当前位置: 仪器信息网 > 行业主题 > >

催化氢化

仪器信息网催化氢化专题为您整合催化氢化相关的最新文章,在催化氢化专题,您不仅可以免费浏览催化氢化的资讯, 同时您还可以浏览催化氢化的相关资料、解决方案,参与社区催化氢化话题讨论。

催化氢化相关的论坛

  • 催化氢化装置的优点

    [font=&]催化氢化是有机化学实验中的一项重要内容之一。[/font][font=&]这一反应的具体内容是气态氢在催化剂存在下,与有机化合物进行加成或还原反应,从而生成新的有机化合物。[/font][font=&]它的优点是:[/font][font=&](1)有些反应,如碳碳不饱和键的加氢,应用其他方法比较复杂和困难,而应用催化氢化反应,则可以方便的达到目的。[/font][font=&](2)它对醛酮,硝基及亚硝基化合物都能起还原作用,生成相应的醇和胺,不需要任何还原剂和特殊溶剂。氢气本身极其便宜,因而成本低操作方便。[/font][font=&](3)反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,后处理方便,产品纯度、收率都比较满意。[/font][font=&]根据氢化时选用的压力不同,可将催化氢化分为常压氢化,低压氢化(4-5atm)及高压氢化(>6atm)。图2.9是在常压及低压下进行催化氢化的装置图。而高压氢化则需要非常特殊的装置,(由于有较高压力),这些已超出本书的范围,但不论是在任何压力进行氢化,都不得使用明火,包括电火花。[/font][font=&]催化氢化装置:主要包括氢化用的圆底烧瓶,气压计,量(贮)气管和平衡瓶。贮气管的体积一般在100mL到2L之间,可根据反应的规模大小选择合适的贮气量;在平衡瓶里所装的液体通常是水或汞。在反映过程中,氢气的压力大小可以通过平衡瓶的高度来调节。反应结束后,再通过平衡瓶来测量参加反应的氢气的体积。气压计可以保证在反应前后,氢气都在相同的压力下(一般为1atm)进行体积测量。[/font]

  • 有机实验室常用仪器与使用

    有机实验室常用仪器与使用已经更新至第2页啦!旋转蒸发仪旋转蒸发仪,主要用于在减压条件下连续蒸馏大量易挥发性溶剂。尤其对萃取液的浓缩和色谱分离时的接收液的蒸馏,可以分离和纯化反应产物。旋转蒸发仪的基本原理就是减压蒸馏,也就是在减压情况下,当溶剂蒸馏时,蒸馏烧瓶在连续转动。结构:蒸馏烧瓶可是一个带有标准磨口接口的梨形或圆底烧瓶,通过一高度回流蛇形冷凝管与减压泵相连,回流冷凝管另一开口与带有磨口的接收烧瓶相连,用于接收被蒸发的有机溶剂。在冷凝管与减压泵之间有一三通活塞,当体系与大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通时,可以将蒸馏烧瓶,接液烧瓶取下,转移溶剂,当体系与减压泵相通时,则体系应处于减压状态。使用时,应先减压,再开动电动机转动蒸馏烧瓶,结束时,应先停机,再通大气,以防蒸馏烧瓶在转动中脱落。作为蒸馏的热源,常配有相应的恒温水槽。催化氢化装置催化氢化是有机化学实验中的一项重要内容之一。这一反应的具体内容是气态氢在催化剂存在下,与有机化合物进行加成或还原反应,从而生成新的有机化合物。它的优点是:(1)有些反应,如碳碳不饱和键的加氢,应用其他方法比较复杂和困难,而应用催化氢化反应,则可以方便的达到目的。(2)它对醛酮,硝基及亚硝基化合物都能起还原作用,生成相应的醇和胺,不需要任何还原剂和特殊溶剂。氢气本身极其便宜,因而成本低操作方便。(3)反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,后处理方便,产品纯度、收率都比较满意。 根据氢化时选用的压力不同,可将催化氢化分为常压氢化,低压氢化(4-5atm)及高压氢化(>6atm)。 图2.9是在常压及低压下进行催化氢化的装置图。而高压氢化则需要非常特殊的装置,(由于有较高压力),这些已超出本书的范围,但不论是在任何压力进行氢化,都不得使用明火,包括电火花。催化氢化装置:主要包括氢化用的圆底烧瓶,气压计,量(贮)气管和平衡瓶。贮气管的体积一般在100mL到2L之间,可根据反应的规模大小选择合适的贮气量;在平衡瓶里所装的液体通常是水或汞。在反映过程中,氢气的压力大小可以通过平衡瓶的高度来调节。反应结束后,再通过平衡瓶来测量参加反应的氢气的体积。气压计可以保证在反应前后,氢气都在相同的压力下(一般为1atm)进行体积测量。

