当前位置: 仪器信息网 > 行业主题 > >

表面形变

仪器信息网表面形变专题为您整合表面形变相关的最新文章,在表面形变专题,您不仅可以免费浏览表面形变的资讯, 同时您还可以浏览表面形变的相关资料、解决方案,参与社区表面形变话题讨论。

表面形变相关的资讯

  • 岛津原子力显微镜——表面之上(一)
    原子力显微镜是一种典型的表面分析工具。利用探针和表面的作用力,获取表面形貌、机械性能、电磁学性能等信息。但是,表面的状态往往是反应过程的最终表现,想要了解反应的动力学过程,只是着眼于“表面”明显就不够了。此外,对表面状态的诱发因素,也很难从表面的信息中获得。所以,表面的是最容易观察到的,但要究其根本,知其所以然,我们的视线要向“上”看,研究“界面”处的信息。表面之上,让表面不再肤浅。以原子力显微镜最基本的“力-距离”曲线为例。如下图所示,探针逐渐靠近样品表面直至接触,施加一定的作用力后再缓慢提起。在这个过程中,探针感受到的力和探针与样品表面间的距离标化曲线如下图。在逐步接近样品时,探针会受到一个吸引力,表现为曲线向负值方向有一个凹陷;然后逐步施加力至正值,停止;然后后撤探针,在脱离表面前会受到一个粘附力,形成第二个负值方向的凹陷。比较探针压入和提出的过程,探针的受力有一个明显的变化就是在提出过程中增加了探针表面与样品表面的粘附力作用。同时还要考虑样品表面的应力形变恢复带来的应力与吸附力作用距离延长。因此,从“力-距离”曲线中,我们可以获得压入-提出过程中,探针与样品保持接触阶段作用力的变化,由此分析得到杨氏模量;除此之外,在探针与样品表面脱离接触后,其范德华引力与粘弹性力在“界面层”仍然处于变化之中。分析这个阶段的粘附力力值和作用距离等数据,可以获得弹性形变恢复、粘性样品拉伸长度等信息。以上是针对一个点的分析,如果对一个面的每一个测试点都作如此分析,也就是通常所做的面力谱分析。如下图所示。一般而言,面力谱分析获得的是各类机械性能的面分布情况。如下图所示。但是,如果每一个测量点,我们都做如上的分析,还可以得到在垂直方向上,在探针针尖已经脱离了和样品表面的接触后的受力状态。从而获得了从表面向上一段距离内的力变化曲线。这样的数据用一个三维的图像表现出来呢,会给人更直观的认识。如下图所示。通过颜色变化表征垂直分布的力值变化,可以直观看到样品表面在受到压力后压缩和恢复程度,以及粘弹力的持续距离。前者可以反映样品的力学特征,后者可以反映表面化学成分,这个特征尤其在电化学和胶体科学领域非常重要。本文内容非商业广告,仅供专业人士参考。
  • 西安光机所等在表面功能化光纤传感器研究中获进展
    近日,中国科学院西安光学精密机械研究所与西北大学合作,在表面功能化光纤传感器研究方面取得重要进展。研究基于通信单模光纤开发出一种免标记、高灵敏度、高选择性的法布里-泊罗(Fabry-Perot)型干涉探针。该探针具有测试便捷、成本低、温度稳定性高等特点,在生物大分子光谱检测方面具备广泛应用前景。   胆固醇是细胞膜、脂蛋白、神经细胞和脑细胞中的重要脂质大分子,其浓度与心脏病、高血压、动脉硬化、中风等疾病密切相关。因此,胆固醇水平检测备受关注。与目前常用的电化学法、酶分析、液相色谱、质谱等检测方法相比,光纤光谱检测方法具有体积小、抗电磁干扰、成本极低、免标记等突出特点,在生物化学检测领域备受关注。   传统的光纤光谱检测器件(如长周期光栅、倾斜光栅、表面刻蚀布拉格光栅等)受到制备仪器要求严格、温度及形变交叉敏感等困扰,在实用性上有较大局限。   该团队从光纤干涉理论及光与物质的相互作用理论出发,采用单模光纤和光纤插芯制备光纤光谱检测器件,通过范德瓦耳斯力在光纤插芯端面依次贴覆环氧树脂-氧化石墨烯(GO)-β环状糊精多层功能膜,基于最外层β环状糊精的疏水型空心分子结构与胆固醇的靶向性吸附结合原理,实现对胆固醇分子的高灵敏度光谱浓度检测,并在尿素、葡萄糖、抗坏血酸、人体血红蛋白等生化分析领域常见干扰物作用下可以呈现出强选择性,具备可重复制备和可重复检测特性,检出限达到3.5M, 灵敏度为3.92 nm/mM。该成果为表面功能化光纤器件在生化光谱分析领域的应用提供了新的思路和手段。   此外,研究通过X射线光电子能谱(XPS)探究EDC/NHS活化GO羧基对分子间键合相互作用影响以及β环状糊精和胆固醇分子的成键作用特性,对检测机制进行了验证分析。   相关研究成果发表在Analytica Chimica ACTA上。西安光机所为第一完成单位及通讯单位。图1.(a)为实验装置,(b)(c)为干涉结构。图2.(a)胆固醇检测光谱;(b)参杂/未参杂样本检测波长的Langmuir拟合;(c)选择性;(d)器件制备重复性测试。图3.XPS结果。(a) EDC/NHS未活化/活化羧基传感器的XPS光谱;(b)活化羧基传感器的N 1s光谱;(c)(d)分别为经过/未经过EDC/NHS活化羧基传感器的C1s光谱,(e)(f)分别为其O1s光谱EDC/NHS处理的传感器 (g)EDC/NHS活性羧基示意图。
  • 液滴无损转移仿生功能表面的设计与制备
    液滴的高效抓取和无损释放在医学中的药物融合或靶向转移、冷凝器表面或芯片实验室热耗散等领域有着重要的应用。目前,液滴转移往往由两个具有不同粘附性的表面去实现,即将液滴从低粘附浸润表面转移至高粘附浸润表面,且液滴的无损、自由释放较难实现。最近,北京理工大学先进结构技术研究院陈少华、刘明课题组设计并制备了一种新型的多级微结构仿生功能表面,可利用同一表面实现液滴的高效抓取和无损释放。该表面由磁颗粒填充的微尺度平板阵列结构组成,微平板尺寸为5mm×0.12mm×1mm,每个微平板左右两侧分别分布有尺寸为60μm×60μm×50μm的矩形凹槽阵列结构和尺寸为0.1mm×0.05 mm×1mm的矩形条带阵列结构,如图1所示。该研究首先使用精度为10μm的3D打印机(nanoArch S140,摩方精密)制备实验模板,再结合倒模法制备出具有磁响应特性的多级微结构阵列表面。图1 微平板阵列功能表面的 (a)结构示意图及其(b)实验制备简图磁场作用下,操控微平板产生定量的弯曲大变形,使含矩形凹槽阵列的表面完全暴露,其粘附力高达252μN,接触角为151º,呈现类似玫瑰花瓣的高粘附浸润特性,可有效抓取体积较大的液滴;旋转磁场使其形变恢复,表面粘附力降低至57μN,呈现类似荷叶的低粘附浸润特性。进一步对微平板阵列结构的几何特征参数进行优化设计,结合表面在类玫瑰花瓣高粘附状态和类荷叶低粘附状态之间自由切换的特性,可将此多级仿生表面有效地作为液滴无损转移的“机械手”,液滴无损释放及其转移过程见图2-3所示。图2液滴的无损、自由释放行为图3 液滴无损转移过程该成果以“Amechanical hand-like functional surface capable of effciently grasping andnon-destructivelyreleasing droplets”为题发表在国际顶级期刊Chemical Engineering Journal (IF = 13.273,中科院工程技术类分区一区)上。北京理工大学先进结构技术研究院和机械与车辆学院博士后刘明为文章第一作者,陈少华教授为通讯作者,彭志龙教授、姚寅副教授和博士研究生李程浩参与了该工作,此工作得到了国家自然科学基金(No.12032004, 11872114, 12102041)和中国博士后科学基金(No. 2021M690401)的支持与资助。原文链接:https://authors.elsevier.com/c/1dtwc4x7R2YpjE官网:https://www.bmftec.cn/links/10
  • 北理工陈少华教授、刘明博士后《CHEM ENG J》:液滴无损转移仿生功能表面的设计与制备
    液滴的高效抓取和无损释放在医学中的药物融合或靶向转移、冷凝器表面或芯片实验室热耗散等领域有着重要的应用。目前,液滴转移往往由两个具有不同粘附性的表面去实现,即将液滴从低粘附浸润表面转移至高粘附浸润表面,且液滴的无损、自由释放较难实现。最近,北京理工大学先进结构技术研究院陈少华、刘明课题组设计并制备了一种新型的多级微结构仿生功能表面,可利用同一表面实现液滴的高效抓取和无损释放。该表面由磁颗粒填充的微尺度平板阵列结构组成,微平板尺寸为5mm×0.12mm×1mm,每个微平板左右两侧分别分布有尺寸为60μm×60μm×50μm的矩形凹槽阵列结构和尺寸为0.1mm×0.05 mm×1mm的矩形条带阵列结构,如图1所示。该研究首先使用精度为10μm的3D打印机(nanoArch S140,摩方精密)制备实验模板,再结合倒模法制备出具有磁响应特性的多级微结构阵列表面。图1 微平板阵列功能表面的 (a)结构示意图及其(b)实验制备简图磁场作用下,操控微平板产生定量的弯曲大变形,使含矩形凹槽阵列的表面完全暴露,其粘附力高达252μN,接触角为151º,呈现类似玫瑰花瓣的高粘附浸润特性,可有效抓取体积较大的液滴;旋转磁场使其形变恢复,表面粘附力降低至57μN,呈现类似荷叶的低粘附浸润特性。进一步对微平板阵列结构的几何特征参数进行优化设计,结合表面在类玫瑰花瓣高粘附状态和类荷叶低粘附状态之间自由切换的特性,可将此多级仿生表面有效地作为液滴无损转移的“机械手”,液滴无损释放及其转移过程见图2-3所示。图2液滴的无损、自由释放行为图3 液滴无损转移过程该成果以“Amechanical hand-like functional surface capable of effciently grasping andnon-destructively releasing droplets”为题发表在国际顶级期刊ChemicalEngineering Journal (IF = 13.273,中科院工程技术类分区一区)上。北京理工大学先进结构技术研究院和机械与车辆学院博士后刘明为文章第一作者,陈少华教授为通讯作者,彭志龙教授、姚寅副教授和博士研究生李程浩参与了该工作,此工作得到了国家自然科学基金(No.12032004, 11872114, 12102041)和中国博士后科学基金(No. 2021M690401)的支持与资助。原文链接:https://authors.elsevier.com/c/1dtwc4x7R2YpjE
  • 应用:通过表面能表征等离子体对聚合物表面的处理效果
    研究背景等离子体处理是聚合物表面改性的一种常用方法,一方面等离子体中的高能态粒子通过轰击作用打断聚合物表面的化学键,等离子体中的自由基则与断开的化学键结合形成极性基团,从而提高了聚合物表面活性;另一方面,高能态粒子的轰击作用也会使聚合物表面微观形貌发生改变 。本文提出通过等离子体处理提高 PP的胶粘接强度。利用KRÜ SS光学接触角测量仪DSA100分析了等离子体处理对于PP表面的接触角、自由能的影响。利用胶粘剂将 PP薄膜与铝箔粘接到一起,采用T剥离强度试验方法对PP的胶粘接强度进行了测试,结果表明等离子体处理可以显著提高 PP的胶粘接强度。DSA100型液滴形状分析仪试验样品制备由于PP薄膜表面可能会有油污、脱模剂等残留物,本文采用超声清洗方法对其表面进行实验前的处理。结果与讨论1.PP表面接触角系统分析了等离子体改性的射频功率和处理时间对于PP表面接触角的影响。首先,将处理时间恒定为 120 s,射频功率分别选取了 80 W、120 W、180 W、240 W 和300 W。如图1(a) 所示,PP表面经等离子体处理后,去离子水和二碘甲烷的接触角均有较明显的下降。当射频功率超过120 W时,接触角下降趋势缓慢,此时去离子水的接触角由99.08°降到了79.25°,二碘甲烷的接触角则由69.31°降到了59.39°。当射频功率达到300 W时,去离子水的接触角为 74.88°,二碘甲烷的接触角为55.88°。去离子水属于极性溶液,它的接触角越小表明PP表面润湿性越好,PP与胶粘剂的粘接强度将越高。 图1.薄膜表面接触角的变化其次,将射频功率恒定为 80 W,处理时间分别为30 s、60 s、120 s、300 s和600 s,PP表面的接触角与处理时间的关系如图1(b)所示。可见,随着处理时间的增长,接触角逐渐减小。当处理时间长于120 s时,接触角变化缓慢,此时去离子水的接触角由 99.08°降到了77.39°,二碘甲烷的接触角由69.31°降到了56.05°。结合上述两个实验结果,本文选择射频功率120 W和处理时间120 s作为后续的PP等离子体改性工艺参数数值。2.PP表面自由能本文采用Owens二液法 ,通过测量去离子水和二碘甲烷在 PP表面的接触角,计算出PP表面的自由能。PP表面自由能与射频功率和处理时间的关系如图2所示。从图中可以看出,PP在等离子体处理后,色散分量和极性分量均有所提升,其中极性分量的提升更显著,PP的表面自由能得到了较大提高。经计算,未经等离子体处理的 PP表面色散分量、极性分量和自由能分别为18.68 mJ/m 2 、12.12 mJ/m 2 、30.8 mJ/m 2 ,经等离子体处理后的PP表面色散分量、极性分量和自由能分别为22.27mJ/m 2 、26.64 mJ/m 2 、48.91 mJ/m 2 。即,经等离子体处理后,PP表面色散分量增加了 19.22%,极性分量增加了119.8%,自由能增加了58.8%。可见,PP表面自由能的提高主要归因于极性分量的增加,而极性分量的增加则是由于等离子体处理使得PP表面形成了极性基团,从而有助于提高PP的胶粘接强度。 图2.PP表面自由能3.PP胶接强度根据T剥离强度试验记录的最大剥离力和最小剥离力计算得到平均剥离力(FT),而剥离强度(σT)为 式中:B为测试样品的宽度 ,本文测试样品的宽度为25 mm。在剥离过程中,可以看到胶粘剂形成的胶膜完全保留在铝箔表面,证明胶粘剂对铝箔的粘附性远高于对PP薄膜的粘附性,即通过该实验测试到的剥离强度为PP与胶粘剂之间的粘接强度。未改性的 PP薄膜和改性后的PP薄膜的剥离力与剥离长度的关系曲线如图3所示,由于夹持位置的差异,PP薄膜与铝箔之间开始出现分离的位置稍有不同。在二者刚出现分离时,剥离力较大,之后剥离力逐渐下降并保持稳定。根据上述公式可以计算出,未改性的PP薄膜最小剥离强度为588 kN/m,最大剥离强度为 661.2 kN/m,平均剥离强度为 624.8 kN/m;与之对应,改性后的PP薄膜最小剥离强度为734 kN/m,最大剥离强度为810.8 kN/m,平均剥离强度为775.2 kN/m。即,PP薄膜经过等离子体改性处理后最小剥离强度提高了24.83%,最大剥离强度提高了22.63%,平均剥离强度提高了24.07%。 图3.剥离长度和剥离力的关系结论本文从接触角、表面自由能等方面揭示了等离子体处理提高PP材料胶粘接强度的机理。实验结果表明,经过等离子体改性处理后,PP表面由疏水性变为亲水性,去离子水的接触角由99°减小到了75°,PP表面自由能由31 mJ/m 2 增大到了49 mJ/m 2 ,同时PP表面整体上变得凸凹不平,且出现了大量纳米级凸起和凹坑。PP表面发生的这些化学和物理变化共同作用,使得PP的胶粘接强度提高了24%。参考文献隋裕,吴梦希,刘军山.等离子体处理对于聚丙烯胶粘接强度的影响[J].机电工程技术,2023,52(01):30-32.
