当前位置: 仪器信息网 > 行业主题 > >

单晶尺度锶

仪器信息网单晶尺度锶专题为您整合单晶尺度锶相关的最新文章,在单晶尺度锶专题,您不仅可以免费浏览单晶尺度锶的资讯, 同时您还可以浏览单晶尺度锶的相关资料、解决方案,参与社区单晶尺度锶话题讨论。

单晶尺度锶相关的论坛

  • 纳米原子尺度,衬度成像机制,信息提取

    应用透射电子显微镜观察纳米结构在纳米-原子尺度的细节,需要采用何种衬度成像机制;在霍地图像信息的同时,在纳米尺度综合分析方面,还有哪些信息可以同时提取出来?

  • 北京纳米跃升工程在宏观尺度超润滑领域取得突破

    塑料问答:近日,在北京市科委支持下,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果发表在国际纳米领域权威学术期刊《自然—纳米技术》上。  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。  碳纳米管从结构上看是由石墨烯卷曲而成,理论研究表明,当碳纳米管存在哪怕只有一个原子级别的缺陷时,其管壁间摩擦力就会急剧增大。经过近十年的努力,魏飞教授团队在制备长达数厘米且无缺陷的碳纳米管的制备方面取得了一系列突破,发展了单根碳纳米管的纳米颗粒标记技术,这些工作为宏观尺度超润滑工作奠定基础。在上述基础上,魏飞团队首先在光学显微镜下通过用微弱气流吹动碳纳米管的方法观察到了碳纳米管管壁之间快速相对运动的奇妙现象,进而利用扫描电镜下的微纳米操纵平台进行双壁碳纳米管内层的可控抽出,并测量了管壁间的超低摩擦力。研究发现,双壁碳纳米管的管壁之间存在着超低的摩擦力,并且这种摩擦力与碳纳米管的长度没有关系,即无论多长的碳纳米管,其内层都可以被轻易地抽出来。  这项工作被《自然—纳米技术》杂志审稿人评价为里程碑式原创性工作,对于研究和控制摩擦力做出了重大的、创造性的贡献,为下一代全碳电子器件构筑、超润滑机械开发以及超高速微纳米机械、电子器件制备提供了基础。转自塑料问答

  • 深圳先进院在微尺度声操控研究方面取得新进展

    中科院深圳先进技术研究院医工所郑海荣研究团队在微尺度声操控方面取得新的进展。5月4日,相关研究成果发表在美国物理联合会期刊Applied Physics Letters上。精确无创地操控微纳米尺度的生物粒子及药物颗粒,是物理声学的热点研究领域之一。随着超声局部给药的不断发展,利用声波精确的操控药物载体得到了广泛的关注。该研究首次利用声波实现了超声造影剂的可编程精确操控,空间分辨率可达2.2 µm。研究人员利用驻波的势阱效应,将超声造影微泡聚集并捕获在势阱的位置,使其排列成网格结构;通过调节入射声源的相对相位,改变驻波场中势阱的位置,实现超声造影微泡的连续移动,并且每次移动的距离和方向均可精确控制;利用可编程声操控,将超声造影微泡富集、移动、停驻在靶向区域,提高局部药物的浓度,实现靶向给药的目的。本工作的意义在于通过精确的操控,有助于研究细胞与超声造影微泡的相互作用,进一步理解超声给药的机理如声孔效应、空化效应等,同时也为超声给药治疗提供了一种具有重要应用价值的新方法,为发展新型超声给药治疗仪器奠定了基础。上述研究工作得到国家自然科学基金委,以及科技部973计划前期研究专项的支持。

