利用5个独立的330 W和980 nm二极管激光器,该炉可根据用户的要求容纳3,4或7个激光器。它提供无级功率控制,允许300°C和3000°C之间的熔化温度。标准激光束几何形状是4 x 6毫米和4 x 4毫米,在较低的激光束边缘上有一个锋利的截止边缘。气体管理系统可以处理高达10bar的压力和0.1至1l /min的气体流量值。过程观测包括高分辨率CCD相机,HDR图像优化和精确的双色高温计,用于实时测量温度。炉子有一个舒适的GUI,所有基于plc的调整,和几个先进的功率斜坡和旅行斜坡功能是可适应的。料棒采用精确的线性和旋转进给系统移动,拉拔速度可从0.1 mm/h到200 mm/h不等,拉拔长度(最大可达100 mm/h)。晶体长度)150毫米。利用激光加热技术的力量,这种先进的炉子旨在提供卓越的效率和方便的结果。
激光加热
标准配置:5 × 330w(总1.65千瓦)二极管激光器均匀径向功率分布
准备在同一外壳内与3,4和7激光器一起使用
激光波长980nm
无级功率控制,熔化温度在300°C至3000°C之间(取决于材料)
激光束几何形状:标准配置4 x 6mm和4 x 4mm(可根据要求提供其他光束尺寸)
激光光斑内的高功率均匀性,由于优化的光学元件
大气
氩和氧(纯和任何混合物)
许多其他气体也可能存在
生长室内气体压力:10-1毫巴至10巴
手动控制气体流量0.1至1升/分钟
每个气体可单独和独立调节
将驱动器
精确的线性和旋转进给系统
拉拔速度:0.1 mm/h ~ 200mm /h
快档模式
拉拔长度(最大)晶体长度):100毫米(根据要求150毫米)
转速:0 ~ 70转/分
过程控制
高分辨率CCD相机与HDR图像优化
精确的双色高温计,实时测量温度
监控软件:可视控制、录像、抓拍、过程长度测量
几个先进的功率坡道和旅行坡道功能适应性强
舒适的GUI为所有基于plc的调整
所需的实验室连接
气体供应,压力为12巴
排风系统
能源供应
炉内尺寸
高:1900 mm,宽:780 mm,深:1100 mm
所有组件都集成到外壳中(电子,激光电源,气体管理)
模块化的外壳在4激光设置,以满足光束线实验的空间要求
上图:功能齐全的紧凑型激光加热FZ炉,配备多个二极管激光器,功率为330 W,工艺气体压力为10 bar
上图:5束激光对LFZ工艺室的可视化
上图:LFZ激光光斑直径为4mm,下边缘有一个锐利的截止边缘,以优化结晶平面的形成;显示为5激光选项
以上翻译结果来自有道神经网络翻译(YNMT)· 通用场景
发表文章
1. (2020)Single crystal growth and luminescent properties of YSH:Eu scintillator by optical floating zone method Chemical Physics Letters, Volume 738, 136916
2. (2020)Anisotropic character of the metal-to-metal transition in Pr4Ni3O10 Phys. Rev. B 101, 104104
3. (2020)Synthesis of a New Ruthenate Ba26Ru12O57 Crystals 2020, 10(5), 355
4. (2020)Synthesis and characterization of bulk Nd1- SrxNiO2 and Nd1- xSrxNiO3 Phys. Rev. Materials 4, 084409
5. (2020)Magnetic phase diagram and magnetoelastic coupling of NiTiO3 Phys. Rev. B 101, 195122
6. (2019)High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3 Crystals 2019, 9(7), 324
7. (2019)Magnetic properties of high-pressure optical floating-zone grown LaNiO3 single crystals Journal of Crystal Growth Volume 524, 15 October 2019, 125157
8. (2019)Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce) Phys. Rev. Materials 3, 024204
9. (2019)Pushing boundaries: High pressure, supercritical optical floating zone materials discovery Journal of Solid State Chemistry 270 (2019): 705-709
10. (2018). Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nature Communications 9:43
11. (2017). Single-crystal growth and physical properties of 50% electron-doped rhodate Sr 1.5 La 0.5 RhO 4 Physical Review Materials 1(4), 044005
12. (2017). Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy) 1- xCaxCoO3-δJournal of Solid State Chemistry 254, 69-74
13. (2017). Large orbital polarization in a metallic square-planar nickelate. Nature Physics 13, 864–869
14. (2017). High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO3 Single Crystals. Crystal Growth & Design 17(5), 2730-2735.