  • 【原创】有机实验室常用仪器与使用1

    旋转蒸发仪旋转蒸发仪,主要用于在减压条件下连续蒸馏大量易挥发性溶剂。尤其对萃取液的浓缩和色谱分离时的接收液的蒸馏,可以分离和纯化反应产物。旋转蒸发仪的基本原理就是减压蒸馏,也就是在减压情况下,当溶剂蒸馏时,蒸馏烧瓶在连续转动。结构:蒸馏烧瓶可是一个带有标准磨口接口的梨形或圆底烧瓶,通过一高度回流蛇形冷凝管与减压泵相连,回流冷凝管另一开口与带有磨口的接收烧瓶相连,用于接收被蒸发的有机溶剂。在冷凝管与减压泵之间有一三通活塞,当体系与大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通时,可以将蒸馏烧瓶,接液烧瓶取下,转移溶剂,当体系与减压泵相通时,则体系应处于减压状态。使用时,应先减压,再开动电动机转动蒸馏烧瓶,结束时,应先停机,再通大气,以防蒸馏烧瓶在转动中脱落。作为蒸馏的热源,常配有相应的恒温水槽。催化氢化装置催化氢化是有机化学实验中的一项重要内容之一。这一反应的具体内容是气态氢在催化剂存在下,与有机化合物进行加成或还原反应,从而生成新的有机化合物。它的优点是:(1)有些反应,如碳碳不饱和键的加氢,应用其他方法比较复杂和困难,而应用催化氢化反应,则可以方便的达到目的。(2)它对醛酮,硝基及亚硝基化合物都能起还原作用,生成相应的醇和胺,不需要任何还原剂和特殊溶剂。氢气本身极其便宜,因而成本低操作方便。(3)反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,后处理方便,产品纯度、收率都比较满意。根据氢化时选用的压力不同,可将催化氢化分为常压氢化,低压氢化(4-5atm)及高压氢化(>6atm)。图2.9是在常压及低压下进行催化氢化的装置图。而高压氢化则需要非常特殊的装置,(由于有较高压力),这些已超出本书的范围,但不论是在任何压力进行氢化,都不得使用明火,包括电火花。催化氢化装置:主要包括氢化用的圆底烧瓶,气压计,量(贮)气管和平衡瓶。贮气管的体积一般在100mL到2L之间,可根据反应的规模大小选择合适的贮气量;在平衡瓶里所装的液体通常是水或汞。在反映过程中,氢气的压力大小可以通过平衡瓶的高度来调节。反应结束后,再通过平衡瓶来测量参加反应的氢气的体积。气压计可以保证在反应前后,氢气都在相同的压力下(一般为1atm)进行体积测量。压缩气体钢瓶在有机化学实验中,有时会用到气体来作为反应物。如氢气、氧气等,也会用到气体作为保护气,例如氮气、氩气等,有的气体用来作为燃料,例如煤气、液化气等。所有这些气体都需要装在特制的容器中。一般都是用的压缩气体钢瓶。将气体以较高压力贮存在钢瓶中,既便于运输又可以在一般实验室里随时用到非常纯净的气体。由于钢瓶里装的高压的压缩气体,因此在使用时必须严格注意安全,否则将会十分危险。有机化学实验室里常用的压缩气体压强一般接近200个大气压。整个钢瓶的瓶体是非常坚实的,而最易损坏的,应是安装在钢瓶出气口的排气阀,一旦排气阀被损坏,后果则不堪设想,因此为安全起见,都要在排气阀上装一个罩子。除此之外,这些压缩气体钢瓶应远离火源和有腐蚀性的物质,如酸、碱等。实验室里用的压缩气体钢瓶,一般高度约160cm,毛重约70到80公斤。对于如此庞大的物体,如果不加以固定,一旦倒下来肯定会砸坏东西或砸伤人,且不说还会有高压气体本身带来的危险。因此,也是从安全考虑,应当将钢瓶固定在某个地方,如固定在桌边或墙角等(如图2.15)。为了转移方便,一般选用特制的推车(如图2.16)。如何正确识别钢瓶所装的气体种类,也是一件相当重要的事情。虽然,所有的气体钢瓶外面都会贴有标签来说明瓶内所装气体的种类及纯度,但是这些标签往往会被损坏或腐烂。为保险起见,所有的压缩气体钢瓶都会依据一定的标准根据所装的气体被涂成不同的颜色。玻璃仪器(一)有机化学实验室玻璃仪器可分为普通玻璃仪器和磨口玻璃仪器。标准接口玻璃仪器是具有标准化磨口或磨塞的玻璃仪器。由于仪器口塞尺寸的标准化、系统化、磨砂密合,凡属于同类规格的接口,均可任意连接,各部件能组装成各种配套仪器。与不同类型规格的部件无法直接组装时,可使用转换接头连接。使用标准接口玻璃仪器,既可免去配塞子的麻烦手续,又能避免反应物或产物被塞子玷污的危险,口塞磨砂性能良好,使密合性可达较高真空度,对蒸馏尤其减压蒸馏有利,对于毒物或挥发性液体的实验较为安全。标准接口玻璃仪器,均按国际通用的技术标准制造,当某个部件损坏时,可以选购。标准接口仪器的每个部件在其口塞的上或下显著部位均具有烤印的白色标志,表明规格。常用的有10,12,14,16,19,24,29,34,40等。有的标准接口玻璃仪器有两个数字,如10/30,10表示磨口大端的直径为10mm,30表示磨口的高度为30mm。使用标准接口玻璃仪器应注意以下几点:(1)磨口塞应经常保持清洁,使用前宜用软布揩拭干净,但不能附上棉絮。(2)使用前在磨砂口塞表面涂以少量凡士林或真空油脂,以增强磨砂口的密合性,避免磨面的相互磨损,同时也便于接口的装拆。(3)装配时,把磨口和磨塞轻轻地对旋连接,不宜用力过猛。但不能装得太紧,只要达到润滑密闭要求即可。(4)用后应立即拆卸洗净。否则,对接处常会粘牢,以致拆卸困难。(5)装拆时应注意相对的角度,不能在角度偏差时进行硬性装拆,否则极易造成破损。磨口套管和磨塞应该是由同种玻璃制成的。

  • 【分享】一种以铁为主的新制药催化剂问世

    加拿大一研究小组找到了一种以铁为基础原料制造催化剂的新方法。这种新型催化剂与目前通常使用的铂等金属催化剂相比,毒性小且成本低,有望作为制药和芳香剂生产工艺中的催化剂。   药物合成中通常都需要催化剂,这对药物成本的影响很大。而且,如使用毒性大的钌、铑、钯等铂系金属作为催化剂,最后的合成产品就需要先经过昂贵的净化技术来消除毒素。   多伦多大学化学系罗伯特-莫里斯教授相信,使用他们研制的新型催化剂,不仅价廉而且毒性低,可以免除铂系金属催化剂带来的上述两种缺陷。   莫里斯教授在新一期《化学》杂志上发表论文说,铁一般被认为是催化活性很低的“贱金属”,使其能够成功用于替换通常使用的铂系金属作为催化剂,秘诀在于将铁的结构通过一定的手段转换成与铂系金属相似的结构。他们所研制的催化剂是一种包含碳、氢、磷及氮的有机分子,科学家们将各原子排列成一种独特的右旋结构,依附于铁上,使其处于一种亚铁状态。   化学催化剂的作用是加快化学反应过程,但同时,它们也会对反应过程中的化学物结构产生影响。用于药物合成过程中的催化剂,其最有价值之处在于它们可以将药物化学品的产品限定在一种特定的结构形式,而不会使其产生另一种镜像结构形式。   目前,多伦多大学研究人员已通过使用少量的这种催化剂,并运用对称转移氢化法工艺,成功将价廉的酮转化成了结构为左旋形式的酒精。

  • 三元催化_台式XRF分析仪

    三元催化器,是安装在汽车排气系统中最重要的机外净化装置,载体部件是一块多孔陶瓷材料,安装在特制的排气管当中。称它是载体,是因为它本身并不参加催化反应,而是在上面覆盖着一层铂、铑、钯等贵重金属。 它可以把废气中的HC、CO变成水和CO2,同时把Nox分解成氮气和氧气。  HC、CO是有毒气体,过多吸入会导致人死亡,而NOX会直接导致光化学烟雾的发生。经过研究证明,三元催化器是减少这些排放物的最有效的方法。通过氧化和还原反应,一氧化碳被氧化成二氧化碳,碳氢化合物被氧化成水和二氧化碳,氮氧化合物被还原成氮气和氧气。三种有害气体都变成了无害气体。三元催化剂最低要在350摄氏度的时候起反应,温度过低时,转换效率急剧下降;而催化剂的活性温度(最佳的工作温度)是400℃到800℃左右,过高也会使催化剂老化加剧。在理想的空燃比(14.7:1)下,催化转化的效果也最好。它安装在发动机排气管中,通过氧化还原反应,二氧化碳和氮气,故又称之为三元(效)催化转化器。

  • 光催化产氢光强校准

    [color=#444444]请问一下,做光催化产氢性能实验之前,是不是要校准氙灯(300W)的光强?用什么仪器校准?在什么位置处校准?校准到什么程度才算是校准成功?请各位前辈帮忙解答一下,谢谢![/color]