  • 【分享】单晶Si厚度和颜色对照图

    【分享】单晶Si厚度和颜色对照图

    以前用过一张Gatan凹坑仪配的单晶硅厚度和颜色的示意图,做截面样品的时候很有用。现在找不到了,跟Gatan联系也没有回音。于是自己根据记忆画了一张,跟原图误差应该不大,需要的同学可以拿去试用一下。图上标注的绝对厚度其实不重要,有些偏差也没关系。这张图最有用的是通过几次实验之后找到最适合自己样品的颜色,控制好离子减薄时间,提高制样成功率和效率。需要注意,颜色跟能带宽度关系很大。这张图只适用于纯净或普通掺杂的单晶硅基底,能带间隙1.1eV左右。对于TiN也能用,颜色略有变化。Ge和GaN的能带间隙分别是0.66eV和3.5eV,这张图完全失效。另外,光源也很重要。在冷光源照明的显微镜下看不到这么明显的颜色变化,需要用白炽灯或者卤素灯作光源才行。[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908212003_167138_1608108_3.jpg[/img][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=167139]printer version[/url]

  • 寻求学位论文《井渠结合灌区灌溉用水效率尺度效应及其转换》

    寻求学位论文《井渠结合灌区灌溉用水效率尺度效应及其转换》

    【序号】: 1【作者】:陈皓锐 【题名】: 《井渠结合灌区灌溉用水效率尺度效应及其转换》【期刊、年、卷、期、起止页码】: 2011【全文链接】:http://www.yidu.edu.cn/educhina/ShowPaper.do?mid=24087204&svalue=%E4%BA%95%E6%B8%A0%E7%BB%93%E5%90%88%E7%81%8C%E5%8C%BA%E7%81%8C%E6%BA%89%E7%94%A8%E6%B0%B4%E6%95%88%E7%8E%87%E5%B0%BA%E5%BA%A6%E6%95%88%E5%BA%94%E5%8F%8A%E5%85%B6%E8%BD%AC%E6%8D%A2&ssort=2&sscope=0&skey=0&hase=0&stype=3&sourcefacet=CALIS_ETD,

  • 测拉曼光谱仪灵敏度用的单晶硅

    现在要测试拉曼光谱仪的灵敏度,从资料上看到要用到单晶硅三阶峰的高度,请问各位坛友,这种单晶硅在哪里可以买到啊?网上卖的那种做太阳能电池用的很薄的单晶硅片就可以吗?急求各位坛友帮助,谢谢!

  • STEM下纳米尺度特征的元素面分布图

    STEM下纳米尺度特征的元素面分布图

    研究人员采用带STEM模式的场发射透射电镜观察Cu-Zn-S化物,并采用电制冷X-Max80能谱仪(大面积能谱仪,更适合观察纳米结构)对该结构进行观察,获得元素面分布图,最小尺度约5nm。该结果发表于2012年的Angewandte Chemie应用化学中,并选为当期的封面。http://ng1.17img.cn/bbsfiles/images/2013/02/201302161855_425531_2512186_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/02/201302161855_425532_2512186_3.jpg

  • 最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    “多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]及微尺度分析测试新方法的研究与应用”网络会议![b][img]https://simg.instrument.com.cn/bbs/images/default/em09507.gif[/img]9月5日正式开讲!特邀资深专家进行讲解~报告主题:[color=#cc0000]多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术特点及在复杂样品分析中的应用[/color][color=#cc0000] 基于探针电喷雾Paternò-Büchi光化学反应的微尺度脂质组学技术研究及应用[/color]免费报名链接:[url]https://www.woyaoce.cn/webinar/meeting_4443.html[/url]课程详情咨询请添加测小二微信号cexiaoer2018 [img=,253,253]https://ng1.17img.cn/bbsfiles/images/2019/08/201908301703303161_1126_3348354_3.jpg!w253x253.jpg[/img][/b]

