当前位置: 仪器信息网 > 行业主题 > >

电池液

仪器信息网电池液专题为您整合电池液相关的最新文章,在电池液专题,您不仅可以免费浏览电池液的资讯, 同时您还可以浏览电池液的相关资料、解决方案,参与社区电池液话题讨论。

电池液相关的资讯

  • 新型电解液添加剂优化无负极电池性能!
    【研究背景】随着锂电池技术的迅猛发展,锂金属电池因其潜在的高能量密度而引起了科学界的广泛关注。锂金属作为负极材料,具有极高的理论比容量(3,860&thinsp mAh&thinsp g&minus 1)和最低的电极电位(&minus 3.04&thinsp V相对于标准氢电极),因此被认为是实现下一代高比能电池的关键。然而,锂金属电池在实际应用中面临着诸多挑战,其中尤为突出的是锂枝晶的形成和库仑效率低下问题。这些问题不仅严重威胁电池的安全性,还导致循环寿命显著缩短,进而限制了锂金属电池的大规模商业化应用。为了克服上述难题,研究者们提出了无负极锂金属电池的概念。在这种设计中,电池的负极最初仅由铜基底组成,电池运行过程中所需的锂完全来自正极材料。由于去除了传统的锂金属负极,理论上可以大幅提升电池的能量密度,并显著降低制造成本和安全风险。然而,由于锂金属在沉积和剥离过程中容易产生枝晶并不断消耗,导致无负极锂金属电池在循环过程中的锂损耗严重,循环稳定性较差,从而限制了这一新兴技术的实际应用。面对这些挑战,科学家们尝试通过改进电解液成分和设计人造表面保护层来调控锂的沉积行为,以提升锂金属电池的循环性能。然而,目前用于无负极锂金属电池的商业碳酸酯电解液在实际应用中仍存在诸多问题,如锂枝晶的不可控生长以及电池循环过程中锂的不可逆损失等。因此,开发出适用于无负极锂金属电池的新型电解液添加剂,成为了当前研究的热点。在此背景下,同济大学马吉伟教授&柏林工大Peter Strasser&华科黄云辉、伽龙团队携手开展了一项创新性研究,提出了一种基于P区金属的电解液添加剂的新策略,旨在通过在商业碳酸酯电解液中形成稳定的人工保护层来调控锂的沉积行为。他们以辛酸亚锡(Sn(Oct)2)作为模型添加剂,发现辛酸根基团能够优先吸附在铜基底上,促进均匀的锂沉积并抑制副反应的发生。此外,锡离子在高电位下优先沉积形成亲锂合金层,从而增强铜基底对锂的亲和性。在这种新型添加剂的辅助下,无负极锂金属电池展现出优异的循环稳定性和高库仑效率,显示出良好的商业应用潜力。【表征亮点】(1)实验首次开发了用于商业碳酸酯电解液的P区金属添加剂研究团队首次开发了一种P区金属添加剂,以辛酸亚锡(Sn(Oct)2)为模型添加剂。在商业碳酸酯电解液中,辛酸根基团优先吸附在铜基底上,形成了一层非碳酸酯基的保护层,有效抑制了副反应的发生。这一创新方法显著改善了锂金属的均匀沉积行为,为无负极锂金属电池的稳定循环提供了新的解决方案。(2)实验通过形成稳定的亲锂合金层,增强了铜基底对锂的亲和性通过在初始阶段沉积锡离子形成稳定的亲锂合金层,增强了铜基底对锂的亲和性。在这种新型添加剂的辅助下,使用商业碳酸酯电解液的无负极锂金属软包电池展现出优异的循环稳定性,库伦效率达到约99.1%。此外,这一系列添加剂也同样适用于其他碱金属电池(如钠金属电池),展示了高度的普适性和潜在的商业应用前景。【图文解读】图1:金属负极的电化学稳定性。图2. 锂沉积剥离过程的调控。图3. 锂沉积剥离行为以及沉积锂的表征。图4: Li || NCM扣式电池和Cu || NCM软包电池的电化学性能测试,软包电池可视化以及锂离子溶剂化分析。图5: 辛酸锡添加剂在锂沉积过程中的作用机制。