当前位置: 仪器信息网 > 行业主题 > >

表面深度

仪器信息网表面深度专题为您整合表面深度相关的最新文章,在表面深度专题,您不仅可以免费浏览表面深度的资讯, 同时您还可以浏览表面深度的相关资料、解决方案,参与社区表面深度话题讨论。

表面深度相关的论坛

  • 光学元件亚表面损伤深度的无损荧光检测方法

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=sans-serif][/font][font=Arial][font=Archivo, &][size=16px][b]侯晶1,2王洪祥1王储1王景贺1朱本温1[/b][/size][/font][/font][font=sans-serif][/font][/b][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[b][b][b][font=&][size=30px][b][b]光学元件亚表面损伤深度的无损荧光检测方法[/b][/b][/size][/font][/b][/b][/b][/font][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://kns-cnki-net-443.webvpn.xnai.edu.cn/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=HEBX201807004&uniplatform=NZKPT&v=Ea5aJALKB3g_fiNv2APpnkEseIaTI7Z48qNsA5LkYAhwQ1rbRTyJg9Yc4DQ2Eht2]光学元件亚表面损伤深度的无损荧光检测方法 - 中国知网 (xnai.edu.cn)[/url][/b][/color][/font]

  • 表面成分分析

    表面成分分析表面成分分析是指对表面纳米及微米厚度范围内的成分进行分析的技术,例如对电镀层、电化学抛光层,钝化层、渗氮层、渗碳层、喷涂层等各种表面处理层进行成分分析。根据表面处理层厚度和产品实际情况选用不同的测试方法:1. SEM+EDS——表面处理层厚度大于1微米,通常选用EDS来进行成分测试,结合SEM可以对微区成分进行测定。2. 金相切片+EDS——当要测试的位置不在表面时,通常需要用金相切片方法将测试位置暴露在截面上,再用EDS进行成分分析。3. XPS——当表面处理层厚度小于1微米时,通常采用XPS进行表面成分分析,同时可以给出化学态信息,对表面物质组成进行全面分析。结合氩离子溅射,XPS还能给出元素沿样品深度方向的信息,可以对多层膜进行成分剖析。4. AES——当表面处理层只有几个纳米厚度,并且测试位置为微小区域时,通常用AES对微区进行极表面成分分析。表面成分分析常见案例:PCB板金手指成分分析,饰品镀金层成分分析,电化学抛光后表面残留物分析,未知样品成分剖析,多层膜剖析等。 太阳镜表面膜层深度剖析 从表面开始膜层结构:MgF(22nm)/TiO2(44nm)/MgF(22nm)/TiO2(44nm)/ MgF(110nm) http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif

  • 喷涂表面与机加工表面粗糙度的比较

    两种表面的差异及测量喷涂表面机加工表面应用表面需喷涂防腐漆层零件配合面粗糙度的影响粗糙度差,则波峰突出,漆层易薄、产生腐蚀点; 粗糙度太好,则漆层附着效果差、影响防腐效果。粗糙度差、突出的波峰意味着容易磨损; 粗糙度太好,则油膜附着效果差,也影响配合效果。测量方法对于粗糙度差的表面,采用“压针法”,进行量化测量; 对于粗糙度较好的表面,采用“针描法”。无压针法的应用。只有“针描法”。两种方法的差异压针法针描法单点测量 通过计算压针压入的深度来表示粗糙度(即Rmax值) 测量孤立的多点,计算各点深度的绝对平均值 适合粗糙的表面(肉眼即可辨别)线轮廓测量 通过测针的自动滑行,将粗糙度曲线描绘下来,并进行计算,既可获得这条粗糙度曲线的算术平均值(Ra),也可同时获得深度值(Rmax) 一次测量不是一个孤点,而是一条线 适合较为光滑的表面(肉眼难以辨别) 相对而言,测量更为全面和精细代表产品压针法针描法国外某品牌123\223\224 实际上并不是真正意义上的粗糙度仪,不符合现行ISO标准中关于粗糙度R(roughness)参数及测量方法的定义符合现行ISO标准中关于粗糙度R(roughness)参数及测量方法的定义针描法产品的比较国外某品牌7061国产某品牌1、直量程(即,可测深度) 350μm 2、统分辨力(即,对粗糙度曲线描绘的精细度) 满量程350μm条件下,分辨力为32nm(纳米)1、直量程(即,可测深度) 400μm 2、系统分辨力(即,对粗糙度曲线描绘的精细度) 满量程400μm条件下,分辨力为6nm(纳米)压针法原理图http://www.shidaiyiqi.com.cn/upload/201404251.jpg针描法原理图http://www.shidaiyiqi.com.cn/upload/201404252.jpg特别说明 压针法和针描法并非简单的取代关系,而是取决于实际工况 打个比方: 如果是红砖地面或者是水泥地面,比较适合使用扫帚清扫;如果是瓷砖地面或者是地板底面,比较适合吸尘器清扫。就钢板的测量而言,针描法是一个合理的应用。