  • 【分享】多功能生物催化剂--卤醇脱卤酶的研究进展

    多功能生物催化剂―――卤醇脱卤酶的研究进展 郑楷 汤丽霞 (电子科技大学生命科学与技术学院,四川成都610054) 摘要:光学纯的环氧化物及β-取代醇是一类高价值中间体,在手性药物及精细化工合成领域具有十分重要的应 用前景。卤醇脱卤酶是一类通过分子内亲核取代机制催化邻卤醇转化为环氧化物的脱卤酶,可以高效高选择地 催化环氧化物和邻卤醇之间的转化,因而可以用来合成具有光学纯的环氧化物及β-取代醇等化合物。本文着重 介绍了卤醇脱卤酶的催化机理及其应用研究进展,并对研究的发展方向提出了一些设想。 关键词:卤醇脱卤酶 生物催化 亲核试剂 光学纯环氧化物与β-取代醇 中图分类号:Q814?9 文献标识码:A文章编号:0438-1157(2008)12-2971-07 1 卤醇脱卤酶研究概述 有机卤化合物已成为当今重要环境污染物之一,主要是由于工业排废以及人工合成卤化物在化 工合成以及农业上的广泛应用造成的。在自然界 中,大部分异生质卤化物自降解能力很差,同时许多化合物被疑是致癌或高诱变物质。因此,应用微 生物降解有机卤化物已引起人们广泛的关注。从 1968年Castro等[1]首次发现以2,3-二溴丙醇作为 唯一碳源而生存的黄杆菌(Flavobateriumsp?) 菌株至今,人们相继筛选到多种可以降解邻卤醇的 微生物[2-8]。其中包括从淡水沉淀物中分离的放射 形土壤杆菌(Agrobacteriumradiobacter)菌株 AD1和节杆菌(Arthrobactersp?)菌株AD2以及 从土壤中获得的棒状杆菌(Corynebacteriumsp?) 菌株N-1074等。它们降解有机卤化物的途径虽然 存在明显差异,但是卤醇脱卤酶作为关键酶之一, 催化碳卤键的断裂存在于所有的代谢途径中。 卤醇脱卤酶也叫卤醇-卤化氢裂解酶,通过分 子内亲核取代机制催化邻卤醇转化为环氧化物和卤 化氢,是微生物降解此类化合物的关键酶之一。大 部分已知的卤醇脱卤酶都已经被克隆并在大肠杆菌 中进行重组表达,并根据其序列同源性分为 HheA、HheB、HheC3类。相关的研究表明,卤 醇脱卤酶与依赖NAD(P)H的短链脱氢酶/还原 酶家族(SDR)具有一定的序列相似性,同时蛋白 质三级结构的研究进一步揭示卤醇脱卤酶与SDR 家族成员有一定的进化相关性[9]。SDR是一类依 赖于NAD(H)或NADP(H)并在功能上具有 多样性的一组酶类,主要催化醇、糖类、类固醇和 一些异生质的氧化还原反应[10-11]。由于辅酶结合 位点在卤醇脱卤酶中被卤离子结合位点取代,因而 卤醇脱卤酶是一类不需要辅酶参与的脱卤酶。同 SDR家族一样,在卤醇脱卤酶中严格保守的丝氨 酸、酪氨酸和精氨酸在催化过程中起着关键作用。 其催化机制(图1)为:保守的丝氨酸通过与底物 羟基氧原子之间形成氢键,稳定了底物的结合 精 氨酸可用以降低酪氨酸的pKa值 酪氨酸从底物 的羟基中夺取一个质子,然后以底物上的氧原子作 为亲核试剂,进攻邻位卤素取代的碳原子,进而释 放卤离子,形成环氧化物[9,12]。 卤醇脱卤酶备受关注的另一个原因是其在生物 催化领域的应用,可以用来合成具有光学纯的高价 值中间体。这些化合物在手性药物、手性农药以及 各类手性合成的合成领域中具有传统化学合成法所 无法比拟的优越性。其中光学纯的环氧化物以及用 来合成该类化合物的前体邻卤醇在有机合成中具有 特别重要的应用价值。因为环氧化物环具有非常活 泼的化学特性,易与亲核试剂发生反应生成一类重要的手性合成单元―――不对称醇类。因此,多种合 成光学纯环氧化物的生物学方法已被广泛研究,其 中包括人们熟知的脂肪酶、环氧化物水解酶等。卤 醇脱卤酶催化邻卤醇生成环氧化物将成为高效合成 光学纯的环氧化物的主要方法之一。本文将重点介 绍卤醇脱卤酶在催化合成环氧化物、短链β-取代 醇以及叔醇类化合物方面的研究进展。

  • 请问催化去除甲烷的催化剂或催化炉的成分和原理是什么?

    首先说明:这里讨论的是催化方法[b] 除掉样气中的甲烷[/b],催化生成H2O和CO2。 而不是加氢催化无机碳生成CH4市场上有测量非甲烷总烃的FID设备,原理是使用催化炉除掉样气中的CH4,至于其他如乙烷、乙烯、甲醇等其他 有机成分都保留,送到FID测量,得到非甲烷总烃。请问这种催化剂的原理和成分是什么?

  • 苯甲醛催化加氢反应

    有人用过水做溶剂催化苯甲醛加氢成苯甲醇吗?反应液是用什么方法检测转化率的,我用乙酸乙酯萃取打[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]找不到产物峰?是因为不溶于水而不反应吗?还是什么问题。。求救啊!!