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 金属所纳米孪晶金属形变机制的定量电子显微学研究获进展
    纳米孪晶金属以其优异的力学性能和良好的导电性受到广泛关注,该材料的变形行为是材料学家长期关注的问题之一。作为一类大角度晶界,共格孪晶界能够强烈地阻碍位错的运动,提高材料的强度,一般来说孪晶片层厚度越小,纳米孪晶材料的强度也应该越高。然而,实验发现,当孪晶片层厚度减小到一个临界尺寸(约为15 nm)以下时,纳米孪晶材料反而出现软化现象。研究者利用分子动力学计算发现,这种软化现象是由于软化模式位错的开动所致,不过到目前为止还未定量地确定纳米孪晶金属的这一宏观力学特性与微观变形机制之间的关系。  最近,中国科学院金属研究所沈阳材料科学国家(联合)实验室固体原子像研究部杜奎研究组与材料疲劳与断裂研究部卢磊研究组合作,通过原位透射电镜观察和定量应变分析,发现孪晶片层厚度对不同类型位错形核处的局部应力集中有明显影响,因此位错的主导形核机制在某一临界片层厚度(18 nm)会发生转变。这一研究揭示了块体纳米孪晶材料的微观变形机制与宏观力学性能之间的直接联系。  研究结果表明,在等轴晶纳米孪晶铜的屈服阶段,位错活动的类型主要有两种:I型(Hard mode I)位错在孪晶界上的台阶处形核并在倾斜于孪晶界的滑移面上滑移 III型 (Soft mode)位错在孪晶界/晶界交界处形核并在孪晶界上滑移。当孪晶片层厚度下降到12-37 nm时,主导位错机制从I型位错的形核和滑移为主转变为以III型位错的形核和滑移为主。由于位错形核和局部应力集中有关,所以纳米孪晶铜变形的主导位错形核机制主要取决于孪晶界台阶处和孪晶界/晶界交界处的局部应力集中程度。而局部应力集中受孪晶片层厚度的影响,在孪晶界台阶处的局部应力集中随着孪晶片层厚度的减小而缓慢减小,而孪晶界/晶界交界处的应力集中随着片层厚度的减小而显著增加。两者应力集中程度相等时对应的临界孪晶片层厚度为18nm。这一原子尺度定量应变分析的结果与宏观力学性能测试得到的临界孪晶片层厚度(15nm) 相符,这为预测进而优化具有纳米片层结构的金属材料的力学性能提供了一条新途径。  该研究得到了国家自然科学基金、科技部“973”计划项目的资助。  相关论文已于7月16日在线发表于《自然通讯》上(Nature Communications 6:7648 (2015), DOI: 10.1038/ncomms8648)。  全文链接  图1 (a-d) I型位错在孪晶界上形核并滑移穿越孪晶界的动态过程。(e-h) III型位错在孪晶界/晶界交界处形核并且在孪晶界上滑移的原位动态过程和相应的示意图。  图2 具有不同孪晶片层厚度l的纳米孪晶铜在原位形变过程中的两类位错的比例。  图3 (a) 孪晶界发射I型位错的动态过程。(b) I型位错发射前的剪切应变分布。(c) 图(b)中黑框区域内的定量分析。(d) 孪晶界/晶界交界处发射III型位错的动态过程。(e) III型位错发射前的剪切应变分布。(f) 图(e)中黑框区域内的定量分析。  图4 纳米孪晶铜中对应于不同孪晶片层厚度l的孪晶界上台阶处和孪晶界/晶界交界处的应力集中因子K。
  • 表面张力,你了解多少?
    什么是表面张力?我们生活中经常会跟表面张力打交道,却清楚认知它。它在清洁洗涤中扮演者象汽车、化妆品中的润滑剂那样的角色。水甲虫之所以不被淹死只不过是因为表面张力在作怪。液体中分子之间的吸引力是产生表面张力的原因。如果我们观察某种介质的内部分子结构的时候,会发现分子间的吸引力是相同的。因此,分子所受到的各个方向的力是相同的,合力为零。另一方面,如果分子处于液体表面,液体内部的吸引力作用在一边,另外一边却没有分子作用力的存在。因此,合力的方向是指向液体内部的。从宏观来看,液体表面积会趋向最小华,液滴将因此趋向变圆。测量表面张力的方法:拉环法:利用一个初始浸在液体的环从液体中拉出一个液体膜,测量环脱离液面时需要施加的力来计算出表面张力。吊片法:又称Wilhelmy法、吊板法。采用盖玻片、云母片、滤纸或铂箔平板插入液体,使其底边与液面接触,测定吊片脱离液体所需与表面张力相抗衡的最大拉力F,也可将液面缓慢地上升至刚好与吊片接触。吊片法直观可靠,不需要校正因子,这与其他脱离法不同,还可以测量液-液界面张力。棒法:与吊片法差不多,以Wilhelmy 板法为基础,用圆柱棒代替吊板,测量表面张力。滴体积法:液体在毛细管口成滴下落前的瞬间,落滴所受的重力与管口半径及液体的表面张力有关。悬滴法:英文名为Pendant Drop method,通过测量一悬滴的轮廓来获得液体的表面张力。气泡压力法:通过液体分子间的吸引力,液体里面的空气气泡同样会受到这些吸引力的作用,譬如气泡在液体中形成会受到表面张力的挤压。气泡的半径越小,它所有的压力就越大。通过与外部气泡相比,增加的压力可用于测量表面张力。空气经由毛细管进入液体,随着气泡形成外凸,气泡的半径也随之连续不断的减小。这个过程压力会上升到最大值,气泡半径最小。此时气泡的半径等于毛细管半径,气泡成半球状。此后,气泡破裂并脱离毛细管,新气泡继续形成。把过程中的气泡压力特征曲线描绘出来,我们就可以用它来计算出表面张力。测量表面张力的意义研究表面张力主要是为了确定:1.液体的自身性质;2.环境对表面张力的影响;3.具有特殊功能的活性剂的浓度。目前,无论是科研还是工业应用,对加入特殊功能活性剂的研究和应用,表面张力已成为主要的参考项目之一,如日化行业的增泡剂、增粘剂等,喷墨和油墨行业的润湿剂、流平剂等,化工的树脂、乳液等,清洗行业的清洁剂、除污剂等等。目前市场上已经有多种测量液体表面张力的仪器,有的测的是静态的、有的测的是动态的,那么动态表面张力和静态表面张力有什么区别呢?让我们一起往下看了解。静态表面张力 VS 动态表面张力静态表面张力如拉环法,是利用一个初始浸在液体的环从液体中拉出一个液体膜,测量环脱离液面时需要施加的力来计算出表面张力。而当表面活性剂浓度大于临界胶束浓度CMC值时,表面活性剂不会在气液界面上增加排布,而会在液体内部形成胶束或游离等状态,因此拉环法方法不能测出浓度增大时表面张力的区别。测试表面张力的方法,包括:最大气泡发,拉板拉环法,毛细管上升法,界面夹角法,旋滴法等等。而测动态的只有最大气泡法,它的优势是,在几十毫秒到几十秒之间,可以产生一系列的气泡,每个气泡代表一个新界面,每个新界面都有相应的一个表面张力读数,此过程可得到一系列动态的表面张力值。而静态测试方法是一个界面上的变化,最终所取的是一个最佳值,最佳值通常都在十几秒或以后产生的,此过程是测出一个值,而这个值是可以在鼓泡法中的曲线中寻找出来的。对于有特殊功能活性剂的研究,往往是需要在很短时间内达到相应的效果,例如,喷墨和印刷行业大部分需要在70ms-150ms之间要求墨水的表面张力达到35mN/m左右。日化行业龙头企业要求增泡剂在300ms内达到32mN/m。测动态表面张力,除了可以达到某些特殊效果外,还可以通过测试得出动态CMC值(包括最佳CMC和应用CMC),研究溶液和活性剂的特性。不同品牌表面张力仪的对比指标传统表面张力仪SITA动态表面张力仪原理铂金环法、铂金板法气泡法测量值只能测得静态表面张力;传统的表面张力测试仪采用铂金环法/铂金板法原理,而这种方式不能反映表面活性剂的迁移到界面过程,因此也就不能测出动态表面张力。可兼顾测得动态表面张力与静态表面张力数据;SITA析塔公司生产的表面张力仪通过智能控制气泡年龄(bubble lifetime),可以测出液体中表面活性剂分子迁移到界面过程中表面张力的变化过程,即连续的一系列的的动态表面张力值以及静态表面张力值。表面活性剂浓度测量仅适合低于CMC值的表面活性剂浓度的测量:用传统表面张力仪只能在低于CMC值时反映表面活性剂随浓度的变化(建立表面活性剂浓度与表面张力的关系图)适合低于CMC值以及更高浓度表面活性剂浓度的测量:在有关CMC值的研发时,当表面活性剂的浓度远远超过临界胶束浓度时,改变表面活性剂的浓度不改变平衡态的表面张力(静态表面张力),而通过动态表面张力测量时即使浓度达到四倍的临界胶束浓度也能看出它的显著作用。因此,在高于CMC值时,通过气泡法原理的表面张力仪也可以反映表面活性剂随浓度的变化(建立表面活性剂浓度与表面张力的关系图)操作过程人工或自动自动读数人工或自动自动,并可通过软件传输到电脑,生成各样品曲线对比图。抗污染性弱;因为污染物及环变形的影响可能会对测试数据产生影响。强;每测一个样品只需清洗PEEK材质毛细管即可,易清洗测量对象要求铂金板测量阳离子表面活性剂会有误差,因为阳离子表面活性剂吸附在板上,影响其他样品的测试。铂金环不适合测量中高粘度液体样品表面张力。适用于1000cps以下粘度液体样品的表面张力测量实验重现性弱;综上所述,当读数有偏离预期标准时,操作人员很难判断是由于仪器本身的问题,还是由于液体样品的问题而导致读数不合格! 会浪费大量时间与成本重现实验。强;析塔表面张力仪可通过动态表面张力数据放大不同样品之间的差异(静态表面张力值差异不大的情况下)。有了更宽的容差后,可以覆盖因为温度波动、仪器波动历等因素造成的干扰, 使制程中监控更准确,更安全,更可靠。耗材铂金板/铂金环易变形,需不定期更换,价格大概2000RMB。不需耗材,每次测完样品只需清洗毛细管即可校准用过蒸馏水和纯乙醇为标准物进行校准用纯水为标准物进行校准举例说明喷墨打印机的打印头喷墨到纸张上只需要十几毫秒(或更短时间),汽车漆喷涂到工件上乳胶漆滚涂到墙面上或需要几十到几千毫秒,不同的表面活性剂迁移到新的界面需要的时间不同,所以对产品的润湿,流平性能的影响也有所不同。如下图所示,图1是析塔SITA表面张力仪的毛细管刚形成新的气泡(即新的界面)时,表面活性剂只有少量聚集到新的界面上。随界面形成的时间越久(即气泡寿命越长),表面活剂剂聚集到界面上就越多。析塔SITA表面张力仪可以测出从15毫秒到15秒的动态表面张力。表面张力分析仪介绍德国析塔SITA是液体动态表面张力测试方法的领导者,1993年创立了新一代表面张力计的理论基础。点击图片查看更多关于德国析塔SITA表面张力仪型号详情德国析塔SITA表面张力主要有以下几个型号:指标/型号SITA Dynotester+动态表面张力仪SITA Pro Line t15全自动动态及静态表面张力仪SITA Science Line t100实验室表面张力仪SITA Clean Line ST在线表面张力仪简介手持式/便携式,快速简便的测量生产过程中的连续测量研发型/实验室型集成式,与生产控制系统相连,使之自动添加表面活性剂。表面张力范围10-100 mN/m10-100 mN/m10-100 mN/m10-100 mN/m气泡寿命范围(ms)15-2000015-10000015-10000015-15000测试模式单次模式单次/连续测量/自动测量模式单次/连续测量/自动测量模式单次/连续测量/自动测量模式测量液体温度(0-100)℃(-20-125)℃(0-100)℃(0-80)℃翁开尔是德国析塔SITA中国总代理,近40年行业经验,能根据你的需求为您提供专业的解决方案。
  • 材料表面与界面分析技术及应用
    表面和界面的性质在材料制备、性能及应用等方面都起着重要作用,是材料科学领域研究的重要课题。2023年12月18-21日,由仪器信息网主办的第五届材料表征与分析检测技术网络会议将于线上召开,会议聚焦成分分析、微区结构与形貌分析、表面和界面分析、物相及热性能分析等内容,设置六个专场,旨在帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作。其中,在表面和界面分析专场,北京师范大学教授级高工吴正龙、国家纳米科学中心研究员陈岚、暨南大学 实验中心主任/教授谢伟广、上海交通大学分析测试中心中级工程师张南南、岛津企业管理(中国)有限公司应用工程师吴金齐等多位嘉宾将为大家带来精彩报告。部分报告内容预告如下(按报告时间排序):北京师范大学教授级高工 吴正龙《X射线光电子能谱(XPS)定量分析》点击报名听会吴正龙,在北京师范大学分析测试中心长期从事电子能谱、荧光和拉曼光谱分析测试、教学及实验室管理工作。熟悉表面分析和光谱分析技术,积累了丰富实验测试经验。主要从事薄膜材料、稀土发光材料研究及石墨烯材料表征技术、表面增强拉曼光谱技术的研究,在国内外期刊发标多篇学术论文。现任全国表面化学析技术委员会副主任委员,主持和参与多项电子能谱分析方法标准。近年来,在多场国内电子能谱应用技术交流培训会上担任主讲人。报告摘要:X射线光电子能谱(XPS)作为最常用的表面分析技术,表面探测灵敏度高,可以检测表面化学态物种的表面平均含量、表面偏析;分析薄膜组成结构;评估表面覆盖、表面分散、表面损伤、表面吸附污染等。本报告在简要介绍XPS表面定量分析原理基础上,通过实际工作中的一些实例,探讨XPS定量结果解释,帮助大家正确理解XPS定量分析结果,更好地利用XPS技术分析表面。岛津企业管理(中国)有限公司应用工程师 吴金齐《岛津XPS技术在材料表面分析中的应用》点击报名听会吴金齐,岛津分析中心应用工程师,博士毕业于中山大学物理化学专业,博士毕业后加入岛津公司,主要负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展不同行业材料表征相关研究,具有多年XPS仪器使用经验,熟悉XPS数据处理及解析,合作发表多篇SCI论文。报告摘要:介绍相关表面分析技术及XPS在材料表面分析中的应用。国家纳米科学中心研究员 陈岚《纳米气泡气液界面的检测》点击报名听会陈岚,爱尔兰国立科克大学理学博士,剑桥大学居里学者,2014年至今,先后任国家纳米科学中心副研究员、研究员及博士研究生(合作)导师;主要从事纳米界面微观检测及纳米界面光电化学性能调控方面的研究;ISO/TC281注册专家,全国微细气泡技术标准化技术委员会(SAC/TC584)委员,中国颗粒学会微纳气泡、气溶胶专委会委员,Frontiers in Materials及Catalysts客座编辑,科技部在库专家,北京市科委项目评审专家;主持科技部发展中国家杰出青年科学家来华工作计划1项,参与国家重点研发计划“纳米科技”重点专项、“纳米前沿”重点专项各1项;共发表论文近60篇,授权专利9项,编制国家标准10部。报告摘要:体相纳米气泡具有超常的稳定性及超高的内压,高内压的纳米气泡在溶液中稳定存在的机制一直众说纷纭。因此,研究纳米气泡边界层对于解释纳米气泡的稳定性具有重要的意义。由于纳米气泡气液界面的特点,检测体相纳米气泡边界层十分困难,常规的方法和技术手段很难实现。在本工作中,首次采用低场核磁共振技术(LF-NMR)对体相纳米气泡边界层中水分子的弛豫规律进行了系统研究,提出了纳米气泡边界层测量的数学模型,并成功地测得了不同尺寸纳米气泡的边界层厚度。研究发现,纳米气泡粒径越小,边界层所占比例越高,因而也越可以对更高内压的气核进行有效保护,纳米气泡的稳定性也可以据此进行定量解释。暨南大学 实验中心主任/教授谢伟广《范德华异质结光电探测及光电存储器件》点击报名听会谢伟广,暨南大学物理与光电工程学院教授,博导。2007年博士毕业于中山大学凝聚态物理专业,导师为许宁生院士;研究方向是微纳尺度多场耦合行为及应用,半导体光电转换过程、器件及集成;在Advanced Materials, ACS Nano等期刊发表SCI论文80多篇,代表性成果包括:实现了多种二维半导体氧化物的CVD制备,首次发现了极性二维氧化物长波红外低损耗双曲声子极化激元现象;发展了钙钛矿薄膜的真空气相制备方法,实现了高效气相太阳能电池及光电探测阵列的制备。研究团队发展的多项方法已被国内外同行广泛采纳,并在Nature、Sciecne等著名期刊正面评价。主持国家基金面上项目、重点项目子课题、广东省自然科学基金杰出青年基金项目等多项项目;于2022年(排名第一)获得中国分析测试协会科学技术(CAIA)奖一等奖。报告摘要:二维钙钛矿(2DPVK)具有独特的晶体结构和突出的光电特性,设计2DPVK与其他二维材料的范德华异质结,可以实现具有优异性能的各类光电器件。本报告主要介绍下面两种异质结器件:(1)光电探测器:制备了2DPVK/MoS2范德华异质结器件,由于II型能带排列中层间电荷转移所诱导的亚带隙光吸收,器件在近红外区域表现出了单一材料均不具备的光电响应。在此基础上引入石墨烯(Gr)夹层,借助Gr的有效宽光谱吸收和异质结中光生载流子的快速分离和输运,2DPVK/Gr/MoS2器件的近红外探测性能进一步得到了大幅提升。(2)光电存储器:开发了基于MoS2/h-BN/2DPVK浮栅型光电存储器,其中2DVPK由于其高光吸收系数,能同时作为光电活性层与电荷存储层,器件展现了独特的光诱导多位存储效应以及可调谐的正/负光电导模式。上海交通大学分析测试中心中级工程师 张南南《紫外光电子能谱(UPS)样品制备、数据处理及应用分享》点击报名听会张南南,博士,2019年毕业于吉林大学无机化学系,同年入职上海交通大学分析测试中心,研究方向为材料的表界面研究,主要负责表面化学分析方向的X射线光电子能谱仪(XPS)及飞行时间二次离子质谱(ToF-SIMS)方面的测试工作。获得上海交通大学决策咨询课题资助,授权一项发明专利,并在 J. Colloid Interf. Sci., Catal. Commun.等期刊发表了相关学术论文。报告摘要:紫外光电子能谱(UPS),能够在高能量分辨率水平上探测价层电子能级的亚结构和分子振动能级的精细结构,广泛应用在表/界面的电子结构表征方面。本报告主要介绍UPS原理、样品制备、数据处理以及在钙钛矿太阳能电池、有机半导体、催化材料等领域的应用。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
  • 智能手机上的表面力学