  • SEM+EDS的表面成分分析

    表面成分分析表面成分分析是指对表面纳米及微米厚度范围内的成分进行分析的技术,例如对电镀层、电化学抛光层,钝化层、渗氮层、渗碳层、喷涂层等各种表面处理层进行成分分析。根据表面处理层厚度和产品实际情况选用不同的测试方法:1. SEM+EDS——表面处理层厚度大于1微米,通常选用EDS来进行成分测试,结合SEM可以对微区成分进行测定。2. 金相切片+EDS——当要测试的位置不在表面时,通常需要用金相切片方法将测试位置暴露在截面上,再用EDS进行成分分析。3. XPS——当表面处理层厚度小于1微米时,通常采用XPS进行表面成分分析,同时可以给出化学态信息,对表面物质组成进行全面分析。结合氩离子溅射,XPS还能给出元素沿样品深度方向的信息,可以对多层膜进行成分剖析。4. AES——当表面处理层只有几个纳米厚度,并且测试位置为微小区域时,通常用AES对微区进行极表面成分分析。表面成分分析常见案例:PCB板金手指成分分析,饰品镀金层成分分析,电化学抛光后表面残留物分析,未知样品成分剖析,多层膜剖析等。 太阳镜表面膜层深度剖析 从表面开始膜层结构:MgF(22nm)/TiO2(44nm)/MgF(22nm)/TiO2(44nm)/ MgF(110nm) http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif

  • 【原创大赛】碳钢表面局部腐蚀形貌

    【原创大赛】碳钢表面局部腐蚀形貌

    1、在腐蚀溶液总逐渐添加缓蚀剂后碳钢表面腐蚀形貌图1是Q235碳钢不同缓蚀剂的溶液中经过慢速动电位扫描达到孔蚀电位时的表面形貌。从图1可以看出,添加咪唑啉季铵盐后,金属表面孔蚀变化情况为小孔增多,但蚀孔深度有所下降,金属的溶解量减少。 http://ng1.17img.cn/bbsfiles/images/2015/09/201509271424_568111_2590289_3.png图1碳钢在含不同缓蚀剂的NaNO2+NaCl溶液中极化后的扫描电镜图2、未添加缓蚀剂时不同PH下碳钢表面孔蚀形貌不同pH条件下碳钢表面发生孔蚀时的表面形貌如图2所示。在pH =6.64时,蚀孔区域相对较集中,小孔周围覆盖有腐蚀产物,pH=10时试样表面蚀孔增多,但蚀孔一般较浅,蚀孔密集,有向全面腐蚀发展的趋势;pH=4时试验表面蚀孔区域与为发生孔蚀区域区分明显,孔蚀趋于多个连成一片,形成大的蚀坑。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271427_568114_2590289_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271427_568115_2590289_3.png图2不同pH条件下,碳钢在缓蚀剂溶液中的表面形貌3、 添加少量缓蚀剂时不同PH下碳钢表面孔蚀形貌当添加少量缓蚀剂时,不同pH条件下的孔蚀形貌变化如图3所示,与未添加咪唑啉季铵盐相比,试验表面在各个pH条件下小孔均有所增加,不同pH条件下的孔深变化情况基本与未添加咪唑啉季铵盐溶液体系保持一致。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271426_568112_2590289_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271426_568113_2590289_3.png图3添加少量缓蚀剂时,不同pH条件下的孔蚀形貌:(a)未调节pH;(b) pH =10;(c) pH=4 pH=7.02与pH=10时,试样表面小孔较多,且发生孔蚀的区域较大,当pH=4时,试样表面蚀孔明显减少,发生腐蚀区域较小,但是试样表面形貌变化较大,基本呈现坑蚀特征。4、缓蚀剂含量增加后,碳钢表面孔蚀形貌缓蚀剂含量增加后,不同pH条件下的孔蚀形貌变化如图4所示,与前两种体系相比:为确定pH条件下,体系蚀孔变浅,蚀孔数目相对于添加少量缓蚀剂时有减少,但仍比未添加咪唑时的蚀孔数目多;pH=10时,蚀孔数目明显减少,且深度变小;pH=4时,蚀孔深度和数目均减小,试验局部腐蚀得到明显的抑制。http://ng1.17img.cn/bbsfiles/images/2015/09/201509271433_568116_2590289_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/09/201509271433_568117_2590289_3.png图4缓蚀剂含量增加后,不同pH条件下的孔蚀形貌:(a)为调节pH;(b) pH =10;(c) pH=4

  • 【原创】xps表面分析

    [font=SimSun][/font][align=left]尽管[font=Times New Roman]X[/font][font=SimSun]射线可穿透样品很深但只有样品近表面一薄层发射出的光电子可逃逸出[/font][/align][align=left]来电子的逃逸深度和非弹性散射自由程为同一数量级范围从致密材料如金属的约[/align][font=TimesNewRoman][/font][align=left]1nm[font=SimSun]到许多有机材料如聚合物的[/font][font=TimesNewRoman]5nm [/font][font=SimSun]因而这一技术对固体材料表面存在的元素极为[/font][/align][align=left]灵敏这一基本特征再加上非结构破坏性测试能力和可获得化学信息的能力使得[/align][font=TimesNewRoman][/font][align=left]XPS[font=SimSun]成为表面分析的极有力工具。[/font][font=SimSun][/font][/align]