  • 【转帖】Z张大煜——中国催化科学的奠基人之一

    【转帖】Z张大煜——中国催化科学的奠基人之一

    [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705101748_51355_1634962_3.jpg[/img]张大煜,物理化学家,中国催化科学的奠基人之一。早年从事胶体和表面化学以及人造燃油的研究;在大庆油田开发以后,组织了石油炼制、石油化工、高能燃料、色谱、激光和化工过程的研究;组建了我国第一个石油、煤炭化学的研究基地,并为我国培育了几代研究人才。晚年仍关注石油工业有重要影响的强化采油中界面现象新领域的开拓。 张大煜,字任宇,1906年2月15日生于江苏省江阴县长泾镇。他从小酷爱读书,学习成绩优异。中学毕业以后,考入南开大学,后转清华大学。1926年张大煜和清华大学、中央大学、交通大学等校学生发起组成大地社,该社由翟凤阳负责,成员有葛春林、袁翰青、张大煜等十余人,他们经常探讨如何“工业救国”和“科学救国”,并多次参加学生运动,为清华脱离外交部管辖,从留美预备学校转为正式大学起到了一定作用。   1929年,张大煜于清华大学毕业,同年考取了公费留学德国和美国,他把留学美国的名额让给了同学,自己赴德国德累斯顿大学学习胶体与表面化学,1933年获工学博士学位。回国以后在清华大学任教,历任讲师、教授。他在回忆文章中写道:“虽然自己曾经有很大的抱负和雄心,想用学得的知识和技能为祖国服务,但是当时政府只把科学当作点缀品,哪怕是很小一点研究工作也得不到支持,……。”   抗日战争爆发,张大煜从北平到长沙,又从长沙辗转到昆明在西南联大任教并兼任中央研究院化学所研究员。从基础研究转向石油、煤炭方面的技术科学研究,以期为抗日胜利贡献力量,当时曾尝试过从植物油制造重要国防物资并开展了将煤炼制成汽油的方法。他利用云南丰产的褐煤,在昆明附近宜良滇越线上建立了一个从褐煤低温干馏提炼汽油的小型实验工厂(利滇化工厂),边实验边生产,历尽千辛万苦炼出了油。但在人力、物力、设备和经费等方面困难重重,终于被迫停办。张大煜“工业救国”的尝试遭到了挫折,但为他后来创建我国第一个石油煤炭化学研究基地提供了最初的经验。抗日战争胜利后,张大煜从昆明到上海,任交通大学教授兼北京清华大学化工系主任,讲授工业化学和胶体化学,在极端困难的条件下,还开展了一些研究工作。留学回国十余载的经历,使他思想处于彷徨之中,他亲眼看到知识分子在旧中国不可能实现富国强民的理想,1948年底经上海地下党负责人介绍毅然离开上海,绕道香港和朝鲜,于1949年初到达大连。   1949年大连大学创办初期,他任化工系教授、系主任,同时担任大连大学科学研究所(后改名为东北科学研究所大连分所)研究员、副所长。1952年该所划归中国科学院领导,并先后更名为工业化学研究所、石油研究所、大连化学物理研究所,他一直担任所长。   50年代初期,张大煜紧密围绕国民经济恢复和建设需要的重大课题开展工作,在我国天然石油资源尚未开发的情况下,他组织和发展了我国水煤气合成液体燃料、页岩油加氢、汽油馏分环化制甲苯等研究,取得杰出成绩,有些成果达到当时的世界先进水平。   在完成国民经济重大研究课题的同时,张大煜也很重视基础研究,50年代初期开始,他就致力于工业上广泛使用的催化剂担体研究,结合水煤气合成石油的钴催化剂和合成氨催化剂的催化性能研究,逐步建立了物理吸附、化学吸附等一系列研究方法,并且提出了表面键理论的设想,并以此为指导,研制成功了合成氨新流程3个催化剂,超过了国内外同类催化剂的水平。通过实践,培养和建立起一支学科配套,有解决综合问题能力的催化科学队伍。   随着国家建设对科学事业发展的需要,张大煜在研究所的布局和发展上,及时提出了建议。经中国科学院批准,先后于1958年和1960年从石油研究所抽调科技力量,建立了兰州石油研究所和太原煤炭化学研究所,他兼任这两个所的所长,为促进内地科学事业的发展作出了贡献。   1962年,中国科学院石油研究所改名为大连化学物理研究所。张大煜在担任大连化学物理所所长期间,跟踪国外同学科的发展趋向,及时提供最新信息。他查阅大量文献,经常到实验室参加研究工作。他特别关心培养新生力量,对青年循循善诱、严格要求,不断提高他们的学术研究水平,使研究室成为学术空气浓厚、工作勤奋的研究集体。   “文化大革命”时期,张大煜遭到迫害,身心受到严重摧残,抑郁成疾。但是,就在这样重重压力下,他仍多次要求开展磁场对化学反应影响的研究,不断提出建立催化剂库等发展催化科学的新建议,坚持为科学献身。   1977年,张大煜调任中国科学院感光化学所任顾问兼第一届学术委员会主任,同时兼任大连化学物理研究所顾问。他培植了严谨的优良学风,并为创建界面与光催化研究室,强化采油界面现象研究等新学科领域的开拓做出了贡献。   张大煜学识渊博、治学严谨,谦虚和蔼,待人宽厚,善于发挥他人之长,深受同行们的崇敬,在学术界享有很高的威望。他在组织和发展我国的人造石油、石油炼制、催化科学、化肥工业、化学工程、色谱、激光和相应的理论研究等方面都有贡献。在胶体化学、吸附和催化作用、催化剂研究、水煤气合成、表面化学研究等方面发表过学术论文30余篇。   张大煜是中国科学院学部委员,一级研究员,曾当选为中国化学会第二十届理事会副理事长,第一、二、三届全国人大代表,第五届全国政协委员,中国民主同盟中央委员等职。   张大煜为我国科研事业、教育事业和我国第一个石油化学和煤炭研究基地的创建与发展倾注了全部心血,做出了卓越贡献。

  • 【求助】有机催化反应后,要测定催化剂的流失,如何处理样品?

    本人是作催化的,公司新买了ICP,但没有人会用。有2个问题想向各位请教一下。用钯/活性炭 作为催化剂,催化苯乙酮加氢还原,得到苯乙醇。1、想测定催化反应循环过程中,每次催化剂的流失。如何处理样品?(注* 催化剂颗粒很小,即使用高速离心机处理,产物相还是有点黑,也就是还有少量催化剂在里面)2、想测定钯/活性炭 催化剂中 钯的量。样品又如何处理?谢谢各位啦!!

  • 光催化产氢出现的色谱峰

    光催化产氢出现的色谱峰

    大家好 我做光催化产氢 加的水和甲醇 没有加催化剂 但还是出现了两个峰 请问是什么原因呢?能否确定是哪种物质?色谱型号是福立GC9720 检测器是TCD 用了空气发生器 载气是氩气[img=,690,545]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081809066610_9574_5577143_3.png!w690x545.jpg[/img]