    如今“一部手机走天下”,已成为现实,智能手机的出现改变了我们的生活。它使我们原来许多物品逐步变得可有可无,渐渐成为我们生活中的伴侣。从1992年第一部智能手机的出现,到如今,手机已生重大革命;从触摸屏取代小键盘,再到大触摸屏手机的出现,彻底改变了手机行业。OLED智能手机显示屏的结构智能手机必须能够很好地抵抗使用过程中产生的外界应力。每次用户操作手机时,手机都会受到震动或刮擦,例如从口袋或袋子中取出手机或把他放在桌子上时。智能手机制造商正在努力实现显示屏、框架以及智能手机外壳的最佳耐刮性。人们使用各种方法来量化耐划伤性能——最合适的两种方法是划痕测试和纳米压痕测试。本应用报告将展示这两种方法在智能手机显示屏抗划擦性和能硬度表征中的应用。纳米压痕和纳米划痕测试纳米压痕测试是一种可以测量薄膜和小体积材料的硬度、弹性模量、蠕变和附着力的方法。用预先定义的载荷将金刚石棱锥压头压入被测材料表面,并记录压入深度。硬度、弹性模量和其他性能是使用ISO14577 标准通过载荷-位移曲线获得的。划痕试验是一种表征涂层附着力和耐划痕性的方法。划痕试验通常使用球形金刚石压头进行,该压头在载荷增加的情况下“划痕”涂层表面,从而产生涂层分层。临界载荷对应于分层或其他类型的粘合剂开始损伤时的载荷,并作为量化表面层或材料的附着力或耐刮擦性的方法。纳米划痕测试仪纳米压痕测试仪1划痕测试保护玻璃耐划性能测试智能手机显示屏的保护玻璃通常由Gorilla玻璃制成,它是一种铝硅酸盐玻璃,并通过浸泡在高温钾盐离子交换槽中进行增韧,防止裂纹扩展和阻止缺陷生成。Gorilla玻璃具有极高的硬度和耐刮擦性,重量轻,光学性能优异。然而,即使如此坚硬且耐划伤的玻璃也可能被划伤,因此有一项正在进行的研究旨在通过表面沉积保护陶瓷层进一步提高其耐划伤性。由于陶瓷层非常薄(~100nm),最适合表征耐划伤性的仪器是安东帕尔纳米划痕测试仪(NST3)。下图显示了在100 nm氧化铝(Al2O3)保护层的Gorilla玻璃上,使用半径为2μm的球形针尖进行高达50 mN的渐进加载试验的结果。氧化铝沉积层的典型破坏形态如图1所示。图1: 在光学显微镜下观察到的划痕后典型失效形貌图2通过临界载荷值(Lc1)下划痕深度(Pd)、残余深度(Rd)和摩擦系数(CoF)的突然变化,对失效进行了显微镜观察,得到关于氧化铝层抗划伤性的重要信息:临界载荷(Lc)越高,抗划伤性越好。图2:划痕实验过程中记录的信号智能手机屏幕上的浅划痕的自修复(恢复)智能手机显示屏上的大多数划痕都很深,肉眼可见(图3)。如果用户希望再次获得平滑的显示,通常必须更换前面板。为了验证清除过程是否有效,并确定可以修复的最大划痕深度,我们在恒定载荷下创建了几个系列的划痕。每一系列划痕都是在不同的载荷下进行的,以获得不同的划痕深度,并且可以评估恢复过程的可靠性。由于必须产生非常浅的划痕,NST3用于创建划痕。图3: 智能手机屏幕上的划痕除了产生可控划痕外,由于扫描后功能,纳米划痕测试仪 (NST3)还可以用作轮廓仪。测量受损智能手机屏幕的表面轮廓,从而评估已存在的划痕深度。测量设置的典型示例如图4所示。在划痕轮廓采集结束时,可以从划痕软件 导出数据,并直接由合适的分析软件(如TalyMap Gold)处 理,以确定预先存在的划痕深度(图5)。根据结果,制造商可以决定是否可以翻新智能手机屏幕。图 4: 使用NST3测量智能手机屏幕的表面轮廓图5: TalyMap软件分析预先存在的划痕的表面轮廓,以确定划痕深度(0.26μm)显示屏塑料/金属外壳的耐刮擦性位于智能手机显示屏旁边的显示屏框架上的油漆容易被划伤,尤其是边缘(图6)。因此,制造商希望提高显示屏框架上油漆的耐刮擦性和附着力。图6: 智能手机外壳上的磨损在这个案例研究中,比较手机外壳上两种不同薄膜的耐刮擦性能和附着力。薄膜的厚度约为30um,对此类薄膜进行划痕测试的最合适的仪器是Rvetest(RST3)或Micro CombiTester(MCT3),他们施加载荷最高达200N(RST3)30N(MCT3),最大划痕深度1mm,使用半径为200um的球形压头和渐进力载荷模式进行划痕1试验,划痕的全景成像如图7所示。图7:两种油漆划痕全景成像涂层1号和2号样品进行比较,2号的分层发生在较低的载荷且损坏也比较严重,2号的耐刮擦性能也不如1。因此,1应能抵抗较长时间的刮擦,其使用应优先于抗刮擦性较差的2。2纳米压痕测试玻璃体上有机薄膜的硬度和弹性模量智能手机显示屏的一个重要组成部分是有机薄膜,有机薄膜已经在OLED显示器中得到广泛应用。它们代表了智能手机显示屏市场的很大一部分,而且在灵活性方面具有的巨大优势,可以开发可折叠手机。有机薄膜的硬度和弹性模量等力学性能非常重要,因为它们表明了薄膜的质量,可以用来预测耐久性。有机电致发光(OLED)层的厚度在100纳米到500纳米之间,其力学性能的测量需要非常灵敏的仪器。安东帕尔超纳米压痕测试仪(UNHT3)具有合适的载荷和位移分辨率,可以可靠地测试这样的薄膜。图8显示了沉积在玻璃基板上的七种OLED薄膜的典型测量结果,每层的厚度约为100nm,最大压入深度控制在10nm。图8: 七种OLED薄膜典型载荷-位移曲线在每个样品上进行了五次最大载荷为300μN的压痕实验, 压痕载荷-位移曲线获得的每个样品的硬度和弹性模量 (图9)所示:弹性模量在33 GPa到55 GPa之间变化,硬度在280 MPa到400 MPa之间变化,标准偏差约为5%, 这证实了各层的均匀性良好,并允许安全区分各。A、B 和D层的硬度最高,C和F层的硬度最低。结果表明,UNHT3 可以用于非常薄的层的机械性能的可靠表征,从而有助于开发新的OLED层。图9: 七个OLED薄膜的硬度和弹性模量光学透明粘合剂(OCA)的机械性能光学透明粘合剂(OCA)是一种薄的粘合薄膜。例如:在智能手机行业中用于将显示器的不同组件之间连接。不仅这些薄膜的粘合性能很重要,而且它们的力学性能也很重要,因为它们决定了OCA的使用方式。安东帕尔生物压痕测试仪已用于测量此类粘合剂。生物压痕仪可以测量粘附力,还可以获得薄膜的刚度(弹性模量)和其与时间相关的特性(蠕变)。保证薄膜牢固地粘附着在基体上,以避免薄膜弯曲,这一点至关重要。在这个案例研究中,我们对三种不同的胶进行了表征:一种柔软的(a),弹性模量(E)约为0.35 MPa,两种较硬的(B,C),弹性模量约为208 MPa和约80 MPa,其中最大压入深度均控制在薄膜厚度的15%左右。图10:生物压痕仪用于测量附着在玻片上的OCA薄膜这些实验使用了半径为500μm的球形针尖,对于较薄的薄膜,建议使用半径较小的针尖,以避免基底的影响。最大压入载荷为0.5mN,最大压入深度在1μm和16μm之间变化,最大载荷下的保持时间为30秒。图11显示三种OCA薄膜的三种压痕曲线的比较,在针尖接近样品表面时,记录了粘附力。尽管在每个样品的不同区域进行了测量,但测量结果显示出良好的重复性。这表明,尽管粘合性能取决于两个接触部件的表面状态,但由于一个样品上的粘合力和所有压痕曲线非常相似,因此达到了稳定状态。图11:三种不同弹性模量OCA薄膜(A、B、C)的压痕曲线对比。4纳米压痕测试划痕测试和纳米压痕测试是智能手机显示屏的重要测试方 法,因为它们可以模拟现实生活中的情况,如冲击或硬物划伤。划痕测试适用于研究保护智能手机显示屏的覆盖玻璃的耐划痕性。该方法也有助于表征薄膜显示框上的附着力,从而选择附着力最佳的粘合剂。最后,该技术还可用于测量屏幕上预先存在的划痕的最大深度,评估其是否可以翻新。纳米压痕测试用于测量沉积在显示器玻璃上的功能薄膜的硬度和弹性模量。力学性能反映了新型显示器开发过程中 薄膜的质量。此外,纳米压痕法允许测定用于安装智能手机屏幕的光学透明粘合剂(OCA)薄膜的粘弹性和力学性。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 赛默飞世尔科技推出全新表面表征工具
    —— 用于表面化学表征的全集成式X射线光电子能谱仪   2009年12月19日,MADISON – 服务科学的世界领导者赛默飞世尔科技近日宣布,全新Thermo Scientific Escalab 250Xi光电子能谱仪(XPS)是一种全集成式表面表征工具,专门设计用于满足从事表面,薄膜和涂层的常规表征工作,乃至前沿表面化学研发的工程师们的要求。   Escalab 250Xi是享誉世界的Thermo Scientific Escalab产品线的最新产品。该全新设备集成了出色的光谱仪性能和Thermo Scientific Avantage XPS采集和处理用户界面。这种仪器与软件的组合不仅具有高样品通量,而且具有市场领先的分析性能,尤其适用于当今表面分析领域中复合材料的表征。另外,高级平行图像监测系统的集成可对图像视场内的微小特征进行定量光谱分析。   Avantage数据系统利用一种优化的工作流程提供优异的分析效率,该流程可以指导分析人员进行数据采集,解析,处理和报告生成。Avantage在进行一系列XPS光谱和图像处理任务时,还具有全数字工具控制。只需点击一下鼠标,即可利用自定义的实验室报告模板轻松将分析报告输出到标准PC应用程序中,例如Microsoft® Office。   Escalab 250Xi平台具有非凡的灵活性,因此分析人员可以利用一系列其他表面表征工具配置该系统。仪器配备了离子散射谱(ISS)和反射电子能量损失谱(REELS),同时可选配紫外光电子能谱(UPS)和俄歇电子能谱(AES)。仪器的标准配置还包括了样品制备室。如果需要,可以利用样品制备选项和附加的实验样品室扩展该系统。   关于赛默飞世尔科技(Thermo Fisher Scientific)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过105亿美元,拥有员工约3万4千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com (英文)或www.thermo.com.cn (中文)。
  • 布鲁克纳米表面仪器部诚邀您参加在成都举办的全国表面工程大会
    由中国机械工程学会表面工程分会主办,西南交通大学和表面物理与化学重点实验室承办的第十一届全国表面工程大会暨第八届青年表面工程学术会议将于2016年10月22-25日在成都举行,将为我国表面工程学科的学术交流提供一个重要的平台。表面工程着眼于材料的表面性质,通过对材料表面的再设计和制造,使其被赋予特殊的表面性质,如表面功能化、表面强化、表面防护、表面装饰等。作为一门新兴的交叉学科,表面工程涉及面宽,应用面广。布鲁克纳米表面仪器部作为本次大会的主赞助商,将在会议现场展示三维表面测量设备和摩擦磨损测试设备。会议详情请进入官网了解www.2016ICSE.cn。值此大会之际,我们将于10月22日下午14:00-17:00在成都金牛宾馆举办用户会,诚邀您的参加。布鲁克的应用专家将向您展示表面测量分析的全系列产品及其强大的应用功能,以及最新的技术应用进展。报告人报告题目黄 鹤 博士布鲁克BNS中国区应用主管材料表面的直观观察与定量评定方法的探讨:功能材料的表层结构、结构材料的磨损前后陈苇纲 博士布鲁克AFM应用专家原子力显微镜的高级模式以及在多功能薄膜和镀层领域的应用魏岳腾 博士布鲁克TMT应用专家生物材料摩擦学研究方法若您对我们的用户会感兴趣,请致电010-58333257或发送邮件至min.cai@bruker.com报名参加。期待您的光临!更多信息或动态请关注我们的微信公众号
  • 一轮通知 | 第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十一届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2024年8月5-6日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。1. 主办单位国家大型科学仪器中心-北京电子能谱中心全国微束分析标准化技术委员会表面化学分析分技术委员会中国分析测试协会高校分析测试分会北京理化分析测试学会表面分析专业委员会仪器信息网2. 会议时间2024年8月5日-6日3. 会议形式仪器信息网“3i讲堂”平台4. 会议日程报告时间报告题目报告嘉宾表面分析技术与应用专场主持人:朱永法 教授9:00-9:50表面等离子体电化学显微成像清华大学李景虹 院士9:50-10:30Hydrogen Evolution via Interface Engineered Nanocatalysis新加坡国立大学陈伟 教授10:30-11:00基于原位XPS-Raman的表面分析联用技术和应用赛默飞11:00-11:30待定岛津11:30-12:10待定重庆大学周小元 教授午休表面分析技术与应用专场主持人:姚文清 研究员14:00-14:40有机共轭半导体可见光催化光水解产氢研究清华大学朱永法 教授14:40-15:10待定艾飞拓15:10-15:50气-液微界面化学成像表征及理化特性复旦大学张立武 教授15:50-16:20待定厂商报告16:20-17:00光电子能谱与能源半导体界面华东师范大学保秦烨 教授17:00-17:40待定电子科技大学董帆 教授表面化学分析国家标准宣贯专场主持人:刘芬 秘书长09:00-09:40GB/T 42518-2023 锗酸铋(BGO)晶体 痕量元素化学分析 辉光放电质谱法中科院上海硅酸盐所卓尚军 研究员09:40-10:10待定厂商报告10:10-10:50GB/T 42360-2023 表面化学分析 水的全反射X射线荧光光谱分析中石化石油化工科学研究院有限公司邱丽美 研究员10:50-11:20待定厂商报告11:20-12:00GB/T 43661-2024表面化学分析 扫描探针显微术 用于二维掺杂物成像等用途的电扫描探针显微镜(ESPM,如SSRM和SCM)空间分辨的定义和校准中山大学陈建 教授5. 参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/bmfx2024/ (内容更新中)报名二维码6. 会议联系会议内容:张编辑 15683038170(同微信) zhangxir@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会第一轮通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第十届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2023年6月19日举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。主办单位:国家大型科学仪器中心-北京电子能谱中心;全国微束分析标准化技术委员会表面化学分析分技术委员会;中国分析测试协会高校分析测试分会;北京理化分析测试学会表面分析专业委员会;仪器信息网承办单位:仪器信息网扫码报名会议日程报告时间报告题目报告嘉宾9:00-12:00主持人姚文清(清华大学/国家电子能谱中心副主任)9:00-9:20致辞李景虹(清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会 院士/主任/主任委员)9:20-10:00待定韩晓东(南方科技大学 教授)10:00-10:40原位红外技术研究光催化界面机制陈春城(中科院化学所 研究员)10:40-11:20基于XPS-SEM的表面分析联用技术和应用葛青亲(赛默飞世尔科技(中国)有限公司 资深应用专家)11:20-12:00重新认识月球表面过程:嫦娥五号月壤的制约李阳(中国科学院地球化学研究所 副主任/研究员)12:00-14:00午休全体观众14:00-17:10主持人刘芬(中科院化学所/表面化学分析分技术委员会秘书长)14:00-14:40待定赵丽霞(天津工业大学 教授)14:40-15:20二次离子质谱(SIMS)质量分辨的测量李展平(清华大学分析中心 高级工程师)15:20-15:50待定北京艾飞拓科技有限公司15:50-16:30国际标准ISO 24417:2022《表面化学分析 辉光放电光谱法分析铁基表面的金属纳米膜》的制定张毅(宝山钢铁股份有限公司中央研究院 教授级高级工程师)16:30-17:10待定孙洁林(上海交通大学 研究员)报名链接:https://www.instrument.com.cn/webinar/meetings/bmfx2023/会议联系会议内容:管编辑,17862992005,guancg@instrument.com.cn会议赞助:刘经理,15718850776,liuyw@instrument.com.cn
  • 最全表面分析技术盛会!首届表面分析技术与应用主题网络研讨会全日程公布!