  • 【原创大赛】试样表面粗糙度对洛氏硬度测试结果的影响

    【原创大赛】试样表面粗糙度对洛氏硬度测试结果的影响

    [align=center][b]试样表面粗糙度对洛氏硬度测试结果的影响[/b][/align][align=center]杨德维[/align][align=left]摘 要:通过相关试验分析和探讨试样表面粗糙度对洛氏硬度测试结果的影响,并指出其对实际工作的指导性意义。[/align]关键词:表面粗糙度、洛氏硬度、国家标准、试验原理1 引言 硬度是评定金属力学性能常用指标之一,就已经标准化的金属硬度试验方法而言,硬度的实质是材料抵抗另一较硬材料压入的能力。硬度是体现材料弹性、塑性、强度、韧性及磨损抗力等多个物理量的综合性能,通过硬度试验可以反映金属材料在不同的化学成分、组织结构及热处理工艺条件下性能的差别,因此硬度试验广泛应用于金属材料性能的检验、监督热处理工艺质量及新材料的研制。 硬度试验的特点是:它属于在非破坏条件下进行的试验,测试方法比较简单,对试样的形状及尺寸适应性较强,试验效率较高,这些都是硬度试验方法得到广泛适用的原因。 目前,我国已经有了布氏硬度、维氏硬度、洛氏硬度、里氏硬度、努氏硬度和肖氏硬度试验方法的国家标准。虽然硬度试验方法相对比较简单,但影响测试结果准确度和离散度的因素很多,比如:试验装置、试样、操作方法等,这些因素在不同的硬度试验方法中影响的程度各不相同。2 试样表面粗糙度对洛氏硬度测试结果的影响2.1 国家标准规定 本次选取洛氏硬度,来进行试样表面粗糙度对洛氏硬度测试结果影响的探讨和研究。 GB/T 230.1-2009《金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)》中对试样的表面质量规定:“试样表面应光滑平坦,无氧化皮及外来污物,尤其不应有油脂,建议试样表面粗糙度Ra不大于0.8μm,产品或材料标准另有规定除外。”此规定是在2004版标准发布时增加的内容。 从标准要求中我们不难看出两个要点:一、要尽量保证试样表面是一个平面;二、要求表面粗糙度不能过于粗糙。2.2 试验准备 为了研究表面对洛氏硬度测试结果准确度和离散度的影响我们也做个一些试样实物的研究。 我们加工了一些试样。为了避免其他因素,如试样的材质、硬度均匀性、试样厚度等引入的测试误差,我们设计了如下方案:首先选取一根直径为40mm的棒材,经过一定的热处理工艺得到某一硬度,然后用线切割的方法获得厚度为10mm的试样,分别对试样表面进行机加工获得不同的表面粗糙度:Ra3.2、Ra1.6、Ra0.8、Ra0.4、Ra0.2,分别对试样进行测量,从测试数据分析表面粗糙度度对洛氏硬度的影响;选取30HRC和50HRC分别加工两组这样的试样。2.3 实测数据 按照设计的方案,试样加工完成后,用表面粗糙度测试仪对试样的表面粗糙度进行了测试,得到了两组粗糙度梯度明显的试样,见表1。[img=,674,158]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251711_01_3048281_3.png[/img][img=,690,284]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251711_02_3048281_3.png[/img][img=,560,252]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251712_01_3048281_3.png[/img][img=,690,527]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251711_04_3048281_3.png[/img][img=,482,253]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251712_02_3048281_3.png[/img][img=,487,248]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251711_03_3048281_3.png[/img]2.4 试验结论 从这两组数据可以看出,试样表面粗糙度值大于0.8μm时,随着粗糙度增加,洛氏硬度示值变化波动增大,试验数据比较分散,硬度值减小,而小于等于0.8μm时,硬度示值变化波动减小,硬度值也趋于稳定。3 分析 硬度的实质是材料抵抗另一较硬材料压入的能力,洛氏硬度试验是使用测量压痕深度的原理计算硬度值。 试样表面粗糙度的增加表明微观上表面的凹凸不平幅度变大,在相同试验力作用下压头压入时所受到的抗力就减小了,压入深度就会更大些,因此在较粗糙的试样上反映出的洛氏硬度值偏小。当试样表面粗糙度减小,即试样表面向理想平面接近,那么其表面的凹凸不平幅度减小,压头压入的抗力增加,压入深度就会减小,硬度值变大;但当粗糙度达到一定值时,此种变化的斜率会趋于水平。4 结论4.1 当试样表面粗糙度变大时,洛氏硬度试验数据的离散度变大。4.2试样表面粗糙度值大于0.8μm时,随着粗糙度增加,洛氏硬度示值变化波动增大,硬度值减小。4.3 试样表面粗糙度值小于等于0.8μm时,硬度示值变化波动减小,硬度值也趋于稳定。4.4 国家标准规定“试样表面粗糙度Ra不大于0.8μm”是合理的,可以保证测试结果的准确度和离散度。5 结论对实际应用的指导性 表面粗糙度对洛氏硬度测试结果有着一定的影响,国家标准关于洛氏硬度测试过程种关于表面粗糙度的规定虽然是建议性的,但是对于我们检测机构来说却是合理和必要的。 在其他硬度的国家标准中对试样表面粗糙度也有类似的要求,所以我们在硬度的检测时一定要考虑到表面粗糙度度对硬度测试结果的影响。如果表面粗糙度达不到标准规定的要求,应考虑测试结果的准确性和应对试样在不破坏硬度的基础上对表面进行必要的加工处理。