  • 【资料】硫化氢治理

    应用吸收﹑吸附和催化氧化等方法对工业生产过程排放的硫化氢(HS)进行回收﹑利用或无害化处理。 概述 硫化氢产生于天然气净化﹑石油炼制﹐以及制煤气﹑制革﹑制药﹑造纸﹑合成化学纤维等生产过程。硫化氢是无色气体﹐有刺激性恶臭﹐易挥发﹐燃烧时呈蓝色火焰。硫化氢是大气的主要污染物之一﹐不仅危害人体健康﹐还会严重腐蚀设备等。 硫化氢治理开始较早。1809年英国克莱格使用石灰乳净化器脱硫﹐1849年英国兰宁和希尔斯获得干式氧化铁法专利﹐1870年美国发展了氧化铁制备方法﹐这种干式氧化铁法在脱硫领域沿用 100年之久。20世纪30~40年代出现溶液法﹐将氢氧化铁悬浮在碱液中进行脱硫。50年代起﹐西欧普遍采用氨水法。60年代出现砷碱法﹐用砷化物作催化剂。因砷化物有剧毒﹐逐渐为无毒催化剂所取代。如对苯二酚法﹑A.D.A.法﹑富玛克斯法﹑达克哈克斯法等都使用无毒催化剂。这些方法都是近年发展较快的技术。另一方面溶液法的吸收废液处理技术也不断发展﹐形成了不同的脱硫工艺。 脱硫方法 基本上分干法和湿法两类﹕ 干法 包括氢氧化铁法﹑活性炭法﹑克劳斯法和氧化锌法等。 氢氧化铁法﹕将铁屑和湿木屑充分混合﹐加0.5%氧化钙﹐制成脱硫剂﹐湿度为30~40%。硫化氢同脱硫剂反应而被脱除﹐再生的氢氧化铁可继续使用。其反应如下﹕ 2Fe(OH)+3HS─→FeS+6HO 2FeS+6HO+3O─→4Fe(OH)+6S 此法脱硫效率高﹐适于净化硫化氢含量低的气体﹐但设备占地面积大﹐脱硫剂必须定期再生和更换﹐操作条件差﹐因而已逐渐为湿法取代﹐或同湿法联合用于深度脱硫。 活性炭法﹕用活性炭吸附硫化氢﹐通氧气转换成单体硫和水﹐用硫化胺洗去硫磺﹐活性炭可继续使用。此法不宜用于含焦油的气体。 克劳斯法﹕先把1/3硫化氢氧化成二氧化硫﹐再使它在转化炉内同剩余硫化氢反应﹐可直接从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]制取高质量熔融硫。 氧化锌法﹕粒状的氧化锌和硫化氢反应生成硫酸锌和水。主要用于净化硫化氢含量低的废气。此法效率较高﹐但不经济。 湿法 包括溶剂法﹑中和法和氧化法。 溶剂法﹕常用15~20%二乙醇胺水溶液吸收硫化氢﹐形成“复合物”﹐把富液加热到100~130℃﹐硫化氢被解析出来﹐经冷凝可得到高浓度硫化氢﹐再制成硫磺。溶液再生后经换热器冷却继续使用﹐这种工艺叫胺洗。 此法特点是溶剂容易生产﹐价格低廉﹐工艺成熟﹐脱硫效率高﹐降解和蒸发损失小。广泛应用于石油炼制的脱硫。此法还可采用环丁﹑氨基异丙醇﹑聚乙醇醚﹑磷酸酯﹑碳酸丙烯酯﹑冷甲醇等作为溶剂。但某些溶剂不适于重烃﹑芳烃含量高的气体脱硫。 中和法﹕硫化氢是酸性物质﹐可用碱性吸收液去除。富液可经过加热减压处理﹐使硫化氢脱吸﹐吸收液可循环使用。应用的碱性吸收液主要有碳酸钠﹑磷酸钾﹑氢氧化钙的溶液和氨水等﹐其中氨水应用较广。氨水法可利用煤气中的氨作碱性吸收液去除硫化氢﹐既不用外来碱源﹐也不产生废液。其反应如下﹕ 中和法操作简单﹐费用低﹐废液少﹐但碱耗高﹐吸收液再生较困难﹐脱硫效率一般比较低。 氧化法﹕硫化氢用碱性吸收液吸收后﹐在催化剂作用下氧化成硫磺。催化剂可用空气再生﹐继续使用。常用催化剂有镍盐﹑铁氰化物﹑氧化铁﹑对苯二酚﹑氢氧化铁﹑硫化砷酸的碱金属盐类﹑二磺酸盐﹑苦味酸﹑二磺酸盐等。常用吸收液有碳酸钠溶液﹑氨水等。氧化法因催化剂和吸收液的不同而异﹐举例如下﹕ 对苯二酚法﹕以碳酸钠溶液或氨水作吸收液﹐以对苯二酚作催化剂。对苯二酚是一种有机载氧体﹐脱硫效率高﹐催化剂再生所需空气少。 砷碱法﹕以氨水或碳酸钠溶液作吸收液﹐以硫代砷酸的碱金属盐类作催化剂﹐其反应如下﹕ 吸收 NaAsSO+HS─→NaAsS+HO 再生 2NaAsS+O─→2NaAsSO+2S 砷碱法为焦化厂广泛使用﹐但因催化剂污染水体﹐所以应用受到限制。 A.D.A.法﹕是以3~5%碳酸钠溶液作吸收液﹐以二磺酸钠和偏钒酸钠作催化剂﹐并加入少量酒石酸钠﹐防止有钒存在时出现沉淀物﹐硫化氢被吸收并被氧化为单体硫而加以回收。此法脱硫效率高﹐获得的硫纯度也高﹐但有副反应﹐碱耗大。 富玛克斯法﹕以2~3%碳酸钠溶液作吸收液﹐加入0.1%苦味酸作催化剂﹐吸收硫化氢。吸收硫化氢后的溶液输送到再生塔用空气再生﹐反应如下﹕ HS吸收 NaCO+HS─→NaHS+NaHCO HS氧化 NaHS+*RNO+HO─→NaOH+S+*RNHOH NaHCO+NaOH─→NaCO+HO 苦味酸再生 *R表示芳基。此法催化剂易得﹐操作温度范围较宽﹑效率高。 达克哈克斯法﹕又名法﹐以二磺酸钠为催化剂﹐以碳酸钠溶液或氨水为吸收液﹐吸收塔采用高效的泰勒填料﹐可同时脱硫脱氰。此法因碱源和废液处理方法不同可组成三种全流程﹕氨型达克哈克斯湿式氧化法﹐可得到硫酸和硫酸铵。氨型达克哈克斯燃烧法﹐产生单体硫﹑二氧化硫和氮气﹐二氧化硫可制硫酸。钠型达克哈克斯还原热解法﹐产生单体

  • 【分享】常用试剂的性质与制备纯化——钯催化剂

    钯催化剂是非常有效的加氢催化剂,价格比较贵。实验室可由氯化钯制备钯催化剂。(1)Pd-C(5%Pd)的制备:将1.7 g氯化钯和1.7 mL浓盐酸加入到20 mL水中,水浴加热2小时溶解完全,然后将它加入到用200 mL水溶解了30g乙酸钠的溶液中,盛放在500 mL的烧瓶中。加20 g酸洗过的活性炭,在氢气气氛中氢化直到反应结束。过滤收集催化剂,用5份100 mL的水洗涤,吸滤抽干。在室温下用氢氧化钾干燥或在真空干燥器中用无水氯化钙干燥。将催化剂碾成粉末,贮存在塞紧塞子的试剂瓶中。 (2)Pd-C(30%Pd)的制备:将8.25 g氯化钯和5 mL浓盐酸加入到50 mL水中。冰浴冷却下,加入50 mL 40%的乙醛溶液,再加入11 g酸洗过的活性炭。机械搅拌下加入50 g氢氧化钾溶于50 mL水的溶液,保持温度低于50℃。加完后将温度升到60℃,保持15 min,用水彻底清洗催化剂后,再将水倒出;用乙酸洗涤,吸滤,再用水洗至无Cl-和OH-离子。在100℃干燥,储存在干燥器中。 (3)钯黑的制备:5 g氯化钯溶于30 mL浓盐酸后用80 mL水稀释,冰盐浴冷却下加入35 mL 40%的乙醛溶液。将35 g 氢氧化钾溶于35 mL水中,强力搅拌下,在30 min内将其加入混合物中。加热到60℃,保持30 min后将水倾出并用水洗涤沉淀6次,过滤到坩埚上,用1 L水洗涤,吸干,转入干燥器中干燥,产量为3.1 g。 (4)Pd-BaSO4(5%Pd)的制备:在2 L烧杯中加入63.1 g氢氧化钡溶于600 mL水的热溶液(t=80℃),在快速搅拌下一次加入60 mL 3 mol·L-1硫酸。再加入3 mol·L-1硫酸使悬浮物对石蕊显酸性。将4.1 g氯化钯溶于10 mL浓盐酸后用20 mL水稀释,在机械搅拌下加入硫酸钡溶液,然后再加入4 mL 40%的乙醛溶液。用30%的氢氧化钠溶液调至弱碱性,继续搅拌5 min,静置。倾出上层清夜,用水洗,再静置,重复8~10次。过滤,用5份25 mL的水洗涤,尽量吸干,80℃干燥,研细催化剂,密封在瓶子里备用。

  • 【转帖】大化所研制成功双氧水加氢催化剂

    4月13日,由中科院大连化物所能源环境工程组承担的双氧水加氢催化剂项目顺利通过了中石化催化剂分公司组织的评审验收,与会专家对催化剂性能及项目合作工作给予了很高评价,认为催化剂性能优于现有工业催化剂,建议进行中试实验。据悉,项目组利用非均布催化剂制备技术研制出双氧水生产用蒽醌加氢催化剂DICP-1、DICP-2,经过上百小时的现场模拟实验表明,催化剂性能优良,贵金属负载量为商用工业催化剂的70%,时空收率比商用工业催化剂提高20%以上。 大连化学物理研究所