  • 中国科大张斗国教授团队在单个纳米尺度物体无标记光学显微成像方面取得新进展

    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授课题组提出并实现了一种基于矢量光场调控原理的动量空间偏振滤波器件。将该滤波器件安装于传统无标记光学显微镜的出射端,它可以对出射光场的背景噪声进行高效抑制,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果以“Cascaded momentum-space-polarization filters enable label-free black-field microscopy for single nanoparticles analysis”为题在线发表在综合性学术期刊《美国国家科学院院刊》(PNAS)。[align=center][img=,600,174]https://img1.17img.cn/17img/images/202403/uepic/18c3b2c4-6d3d-4349-b5d2-5c096ac0f32f.jpg[/img][/align]单纳米级物质的无标记光学成像对于各种生物医学、物理和化学研究极为重要。其中一个核心挑战是背景强度远远大于单个纳米物体的散射光强度。在这里提出了一种由级联动量空间偏振滤波器组成的光学模块,它可以进行矢量场调制,阻挡大部分背景场,使背景几乎变黑;相反,只有一小部分散射被阻挡,从而明显提高成像对比度。为了解决这个问题,张斗国教授课题组设计并实现了一种动量空间偏振滤波器件,它可在动量空间进行矢量场偏振调控,大幅度过滤、抑制各类背景噪声,只有单个纳米尺度物体的光散射信号能透过该滤波器件,被探测器采集到,从而实现了单个纳米尺度物体的高对比度、高信噪比的成像探测。[align=center][img=,500,508]https://img1.17img.cn/17img/images/202403/uepic/b5f63213-6cee-41d0-8519-3a9bc7fc69aa.jpg[/img][/align]作为一种应用展示,该动量空间偏振滤波器件被加载到传统全内反射显微镜(Total internal reflection microscopy, TIRM)的出射端,用于单个纳米尺度物体的成像与传感。加载该滤波器后,TIRM被转化为黑场光学显微镜(Black field microscopy (BFM),相对于常规的无标记暗场光学显微镜,BFM具有更低(更黑)背景噪音,更高探测灵敏度)。BFM可以实时记录了此变化过程,证明BFM可应用于单个纳米颗粒化学反应过程的实时记录,为实时探测单个纳米尺度物体物性演化过程中所发生的物理-化学反应探测提供了新型光子学技术。该动量空间滤波器件的突出特点是:在不改变显微镜内部结构的情况下,它可以使常规的无标记光学显微镜,如表面等离激元共振显微镜、TIRM等近场光学显微镜,具有黑场成像功能,从而大幅度提升其对单个纳米尺度物体的探测灵敏度。本研究工作所发展黑场显微镜为单个纳米颗粒的分析提供了新平台,有望在生物学、物理学、环境科学和材料科学等领域得到广泛应用。该研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:纳米尺度下的力学性能:见微知著【讲座时间】:2015年09月23日 14:00【主讲人】:魏伯任学历:成功大学机械工程学博士,现职:海思创公司应用科学家研究领域。【会议介绍】纳米尺度下力学性质的测试一直是科研界与工业界关注的重要问题。随着测试技术往与其他性质相互串连的方向发展,其应用层面更是不断地朝不同领域扩展。今日的纳米压痕早已不再只是硬度与弹性模量的测试,在结合相对应技术架构的搭配之下,已经能够针对接口特性、破裂韧性、高温蠕变、残余应力等进行高精度与高分辨率的测试。 现阶段的复合技术已经够在多方面获得进展,如接口附着能、表面能、多层膜的破裂韧性等等。除了在学术理论技术方面的进展之外,在工业应用方面也因应各种生产需求,朝针对产品整体面向的质量管控与良率监控的自动化方向发展。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月23日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16665、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 四元单晶衍射

    这里有没有做四元单晶衍射仪的高手?我培养了个单晶,但不知现在做个单晶衍射有射门要求??