  • 【原创大赛】关于脱碳材料表面硬度检测的疑问

    【原创大赛】关于脱碳材料表面硬度检测的疑问

    关于脱碳材料表面硬度检测的探讨 前段厂购置了一批A234 WP11材料的锻件,要求进行材料复验,该材料的规范属于美标,wp11相当于国内的12C1MoV,锻件公称直径DN550,厚度12.7mm。 材料的主要化学成分(%)为: C:0.08~0.15、Mn:0.30~0.60、Si:0.50~1.00、Cr:1.00~1.50、Mo:0.44~0.65 我们对材料的化学成分进行了以上各个元素的光谱分析,在光谱分析过程中,分析除C元素以外的其他元素都满足其给定的化学成分合格的要求,唯独C元素的含量为0.020%,比规定合格值0.08~0.15%的底限值还小,显然C元素不合格。于是测了下布氏硬度(HB)看看其表面的硬度值怎样,一共测试了3个点,其值见下(该材料的允许合格硬度值为:HB≤175):http://ng1.17img.cn/bbsfiles/images/2014/11/201411301457_525264_1622447_3.jpg既然硬度的值都在HB150上下,那为何含碳量却如此之低呢?为此我们对样品进行了钻屑,采用高频红外碳硫仪来测定其含碳量,结果出乎我们的预料,红外碳硫分析仪显示出C的结果为:0.12%,完全符合材料给定的合格指标。http://ng1.17img.cn/bbsfiles/images/2014/11/201411301553_525274_1622447_3.jpg 图为试样几个测试点问题到底出在哪里?2种仪器测C给出了2种差距如此大的测试结果,一时间没了头绪。思考后,决定先放弃校正仪器的程序,做个微观金相来看看,通过材料的微观金相组织变化来找到答案。经过一系列的操作,观察,在显微镜下终于发现了材料C元素不合格因素的所在,原来该材料在加工制造过程中产生了表面脱碳,出现了一个脱碳层,也就是说材料表层的C原子在材料制造加热过程中从基体里溢出,从而组织局部贫碳造成了脱碳层,致使C元素的含量降低。http://ng1.17img.cn/bbsfiles/images/2014/11/201411301604_525275_1622447_3.jpg图中箭头处即脱碳层 脱碳层的深度约为544.39微米见图:http://ng1.17img.cn/bbsfiles/images/2014/11/201411301608_525276_1622447_3.jpg 脱碳层是影响材料表面C元素含量过低的因素是事实已经得到了最终的确立,但接下来又出现了新的问题,对于上面三个布氏硬值怎么解释呢?随着含碳量的降低,所对应的硬度值也应该相应的降低才对,按照常规,脱碳层的硬度值不可能达到HB150的,既然达到了HB150,所能解释通的就是HB所采用的钢球压痕深度超过了脱碳层544微米的深度,得出了这个数据,为了证实这个数据是否成立,我们又进行了试样侧面(厚度方向)和表面的维氏硬度值的测定。 1、先进行侧面(厚度方向)由于试样脱碳层很薄,维氏硬度压头压不住,只压到脱碳层和非脱碳层的边界处图中的1号压痕,这时硬度值为121(HV10),材料正常组织的2号压痕的硬度值为143(HV10),由此可以看出,脱碳层的硬度显然要低于材料的正常组织处。http://ng1.17img.cn/bbsfiles/images/2014/11/201411301656_525283_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411301635_525278_1622447_3.jpg图为维氏硬度的压痕: 1号为脱碳层与正常组织的交界处的压痕,2号为正常组织处的压痕 2、我们又在试样的表面,围绕着前期测试布氏硬度的3个点周围进行了维氏硬度测试,来看看最后的结果是怎样的,连续测试了5个点,结果显示如下图。http://ng1.17img.cn/bbsfiles/images/2014/11/201411301645_525279_1622447_3.jpg 试验值依然是令人吃惊,与前期的布氏硬度值基本上差别不大(二者之间硬度值的换算接近1:1的关系),且维氏硬度的压痕应该不会超过脱碳层的厚度,那么前期所谓的HB采用的钢球压痕深度超过了脱碳层544微米的深度的说法也就不成立了?如此究竟是什么原因造成的?硬度计的误差,试验操作的误差,还是磨制试样表面产生了硬化层呢? 通过对疑点的提出,我们总结出的看法是:1,布氏硬度试验时试验力大,表面的脱碳层完全被打穿,于是产生了高硬度值。2,维氏硬度计在操作方法上出现了问题,比如围绕着前期测试布氏硬度的3个点周围进行维氏硬度测试,因为测试过而引起表面的硬化,增加了硬度值的提高,还有是忽视了试样表面粗糙度的要求,致使硬度值增加。

  • 【转帖】表面粗糙度仪的工作原理

    表面粗糙度仪的工作原理 引 言表面质量的特性是零件最重要的特性之一,在计量科学中表面质量的检测具有重要的地位。最早人们是用标准样件或样块,通过肉眼观察或用手触摸,对表面粗糙度做出定性的综合评定。1929年德国的施马尔茨(G.Schmalz)首先对表面微观不平度的深度进行了定量测量。1936年美国的艾卜特(E.J.Abbott)研制成功第一台车间用的测量表面粗糙度的轮廓仪。1940年英国Taylor-Hobson公司研制成功表面粗糙度测量仪(3)测量方式不灵活,例如:评定长度的选取,滤波器的选择等;(4)测量结果的输出不直观。造成上述几个方面不足的主要原因是:系统的可靠性不高,模拟信号的误差较大且不便于处理等。图4 改进后的表面粗糙度测量仪工作原理框图要采用计算机系统对传统的表面粗糙度测量仪进行改进,就要编制相应的计算机软件,最好采用比较直观的菜单形式。可以按如图5所示的菜单使用流程图编制软件:图5 菜单使用流程框图3.2 改进后的表面粗糙度测量仪的功能及使用效果由于采用计算机系统,将模拟信号转换为数字信号进行灵活的处理,显著地提高了系统的可靠性,所以既大大增加了测量参数的数量,又提高了测量精度。例如:哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪的测量参数多达二十六个,测量范围为0.001~50另一方面,若在表面粗糙度测量仪测量实验的教学过程中引入改进后的表面粗糙度测量仪,就实验的直观教学功能而言,也很有意义。改进后的电动输廓仪,通过计算机软件与硬件的结合(尤其是软件)大大加强了实验过程的直观性,这体现在以下几个方面:(1)整个实验过程非常直观地通过软件的各级菜单进行控制。操作简单、一目了然。(2)输入与显示同步,即在测量进行过程的同时,触针在被测表面上滑行的轨迹动态地显示在计算机屏幕上。(3)测量结果及相关图形能非常直观地、准确地输出在显示器、打印机或绘图仪上。很显然,以上这些直观的教学效果是其它传统的表面粗糙度测量实验方法所不具备的。它在得到正确的测量结果的同时,还充分运用了直观教学的原理,帮助学生加深对表面粗糙度的概念及其各种参数的直观理解。"FONT-FAMILY: " Courier New?;4 结 语(1)传统的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和工作台等主要部件组成,从输入到输出全过程均为模拟信号。而在传统的表面粗糙度测量仪的基础上,采用计算机系统对其进行改进后,通过模-数转换将模拟量转换为数字量送入计算机进行处理,使得仪器在测量参数的数量、测量精度、测量方式的灵活性、测量结果输出的直观性等方面有了极大的提高。(2)从前面的分析知,整个改进方案并不复杂,因此对于目前仍广泛使用的传统的表面粗糙度测量仪的改进具有一定的意义。(3)随着电子技术的进步,某些型号的表面粗糙度测量仪还可将表面粗糙度的凹凸不平作三维处理,测量时在相互平行的多个截面上进行,通过模-数变换器,将模拟量转换为数字量,送入计算机进行数据处理,记录其三维放大图形,并求出等高线图形,从而更加合理的评定被测面的表面粗糙度。