    表面分析技术即利用电子、光子、离子、原子等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术。表面分析技术广泛应用于材料表征等领域,是目前最前沿的分析技术之一。仪器信息网将于2022年9月7-9日举办首届表面分析技术与应用主题网络研讨会,旨在促进表面分析技术与应用领域的发展,利用互联网技术为国内的广大科研及相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到表面分析技术专家的精彩报告,节省时间和资金成本。首届表面分析技术与应用主题网络研讨会共设置了5个主题会场 ,分别是:电子能谱(XPS/AES/UPS)技术与应用、扫描探针显微镜(AFM/STM)技术与应用、电子探针/原子探针技术与应用、二次离子质谱(SIMS)技术与应用、拉曼光谱及其他表面分析技术与应用。会议页面(点击快速免费报名参会):https://www.instrument.com.cn/webinar/meetings/icsa2022/专场设置专场主题专场时间专场一:电子能谱(XPS/AES/UPS)技术与应用9月7日上午专场二:扫描探针显微镜(AFM/STM)技术与应用9月7日下午专场三:电子探针/原子探针技术与应用9月8日上午专场四:二次离子质谱(SIMS)技术与应用9月8日下午专场五:拉曼光谱及其他表面分析技术与应用9月9日上午会议全日程报告时间报告题目报告人工作单位职务/职称专场一:电子能谱(XPS/AES/UPS)技术与应用(09月07日上午)09:00--09:30原位电子能谱技术应用进展姚文清清华大学/国家电子能谱中心研究员/副主任09:30--10:00X射线光电子能谱法在有机高分子材料研究中的应用程斌北京化工大学研究员/副主任10:00--10:30光电子能谱(XPS)深度剖析吴正龙北京师范大学教授级高工10:30--11:00低能离子散射谱(LEISS)在催化剂表界面研究中的应用陈明树厦门大学教授11:00--11:30XPS在催化材料研究中的应用邱丽美石油化工科学研究院高级工程师11:30--12:00多功能光电子能谱仪在表面分析中的应用周楷重庆大学分析测试中心高级工程师12:00--12:30光电子能谱在固态锂离子电池研究中应用谢方艳中山大学高级实验师专场二:扫描探针显微镜(AFM/STM)技术与应用(09月07日下午)14:00--14:30Coherence enhancement of solid-state qubits by scanning probe microscopy江颖北京大学教授14:30--15:00原子力显微镜样品制备方法介绍潘涛Park原子力显微镜高级工程师15:00--15:30Local Interfacial Engineering of 2D Atomic Crystals by Advanced Atomic Force Microscopy程志海中国人民大学教授15:30--16:00基于STM的亚纳米分辨单分子光谱成像董振超中国科学技术大学教授16:00--16:30新型大能隙拓扑绝缘体α‐Bi4Br4的拓扑边缘态肖文德北京理工大学研究员16:30--17:00STM原理及在有机分子自组装上的应用曾庆祷国家纳米科学中心研究员17:00--17:30Research progress of atomically manipulating structural and electronic properties of low-dimensional structures陈辉中科院物理研究所副研究员专场三:电子探针/原子探针技术与应用(09月08日上午)09:00--09:30电子探针分析技术及其标准化研究陈振宇中国地质科学院矿产资源研究所研究室主任/研究员09:30--10:00电子探针市场分析和我们的应对举措胡晋生捷欧路(北京)科贸有限公司表面分析产品经理/部长10:00--10:30超轻金属元素Be的原位定量分析及其应用饶灿浙江大学教授10:30--11:00岛津epma技术特点及其应用廖鑫岛津企业管理(中国)有限公司EPMA产品专员11:00--11:30电子探针微区化学状态分析及其应用王道岭中国科学院金属研究所高级工程师11:30--12:00原子探针层析技术最新进展及应用李慧上海大学副研究员专场四:二次离子质谱(SIMS)技术与应用(09月08日下午)14:00--14:30飞行时间二次离子质谱分析技术及其应用李展平清华大学分析中心高级工程师14:30--15:00飞行时间二次离子质谱及其应用汪福意中国科学院化学研究所研究员15:00--15:30AES/XPS/SIMS/GD-OES(MS)深度剖析定量分析王江涌汕头大学物理系教授15:30--16:00用于SIMS的高分辨质谱技术进展及展望李海洋中国科学院大连化学物理研究所研究员专场五:拉曼光谱及其他表面分析技术与应用(09月09日上午)09:00--09:30电化学表面增强拉曼光谱及等离激元介导光化学反应研究吴德印厦门大学教授09:30--10:00国产显微共聚焦拉曼光谱成像仪刘鸿飞奥普天成(厦门)光电有限公司董事长/高级工程师10:00--10:30表面增强拉曼光谱在纳米颗粒表面化学反应原位检测中的应用谢微南开大学研究员10:30--11:00基于消逝场界面耦合的表面增强拉曼光谱新技术徐抒平吉林大学超分子结构与材料国家重点实验室教授11:00--11:30双光束原位红外光谱表征技术研究进展刘家旭大连理工大学副教授会议报名链接:https://www.instrument.com.cn/webinar/meetings/icsa2022/或扫描上方二维码报名会议联系管编辑:17862992005,guancg@instrument.com.cn会前访谈:仪器信息网资深编辑将于9月6日对话高德英特有限公司中国区执行总监叶上远,邀请其分享对于表面分析技术和产业的经验和看法。访谈直播平台为仪器信息网视频号,扫描下方图片二维码报名预约。
  • 布鲁克纳米表面仪器部主赞助第十一届全国表面工程大会
    由中国机械工程学会表面工程分会主办,西南交通大学和表面物理与化学重点实验室承办的第十一届全国表面工程大会暨第八届青年表面工程学术会议于10月22-25日在成都金牛宾馆召开。值此二年一届的表面工程盛会之际,国内外1000多名专家参加了本次大会。布鲁克纳米表面仪器部作为大会的主赞助商,携NPFlex三维表面测量系统和TriboLab摩擦磨损测试系统亮相大会。大会承办方为我公司颁发了赞助证书。主赞助商证书会议期间,表面工程领域内的大量专家教授对我公司产品产生浓厚的兴趣,与我公司应用专家进行了深入的交流沟通。中国区应用技术支持主管黄鹤博士也在此次大会上做了技术报告。黄鹤博士现场做仪器演示另值此大会之际,布鲁克纳米表面仪器部在金牛宾馆举办了西南地区的用户会,黄鹤博士、陈苇纲博士、魏岳腾博士分别在用户会上做了相关产品的技术报告。黄鹤博士现场答疑陈苇纲博士做原子力显微镜产品报告魏岳腾博士做摩擦磨损测试系统产品报告
  • 赛黙飞世尔将参加第八届全国表面工程学术会议暨第三届青年表面工程学术论坛
    由中国机械工程学会表面工程分会主办、装甲兵工程学院装备再制造技术国防科技重点实验室承办的第八届全国表面工程学术会议暨第三届青年表面工程学术论坛将于2010年4月25~27日在北京的国家会议中心举行, 赛黙飞世尔科技做为业界的领导者,表面分析产品将参加此次会议。我们的国外专家受邀将在大会报告中介绍XPS光电子能谱仪在表面工程的应用,届时我们还会有展台展示。热忱欢迎广大表面分析工作者莅临指导! 赛默飞世尔科技表面分析产品部源于英国VG科技公司,具有超过40年的超高真空和表面分析设备的研发和制造经验,主要产品包括XPS能谱仪、场发射俄歇能谱仪以及紫外光电子能谱仪,在能量分辨率、灵敏度以及信噪比方面在同类产品中长期以来具有优势。产品目前广泛应用于科研和工业领域,包括化工、催化、薄膜、半导体、钢铁、纳米材料以及微器件等。 自上个世纪八十年代进入中国以来,表面分析产品部门在提供不断更新的产品同时,更是已建立成熟完善的国内售后服务团队。目前国内已有用户总数超过70位,自2004年以来,国内新增用户超过30位,2009年市场占有率更是超过了65%,在技术和售后服务方面,已获得了国内表面分析领域的高度认可。 目前表面分析产品部可提供用户多种表面分析的专业解决方案。产品型号包括全球首款数字化多功能光电子能谱仪ESCALAB 250Xi、智能化XPS能谱仪K-Alpha、平行角分辨XPS能谱仪Theta Probe、工业用大尺寸样品平行角分辨XPS能谱仪Theta 300、高性能场发射俄歇能谱仪Microlab 350以及实验室基本型XPS能谱仪 Multilab 2000等。其中最新型号的ESCALAB 250Xi 在2009年10月份正式推出,2009年12月份在国内已有两位新用户,其中包括国家级材料科研单位国家纳米科学中心。 如想了解更多信息, 可联系赛默飞世尔科技表面分析产品销售部:电话 010-84193588转3657,手机 13811077655,邮箱 yibin.wei@thermofisher.com,或浏览我们的网站 www.thermo.com.cn/Category483.html。 关于Thermo Fisher Scientific(赛默飞世尔科技) 赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约3万5千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com(英文) 或www.thermo.com.cn(中文)。
  • 【精彩视频回放】聚焦新材料研究 多种表面分析技术各显其能——第三届表面分析技术应用论坛成功召开
    p   表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着我国新材料领域研究的深入,表面分析技术也日益发挥其重要的作用。当前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、二次离子质谱(SIMS)、扫描探针显微镜(SPM)、辉光放电光谱(GDS)、俄歇电子能谱(AES)等。 /p p   为了积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术在新材料研究中的进展,5月20日,仪器信息网联手国家大型科学仪器中心-北京电子能谱中心、中国分析测试协会高校分析测试分会举办“第三届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”网络主题研讨会,七位专家就相关的研究领域分享了高质量的报告。 /p p   此次应用研讨会内容立足表面分析技术在新材料研究中的应用,既有某一课题的科研进展综述,也有某一方向的研究成果分享、最新标准解读,以及相关仪器使用介绍等。组织方希望通过此次表面分析技术应用论坛的平台,让与会者深入交流,共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。本次会议由国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清主持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/85014051-a8d5-4da7-874c-4853820e8013.jpg" title=" 姚文清.jpg" alt=" 姚文清.jpg" / /p p style=" text-align: center " strong 国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/80a5fb64-a7ff-4e04-a2d4-f343cc70cb41.jpg" title=" 报告嘉宾.png" alt=" 报告嘉宾.png" / /p p   清华大学张强教授主要从事能源材料研究,尤其是在金属锂、锂硫电池和电催化方面开展了一系列的工作。本次报告中,他从能源存储与转化的新机遇讲起,针对工作金属锂界面上的SEI(界面层),以及如何获得稳定的SEI,如何诱导金属锂均匀沉积等多个话题给大家介绍了其所开展的研究工作。报告题目: strong 《The Working Surface of Li Metal Anode in Safe Batteries》。 /strong /p p   计量、标准、合格评定(检测和认证认可)对人类社会进步和工业发展发挥着不可或缺的基础性作用,2006年联合国与国际标准化组织(ISO)正式明确“计量、标准化、合格评定”为国家质量基础(National Quality Infrastructure,简称 NQI)的三大构成要素。石墨烯由于其独特的性能使其成为代表性的新材料而受到各国政府的产业支持。中国计量科学研究院任玲玲研究员在简要回顾计量、标准的基础上,重点介绍针对急需有序规范发展的石墨烯粉体材料开展的NQI技术研究及成果实施。 strong 报告题目:《石墨烯粉体材料计量、标准及合格评定全链条实施》。 /strong /p p   X射线光电子能谱(XPS)是表面分析领域中的一种崭新的分析技术,通过测量固体表面约10个纳米层左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量或半定量及价态分析。XPS作为一种分析各种材料表面的重要工具,目前广泛应用于与材料相关的基础科学和应用科学领域,包括各种催化材料、纳米材料、高分子材料、薄膜材料、新型光电材料、金属以及半导体等表面性能研究。岛津宋玉婷博士介绍了XPS的技术特点及应用案例。 a href=" https://www.instrument.com.cn/webinar/Video/play/105159/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《X射线光电子能谱最新应用进展》 /strong /span /a /p p   以氮化镓和砷化镓为代表的III-V族化合物,都是直接带隙半导体材料,通过掺杂或能带设计可以调控光电等物理特性,在光电领域具有独特优势。表面分析技术常被用于研究半导体材料及器件性能,分析表面形貌、组分、化学态、结构及能带等信息。本次报告,中国科学院半导体研究所赵丽霞研究员介绍了几个利用表面分析技术在研究III-V半导体光电材料和器件的典型工作。 strong 报告题目:《表面分析技术在III-V族半导体光电材料器件中的应用》 /strong 。 /p p   扫描隧道显微镜是当前表面物理和化学研究的重要实验设备。扫描隧道显微镜的基本原理是基于量子力学的隧穿效应,隧穿电流与隧穿结的高度灵敏性使扫描隧道显微镜具有原子级的空间分辨能力。扫描隧道显微镜的主要功能包括表面形貌成像、表面电子态密度测量、及原子分子操纵。中科院物理研究所陆兴华研究员的报告通过几个典型应用来展示扫描隧道显微镜的这些基本功能,并对扫描隧道显微镜技术的未来发展方向作了简单的介绍。 a href=" https://www.instrument.com.cn/webinar/Video/play/105162" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 报告视频精彩回放:《扫描隧道显微镜技术》。 /span /strong /a /p p   飞行时间二次离子质谱(TOF-SIMS)能以极高的灵敏度(ppm~ppb)探测到包括H在内的所有元素及其化合物信息,被誉为是一种普适的分析技术。清华大学分析中心李展平博士的报告介绍了TOF-SIMS的基本原理、技术特点,以及它在环境等各种领域的应用。 a href=" https://www.instrument.com.cn/webinar/Video/play/105160" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《飞行时间二次离子质谱分析技术及其应用》。 /strong /span /a /p p   三氧化钼是一种用途广泛的材料,在催化、抗菌等领域内有独特的应用。MoO sub 3 /sub @SiO sub 2 /sub 是常见三氧化钼的使用形态,几十年来已经用不少方法进行过很多研究。北京化工大学程斌分享了其实验室对MoO3@SiO2的最近研究方法与结果。 a href=" https://www.instrument.com.cn/webinar/Video/play/105161/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《氧化钼在MoO3@SiO2上分布的研究》 /strong /span /a /p p   虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者没机会参与会议直播的网友,可以点击 strong 报告视频精彩回放 /strong 进行学习与分享。 /p