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

  • 时间旅行可在量子尺度上实现

    科学家首次用光子模拟时间旅行证实时间旅行可在量子尺度上实现http://www.wokeji.com/shouye/zbjqd/201406/W020140625080681152943.jpg 科技日报讯 (记者刘霞)如果一名时间旅行者回到过去,破坏其祖父母之间的结合,那么,他是否也就不会出生呢?这是经典的“祖父悖论”的核心问题所在,“祖父悖论”常被人拿来论证时间旅行不可能存在,但有些科学家则不这么认为。 据英国《每日邮报》网站6月24日(北京时间)报道,澳大利亚昆士兰大学的科学家首次使用两个光量子(光子)模拟了量子粒子在时间中的旅行并对其“一举一动”进行了研究,结果表明,至少在量子尺度上,时间旅行是可以实现的。研究发表在最新一期的《自然·通讯》杂志上。 科学家们使用光子(光的单个粒子)来模拟回到过去的量子粒子并对其行为进行了研究。在实验中,他们对一个进行时间旅行的光子可能产生的两种结果进行了考察。第一种结果是:“1号光子”会通过虫洞进入过去并同以前的自己相互作用。第二种结果是:“2号光子”会在正常的时空内行进,但会通过虫洞同一颗卡在时间旅行环—封闭类时曲线(CTC,是物质粒子于时空中的一种世界线,其为“封闭”,亦即会返回起始点)内的光子相互作用。模拟“2号光子”的行为使“1号光子”的行为也能被研究,结果表明,时间旅行在量子尺度上可以实现。 该研究的主要作者、数学和物理学院的博士生马丁·瑞巴尔说:“时间旅行问题是阐释恒星、星系等大尺度世界的基本运行原理的爱因斯坦广义相对论和描述原子、分子等微小尺度世界运行原理的量子力学这两大最成功但最不兼容理论的交界点。” 爱因斯坦的理论认为,或许可以通过一条时空通道,回到时间上更早的空间上的起始点,但这种可能性让物理学家和哲学家们困惑不已,因为这似乎会导致一些悖论,比如经典的“祖父悖论”。 昆士兰大学的蒂莫西·拉尔夫表示,1991年,有科学家预测,量子世界发生的时间旅行或许可以避免这些悖论。拉尔夫说:“量子粒子的属性含糊且不确定,这或许给了它们足够的摆动空间,来避免前后矛盾的时间旅行环境。” 科学家们表示,尽管同样的模拟是否能证明更大的粒子(比如原子)或一群粒子可以进行时间旅行还是个未知数,但最新研究有助于他们更好地理解广义相对论和量子力学理论之间的相互关联。 左图 在模拟实验中,一个被卡在封闭类时曲线的光子被发现能与在正常的时空内行进的光子相互作用。 总编辑圈点 爱因斯坦的相对论不否定时空穿越——质量造成两处时空弯曲,若交汇于一点,就生出一条“虫洞”,我们由之穿越到七千万年前的仙女座星云,不是不可能——但“虫洞”只是假想,前提是广义相对论完全正确。我们的世界有时间旅行者吗?有科学家编写了软件,在网络上搜寻“未来客”存在的迹象,至今尚未找到。几年前还有科学家用光子做实验,让它携带信息到过去改变自己,结果失败了。如此看来,诸多幻想似乎只能停留在小说里。但科学家不会放过穿越主题,它至少是个很好玩的思想游戏。来源:中国科技网-科技日报 2014年06月25日

  • 【分享】世界首个三维等离子标尺制成 在纳米尺度测结构

    最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。  随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。   研究人员还用高精度电子束光刻和叠层纳米技术制作了一系列样品,将三维等离子标尺放在玻璃的绝缘介质中,嵌入样品进行测量,实验结果与计算出来的数据高度一致。与其他分子标尺相比,这种三维等离子标尺建立在化学染料和荧光共振能量转移的基础上,不会闪烁也不会产生光致褪色,在光稳定性和亮度上都很高。  谈到应用前景,该研究领导者、伯克利实验室负责人鲍尔·埃利维塞特说,这种三维等离子标尺是一种转换器,可将其附着在DNA或RNA链多个位点,或放在蛋白质、多肽的不同位置,再现复杂大分子的完整结构和生物过程,追踪这些过程的动态演变。(科技日报)

  • 【求助】单晶打碎后粘起来还会是单晶吗?