  • AFM能获取表面微坑的三维形貌吗?

    但愿我找对地方了,请大神们支招!各种金属材质,表面有微坑,直径从几十微米到几百微米,深度也深浅不一,估计有一百到几百微米就是想看看微坑的三维形貌,比如坑是圆柱形还是圆锥形用SEM试过不行,因为高度差比较大,成像只能在某一层上,其他高度都虚化了不知AFM可以不,要获得真实形貌,而不是通过软件合成之类的谢谢了,另:如果不行,有没有其他设备可以实现

  • 【求助】XRD掠入射衍射分析薄膜表面的结构

    XRD掠入射衍射是分析薄膜表面结构的极为有效的放发,可以对薄膜进行深度分层分析,其参与散射的晶面接近垂直于薄膜表面。采用位敏探测器,可以在固定的入射角度同时记录散射强度随出射角的变化,等同于晶体截断杆扫描,扫描时晶体绕平行于表面法向的轴转动,因而可以记录在不同Qz处QxQy面内的散射强度分布。那么可不可以采用掠入射衍射方法表征垂直于薄膜便面的结构呢?比如说一个1-3型的薄膜样品,一相以柱状结构embedded in另外一相的matrix中。可不可以这样:扫描不同Qz层的强度分布,如果每层的分布强度一样或者接近,则可认为存在这样1-3型的柱状结构?

  • 钢坯表面裂纹缺陷形成的原因

    裂纹形态不同,应该说形成原因肯定是不同的。但分析证明,通常是几种因素共同作用的结果。另外,经常发现在一个钢坯表面上几种缺陷共存,由此可见,形成原因就更加复杂了。综合分析,产生钢坯表面缺陷有四种可能的因素或环节,一是钢锭质量,包括冶炼质量和钢锭表面质量;二是钢锭热送时间长短的影响;三是加热温度、升温速度、保温时间和炉温均匀程度的影响;四是轧制方法的影响。钢锭质量是钢坯表面缺陷最主要的影响因素,而钢锭中气体含量的影响尤为重要。原材料干燥不良,或者雨季炼钢是造成钢中气体含量较高的直接原因,CO和O2在浇注中从钢液逸出滞留在钢锭的表面或浅表面,形成气泡,钢锭在加热中气泡被烧穿,轧制后产生裂纹,钢坯上常见的细、密、短、浅“束状”裂纹,通常称为发裂或发纹,就属此种缺陷。在所有种类的表面缺陷中发纹最多,最常见。氢也是钢坯、锻件表面质量或内部质量的最大威胁,超级白点导致的异常脆性断裂主要是氢含量超标造成的。氢含量达到一定值时,在一定温度下或放置一定时间,由于钢中氢的聚集产生氢脆导致钢锭纵裂,锻件内产生白点缺陷。 夹杂物和夹渣的影响。分析证明,夹杂物是产生钢坯热裂纹的主要内在因素,由于大颗粒夹杂物破坏了金属的热塑性,导致“结疤”缺陷的实例也是常见的。如果在浇注中因浇注速度不均,或钢液有翻花现象,将保护渣卷入钢液并凝结在钢锭的浅表面,就会在轧制时产生“结疤”表面缺陷。检验中,在“结疤”壁上发现了保护渣的主要成分:FeO·SiO2,CaO·Al2O3,Cr2O3·MnO·K2O是最有力的证明。 钢锭模表面质量对钢锭表面影响也不容忽视,模壁清理不干净、钢锭粘模、钢锭模使用末期可能使钢锭表面产生麻坑、折叠等缺陷。较深的麻坑在钢锭加热时不能完全变成氧化铁皮脱掉,也会产生发裂表面缺陷。首钢特殊钢厂在钢锭上进行钻孔实验,以确定钢锭表面凹坑深度、形状、位置与钢坯发裂间的关系,证明了压缩比对麻坑产生裂纹的影响起着较大作用。