  • 【分享】对负载金属催化剂的考察

    1,Pt-Sn催化剂的TPD谱与催化活性对不同活性程度的Pt-Sn样品进行了氢气的TPD试验。具有相近初活性的工业样品和实验室样品,再其新鲜状态时,有着相当符合的TPD谱图,证明制备技术是良好重复的。但在100毫升反应装置上使用之后,活性有明显下降的样品,其脱附谱图也产生很大变化。除总脱附氢量明显下降外,总的趋势是最大值向高温方向移动。样品活性最低,其脱附谱图特征变化也更大一些,甚至低于450摄氏度的峰型全消失了。由以上三类催化剂的比较看出,在活性评价和TPD试验结果之间,存在着相当平行的关系。2.试验条件对Pt-Sn催化剂TPD谱的影响(1)催化剂预处理条件的影响 为了排除在轻度还原中表面上不稳定的活性中心,及在高温氢气气氛中所可能形成的活性吸附,已获得清晰的脱附谱图,试验条件改变为:室温氢气(76毫升/分)吹扫至水分低于200ppm后,以2.10C/min升温至2500C,停留1小时,在升温至5000C,保持1小时。之后,以Ar气(40ml/min)吹扫40分钟,并在Ar气氛中降温至零度。氢气吸附1小时,Ar气吹扫3.5小时,取下冰瓶15分钟后,开始进行TPD试验。由于延长还原周期,并增加高温下的Ar吹扫,因而得到较好分散的脱附谱峰,使得对每个谱峰下面积的定量工作容易进行。实际上,这一试验的结果,主要反映了表面钝化和吸附温度的影响。(2)吸附后,Ar气吹扫时间的影响为了排除物理吸附和体相氢,在00c吸附后,进行改变Ar吹扫时间的试验,当吹扫时间超过3小时后,个峰值和所占的份数,以及总脱附氢量均大体不变,可以认为,系统内的气相氢和表面物理吸附氢已基本脱除干净,在脱附谱图上所得的峰型,是化学吸附氢的表现。(3)脱附时,载气流速的影响 Tm值与载气流苏的关系是检查再吸附是否发生的实验标识。当载气流速超过40毫升/分以后,Tm值的变化在实验误差以内,因而可以认为,基本上抑制了在吸附现象。对总脱附量来说,由于吸附条件相同,其值也应一致。但在该实验中发现,随着载气流速的减小,托福粮油增加的趋势。估计可能是热导池鉴定器的灵敏度所限,当流速较快时,应答跟不上,因而造成记录的峰的面积减小。此外,脱附最终温度对高温峰的Tm值是有影响的。当最终温度提高时,Tm值也增加了。这可能是在较低的温度下,高温中心不能干净地脱附造成的。(4)程序升温速度的影响 随着表面覆盖度增大,峰形变得尖锐了。在小于350C/分下,峰高随覆盖度直线的增加。气候,则变得缓慢了。这意味着脱附速度手表面覆盖的减小的影响,因而说明,表面至少存在这部分布均匀性,动力学参数不能按简单的方法求出。3.在Pt/Al2O3中加入其它金属对TPD谱的影响为考察各种负载金属催化剂活性中心的特征,判断TPD法的分辨能力,对一组实验室制备的样品:Pt/Al2O3,Pt-Au/Al2O3,Pt-Re/Al2O3,Pt-Re-Au/Al2O3和两种工业催化剂:Pt-Sn/Al2O3和Pt-Ir-Al-Ge/Al2O3进行了氢气的TPD试验。可以看出,对于Pt/Al2O3,峰最大出现在84-C,2290C,和4500C以及在3700C附近有一个小的肩状峰。Pt-Au/Al2O3脱附曲线的特征类似于Pt/Al2O3.但最大特征峰(4180C)更趋于低温,并且总脱附量也有所减少。这说明,具有较强正电性的金,不仅参加了与Pt的合金化作用,二爷也抑制了Pt对氢气的吸附性能。因此,它在重整催化剂中,可能起着活性抑制剂的作用。Re的引入,是Pt的2290C峰消失,并且最大特征峰向高温移动4800C,出现一个宽的谱带。同时,总脱附氢量增加,显示出更为良好地金属分散性。这与Pt-Re催化剂在重整反应中具有高活性,高稳定性的行为是一致的。Pt-Re-Au催化剂,除了基本上保持这Pt在低温和高温下的特征峰外,在404度和505度下有两个明显的肩状峰出现,它实际上是Pt-Au和Pt-Re 最大特征峰的变异。这说明,在Pt,Re,Au三个元素之间必然发生相互作用,但又不是完全融为一体,从而在氧化铝载体上形成了特殊的能态分布。由于Au 的引入,并不改变Pt-Re催化剂对氢的吸附能力,即不改变金属的分散程度,但却改变了活性中心的结构,因此,可以预期,元素Au有可能作为改进Pt-Re催化剂选择性的一种助剂而被采用。Pt-Sn催化剂有着与Pt-Re类似的谱图特征,而总脱附氢量却与Pt/Al2O3相同。说明,带有较强负电性的Sn,并未改变金属的分散程度,但却增加了化学吸附强度,使活性中心的分布和结构特征产生变化,因而在重整过程总显示出较好的稳定性和选择性。Pt-Ir系催化剂有着特别大的低温特征峰和较宽的高温特征峰,并且,在180-4300C之间有一个连续的表面不均匀的能带。拉塞尔认为,在Pt/Al2O3中引入Ir,使氢的解离活化吸附增加,它在表面反应中与碳氢化合物的C-C键 具有较强的反应能力,从而抑制了表面积炭,是稳定性改善。如果按阿本等人的观点,认为结构不敏感的加氢(脱氢)、氢解等反应主要与低温峰有关,那么,对Pt-Ir系催化剂来说,它不仅大大增加了总的活性中心数目,而且,特别是增加了低能中心的数目。所以,这类催化剂除了显示出高的重整催化活性和抗结焦能力外,还有极强的氢解能力。由于低碳氢分子较易生成,它可能对液体收率和选择性带来不利的影响。从对上述六种类型催化剂的观察得出,他们保持这与Pt/Al2O3相同的低温特征峰(78-840C。这说明,这一活性中心可能是Pt的某种结构所特有的。除了与Pt同族的Ir可以使这个中心的数目增加之外,第二或第三金属组员的引入,则主要是改变了高能中心的结构特征。从而使之在重整反应中表现出不同的活性、稳定性和选择性。同时,由以上的讨论,我们不妨做这样的推测,即催化剂的活性与总的活性中心数目有关,选择性与各个中心的相对分布有关;而稳定性主要与高温峰的位置有关。有各种催化剂总脱附氢量的比较看出,它和我们以前关于金属分散性的测定结果,咋趋势上是一致的。这说明,用TPD法不仅能从数量上考察各种催化剂活性中心的情况,而且也可以从结构特征上看出各类金属的相互作用。如果对这些谱图进一步解析,并与每种中心的反应性能相关联,则可能得到有关催化剂制备的鞥有指导意义的知识

  • 2013年现代催化研究方法高级讲习班开课了!!!