  • 关于召开第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会的通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将于2022年6月14-15日线上举行。论坛以线上会议形式,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。一、组织单位国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会、仪器信息网二、会议主题能源化学与碳中和三、会议形式线上会议,免费报名参会,进入会议官网报名或扫描以下二维码报名会议官网:https://www.instrument.com.cn/webinar/meetings/bmfx2022扫码即刻报名参会四、会议日程(最终议程以活动专题页面发布为准)时间报告题目演讲嘉宾专场1:表面分析技术应用论坛(上)——6月14日09:00-11:45专场主持人朱永法(清华大学/国家电子能谱中心 教授/常务副主任)09:00-09:15致辞李景虹(清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会 院士/主任/主任委员)09:15-10:00水滑石基纳米光催化材料合成太阳燃料及高附加值化学品张铁锐(中国科学院理化技术研究所 研究员)10:00-10:30场发射俄歇微探针JAMP-9510F在材料表面分析中的应用张元 (日本电子株式会社 应用工程师)10:30-11:00X射线光电子能谱(XPS)技术及应用龚沿东(岛津企业管理(中国)有限公司 研究员)11:00-11:45太阳能驱动人工碳循环熊宇杰 (中国科学技术大学 教授)专场2:表面分析技术应用论坛(下)——6月14日13:30-16:45会议主持人张铁锐(中国科学院理化技术研究所 研究员)13:30-14:15Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles马丁(北京大学 教授)14:15-14:45待定赛默飞世尔科技元素分析14:45-15:30有机分子电催化转化王双印 (湖南大学 教授)15:30-16:00待定北京精微高博仪器有限公司16:00-16:45有机半导体可见光催化产氢、二氧化碳还原及肿瘤治疗研究朱永法(清华大学/国家电子能谱中心 教授/常务副主任)专场3:表面化学分析国家标准宣贯会——6月15日09:00-11:45会议主持人姚文清(清华大学/国家电子能谱中心 正高级工程师/副主任)09:00-09:45辉光放电质谱最新技术进展及其在相关标准方法中的应用卓尚军(中国科学院上海硅酸盐研究所 研究员)09:45-10:15XPS分析技术在空间和深度维度探测中的应用鞠焕鑫(高德英特(北京)科技有限公司 应用科学家)10:15-11:00GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南赵志娟(中科院化学所 高级工程师)11:00-11:45扫描探针显微镜漂移标准化研究黄文浩(中国科学技术大学 教授)五、 嘉宾简介&报告摘要专场1表面分析技术应用论坛(上)(6月14日上午)朱永法清华大学/国家电子能谱中心教授/常务副主任专场主持人:09:00--11:45李景虹清华大学/国家电子能谱中心/中国分析测试协会高校分析测试分会院士/主任/主任委员大会致辞:09:00--09:15李景虹,中国科学院院士、第十二、十三届全国政协委员。清华大学化学系教授,化学系学术委员会主任,国家电子能谱中心主任,清华大学分析中心主任。1991年获中国科学技术大学学士学位,1996年获中科院长春应用化学研究所博士学位。近年来致力于电分析化学、生物电化学、单细胞分析化学及纳米电化学领域的教学科研工作。以通讯作者在Nature Nanotech., Nature Protocol, J. Am. Chem. Soc., Angew. Chem.等学术刊物上发表SCI论文400余篇。2015-2021年连续五年入选汤森路透全球高被引科学家。以第一完成人获国家自然科学奖二等奖、教育部自然科学奖一等奖等。任Chem. Soc. Rev., ACS Sensors, Small Methods, Biosensors Bioelectronics, Biosensors, Chemosensors等期刊编委。张铁锐中国科学院理化技术研究所研究员报告题目:水滑石基纳米光催化材料合成太阳燃料及高附加值化学品报告&答疑:09:15--10:00张铁锐,中国科学院理化技术研究所研究员、博士生导师,中国科学院光化学转化与功能材料重点实验室主任。吉林大学化学学士,吉林大学有机化学博士。之后,在德国、加拿大和美国进行博士后研究。2009年底回国受聘于中国科学院理化技术研究所。主要从事能量转换纳米催化材料方面的研究,在Nat. Catal.等期刊上发表SCI论文280余篇,被引用26000多次,H指数89,并入选2018-2021科睿唯安“全球高被引科学家”;申请国家发明专利49项(已授权37项)。曾获皇家学会高级牛顿学者、德国“洪堡”学者基金、国家基金委“杰青”、国家“万人计划”科技创新领军人才等资助、以及中国感光学会青年科技奖等奖项。2017年当选英国皇家化学会会士。兼任Science Bulletin副主编以及Advanced Energy Materials等期刊编委。现任中国材料研究学会青年工作委员会-常委,中国化学会能源化学专业委员会-秘书长,中国感光学会光催化专业委员会-副主任委员等学术职务。报告摘要:水滑石基纳米材料因组成结构易于调控、制备简便等优点在光催化领域而备受关注。近年来,我们研究团队通过在水滑石表面创造缺陷位和构造界面结构的手段,分别实现了对反应物CO2、N2等吸附和活化的增强,以及中间反应物种反应路径的调控,进而提升了光催化CO、CO2和N2加氢反应的催化活性和生成高附加值产物的选择性。张元日本电子株式会社应用工程师报告题目:场发射俄歇微探针JAMP-9510F在材料表面分析中的应用报告&答疑:10:00--10:30张元,日本电子应用工程师。2016年毕业于上海交通大学材料科学与工程专业,获工学学士学位;2019年毕业于京都大学大材料工学研究科,获工学硕士学位。2019年入职日本电子,现担任应用工程师一职,主要负责场发射俄歇微探针与钨灯丝扫描电镜的应用与培训。报告摘要:日本电子的场发射俄歇微探针装置JAMP-9510F能够实现纳米级空间分辨率下试样表层的元素分布、化学组成、化合态分析等材料表征。无论是金属试样还是绝缘材料,JAMP-9510F装载的静电半球形分析器、场发射电子枪的大束流、高精度全对中试样台以及悬浮式离子枪都能提供多种表面分析方法。龚沿东岛津企业管理(中国)有限公司研究员报告题目:X射线光电子能谱(XPS)技术及应用报告&答疑:10:30--11:00龚沿东,研究员,1986年毕业于清华大学现代应用物理系,曾任中国科学院金属研究所分析测试部主任(研究员)。英国国家物理实验室(National Physical Laboratory)访问学者,美国圣母大学(University of Notre Dame)化工系研究助理。现任全国微束分析标准化技术委员会委员,全国微束分析标准化技术委员会表面分技术委员会委员。岛津公司市场部XPS和EPMA首席技术专家。报告摘要: X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在催化材料、电池材料、薄膜材料、电子器件等材料中的应用案例,旨在让科研工作者对XPS表面分析技术在材料领域的应用有所了解。熊宇杰中国科学技术大学教授报告题目:太阳能驱动人工碳循环报告&答疑:11:00--11:45熊宇杰,中国科学技术大学教授、博士生导师。1996年进入中国科学技术大学少年班系学习,2000年获化学物理学士学位,2004年获无机化学博士学位,师从谢毅院士。2004至2011年先后在美国华盛顿大学(西雅图)、伊利诺伊大学香槟分校、华盛顿大学圣路易斯分校工作。2011年辞去美国国家纳米技术基础设施组织的首席研究员职位,回到中国科学技术大学任教授,建立独立研究团队,同年入选首批国家高层次青年人才计划和中国科学院人才计划。2016年获批组建中国科学院“等离激元催化”创新交叉团队,2020年终期评估结果为优秀。2017年获国家杰出青年科学基金资助,入选英国皇家化学会会士。2018年获聘长江学者特聘教授,入选国家万人计划科技创新领军人才。2022年入选新加坡国家化学会会士。现任ACS Materials Letters副主编。主要从事基于催化过程的生态系统重构研究。在Science等国际刊物上发表250余篇论文,总引用31,000余次(H指数91),入选科睿唯安全球高被引科学家榜单和爱思唯尔中国高被引学者榜单。2012年获国家自然科学二等奖(第三完成人),2014-2016和2018年四次获中国科学院优秀导师奖,2015年获中美化学与化学生物学教授协会杰出教授奖,2019年获英国皇家化学会Chem Soc Rev开拓研究者讲座奖,2021年获安徽省自然科学一等奖(第一完成人)。报告摘要:人类正在探索实现“碳中和”的有效途径,凸显出建立人工碳循环的重要性。本报告将阐述如何针对太阳能驱动二氧化碳和甲烷转化,在太阳能俘获和电荷分离的基础上,对化学键的形成和断裂进行选择性控制,将其转化为燃料或化学品。另一方面,利用自然界的生物活性基元,开发无机-生物杂化系统,为太阳能驱动固碳提供新的思路。专场2表面分析技术应用论坛(下)(6月14日下午)张铁锐中国科学院理化技术研究所研究员专场主持人:13:30--16:45马丁北京大学教授报告题目:Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles报名占位报告&答疑:13:30--14:15马丁,北京大学化学与分子工程学院教授。针对我国社会能源和资源优化利用过程,主要开展氢能制备与输运,高值碳基化学品/油品合成, 以及催化反应机理研究等方面研究工作。获得2013年度北京大学青年教师教学比赛一等奖,2014年度王选青年学者奖,2017年中国催化青年奖,2017年度中国科学十大进展。2014-2017年担任英国皇家化学会Catalysis Science & Technology副主编 目前担任Chinese Journal of Chemistry、 ACS Catalysis 副主编,Science Bulletin、Journal of Energy Chemistry、 Joule、Journal of Catalysis、Catalysis Science & Technology等刊编委和顾问编委。报告摘要:人类正在探索实现“碳中和”的有效途径,凸显出建立人工碳循环的重要性。本报告将阐述如何针对太阳能驱动二氧化碳和甲烷转化,在太阳能俘获和电荷分离的基础上,对化学键的形成和断裂进行选择性控制,将其转化为燃料或化学品。另一方面,利用自然界的生物活性基元,开发无机-生物杂化系统,为太阳能驱动固碳提供新的思路。待定赛默飞世尔科技元素分析报告题目:待定报告&答疑:14:15--14:45王双印湖南大学教授待定北京精微高博仪器有限公司报告题目:待定报告&答疑:15:30--16:00朱永法清华大学/国家电子能谱中心
  • 第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会第二轮通知
    随着我国科技实力的显著提升,分析测试的发展也日新月异,科研及测试机构、人才队伍不断壮大,实验室环境条件大为改善,仪器装备水平迅速提高,科技产出量质齐升,重大成果举世瞩目。为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,推动分析测试质量保障体系、数据溯源体系和标准体系的建设,由国家大型科学仪器中心-北京电子能谱中心、全国微束分析标准化技术委员会表面化学分析分技术委员会、中国分析测试协会高校分析测试分会、北京理化分析测试学会表面分析专业委员会及仪器信息网联合举办的“第八届表面分析技术应用论坛暨表面化学分析国家标准宣贯会”,将以线上会议形式于2022年6月14-15日举行,通过报告专家与参会者的深入交流,旨在共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。主办单位:国家大型科学仪器中心-北京电子能谱中心全国微束分析标准化技术委员会表面化学分析分技术委员会中国分析测试协会高校分析测试分会北京理化分析测试学会表面分析专业委员会仪器信息网会议主题:能源化学与碳中和本次会议的特邀嘉宾有:中国科学院院士、清华大学化学系学术委员会主任、国家电子能谱中心主任、清华大学分析中心主任李景虹教授;国家杰出青年基金获得者、国家电子能谱中心常务副主任、清华大学朱永法教授;国家杰出青年基金获得者、国家“万人计划”科技创新领军人才、英国皇家化学会会士、中国科学院理化技术研究所光化学转化与功能材料重点实验室主任张铁锐研究员;中国催化青年奖获得者、北京大学化学与分子工程学院马丁教授;国家杰出青年基金获得者、科技部重点研发计划项目负责人、湖南大学王双印教授;国家杰出青年基金获得者、长江学者特聘教授、国家万人计划科技创新领军人才、英国皇家化学会会士、中国科学技术大学熊宇杰教授;国家电子能谱中心副主任、清华大学分析中心正高级工程师姚文清;国家大型科学仪器中心上海无机质谱中心主任、上海市分析测试协会理事长、中国科学院上海硅酸盐研究所公共技术中心主任卓尚军研究员;中科院化学所分析测试中心电子能谱组负责人、高级工程师赵志娟;科技部变革性技术专项咨询专家、中国科学技术大学黄文浩教授。会议日程:6月14日 9:00-16:456月15日 9:00-11:45会议报名:线上会议,免费报名参会,进入会议官网报名或扫描以下二维码报名会议官网:https://www.instrument.com.cn/webinar/meetings/bmfx2022
  • 材料也看“颜值”,表面分析与内部结构同样重要!第四届表面分析技术应用论坛来袭
    p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong 材料的性能,除了取决于材料本身的组成外,其表面的成分、结构、化学状态等特性也极大程度上影响了材料的物理、化学等性能,而材料表面与内部有明显的不同,有时候,改变材料表面的结构,或许可以达到意想不到的效果。 /strong /p p style=" text-align: center text-indent: 0em margin-bottom: 10px " span style=" font-size: 20px color: rgb(255, 0, 0) " strong 因此,对材料表面结构及组成的分析就显得尤为重要。 /strong /span /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 表面分析科学是上世纪60年代后期发展起来的一门学科,是目前已经成为国际上最为活跃的学科之一。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,由国家大型科学仪器中心-北京电子能谱中心、北京理化分析测试学会表面分析专业委员会、中国分析测试协会高校分析测试分会、全国微束分析标准化技术委员会表面化学分析分技术委员会及仪器信息网联合举办的 strong “第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”主题网络会议将于5月8日举行。 /strong /p p style=" text-align: center margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" img style=" width: 650px height: 142px " src=" https://img1.17img.cn/17img/images/202004/uepic/63bf85a8-5dfc-45da-b1ff-74530cc5e3dc.jpg" title=" w1920h420bmfxj2020(8).jpg" width=" 650" height=" 142" border=" 0" vspace=" 0" alt=" w1920h420bmfxj2020(8).jpg" / /a /p p style=" text-align: center text-indent: 0em margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 点击图片 /strong /span strong style=" text-indent: 0em " span style=" color: rgb(255, 0, 0) " 报名参会 /span /strong /a /p p style=" text-indent: 0em margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" strong style=" text-indent: 0em " span style=" color: rgb(255, 0, 0) " /span /strong /a /p p style=" text-align: center margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c4e4cf10-de01-42d6-ad15-8111a15e6e74.jpg" title=" 报名.JPG" alt=" 报名.JPG" / /a /p p style=" text-align: center " br/ /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 一、主办单位 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 国家大型科学仪器中心-北京电子能谱中心 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 北京理化分析测试学会表面分析专业委员会 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 中国分析测试协会高校分析测试分会 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 全国微束分析标准化技术委员会表面化学分析分技术委员会 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 仪器信息网 /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 二、会议详情 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1. 会议时间:2020年5月8日 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2. 会议形式:网络在线交流 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 3. 