  • 如何选择滤光片和清洁它的表面

    如何选择滤光片和清洁它的表面

    小编我本人相信很多对[b][url=http://wwwfydxr.com]滤光片[/url][/b]略有些了解的都知道他有很多种分类以及涉及波段各不相同,因此我们在选择滤光片的同时一定要考虑全面,得要谨慎,得考虑到滤光片产品的每个参数的指标细节。如因在选择的时候不够全面,可能就会造成产品的无非使用或者效果的不理想。[img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/10/201710051138_01_3313006_3.jpg[/img][img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/10/201710051138_02_3313006_3.jpg[/img][img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/10/201710051138_03_3313006_3.jpg[/img]光学滤光片中最重要的特性包括光谱特性,根据光谱特性,我们可以将滤光片划分为截止滤光片,[b][url=http://www.fydxr.com/html/productlist/list-19-1.html]带通滤光片[/url][/b],减反射滤光片,反射滤光片,分光滤光片,衰减滤光片等等。应用领域广泛存在于光学仪器,光信通、工业摄像头中光纤端面放大检测仪。绿光激光模组,激光器,工业数码显微镜,图像处理设备等。为了满足我们的客户的需求,我们飞宇达光电需要与客户进行一定的,必要的,详细的沟通,这一点是非常重要的。总而言之,客户对我们光学薄膜滤光片的要求就是指导着我们进行生产开发的前提条件。只要我们按照客户的要求来做,我们才能准确制造出满足客户需要的合格产品。当然因为我们的光学薄膜滤光片产品涉及到很多专业的知识,我们只有通过沟通,才能描述出产品的需求特性,讲好客户能够接受的公差范围,这样我们才能做出令客户满意的滤光片产品。我们也可以通过计算机模拟设计把得到的初步特性曲线提供给客户参考,但是并不是我们能够设计出来的光谱特性都能够制造出来,因为我们受制于光学镀膜机器自身的条件限制,也有很多的因素需要考虑,比如镀膜机真空性能,光学特性测试能力,镀膜材料特性,以及工装夹具是否匹配,成膜均匀区大小,表面疵病,成品率等。对于我们专业的光学设计和薄膜应用人员来说,客户提出的光谱只是初步的,比较模糊的一个概念而已。因此我们的业务员还需要了解到您的信息包括您的产品应用范围,产品所应用的光电检测器件是什么,使用什么样的光源。我们去了解这些信息只是为了去更好的帮助客户明确光学薄膜滤光片的特性需求,,比如截止范围,截止深度都是与具体的应用有关联的。现在我给大家举个例子,应用在荧光检测系统的,往往截止背景深度要达到10-5-10-6,而一般的颜色处理滤光片的截止背景只要在10-2-10-3即可。这种差别会直接导致设计制作的滤光片膜层厚度差别很大,镀膜材料消耗差别以及监控系统控制精度的差别大,自然报价差别也是很大的。最后我们在选好购买滤光片之后,以后还是得自己清洁滤光片的表面,那么我们飞宇达来给大家讲讲[b]怎么清洁滤光片表面[/b]!建议大家按照以下小编我所说的方法去进行清洁 第一、 用适当压力的无油空气或者痰气清除表面的灰尘等;第二、 手指戴上无尘纸套,用无水乙醇(或者类似功能溶剂)把毛巾浸湿,拖动浸湿乙醇的毛巾边缘,在滤光片表面朝单一的方向移动。在擦拭的过程中尽可能用力轻一些,太大的压力可能会破坏滤光片表面。使用溶剂的目的是溶解滤光片的表面残留物中粘性附着物。干涉滤光片的表面膜层强度不如基板,应当预见任何清洗都可能会在微观水平上降低表面等级。宇达光电科技有限公司专业从事各种光学元件、激光光学元件、光学镀膜产品。主要生产滤光片,反射镜,透红外滤光片,半反半透镜,分射镜,滤色片,分光镜,红外滤光片,[b][url=http://www.fydxr.com/html/productlist/list-15-1.html]窄带滤光片[/url][/b],带通滤光片,中性密度滤光片,光学镀膜玻璃,光学滤光片,光学玻璃,光学镜片,光学玻璃镜片。 产品应用于激光笔、舞台灯光、光电显示、光电子仪器及器件、指纹识别、生物识别、安防监控摄像及相关领域,虹膜识别、验钞机、卫厨感应器系统中,力求把最适用的方案提供给光电厂家!如想了解更多的内容可以联系我们刘生13699819761,qq:470625897;您也可以去我们的官网http://www.fydxr.com。

  • 用什么仪器可以测出一些阴离子在钾长石表面的浓度么?

    有哪位高手能指教一下,用什么仪器可以测出一些阴离子在钾长石表面的浓度么? 具体情况是这样的,我的实验是将钾长石粉碎,加入氯化钙,硫酸概,碳酸钙,氟化钙一起煅烧,然后制成样品,能不能观察到,氯离子,氟离子,硫酸根渗入到钾长石中的深度啊!!xps能测量么?? 望指教,多谢多谢!!