15. (2017). High-pressure optical floating-zone growth of Li(Mn,Fe)PO4 single crystals. Journal of Crystal Growth, 462, 50-59.
16. (2016). Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562.
17. (2016). Stacked charge stripes in quasi-2D trilayer nickelate La4Ni3O8. PNAS 2016 113 (32) 8945-8950.
18. (2016). Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4. Crystals, 6(8), 98.
19. (2015). Floating zone growth of Ba-substituted ruthenate Sr2?xBaxRuO4. Journal of Crystal Growth, 427, 94-98.
20. (2015). High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. APL Materials 3, 062512.
21. (2015). Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds. Journal of Physics D: Applied Physics, 48(16), 164016.
22. (2014). Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions. Chemistry of Materials, 26(24), 7172-7182.
23. (2014). Low-temperature properties of single-crystal CrB2. Physical Review B, 90(6), 064414. (Also on archiv.org.)
24. (2014). Effect of annealing on spinodally decomposed Co2CrAl grown via floating zone technique. Journal of Crystal Growth, 401, 617-621. (Also on arxiv.org.)
25. (2013). de Haas–van Alphen effect and Fermi surface properties of single-crystal CrB2. Physical Review B, 88(15), 155138. (Also on arxiv.org.)
26. (2013). Phase Dynamics and Growth of Co2Cr1–xFexAl Heusler Compounds: A Key to Understand Their Anomalous Physical Properties. Crystal Growth & Design, 13(9), 3925-3934.
27. (2011). Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters, 98(25), 252501.
28. (2011). Challenges in the crystal growth of Li2CuO2 and LiMnPO4. Journal of Crystal Growth, 318(1), 995-999.
29. (2011). Self-flux growth of large EuCu 2 Si 2 single crystals. Journal of Crystal Growth, 318(1), 1043-1047.
30. (2010). Influence of heat distribution and zone shape in the floating zone growt·h of selected oxide compounds. Journal of materials science, 45(8), 2223-2227.
31. (2009). Highly ordered, half-metallic Co2FeSi single crystals. Applied Physics Letters, 95(16), 161903.
32. (2009). Single-crystal growth of LiMnPO4 by the floating-zone method. Journal of Crystal Growth, 311(5), 1273-1277 (Also on uni-heidelberg.de.)
33. (2008). Crystal growth of rare earth-transition metal borocarbides and silicides. Journal of Crystal Growth, 310(7), 2268-2276.
用户单位
中国科学院物理研究所
中国科学院固体物理研究所
北京师范大学
中山大学
南昌大学
上海大学
北京大学
北京航空航天大学
......
产品货期: 200天
整机质保期: 1年
培训服务: 安装调试现场免费培训
SciDre单晶炉LFZ/LKZ的工作原理介绍
单晶炉LFZ/LKZ的使用方法?
SciDreLFZ/LKZ多少钱一台?
单晶炉LFZ/LKZ可以检测什么?
单晶炉LFZ/LKZ使用的注意事项?
SciDreLFZ/LKZ的说明书有吗?
SciDre单晶炉LFZ/LKZ的操作规程有吗?
SciDre单晶炉LFZ/LKZ报价含票含运吗?
SciDreLFZ/LKZ有现货吗?
最多添加5台