会议日程: /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202004/uepic/2577a481-3f33-42ff-b5c8-1bb68e31bfe9.jpg" title=" 1.JPG" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202004/uepic/220a3916-279f-4710-a7c3-9526b9a87f34.jpg" title=" 2.JPG" / /p p style=" text-align: center margin-bottom: 10px text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/421a40bb-6cac-4de9-ab76-e8707f6a75de.jpg" title=" 报名.JPG" alt=" 报名.JPG" / /a /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong /strong /p p style=" text-align: center margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" span style=" color: rgb(0, 0, 0) " strong 点击参会 /strong /span /a /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 三、参会指南 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong (一)报名方式: /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1、点击“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会” 网络会议(https://www.instrument.com.cn/webinar/meetings/2020bmfx/)官方页面进行报名。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2、报名开放时间为即日起至2020年5月8日。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 3、为使更多用户能够通过网络平台进行学习与交流,报名参加“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”网络会议不收取注册及参会费用。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong (二)参会条件: /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1、“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”网络会议将在仪器信息网网络会议平台上举办,报告人PPT视频和讲解将实时传送给所有参会者,参会者也可通过文字向报告人提问,报告人在报告结束后统一进行解答。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2、参与网络会议听众需要自备一台能上网的电脑或智能手机,网络带宽超过128K。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong (三)参会方式: /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1、报名参会并通过审核后,将会收到邮件通知,并在会前一天收到提醒参会的短信通知。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2、会议当天进入“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”网络会议(https://www.instrument.com.cn/webinar/meetings/2020bmfx/)官方页面,点击“进入会场”,填写报名时手机号,即可登录会场参会。 /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 四、联系方式 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 会议联系人:吴先生 18640355925 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 联系邮箱:wuyou@instrument.com.cn /p p style=" margin-bottom: 10px " & nbsp /p p style=" text-align: right margin-bottom: 10px " & nbsp /p p style=" text-align: right margin-bottom: 10px " 国家大型科学仪器中心-北京电子能谱中心 /p p style=" text-align: right margin-bottom: 10px " 北京理化分析测试学会表面分析专业委员会 /p p style=" text-align: right margin-bottom: 10px " 中国分析测试协会高校分析测试分会 /p p style=" text-align: right margin-bottom: 10px " 全国微束分析标准化技术委员会表面化学分析分技术委员会 /p p style=" text-align: right margin-bottom: 10px " 仪器信息网 /p
  • 表面分析技术与新能源研究的结合——2017年全国表面分析方法及新能源与生物功能材料学术研讨会
    p    strong 仪器信息网讯 /strong 2017年5月20日,“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开。此次会议由西南大学、重庆大学、赛默飞主办,170多位来自科研院校、以及企业的专家用户参加了此次会议。 /p p style=" text-align: center " & nbsp /p p style=" text-align: center " img title=" 现场1.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/3f44f489-93a2-49c9-b0eb-35c6af40112a.jpg" / /p p style=" text-align: center " 会议现场 /p p   就像在 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/news/20170520/220051.shtml" target=" _blank" strong span style=" color: rgb(255, 0, 0) " “2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开 /span /strong /a 中,西南大学李长明院士说到的,当今社会的发展离不开新能源的出现和先进能源技术的使用,发展新能源、改善传统能源环境污染状况,是全世界全人类共同关心的问题。 /p p   中国科学院长春应用化学研究所杨秀荣院士也提到,全球能源消耗面临着巨大危机,据2013年全球能源消费统计,石油只能再用45年、煤还能用200年,同时石油、煤等传统能源造成的环境污染也日趋严重。因此开发具有应用潜能的清洁能源具有重要意义。 /p p   根据国务院印发的《“十三五”国家战略性新兴产业发展规划》纲要,“十三五”期间国家将大力推动新能源汽车、新能源和节能环保产业快速壮大,加快生物产业创新发展步伐,超前布局战略性产业,促进战略性新兴产业集聚发展。而新能源的发展离不开对其相互作用反应机理的研究,这就使得分析技术,如表面分析技术变得非常关键。 /p p   此次大会的主题之一即聚焦“新能源”,主办方邀请了业内相关专家介绍了他们洁净能源技术研发的新进展。 /p p style=" text-align: center " & nbsp /p p style=" text-align: center " img title=" 盛世善.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/5570ce22-d034-403f-b8dc-abec4f0cbbaf.jpg" / /p p style=" text-align: center " 中国科学院大连化物所盛世善研究员 /p p style=" text-align: center " 报告题目:清洁能源与表面分析 /p p   报告中,盛世善教授介绍了洁净能源——煤基合成油的制备工艺、催化剂,及利用XPS等表面分析技术进行表征获得相关信息的情况。采用了新的铁基催化剂的费托合成以煤炭为原料制成的合成气直接制备烯烃,选择性超过了80%,而传统的以钴为催化剂的费托合成低碳烯烃的选择性理论上最高为58%,这一技术突破创造了一条煤基合成气转化制烯烃的新途径。盛世善教授介绍了此工艺过程中采用的新型双功能催化剂,并利用表面分析技术对其进行表征,对于金属或合金、多元催化剂可获得元素的偏析、分凝等信息 在催化剂制备条件选择上,可以获得焙烧气氛与温度等信息 对于半导体催化剂可以获得价带、材料的功函数等信息。 /p p style=" text-align: center " img title=" 陈建.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/22990709-8fe5-4e9f-82eb-2c3627a2e218.jpg" / /p p style=" text-align: center " 中山大学陈建教授 /p p style=" text-align: center " 报告题目:表面分析技术在先进能源材料研究中的若干应用 /p p   陈建教授在报告中介绍了扫描探针显微、表面增强拉曼光谱、表面等离子体共振、光电子能谱等表面分析技术在先进能源材料研究中的新应用进展。如实现了对半导体材料表面、器件界面的结构与光电性质进行了原位、实时的测量,为界面调控提供了有效的分析手段。发展了基于表面增强拉曼散射技术的纳米局域热点温度检测方法,研究光电催化反应机理的原位光谱学分析方法,和研究聚合物在等温冷却结晶过程中的结构相态变化和结晶动力学过程的原位变温拉曼散射法。最后利用X射线光电子能谱与氩离子刻蚀联合技术明确了聚合物太阳能电池形成界面偶离子的机理和微观过程,揭示了钙钛矿太阳能电池钙钛矿薄膜形成的内在机制。 /p p style=" text-align: center " img title=" 谢芳艳.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/468aeafa-5982-4e0c-b14c-247fc585913f.jpg" / /p p style=" text-align: center " 中山大学谢芳艳 /p p style=" text-align: center " 报告题目:光电子能谱在有机太阳电池研究中的应用 /p p   陈建教授的同事谢芳艳此次大会也带来了精彩报告,报告内容包括聚合物有机太阳电池、钙钛矿太阳电池的情况,而且,结合光电子能谱所能提供的信息,谢芳艳介绍了其团队在这方面所开展的应用实例。 /p p & nbsp /p
  • 表面分析的新技术新方法——2017年全国表面分析方法及新能源与生物功能材料学术研讨会
    p    strong 仪器信息网讯 /strong 2017年5月20日,“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开。此次会议由西南大学、重庆大学、赛默飞主办,170多位来自科研院校、以及企业的专家用户参加了此次会议。 span style=" text-align: center " & nbsp /span /p p style=" text-align: center " img title=" 现场1.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/00b4be24-b0f7-4cf4-bb01-025e26fe660b.jpg" / /p p style=" text-align: center " 会议现场 /p p   材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业、生物医药及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。同时,由于最近几十年超高真空、高分辨和高灵敏电子测量技术的快速发展,表面分析技术也有了长足进步。表面分析技术主要包括X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(SIMS)等。国内表面分析技术起步于80年代,目前已经广泛应用于基础科研、先进材料研制、高精尖技术、装备制造等领域。 /p p   此次会议,多个报告聚焦在表面分析及方法的进展,如: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/65282d53-2da7-45d0-96b7-3152489be928.jpg" title=" John F.Watts.jpg" / /p p style=" text-align: center " University Of Surrey John F.Watts /p p style=" text-align: center " 报告题目:XPS:A Versatile Analysis Method From Carbon to Energy Materials /p p   此次会议请来了《表面分析(XPS和AES)引论》一书的原作者John F.Watts先生作大会报告。 /p p style=" text-align: center " img title=" 郭沁林.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/48586558-6329-4ff4-ba2c-8a0ac99cb24c.jpg" style=" text-align: center " / /p p style=" text-align: center " 中国科学院物理研究所郭沁林研究员 /p p style=" text-align: center " 报告题目:样品简易加热法 /p p   郭沁林研究员在实验室的XPS设备条件不具备的情况,自己搭建了简易的灯泡样品加热装置,其性价比极高、操作简单、加热速度快、灯丝不会被污染、可在氧气氛中工作、易维护等优点。当然,此简易装置也存在着占用空间、无法原位制备薄膜等问题。 /p p style=" text-align: center " img title=" 唐文新.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/0c08000c-a3e0-49df-aa03-498557e19f3e.jpg" / /p p style=" text-align: center " 重庆大学唐文新教授 /p p style=" text-align: center " 报告题目:低能电子显微镜在表面科学中应用 /p p   唐文新教授2012年承担了国家自然科学基金委重大科研仪器设备研制专项“超快自旋极化低能电子显微镜”,自主设计了新型的超快高分辨自旋极化低能电子显微镜。该技术将用于探索和发现低维超快磁动力和量子结构的表面超快动力过程中的非平衡态物理化学现象。 /p p style=" text-align: center " img title=" 高峰.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/557c15ce-3127-4e13-beb2-f4d696622269.jpg" / /p p style=" text-align: center " 山东农业大学高峰 /p p style=" text-align: center " 报告题目:XPS真空原位硬件技术与精确分析软件技术初探 /p p   报告中,高峰介绍了XPS真空原位分析技术及软件新技术,及其在蛋白质研究、厌氧性细胞研究、失效分析等领域的应用前景。 /p p style=" text-align: center " & nbsp /p p style=" text-align: center " img title=" 吴正龙.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/21db7c15-8908-44c3-8fd5-516d5168795a.jpg" / /p p style=" text-align: center " 北京师范大学吴正龙教授 /p p style=" text-align: center " 报告题目1:非均匀样品的XPS分析 /p p style=" text-align: center " 报告题目2:XPS名词术语 /p p   吴正龙教授此次会上做了两个报告,首先介绍的是非均匀样品的XPS分析。电子能谱所要求的无限厚均匀样品较少,一般样品都属于非均匀样品,如有包裹层、覆盖层、多层薄膜,或者颗粒物的存在。报告中,吴正龙教授通过实际分析例子介绍了XPS与表面分析相冲突的现象、比较了表面分布与均匀的XPS分析结果、概述了非均匀样品的XPS分析技术。 /p p style=" text-align: center " img title=" 王海.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/1abae517-d987-4619-86d5-1f62921793ea.jpg" / /p p style=" text-align: center " 中国计量科学研究院王海研究员 /p p style=" text-align: center " 报告题目:表面分析电子能谱仪标准物质研究 /p p   报告中,王海研究员介绍了标物SiO2/Si、XPS能量标度标物GBW(E)130545~130547、Cu(In,Ga)Se2薄膜组成标物等的工艺优化、均匀性与稳定性、定值、量值验证、与国外同类标物对比以及标物的应用。 /p p & nbsp /p