【结论展望】本文通过开发一种新型的电解液添加剂“新家族”,研究团队解决了传统锂金属电池面临的枝晶生长和低库仑效率问题。该添加剂通过在商业碳酸酯电解液中引入辛酸亚锡,实现了在铜基底上优先吸附形成保护层,抑制了副反应的发生,同时促进了均匀的锂沉积。此外,锡离子在初始阶段形成的稳定亲锂合金层显著提高了铜基底对锂的亲和性,进一步增强了电池的循环稳定性。这一研究不仅突破了无负极锂金属电池的循环稳定性瓶颈,还为其他碱金属电池(如钠金属电池)的开发提供了新的思路。总的来说,该工作表明,通过合理设计电解液添加剂和调控界面层,可以有效提升电池性能,为高能量密度电池的商业化应用奠定了基础。原文详情:Shi, J., Koketsu, T., Zhu, Z. et al. In situ p-block protective layer plating in carbonate-based electrolytes enables stable cell cycling in anode-free lithium batteries. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01997-8
  • 快速分析锂离子电池电解液的劣化
    1. 前言随着全球工业化的进展,能源需求的增长,研究高性能的储能装置受到相关领域的广泛关注,锂离子电池是目前综合性能优异的电池体系。锂离子电池属于二次电池,可以充电后,再次使用,常用在电动汽车,手机,便携笔记本电脑中,属于绿色环保能源。具有体积小,寿命长,高电压,高功率密度,无记忆效应等特点。1.1 锂离子电池工作原理锂离子电池主要通过锂离子的“嵌入/脱出”实现电池能量的存储和释放。过渡金属的嵌锂化合物常用于正极材料,他们的晶格结构对电池的容量至关重要。如以LiCoO2为例,充电过程发生的反应如下:充电时,在外电场作用下,Li+从LiCoO2晶格脱出,穿过电解液隔膜,嵌入石墨负极,电子通过外电路从正极流出,流入负极,正极电压升高,负极电压降低,电池端电压升高,完成充电。放电时,Li+从石墨负极脱出,嵌入LiCoO2正极,电子经外电路从负极流出,对负载做功,流入正极,正极电压降低,负极电压升高,电池端电压降低,实现放电做功。 1.2 锂离子电池电解液正极材料,负极材料,隔膜材料,电解液材料是锂离子电池的四大关键部分。研发电池的关键材料是国内外开发的重点。其中电解液被称为锂离子电池的“血液”,是正负极材料之间传输电子的通道,是获得高功率,高能量密度,长寿命的锂离子电池的保证。电解液通常由纯度高的有机溶剂、锂盐、添加剂等组成。随着锂离子电池不断的充放电过程,电池会出现劣化,其中电解液状态是评价电池劣化的最主要因素之一,也是评价电池劣化的最直观的方法。因此,分析电解液的劣化非常重要。电解液分析的传统方法,如GC / LC-MS、核磁共振、傅里叶红外,这些方法在样品制备和前处理方面,耗时长,操作繁琐。另外,对于电解液中含量较少的成分,传统的方法很难检测出它们的变化差异。而三维荧光结合多变量分析方法,能够以更短的时间、更容易、高灵敏度的检测电解液的变化。客户可以使用三维荧光进行电解液中成分变化的筛选,联合传统分析方法确定变化的具体物质。因此三维荧光提供了一种快速寻找电池劣化的原因,可以有效减少或避免在研发或使用过程产生这种劣化的原因,大幅提高分析效率。 详细的应用数据请点击:https://www.instrument.com.cn/netshow/sh102446/s926995.htm荧光分光光度计F-7100和多变量分析软件3D SpectAlyze日立荧光分光光度计具有超高的扫描速度,无需复杂的样品前处理,能够快速测定样品。另外,日立具有专用多变量分析软件3D SpectAlyze,因此可以提供数据测量和解析一体化,从而获取样品的详细信息。使用荧光分光光度计结合多变量分析软件可以快速评价荧光强度发生变化的体系。