    问3个比较蠢的问题:1.如果有一个单晶,打碎它,再原位粘起来,之后还能称之为单晶吗?2.有一个样品,很容易解理,解理面的XRD显示(111),(222),(511)三个衍射峰和少量杂质,内部还有孔洞,它有可能是单晶吗?我一度确定它不是,我老板坚持说它是单晶,所以我很疑惑.3.另一个样品,表面有少许杂质,切割面\解理面看上去都很perfect(无孔洞无杂质) 切割面抛光后有很强的(311)衍射峰及非常微弱的(111)峰,另一角度的解理面XRD显示(111)(222)衍射峰,应该是单晶.我做了一个实验,将解理面稍稍压斜,结果XRD显示(111)(222)(511)三个衍射峰.我老板就拿这个作为依据,说问题2里面的那个样品是单晶.........我将问题2样品的解理面又拿去做了N次实验,确定每次都压平了,结果都是有很强的(511)衍射峰出现.所以我现在非常的困惑,自叹知识太少,请高手们赐教一二!

  • 【原创】【基础讲座】单晶,多晶,非晶,微晶,无定形,准晶的区别何在?

    要理解这几个概念,首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。晶体共同特点:均 匀 性: 晶体内部各个部分的宏观性质是相同的。 各向异性: 晶体种不同的方向上具有不同的物理性质。 固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形: 理想环境中生长的晶体应为凸多边形。 对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

  • 单晶颗粒如何表征

    小弟目前在做粉末冶金材料,从制粉到最终烧结成型全过程都要自己完成。我制粉的方式是将铸态合金锭(铸态下晶粒尺寸基本均在200μm以上)通过机(手)械(工)研磨的方式成粉,再筛分为不同的粒度范围(在50-200μm之间)。我现在想知道,我制备的粉末是否为单晶颗粒,或者说当粉末粒度小于某一尺寸范围后,即可说明它们基本为单晶颗粒。之前类似的文献中尚无对粉末是否为单晶颗粒进行讨论,不知道应该用哪种测试手段进行分析表征,烦请各位大神不吝赐教!

  • 关于粉末衍射制样为什么一定小到一定尺度的不解?

    关于粉末衍射制样为什么一定小到一定尺度的不解?

    要粉末只是一个择优取向的问题?但是,如果设想我的样品本身是在纳米尺度上,比如50nm,我过筛到150um块体。如图,在块体中,在微观尺度上排列取向本身也是一个随机分布的。因此为什么拿块体材料去测XRD有相对强度改变的问题呢?还是说通过压片从小到大制样不会带来相对强度的改变?反过来,纳米材料在材料制备过程中,即使得到的是块体,在微观上应该也是随机分布的,因此照成相对强度的不同,到底是什么原因照成的呢?http://ng1.17img.cn/bbsfiles/images/2011/10/201110100154_322561_2319715_3.jpg

  • 【基础讲座】单晶,多晶,非晶,微晶,无定形,准晶的区别何在?

    要理解这几个概念,首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。晶体共同特点:均 匀 性: 晶体内部各个部分的宏观性质是相同的。 各向异性: 晶体种不同的方向上具有不同的物理性质。 固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形: 理想环境中生长的晶体应为凸多边形。 对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

  • 请教专家个,有点白痴的问题,TEM能观察单晶吗?

    想用单晶做点试验,有一点疑问请教:5*5*0.5毫米级的氧化铝单晶片,TEM的光能透过,看得清楚吗?还有就是单晶是平的,我想看单晶上粒子的截面,是不是必须用特殊的电镜,能调整样品角度的电镜?希望各位大神能够解答,谢谢PS:做完试验以后,将单晶片切片能不能解决这个问题?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制