  • 不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案表面残留油污检测仪
    不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案测试说明客户:德国Relyon Plasma公司样品:不锈钢板测量设备:析塔清洁度仪FluoScan 3D污染物:福斯溶剂型防锈油Fuchs Anticorit MKR 4目标采用荧光法测量不锈钢表面污染情况,检查等离子清洗的效果及其影响参数。操作过程首先,将不锈钢板放在60°C的超声波清洗槽中,使用碱性清洗剂清洗15分钟,然后用去离子水彻底冲洗并干燥不锈钢板。随后,在不锈钢板上滴一滴Anticorit MKR 4防腐蚀油,并用实验室用布擦拭。然后,使用析塔FluoScan 3D清洁度检测仪,采用荧光法,高分辨率扫描钢板,检测钢板上的防腐蚀油分布。荧光法是一种对油膜厚度敏感的测量,测试结果以RFU(相对荧光单位)显示,RFU值越低,表面越干净。等离子清洗对于等离子体清洗,手持等离子体设置piezobrush® PZ3被连接到析塔SITA FluoScan 3D(自动检测清洁度的测试台)的移动轴上,使得可以通过自动化进行等离子清洗处理。piezobrush® PZ3在测试板上以编程的移动路径移动,同时等离子体以恒定的移动速度开启,并与钢板表面保持恒定的距离。为了说明速度(清洗时间)的影响,首先以2.5mm/s的速度进行处理,然后在清洗时间一半的位置上,以5mm/s的速度进行处理。测量结果图1:未清洗的不锈钢板上的荧光测量结果图2:等离子清洗后的不锈钢板上的荧光测量结果结论荧光测量的结果表明,使用等离子清洗的两个区域比钢板的其他部分干净很多。清洗时间越长,清洗效果越好。荧光法适用于在等离子清洗后轻松和快速地监测清洗结果,通过测量可以确定影响等离子清洗的参数,达到最佳的清洗效果,同时降低成本。使用析塔FluoScan 3D清洁度仪自动检测测量零件清洁度,高分辨率扫描零件,最终以图像化呈现零件污染程度不同的区域。析塔FluoScan 3D自动表面清洁度检测仪广泛运用在不同的清洗工艺(水基、溶剂、激光、等离子.....),可以灵活应用在实验室或生产车间。翁开尔是德国析塔中国独家代理商,欢迎致电咨询析塔自动清洁度检测系统。
  • 为表面分析技术发展共同努力——BCEIA2019表面分析技术应用研讨会成功召开
    p style=" text-indent: 2em text-align: justify " strong 仪器信息网讯& nbsp /strong 2019年10月23日,第十八届北京分析测试学术报告会暨展览会(BCEIA 2019) 学术报告会在北京国家会议中心盛大开幕。10月24日,由北京理化分析测试学会表面分析专业委员会和广东省测试协会表面分析专业委员会联合举办2019年会,以“BCEIA 2019表面分析技术应用研讨会”为主题在国家会议中心E235隆重举行。50余名表面分析技术相关领域的科研及技术人员齐聚一堂,共话表面分析科学及其应用技术的新发展。 /p p style=" text-indent: 2em text-align: justify " 大会开幕式由北京理化分析测试学会表面分析技术委员会副理事长姚文清主持,北京理化分析测试学会表面分析技术委员会常务副理事长刘芬、广东省分析测试协会表面分析专业委员会秘书长谢方艳分别致辞。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/071662d9-5743-4d44-9d50-6d99ebaeb796.jpg" title=" yaowenqing.jpg" alt=" yaowenqing.jpg" / /p p style=" text-align: center " 北京理化分析测试学会表面分析技术委员会副理事长 姚文清 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/54957d7c-1333-45e9-9b57-073d4038b2a8.jpg" title=" liufen.jpg" alt=" liufen.jpg" / /p p style=" text-align: center " 北京理化分析测试学会表面分析技术委员会常务副理事长 刘芬 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/6517d4bc-49bd-42d3-b539-be6905d07f50.jpg" title=" xiewenyan.jpg" alt=" xiewenyan.jpg" / /p p style=" text-align: center " 广东省分析测试协会表面分析专业委员会秘书长 谢方艳 /p p style=" text-align: justify text-indent: 2em " 在24日上午的会议上,中国科学院化学所赵耀副研究员、湖南大学Muhammad-Sadeeq Balogun(唐杰)教授、北京泊菲莱科技有限公司刘欢博士、姚文清高工分别带来了精彩的学术分享。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/c3e5f592-7831-44cf-962b-a5be16d0e55b.jpg" title=" zhaoyao.jpg" alt=" zhaoyao.jpg" / /p p style=" text-align: center " 中国科学院化学所 赵耀副研究员 /p p style=" text-align: center " 报告题目:In Situ Liquid SIMS and Its Application on Analysis of Liquid Surface and Solid-Liquid Interface /p p style=" text-align: justify text-indent: 2em " 飞行时间二次离子质谱技术(Time of Flight Secondary Ion Mass Spectrometry,TOF-SIMS)是一种非常灵敏的表面分析技术。在报告中,赵耀副研究员介绍了飞行时间二次离子质谱及其一些应用,并就他课题组对飞行时间二次离子质谱与电化学联用技术方面的研究作了重点介绍。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/e2e48abb-b317-4dc8-a83b-783c4c0dae52.jpg" title=" 唐杰.jpg" alt=" 唐杰.jpg" / /p p style=" text-align: center " 湖南大学 Muhammad-Sadeeq Balogun(唐杰)教授 /p p style=" text-align: center " 报告题目:Mechanism of Lithium Storage Properties at the Interface of Transition Metal Oxides and Carbon Fiber Hybrids /p p style=" text-align: justify text-indent: 2em " 能源问题一直是各界关注的焦点,电能作为可再生能源将会被人类长期使用,但电能的储存仍是一个难题,锂离子电池以其良好的储电效果一直被广泛关注。湖南大学 Muhammad-Sadeeq Balogun(唐杰)教授的报告分为五个部分,介绍了他从事锂离子电池研究的部分成果。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/332157a4-caca-4a68-9168-008ccc7ca3bc.jpg" title=" 刘欢.jpg" alt=" 刘欢.jpg" / /p p style=" text-align: center " 北京泊菲莱科技有限公司 刘欢博士 /p p style=" text-align: center " 报告题目:光催化仪器设备实践与应用 /p p style=" text-align: justify text-indent: 2em " 光催化反应是以半导体材料为主的多相反应体系,是光电物理与电化学高度耦合的“光-电-化”转化过程。刘欢博士在报告中介绍了北京泊菲莱科技有限公司Labsolar 6A光催化系统的各项性能,以及他对光催化设备未来发展的一些展望。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/39530517-57f9-4ff0-a4d8-99ff762b8b47.jpg" title=" 姚文青.jpg" alt=" 姚文青.jpg" / /p p style=" text-align: center " 清华大学 姚文清高工 /p p style=" text-align: center " 报告题目:电子结构调控对光催化性能的影响 /p p style=" text-align: justify text-indent: 2em " 环境污染控制是全球关注的焦点,光催化氧化技术治理环境污染具有室温降解、深度矿化、无二次污染等独特的优势。报告中,姚文清高工介绍了通过调控能带结构、内建电场,提高光催化材料光生电荷分离迁移效率,增强降解污染物降解活性,提高可见光利用率。 /p p style=" text-align: center" img style=" width: 281.466px height: 192px " src=" https://img1.17img.cn/17img/images/201910/uepic/c7b250bd-ee6c-442d-84e7-22e03e9c2666.jpg" title=" wenda.jpg" width=" 281" height=" 192" / img src=" https://img1.17img.cn/17img/images/201910/uepic/beaad88d-661c-407c-a7bb-95fb5284261b.jpg" title=" wenda 2.jpg" width=" 260" height=" 194" style=" width: 260px height: 194px " / /p p style=" text-align: center " 现场提问互动环节 /p p style=" text-align: justify text-indent: 2em " 下午,暨南大学谢伟广教授、中山大学谢方艳高工、PHI(China)Limited高德英特(北京)科技有限公司张伟、北京师范大学吴正龙教授级高工、中国科学院化学所刘芬副研究员、中国科学院大连化学物理研究所盛世善研究员分别进行了精彩报告,获得了在场观众的一致赞扬。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/11e0b932-f1fd-4dc0-a805-7b87416a6a4e.jpg" title=" 谢广伟.jpg" alt=" 谢广伟.jpg" / /p p style=" text-align: center " 暨南大学谢伟广教授 /p p style=" text-align: center " 报告题目:扫描探针显微镜在半导体材料及器件表界面分析中的应用。 /p p style=" text-align: justify text-indent: 2em " 扫描探针显微分析技术可实现光电器件测试、表/界面跨尺度空间分辨的原位、实时的结构与光电性质的精确测量,报告中谢伟广教授介绍了该团队利用扫描探针显微分析技术发现钙钛矿等材料的表/界面光子、电子等相互作用机理及规律研究工作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/52f41f00-89ee-4a85-8b07-f7eabab158b1.jpg" title=" IMG_0693.JPG" alt=" IMG_0693.JPG" / /p p style=" text-align: center " 中山大学谢方艳高工 /p p style=" text-align: center " 报告题目:紫外光电子能谱在半导体研究中的应用。 /p p style=" text-align: justify text-indent: 2em " 紫外光电子能谱UPS(Ultroviolet Photoelectron Spectrometer)以紫外线为激发光源的光电子能谱。主要用于考察气相原子、分子以及吸附分子的价电子结构。谢方艳高工介绍了利用UPS/XPS技术进行燃料电池、聚合物太阳电池、钙钛矿太阳电池等材料界面电子结构与界面相互作用的机理研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/f27b0459-e5bc-4355-9539-60b3f9bd7705.jpg" title=" zhangwei.jpg" alt=" zhangwei.jpg" / /p p style=" text-align: center " PHI(China)Limited高德英特(北京)科技有限公司张伟 /p p style=" text-align: center " 报告题目:结合多种表面分析技术的应用。 /p p style=" text-indent: 2em " XPS、AES、TOF-SIMS等表面分析技术在很多领域都有广泛应用,张伟在报告中叙述了几种表面分析技术在半导体材料中的应用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/5cebf539-bb64-4b1c-8081-b6546430c15a.jpg" title=" wuzhenglong.jpg" alt=" wuzhenglong.jpg" / /p p style=" text-align: center " 北京师范大学吴正龙教授级高工 /p p style=" text-align: center " 报告题目:电子能谱在薄膜分析中的应用。 /p p style=" text-indent: 2em " 吴正龙高工从事XPS研究多年,在报告中,他对使用XPS研究薄膜材料的物理性能及化学性能机理进行了介绍。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/b09ce7ed-d677-4bfc-8d51-937100f8f6b8.jpg" title=" 刘芬.jpg" alt=" 刘芬.jpg" / /p p style=" text-align: center " 中国科学院化学所刘芬副研究员 /p p style=" text-align: center " 报告题目:表面化学分析标准化与分析测试。 /p p style=" text-align: justify text-indent: 2em " 刘芬副研究员介绍了国际标准化委员会表面化学分析分委员会(ISO/TC201)与全国微束标准化委员会表面分析分委员会(SAC/TC38/SC2)工作程序及工作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/02197b32-863e-4d28-a6e3-a082f1ed1b8e.jpg" title=" 盛事山.jpg" alt=" 盛事山.jpg" / /p p style=" text-align: center " 中国科学院大连化学物理研究所盛世善研究员 /p p style=" text-align: center " 报告题目:光电子能谱方法--XPS测试中常见问题讨论。 /p p style=" text-align: justify text-indent: 2em " 仪器只是分析检测的一小步,得到的数据如何解读是困扰研究人员的一大难题。盛世善研究员的报告针对XPS数据后期处理展开了讨论与分析。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a69552c5-db43-4a22-bc8b-eb498ce6fbe3.jpg" title=" 合影.jpg" alt=" 合影.jpg" / /p p style=" text-align: center " 大会合影 /p
  • 超快速表面处理,秒取高质量界面【GDS微课堂-7】