  • 手机、平板玻璃二次强化表面应力检测仪

    SPSM-3表面应力仪技术规格书本公司独立开发制造的多功能表面应力仪SPSM-3是一款利用光在二强钢化玻璃中的传播特性,结合二强化学钢化玻璃的加工工艺,通过提取二强化学钢化玻璃的一强条纹与二强条纹,分别计算其表面应力值及应力层深度。本机带有电脑,能够实现二强化学钢化玻璃的表面应力机钢化深度的自动化检测,减少测量者的误差也更便于测量数据的管理,可额外选配自动滴液的配置来达到全面提高测量效率。1、特点: 1)折射计光弹性分析原理2)自动测量,减少人为误差3)电脑保存数据,便于品质管理4)样品不佳时可进行手动测量5)使用LED光源,寿命可达10,000小时6)配备校准片,可实现设备自校准2、功能: 1)实现连续测量的同时并根据设置区间对相应的计算结果进行自动判断合格/不合格。(设置五个分类等级,用简单数字或字母代替,如A.B.C或1.2.3等。便于员工分类,以免误判);2)在连续测量时系统自动保存测量数据,并累计测量数目(合格数目/不合格数目);3)除了连续测量,亦可选择单次测量和手动测量模式;4)当不满足测量数据时无检测数据输出,并显示相应的提示信息;5)更加多样的一强条纹范围、二强条纹范围辨别方式:手动设置、自动判别。界面显示时,边界条纹有明显的颜色标示;6)配备吸气功能,吸气夹具的吸气孔径为1.0mm(此为最大孔径,更大孔径会影响吸气效果); 7)配备自动感应装置,使得自动感应吸气功能的实现。8)可额外付费选配测厚装置,实现自动测厚功能,以提高测试效率。9)可额外付费选配滴液装置,实现手动/自动滴液功能,以提高测试效率。3、规格:CS测量范围:0-1000Mpa; CS1重复性测量精度:±10Mpa;CS2重复性测量精度:±20Mpa;DOL测量范围:0-200μm;DOL1重复性测量精度:±5μm;DOL2重复性测量精度:±5μm;测量对象:化学强化玻璃 测量区域:≥12*7mm测量原理:折射计光弹性分析原理光源:专用LED(波长790nm,±10nm) 棱镜: ND=1.72 软件:专用SPSM中文软件电源:AC220V 3A 尺寸(测量头):300×600×250MM重量(测量头)(Kg): 约14Kg4、配置清单:1、SPSM-3测量头:1套 2、12mm*7mm的特制棱镜:1枚(已安装在测量头上)3、摄像系统:1套(已安装在测量头上)4、台式电脑:1套,DELL5、软件狗:1个(在主机内)6、测量液体:20ml7、玻璃校准片: 1块8、SPSM-3测量软件:1套(已安装在电脑内)9、使用手册:中文1份10、吸气装置:1套(已装配在SPSM-3测量头上)11、测厚仪装置:1套 (额外付费选配)12、滴液装置:1套 (额外付费选配)

  • 【原创】比表面 比表面测试仪

    比表面是比表面积的简称。根据实际需要,比表面积分为内比表面积、外比表面积、和总比表面积;通常未注明情况下粉体的比表面积是指单位质量粉体颗粒外部表面积和内部孔结构的表面积之和,单位m2/g。粉体材料越细,表面不光滑程度越高,其比表面积越大。由于纳米材料细度很高,一般具有比较大的比表面积;吸附剂催化剂炭黑等材料的效能与比表面积关系密切,一定效能需要一定范围的比表面要求;但并不是比表面积越大,就粉体质量越好。例如在要求粉体球形度的情况下,粒度相当的粉体材料,比表面越大,球形程度就越差。比表面积和粒径(粒径一般用中位径或目数来表示)是两个概念,没有必然联系,同样目数的两个产品不等于他们拥有相同的比表面积,也依赖与其表面光滑程度和孔结构。比表面积研究和相关数据报告中,只有采用BET方法检测出来的结果才是真实可靠的,因为国内外制定出来的比表面积标准都是以BET测试方法为基础的。(GB.T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法,而通过粒度仪估算出的比表面积通常差距都很大,无法反映实际情况。比表面积测试有专用的比表面积测试仪。 比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。 目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器行业的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。 精微高博(JWGB)是当代中国著名的粉体表面特性测试技术的开创者。十年来,精微高博(JWGB)的科学家革新了测试技术并设计发明了相应的物性测试仪器,使粉体及多孔材料的测试更精确、更精密、更可靠。这包括: • 比表面测试• 吸附/脱附等温线• 孔隙度、介孔与微孔孔径分布•粉体真密度•精微高博(JWGB)具有代表性的仪器: -连续流动色谱法智能型比表面分析仪 ---- JW-DA -多站静态容量法比表面及孔隙度分析仪 ---- JW-BK -静态容量法超微孔孔径分布测试仪—— JW-BK-F

  • 【资料】表面张力与表面活性剂

    【资料】表面张力与表面活性剂

    [img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908170954_166085_1610969_3.jpg[/img][color=#00008B]多相体系中相之间存在着界面。习惯上人们仅将气-液,气-固界面称为表面。[/color]   通常,由于环境不同,处于界面的分子与处于相本体内的分子所受力是不同的。在水内部的一个水分子受到周围水分子的作用力的合力为0,但在表面的一个水分子却不如此。因上层空间[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,结果导致液体表面具有自动缩小的趋势,这种收缩力称为表面张力。将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。显然这样的分散体系便储存着较多的表面能。   [color=#DC143C]表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。[/color]   在293K下水的表面张力为72.75×10-3 N• m-1,乙醇为22.32×10-3 N• m-1,正丁醇为24.6×10-3N• m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3 N• m-1。   表面张力的测值通常有多种方法,目前实验室及教科书中,通常采用的测试方法为最大气泡压法.由于其器材易得,操作方法相对易于学生理解表面张力的原理,因而长期以来是教学的必备方法.  [color=#00008B]作为表面张力测试仪器的测试方法,通常有白金板法\白金环法\悬滴法\滴体积法\最大气泡压法等. [/color]