    随着催化科学的快速发展,催化剂结构表征越来越重要,甚至已成为催化科学和技术发展的一个瓶颈。近年来我国各催化研究单位的催化剂结构表征条件得到了很大改善,不少单位的实验装备达到了发达国家的水平,但是大家也认识到我国的表征研究水平与发达国家仍存在一定差距,亟需进一步提高。近几年来,先后由中国科学院大连化学物理研究所(2007年)、浙江师范大学(2010年)和四川大学(2012年)成功举办了一系列以研究生、高等院校青年教师、企业和科研院所相关技术人员为主要对象的现代催化研究方法高级讲习班,着重讲解当前催化研究涉及的主要现代物理方法基本原理、应用实例和存在的问题,受到了催化界同行的强烈支持和热烈欢迎。2013年现代催化研究方法高级讲习班由中国科学技术大学化学与材料科学学院主办,计划于2013年6月30-7月6日在安徽省合肥市中国科学技术大学举行。本次讲习班拟聘请中国科学院大连化学物理研究所、中国科学院金属研究所、北京大学、清华大学、复旦大学等催化界精英担当授课老师,相信参加者能从中获得收益,欢迎广大科研工作者报名参加。本次讲习班预计招收学员100-150名,将根据报名先后顺序录取学员,请有意参加讲习班的人员填写附件二-报名回执表,于2013年5月31日前发送至会议联系人。中国科学技术大学化学与材料科学学院2013年3月20日联系人:黄伟新教授,E-mail: huangwx@ustc.edu.cn,0551-63600435 马运生副教授,E-mail: ysma@ustc.edu.cn, 15255109902 汪文栋副教授,E-mail: wangwd@ustc.edu.cn, 13705699872 姜志全副研究员,E-mail: jzhiquan@ustc.edu.cn, 13721051597 讲习班网址: http://staff.ustc.edu.cn/~huangwx/CN/index_CN.htm拟任授课老师见附件第一轮通知

  • 色谱仪催化剂中毒,经常老化柱子

    国产[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]。配有FID1-FID2-TCD-甲烷转化炉等。检测气体成分:二氯甲烷,氯化氢、二氧化碳,一氧化碳等,载气为氮气,氩气,氢气。。目前的问题:一是一氧花碳出峰时间由11min逐步前移到6min,老化5 A柱后使用一个月就又这样了,怀疑是载气带水导致的。二是使用同一瓶2000ppm二氧化碳标气标定,峰面积发生了变化,前后相差300ppm,怀疑甲烷转化炉部分催化剂已中毒。请问各位前辈,这个设备仪需要怎么改才能解决呢[img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206301950432870_868_5527689_3.png[/img]

  • 【金秋计划】高纯度气体与流量控制在催化实验中的作用

    催化实验是化学、材料科学和工业生产中至关重要的一环,其目的是评估催化剂在不同反应条件下的性能和选择性。为了获得准确和可靠的实验结果,使用高纯度的反应气体和精密的流量控制系统是不可或缺的。这不仅可以确保实验条件的一致性,还能够精确地表征催化剂的活性和稳定性,从而为催化剂的设计和优化提供重要数据支持。 [b]1. [b]催化实验中的反应气体使用[/b][/b] 在催化实验中,反应气体作为催化反应的原料或反应环境,直接影响催化剂的表现。常见的反应气体包括氢气、氧气、氮气、甲烷、二氧化碳等,这些气体通过催化剂表面发生反应,生成目标产物。为了准确评估催化剂的性能,实验中必须严格控制反应气体的纯度和流量。 [b]2. [b]高纯度反应气体的重要性[/b][/b] 使用高纯度的反应气体在催化实验中具有多方面的重要意义: [list][*][b]避免副反应的干扰[/b]:反应气体中的杂质可能引发副反应,从而影响催化剂的实际性能表现。例如,在氢化反应中,氧气或水蒸气的杂质可能导致催化剂表面氧化,降低其活性或改变选择性。因此,使用高纯度气体能够减少这些不必要的副反应,确保实验结果的准确性。 [*][b]保证催化剂的选择性[/b]:催化剂的选择性是指其促进特定产物生成的能力。气体杂质可能与催化剂表面发生竞争性吸附或反应,导致产物分布的改变。因此,高纯度的反应气体有助于精确评估催化剂对目标反应的选择性,避免由于杂质引起的误差。 [*][b]提高实验的可重复性[/b]:使用高纯度气体可以减少批次之间的差异性,使得实验条件更加可控,从而提高实验的可重复性。对于工业应用或催化剂的规模化生产,这种一致性尤为重要。 [/list] [b]3. [b]精密流量控制系统的作用[/b][/b] 除了气体纯度,精密的流量控制系统也是催化实验中不可或缺的部分。流量控制的准确性直接影响反应物的供给速率和反应条件的稳定性,从而对催化反应的结果产生重要影响。 [list][*][b]精确调节反应条件[/b]:通过精密流量控制系统,可以精确调节反应气体的流速,确保每次实验在相同的气体供给条件下进行。这对于评估催化剂的活性和选择性至关重要,因为催化反应的速率和产物分布往往依赖于反应物的供给速度。 [*][b]动态实验条件控制[/b]:在某些催化实验中,研究者可能需要在实验过程中动态调节反应气体的流量,以模拟实际工业过程中的工况变化。精密流量控制系统可以实现这种实时调整,帮助研究者更全面地评估催化剂的性能。 [*][b]提高实验安全性[/b]:许多反应气体(如氢气、氧气、甲烷等)具有易燃易爆性或毒性。精密流量控制系统能够确保气体供给的安全性,避免由于气体流量过大或波动导致的安全事故。 [/list][b]4. [b]选择合适的高纯度气体与流量控制系统[/b][/b] 在实际的催化实验中,选择合适的高纯度气体和流量控制系统至关重要。以下是一些关键考虑因素: [list][*][b]气体纯度要求[/b]:根据催化反应的敏感程度,选择适合的气体纯度。通常情况下,气体纯度应在99.999%(5N)或更高,以最大限度减少杂质的影响。 [*][b]气体供应商的选择[/b]:选择信誉良好的气体供应商,以确保气体的纯度和稳定性,同时要求供应商提供详细的气体成分分析报告。 [*][b]流量控制设备的精度[/b]:流量控制系统应具备高精度和高稳定性,确保在不同实验条件下的准确调节。选择时应考虑流量计的量程、响应速度以及与实验系统的兼容性。 [*][b]系统校准与维护[/b]:定期校准和维护流量控制系统,确保其长期稳定运行。同时,气体输送系统的密封性和防泄漏设计也是保障实验安全的重要方面。 [*]在催化实验中,使用高纯度的反应气体和精密的流量控制系统是确保实验结果准确性和可靠性的关键。高纯度气体能够避免副反应和杂质干扰,从而准确评估催化剂的性能和选择性。精密流量控制系统则保证了实验条件的可控性和安全性,使研究者能够深入探索催化剂的行为特性。这两者的结合不仅有助于获得高质量的实验数据,还为催化剂的设计和工业应用提供了坚实的基础。[/list]

  • 催化反应疑问

    请问反应体系是这样:一种反应物1是液体,另一种反应物2(室温时是固体,加热到50度成液体),在室温下将2加入到1中,液体混浊,如将2加热到60度以液体形式加入到1中,观察到透明,请问2溶于1吗?反应温度调在65度以上,是不是可以认为2溶于1中,如果不加催化剂它们之间的反应是属于均相反应吗?如果在此反应温度下,催化剂加入后溶液呈混浊状或者催化剂明显不溶,那么此情况下反应是否属于非均相反应?还是非均相反应必须是两反应物分别处于两相中,采用一种相转移催化剂的反应才是真正意义的非均相反应?请各位做过催化研究的大侠帮我分析一下,在此表示十分感谢。