    上图是瑞士摄影师马丁-奥格里利 ( Martin Oeggerli ) 通过扫描电子显微镜SEM拍摄的花粉照片,是不是很炫酷?但并非所有样品通过SEM,都能得到上图中直观惊艳的照片,更多样品需要经过预处理后方可充分展示。GDS就是对样品进行预处理,将观测的界面更好展示出来的利器。通过氩气等离子体持续轰击样品表面、溅射出样品离子后再进行分析的方法,GDS可以轻松替SEM剥蚀样品,供SEM进行观测。那与其他可用的剥蚀方法相比,GDS在样品制备与表征上有哪些优势呢?让我们一起来看看。GDS通过控制溅射时间,能精确地获得不同深度和清晰度的界面,将任意深度的包埋层完美地展现出来,供SEM分析。上图是铜表面的元素深度剖析图。铜的表面覆盖一层硫脲,硫脲分子通过硫端吸附到铜表面,C-S键垂直于金属表面。这个吸附层在深度剖面上以窄峰的形式清晰地显示在铜基体上方,包括碳、氢、氮和硫。从右图我们还可以看到,峰的位置按照吸附在铜基体上的硫脲分子的方向顺序被分离和定位。在扫描电镜中,必须精确控制溅射深度,GDS这种在原子尺度深度的分辨率,使这种精细的分析得以实现。GDS使用的是能力很低(低于50eV)但电流密度很高(~100mA cm-2)的氩气等离子体。氩离子的高电流密度能确保高速溅射,溅射速率每分钟达到1-10μm,整个样品的处理时间短,包括溅射在内往往几秒至几分钟就能搞定,相比于以往费时费力的机械抛光、化学抛光、电化学抛光、超薄切片等制备方法,不知道快了多少倍。比如为了获得高质量的表面,通常会用胶态二氧化硅悬浮液对样品进行抛光,来去除受损的表面区域。但是这种方法的抛光率非常低(仅为每分钟几纳米),因此对于延伸几百纳米的区域来说,需要数小时甚至一天的时间。而通过GDS溅射,可以在几十秒内去除大多数材料的受损表面区域。另外,GDS还有一个特点就是它是靠氩离子去撞击样品,通过溅射方法移除样品表面的材料,是对样品粒子一层层的剥蚀。此外,由于差动溅射效应,GDS能够在不同材料的分界处产生清晰的界面,这对于观测样品的表面形貌非常重要。而传统的机械抛光,靠的是细小的抛光粉的磨削、滚压,在对样品表面磨削的过程中势必会将凸起的花纹也一并磨掉,只留下光秃秃的平滑面。Show一个简单的比较图,让大家更直观的感受一下:(a)是机械抛光获得的结果,(b)是GDS剥蚀3S后获得的结果(a)图中是机械抛光获得的结果,我们看到样品表面的纹理被磨掉了;(b)图是GDS剥蚀处理后的结果,样品表面的花纹和结构保存的很好,我们可以看到表面的精细结构。我们再来看一个例子:通过超薄切片处理过的镀锌钢的横截面(a)图是通过超薄切片技术制备的整个镀锌钢样品的SEM图像;(b)图是通过超薄切片技术制备的镀锌钢样品中,锌/钢界面的SEM图,可以看到表面有严重的刮痕;(c)图是对(b)进行GDS溅射10秒后,锌/钢界面的SEM图片,可以看到而GDS制备的样品消除了刮痕,完美保留了样品的形貌。GDS除了可以为扫描电镜制备样品外,还可以联合SEM全面表征样品。下面是同一个样品:AlCrN/TiN/AlCrN/TiN/Fe使用SEM和GDS分别测试的结果。SEM提供了样品横截面的结构:根据颜色的深浅,可以了解到样品包含4个镀层,图中详细标注了不同镀层的厚度;GDS则展示了样品中各元素从表面到铁基体,不同深度处的含量分布。两个结果有交叠的信息也有截然不同的信息,更加全面立体地展示了样品的结构信息和含量分布。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦【GDS微课堂-6】看GDS如何助力“灯厂”奥迪独领风骚? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 突破!微界面接触状态实时表征技术成果在《Nano Energy》发布
    王晓雄/郭玉婷/李迪联合研究团队利用像散成像技术实现摩擦纳米发电机的界面接触状态实时表征关键词:三维荧光微球成像技术;像散成像;三维界面接触表征;摩擦电纳米发电机 导读微观表征技术已经被证明对于现代科技发展具有巨大的影响力。市面上对表面形貌的常规表征手段有光学显微镜、SEM、AFM、台阶仪等,但目前尚缺少实时分析微界面接触状态的精准探测技术,这极大的阻碍了电子科技领域和材料开发领域域的发展。为了解决这个难题,青岛大学王晓雄团队、中国科学院大学生命科学院郭玉婷团队与中国科学院物理研究所李迪团队协作,通过利用“超分辨荧光微球硅胶形变技术”成功实现了对接触界面的微观三维可视化分析,完成了摩擦纳米发电机(TENG)三维表面的原位监控,能够在TENG工作的同时获得界面接触信息,为材料微观界面接触表征的测定和评估提供了新技术手段。相关成果于2024年7月30日在学术期刊《Nano Energy》在线发表(3D visualization microscope of TENG contact interface beads on astigmatic imaging,DIO: 10.1016/j.nanoen.2024.110061 )。 正文界面接触状态的微观表征在多个科学领域具有重要研究价值,因此Science杂志也将“如何在微观层面测量界面现象”列为125个重要科学问题之一。例如:1、在物理科学领域,材料界面设计能够有效改变力学性能,因此对于结构强度、稳定性和寿命有着巨大影响(如图1)。2、在化学领域,界面两相物质的反应或者输运过程对于化学过程有着决定性的影响。3、在电子器件领域,界面接触状态对CPU热管理效果影响巨大,且器件连接效果受接触电阻影响很大。4、在生命科学领域,液-固界面能够完成植物液体输运以及物质传递等过程。图1. 普通塑料表面起伏结构,影响接触分离分布传统认知认为粗糙界面有助于提高接触起电效果,电负性差异给出了材料本身电荷转移能力的强弱,而事实上只有当两种材料的接触距离达到电荷有效转移距离,即电子云交叠距离才能够实现有效电荷转移,这意味着未经处理的粗糙材料中有大量的界面并未有效参与电荷转移,如何重构接触界面解析的有效性至关重要。在本工作中,团队以TENG接触界面的微观表征为案例成功开发了一种实时分析接触界面的3D可视化技术,为TENG的接触界面研究带来了技术性的突破。研究团队开发的3D可视化技术,以界面位移-力学性能解析为思路,超高分辨率观测聚二甲基硅氧烷(PDMS)和丁腈薄膜构建的TENG接触面系统,利用荧光微球的荧光成像和自主研发的基于深度学习的算法网络,实现了对TENG接触界面的实时三维重建观测,如图2所示。这项技术不仅能够观察接触界面的形变,还能计算出实际的有效接触面积,为理解接触起电机制提供了定量化的数据支持,对于设计新一代高性能、高稳定性的TENG具有重要的指导意义,对提高电子器件接触面能量转换效率提供新方法。图2. 通过荧光标记TENG摩擦对的一层反解力学状态表面来获得其按压状态表征;(a)标记层未受到按压时,荧光标记在垂直面方向没有明显移动,反解获得(c)平整表面;(b)标记层受到按压时,荧光标记的形状变化被用于解析垂直面位移,从而完成(d)三维重构。 结语随着技术的进一步成熟和应用,基于像散成像原理的三维可视化技术有望在能源、智能穿戴设备、生物传感器和物联网等领域发挥重要作用,推动相关产业的技术进步和创新发展。该工作由青岛大学王晓雄团队、中国科学院大学生命科学院郭玉婷团队与中国科学院物理研究所李迪团队共同完成。该工作在国家自然科学基金、北京市科技新星等项目的资助下完成。——招聘——郭玉婷课题组诚聘细胞生物、光学工程和计算机领域的相关人才,详情请见招聘简章(https://bio.ucas.ac.cn/index.php/tzgg/76304-2024-04-07-09-24-06 )。
  • 六种表面分析技术与材料表征方法简介
    利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术,统称为先进材料表征方法。先进材料表征方法包括表面元素组成、化学态及其在表层的分布测定等。后者涉及元素在表面的横向和纵向(深度)分布。先进材料表征方法特点表面是固体的终端,表面向外一侧没有近邻原子,表面原子有部分化学键伸向空间,形成“悬空键”。因此表面具有与体相不同的较活跃的化学性质。表面指物体与真空或气体的界面。先进材料表征方法通常研究的是固体表面。表面有时指表面的单原子层,有时指上面的几个原子,有时指厚度达微米级的表面层。应用领域航空、汽车、材料、电子、化学、生物、地质学、医学、冶金、机械加工、半导体制造、陶瓷品等。X射线能谱分析(EDS)应用范围PCB、PCBA、FPC等。测试步骤将样品进行表面镀铂金后,放入扫描电子显微镜样品室中,使用15 kV的加速电压对测试位置进行放大观察,并用X射线能谱分析仪对样品进行元素定性半定量分析。样品要求非磁性或弱磁性,不易潮解且无挥发性的固态样品,小于8CM*8CM*2CM。典型图片PCB焊盘测试图片成分分析测试谱图聚焦离子束技术(FIB)聚焦离子束技术(Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的聚焦离子束技术(FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。聚焦离子束技术(FIB)可为客户解决的产品质量问题(1)在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。聚焦离子束技术(FIB)注意事项(1)样品大小5×5×1cm,当样品过大需切割取样。(2)样品需导电,不导电样品必须能喷金增加导电性。(3)切割深度必须小于50微米。应用实例(1)微米级缺陷样品截面制备(2)PCB电路断裂位置,利用离子成像观察铜箔金相。俄歇电子能谱分析(AES)俄歇电子能谱技术(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术,因检测由俄歇效应产生的俄歇电子信号进行分析而命名。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逸出,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子,通过检测俄歇电子的能量和数量来进行定性定量分析。AES应用于鉴定样品表面的化学性质及组成的分析,其特点在俄歇电子来极表面甚至单个原子层,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于材料分析以及催化、吸附、腐蚀、磨损等方面的研究。俄歇电子能谱分析(AES)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择AES进行分析,AES能分析≥20nm直径的异物成分,且异物的厚度不受限制(能达到单个原子层厚度,0.5nm)。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择AES进行分析,利用AES的深度溅射功能测试≥3nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS(AES)能准确测定各层薄膜厚度及组成成分。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)由于AES测试深度太浅,无法对样品喷金后再测试,所以绝缘的样品不能测试,只能测试导电性较好的样品。(4)AES元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点。X射线光电子能谱分析(XPS)X射线光电子能谱技术X射线光电子能谱技术(X-ray photoelectron spectroscopy,简称XPS)是一种表面分析方法, 使用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来,被光子激发出来的电子称为光电子,可以测量光电子的能量和数量,从而获得待测物组成。XPS主要应用是测定电子的结合能来鉴定样品表面的化学性质及组成的分析,其特点在光电子来自表面10nm以内,仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于金属、无机材料、催化剂、聚合物、涂层材料矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究。X射线光电子能谱分析(XPS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择XPS进行分析,XPS能分析≥10μm直径的异物成分以及元素价态,从而确定异物的化学态,对失效机理研究提供准确的数据。(2)当产品表面膜层太薄,无法使用常规测试进行厚度测量,可选择XPS进行分析,利用XPS的深度溅射功能测试≥20nm膜厚厚度。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当产品的表面存在同种元素多种价态的物质,常规测试方法不能区分元素各种价态所含的比例,可考虑XPS价态分析,分析出元素各种价态所含的比例。注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)XPS测试的样品可喷薄金(不大于1nm),可以测试弱导电性的样品,但绝缘的样品不能测试。(4)XPS元素分析范围Li-U,只能测试无机物质,不能测试有机物物质,检出限0.1%。应用实例样品信息:客户端发现PCB板上金片表面被污染,对污染区域进行分析,确定污染物类型。测试结果谱图动态二次离子质谱分析(D-SIMS)飞行时间二次离子质谱技术二次离子质谱技术(Dynamic Secondary Ion Mass Spectrometry,D-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子的质量来测定元素种类,具有极高分辨率和检出限的表面分析技术。D-SIMS可以提供表面,薄膜,界面以至于三维样品的元素结构信息,其特点在二次离子来自表面单个原子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和检出限高的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。动态二次离子质谱分析(D-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择D-SIMS进行分析,D-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行膜厚测量,可选择D-SIMS进行分析,利用D-SIMS测量≥1nm的超薄膜厚。(3)当产品表面有多层薄膜,需测量各层膜厚及成分,利用D-SIMS能准确测定各层薄膜厚度及组成成分。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用D-SIMS分析表面超痕量物质成分,以确定截面是否存在外来污染,检出限高达ppb级别。(5)掺杂工艺中,掺杂元素的含量一般是在ppm-ppb之间,且深度可达几十微米,使用常规手段无法准确测试掺杂元素从表面到心部的浓度分布,利用D-SIMS可以完成这方面参数测试。动态二次离子质谱分析(D-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样,样品表面必须平整。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)D-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)D-SIMS元素分析范围H-U,检出限ppb级别。应用实例样品信息:P92钢阳极氧化膜厚度分析。飞行时间二次离子质谱分析(TOF-SIMS)飞行时间二次离子质谱技术(Time of Flight Secondary Ion Mass Spectrometry,TOF-SIMS)是一种非常灵敏的表面分析技术,通过用一次离子激发样品表面,打出极其微量的二次离子,根据二次离子因不同的质量而飞行到探测器的时间不同来测定离子质量,具有极高分辨率的测量技术。可以广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。TOF-SIMS可以提供表面,薄膜,界面以至于三维样品的元素、分子等结构信息,其特点在二次离子来自表面单个原子层分子层(1nm以内),仅带出表面的化学信息,具有分析区域小、分析深度浅和不破坏样品的特点,广泛应用于物理,化学,微电子,生物,制药,空间分析等工业和研究方面。飞行时间二次离子质谱分析(TOF-SIMS)可为客户解决的产品质量问题(1)当产品表面存在微小的异物,而常规的成分测试方法无法准确对异物进行定性定量分析,可选择TOF-SIMS进行分析,TOF-SIMS能分析≥10μm直径的异物成分。(2)当产品表面膜层太薄,无法使用常规测试进行成分分析,可选择TOF-SIMS进行分析,利用TOF-SIMS可定性分析膜层的成分。(3)当产品表面出现异物,但是未能确定异物的种类,利用TOF-SIMS成分分析,不仅可以分析出异物所含元素,还可以分析出异物的分子式,包括有机物分子式。(4)当膜层与基材截面出现分层等问题,但是未能观察到明显的异物痕迹,可使用TOF-SIMS分析表面痕量物质成分,以确定截面是否存在外来污染,检出限高达ppm级别。飞行时间二次离子质谱分析(TOF-SIMS)注意事项(1)样品最大规格尺寸为1×1×0.5cm,当样品尺寸过大需切割取样。(2)取样的时候避免手和取样工具接触到需要测试的位置,取下样品后使用真空包装或其他能隔离外界环境的包装, 避免外来污染影响分析结果。(3)TOF-SIMS测试的样品不受导电性的限制,绝缘的样品也可以测试。(4)TOF-SIMS元素分析范围H-U,包含有机无机材料的元素及分子态,检出限ppm级别。应用实例样品信息:铜箔表面覆盖有机物钝化膜,达到保护铜箔目的,客户端需要分析分析苯并咪唑与铜表面结合方式。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制