  • 【原创大赛】试样加工过程可能对表面质量造成的影响-中船重工725所

    [align=center][b]试样加工过程可能对表面质量造成的影响[/b][/align][align=center]中国船舶重工集团公司第七二五研究所 试验测试与计量技术研究中心 常国梁[/align][align=center] [/align] 中国船舶重工集团公司第七二五研究所检测与校准中心试样加工车间长期从事各类力学、疲劳、腐蚀等特殊实验样品的制备工作。金属材料性能检测结果的准确性很大程度依赖于所加工试样质量的好坏,然而试样加工过程中诸多因素将直接或间接影响其性能的检测与判定。9月2日,我们分析了试样加工质量对常见力学试验的影响分析([url]http://bbs.instrument.com.cn/topic/6557443[/url]),接下来,我们聊一聊加工过程可能对试样表面质量造成的影响:[b]1、影响试样表面的粗糙度1.1、刀具的影响[/b] 加工过程中,刀具在做进给运动时在工件表面将会留下切削层残留面积,其形状是刀具几何形状的复映(即常说的刀痕),刀痕的深度越深,则工件的表面粗糙度越差。[b]1.2、材料材质的影响[/b] 因材料材质种类繁多,加工塑性大的材料时,刀具的挤压会使金属表面产生塑性变形,再加上刀具迫使切屑与工件分离的撕裂作用均会增大表面粗糙度。材料的韧性越好,所产生的塑性变形越大,加工表面就越发粗糙;加工脆性材料时,它的切屑以碎粒状出现,崩碎的切屑会在加工表面留下许多麻点,大大影响表面粗糙度。[b]1.3、磨削加工的影响[/b] 磨削加工时,砂轮的硬度和粒度、砂轮的平整度和转速、磨削的速度、磨削径向进给量与光磨次数、圆周进给速度与轴向进给量、冷却液的选择都会影响磨削表面的加工质量,提高或降低表面粗糙度。[b]2、试样表层产生加工硬化现象[/b] 加工过程中各种作用力容易使试样产生塑性变形,一般为扭曲变形,表面晶粒被拉长出现纤维状组织甚至破碎,产生加工硬化现象,增大了试样表层的硬度,导致金属的变形抗力发生变化,进而影响金属的抗拉强度等物理性能。[b]3、影响试样表面金相组织[/b] 加工过程中,如果刀具与试样表面摩擦所产生的温度大于这种材料的相变温度,那么材料表面的金相组织将会发生变化,进而改变材料的强度和硬度,同时,表面也会产生残余应力,甚至出现细微的裂纹。 以上均为加工过程中可能导致材料物理性能改变的若干因素,然而,通过一些具体措施则会在一定程度上减少或消除以上影响,例如针对不同材料配用不同材质及形状的刀具,针对不同材料选择油性或水性切削液以及所有试样尽可能全部进行磨抛工序等等。合格试样的加工是科学、合理表征材料性能的前提,需要不断总结,不断改进。[align=center]更多信息[url=http://www.725tes.com/]点击打开链接[/url][/align]

  • 表面与界面

    表面与界面[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15255]表面与界面[/url]

  • 如何提高表面张力,降低表面接触角

    为提高固体表面机能,大多运用例如药液的湿洗法以及其他干法清洗等处理技术。最近有将光增感剂作为药液使用的案例。运用紫外线放射(以下简称为UV)的表面处理法,基本上是指在大气中可以处理的干法改质和清洗方法。改质是直接提高物体表面的接着力,并通过清洗表面的形成然接着层的有机污染膜,间接的提高接着力保证品质的安定化。UV法虽然已经在50多年前就已经发现,但是常年以来在工业运用中却非常低。随着上世纪80年前期起随着液晶显示装置的高集成度的发展,在液晶玻璃的清洗工程中被广泛运用,现在已经成为液晶制品生产过程中不可缺少的工艺。改质技术相对发展比较缓慢,在90年代前期开始运用于汽车涂装的前期处理,磁悬浮列车铁轨的表面处理等,在此之后运用于汽车发动机周边设备以及提高电子机械工程塑料的粘结度等方面。光技术在毫米工艺中虽然没有被认可,但是随着毫米时代的到来,终于被广泛认可和使用。现在光技术还处在发展起,今后随着纳米技术时代的到来,光技术工艺必将成为纳米时代不可缺少的技术。2 UV表面处理法的机制2-1 改质UV表面处理法有固体表面的改质和清洗两种反应,根据素材来决定是哪种反应。玻璃和陶瓷是清洗作用,而塑料和金属则是改质和清洗两方面作用。有机物的分子结合可以用比其高的能量来切断。将C-H分子切断后可以得到H原子,由于H原子很轻,因而可以很容易将其拨离。跟其他氧反应可以生成富含O原子的C-O,-COO, C=O等官能基。高分子表面的化学反应,可以由X线光电子分光(XPS)或者IR频谱分析出来。下图是液晶聚合物(LCP)表面用200W低压水银灯照射3分钟后的C1SXPS频谱。由于富氧自由基有极性,因此增强表面能量可以提高亲水性。图4 是在大气中用200W低压水银灯对PBT和PPS照射时,根据照射时间的变化显示的表面能量变化。我们用湿润剂来评价表面能量的变化。随着露光量的增加,润滑指数急剧上升后缓慢上升。图5是用双组分环氧类粘结剂对同样的PPS和PBT按照同样的处理方式时试验时强度和照射关系。粘结强度和湿润指数都随着露光量的增加而变强。但是粘结强度在露光量达到一定峰值之后则下降。这并不是数据的错误,而是粘结剂在粘结是需要湿润,粘结剂本身固有的表面张力与被粘结物体和粘结剂的表面张力像同时,以及正确的极性成分和非极性成分相等界面张力为零时可以得到最大的粘着力。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制