  • 【原创大赛】电加热板消解车用陶瓷催化转化器

    【原创大赛】电加热板消解车用陶瓷催化转化器

    引言 电加热板湿法消解是元素分析的最直接、最有效、最经济的一种样品前处理手段,因此在车用陶瓷载体催化器贵金属分析中经常被使用。影响催化器中贵金属溶出率的湿法消解的关键因素一般为所选用的溶剂的配比、加热板消解的温度和时间、消解重复的次数等。开发湿法消解前处理条件需要对上述几个参数进行试验对比,通过试验结果分析验证确定合适的湿法消解方法。1 电加热板消解所用的仪器及试剂 表1给出了车用催化器贵金属电加热板消解前处理使用的主要仪器设备莱伯泰科EH-35A plus型电加热板和梅特勒AL204型电子天平的主要参数。试验过程使用的浓硝酸、浓盐酸、氢氟酸、过氧化氢为天津科密欧化学试剂公司生产的优级纯试剂,稀释所用的水是由实验室采用密里博超纯水机制备的超纯水(电阻率18.2MΩ.cm)。http://ng1.17img.cn/bbsfiles/images/2014/11/201411211640_523938_2770543_3.jpg2 贵金属含量测试所用的设备及方法 电感耦合等离子体质谱法(ICP-MS)是近年发展起来的先进检测分析技术,该技术可以在元素分析过程中能够一次性同时检测几十种金属盒非金属元素,不仅检测范围广,且方法灵敏度高、精度高、速度快、效率高、重复性好,尤其在痕量元素的定量检测分析中具有其他设备无法比拟的优越性。ICP-MS分析技术几乎可以取代传统的无机分析技术,如电感耦合等离子体光谱技术(ICPAES)、石墨炉原子吸收(GFAAS)和汞冷原子吸收技术(CVAAS)。http://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523525_2770543_3.jpg 由于ICP-MS具有其他无机分析技术无法比拟的优越性,现被汽车检测行业定为进行车用催化器贵金属分析的必备设备。因此本文的催化器贵金属分析研究均采用电感耦合等离子体质谱法,使用的ICP-MS设备为美国安捷伦生产的ICP-MS 7500a,表2给出了ICP-MS 7500a在分析催化器粉末经前处理方法处理后,用纯水稀释后的样品测定的仪器设备方法条件。铂、钯、铑贵金属标准储备液浓度为1000μg/ml,由国家钢铁材料测试中心钢铁研究总院生产,标准溶液系列由标准储备液稀释逐级配制。http://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523524_2770543_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411211641_523940_2770543_3.jpg3 实验结果与讨论3.1 消解溶液对电加热板消解的影响 将多个催化器单元按标准HJ509-2009的要求进行研磨,并通过多家实验室共同定量分析,选择多个试验室的定量结果偏差较小的一个催化器单元的粉末(样品记为S1)作为加热板消解的对比样品,多个试验室测试结果的均值作为该催化器单元的贵金属含量的真值。首先是高大上的研磨仪和研磨后的样品http://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523520_2770543_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523521_2770543_3.jpg 为了比较加热板消解前处理方法中使用不同的溶剂作为消解液对车用催化器贵金属分析结果的影响,选择了19种消解溶剂。表3给出了这19中溶剂的配比情况。每一种消解溶剂中使用的催化器粉末样品均为同一的催化器单元的粉末样品。通用的前处理过程为:称取一定量的催化剂粉末样品于100ml的聚四氟乙烯坩埚,加0.2ml超纯水润湿样品,加入不同的消解液中,同时做平行样和过程空白,在电加热板上加热(170℃)2小时,然后升温赶酸,赶酸至近干时,加入王水10ml[fo

  • 【分享】稀土在催化中的应用

    稀土在催化中的应用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14975]稀土在催化中的应用[/url]作者:(苏)Х.М.米纳切夫(Х.М.Миначев)等著;刘恒潜译出版项:科学出版社 / 1987.9目录:第一章 稀土元素氧化物的主要性质和物理性质第二章 简单气体的催化转化第三章 烃中的氢-氘交换反应第四章 烃的脱氢、脱氢环化和加氧反应第五章 裂化、烷基化、异构化和聚合反应第六章 醇的脱氢和脱水反应第七章 伯醇、酸的酮化和酯的合成第八章 有机物的氧化与还原反应和以CO和H2为主体合成烃与醇的反应第九章 其他反应附录: 用稀土作催化剂的专利资料结束语近十年来稀土催化的进展

  • 【讨论】請問密封快速消解法的硫酸鋁鉀助催化劑

    請問一下,我在“水與水質分析”第四版看到密封快速消解法用硫酸鋁鉀和鉬酸銨做助催化劑,那麼,這個硫酸鋁鉀和鉬酸銨的助催化原理分別為何呢?我個人很好奇為何不用硫酸鋁直接替代硫酸鋁鉀,但又苦於不清楚它的助催化反應原理,不知有沒有人懂的箇中道理能夠給予指點一下,謝謝。

  • 催化转化器

    转化器是什么呢?它是汽车上面的一个小东西。可是汽车少了它那是万万不行的。其实这个东西我还真没有见过,它的外观还是黑色的,远处看好象是塑料做成的。其实它是钢做成的。外型也挺可爱的,那我们一起来研究一下,们来看看催化转化器综述:随着环境保护要求的日益苛刻,越来越多的汽车安装了废气催化转化器以及氧传感器装置。它安装在发动机排气管中,通过氧化还原反应,将发动机排放的三种废气有害物CO、HC和NOx转化为无害的水、二氧化碳和氮气,故又称之为三元(效)催化转化器,其催化剂大都含有铂、锗等贵金属或稀土元素,价格昂贵,在正常情况下,它的寿命为八万公里左右。由于三效催化转化器的工作要求比较严格,如果使用不当,会造成催化器失效层损坏。在高温度过高 常温下三元催化转化器不具备催化能力,其催化剂必须加热到一定温度才具有氧化或还原的能力,通常催化转化器的起燃温度在250—350℃之间。催化转化器工作时会产生大量的自量越高,氧化的温度也愈高,这都会使未燃烧的混合气进入催化反应器,造成排气温度过高,影响催化转化器的效能。硫和铅来自于汽油,磷和锌来自于润滑油,这四种物质及它们在发动机中燃烧后形成氧化物颗粒易被吸附在催化剂的表面,使催化剂无法与废气接触,从而失去了催化作用中毒现象还是比较高的,在三元催化器无法启动,发动机排出的炭烟会附着在催化剂的表面。这样长期下来便使载体的孔隙堵塞,影响其转化效能。催化转化器对污染物的转化能力有一定的限度,因此必须通过机内净化技术将原始排气降到最低。如果排放的废气污染物各成分的浓度、总量过大,比如混合气偏浓等,就会影响催化器的催化转化能力,降低其转化效。在排气状况就发生变化,安装三元催化器的位置就不同,这都会影响三元催化转化器的催化转化效果。因此,不同的车辆,应使用不同的三元催化转化器。然在发动机排气管中安装氧传感器并实现闭环控制,其工作原理是氧传感器将测得废气中氧的浓度,转换成电信号后发送给ECU,使发动机的空燃比控制在一个狭小的。还有它的注意事项:1.安装有催化器的汽车绝对不允许使用有铅汽油。 2.要避免催化转化器发生磕碰。 3.汽车不要长时间怠速,以防催化转化器烧坏。 4.要避免突然加速,以防止催化转化器过热。   5.要保证发动机正常运转,以防止催化转化器排气净化率最佳。由于三效催化转化器发动机始终处于理论空燃比的情况下工作,这时排气净化率最高。发动机电控系统、点火系统和燃油系统的故障都会使发动机工作不正常,混合气浓度偏离理论空燃化,使排气净化率降低,三效催化转化器寿命缩短。你们看一个催化转化器都有这么多条件,还有这么多的知识值得我们去看,去读,去理解,你们懂了吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制