  • 电池电解液液体透射测量工具—台式色差仪
    随着科技的飞速发展,电池已经成为我们日常生活中不可或缺的能量储存好帮手!从我们的便携式电子设备,到那些酷炫的电动交通工具,都要靠电池的支持才能动起来。没错,电池可是真正的能量源头呢!然而,要说到电池的性能和稳定性,可真得多亏了电解液,它是电池的核心组件之一!电解液主要由溶剂、导电盐和添加剂组成。溶剂通常是有机溶剂,例如碳酸酯、碳酸酰、醚类等,导电盐则是决定电池电导率的关键因素。添加剂的加入可以调节电解液的性质,如粘度、化学稳定性等,以提高电池的性能。有了优秀的电解液,电池的表现就会更稳定、更强劲。这样一来,我们的电子设备就能续航更久,电动交通工具也能跑得更远。所以说,不管是充电还是输出电能,电解液功不可没啊!然而,电解液的透射性质有时候可能会遇到一些问题哦!比如,如果电解液的透明性不够好,光线就可能被挡住,影响电池内部的能量传输效率,让电池性能变差。另外,电解液对特定波长的光线吸收过多,可能引起化学反应,导致电池不稳定。而且,电解液中溶质的浓度变化也会影响光线透射的特性。那么,我们要如何解决这个透射相关的问题呢?这就需要依靠Ci7x00系列的Ci7800台式分光色差仪与Ci7860精密色差仪来帮忙!这两款仪器可谓是我们的得力助手!Ci7800台式分光色差仪,可以简单快速地测量电解液的透射率,看看它有没有足够的透明性,保证光线能顺利穿过,让电池能高效传导能量。Ci7800色彩色差仪支持多达5个反射孔径和4个透射孔径,可通过不同位置的端口来测量各种样品的色彩与外观。这项功能使得它在许多领域中都得到了广泛应用。此外,Ci7800还支持多达3个UV滤光镜来控制纺织品、塑料、油漆、涂料和纸张中的荧光增白剂。设备内置数码相机具有预览和主动目标定位功能,可保证测量区域的准确定位,并能捕获图像以备日后检索。同时,它还能检测样品上的污点、划痕或缺陷,并提供随附的测量数据以备审计,为质量控制提供了有效支持。如果我们想要更深入的了解电解液的光学特性,这时候Ci7860精密色差仪就派上用场了!它不仅可以测量透射率,还能给我们提供更多数据,包括吸收特性和反射率等等。这样一来,我们就能全方位地了解电解液的性质,发现其中的问题,进而针对性地优化电解液的配方。Ci7860精密色差仪广泛应用于多个工业领域,包括纸张、纺织物、塑料、颜料、汽车以及屏幕色彩校正等。它为这些行业提供了可靠的色彩测量和管理解决方案,帮助企业提高产品质量,降低生产成本,增强市场竞争力。有了这两款色差仪,我们可以轻松解决电解液透射相关的问题!通过优化电解液的性能,我们就能让电池表现得更稳定、更强劲,让我们的电子设备续航更久,电动交通工具跑得更远,让我们的生活更便利、更美好。同时,这些仪器的应用也推动着科技的不断发展,让能源领域取得了更大的进步。随着技术的不断创新和仪器的不断完善,相信电池的未来会变得更加出色!“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 金属所高性能全钒液流电池储能技术研究获进展
    全钒液流电池储能技术通过不同价态的金属钒离子相互转化实现电能的存储与释放,具有本质安全、设计灵活、成熟度高的特点。该技术是双碳战略下国家电力系统长时储能领域首选的电化学储能技术路线。 “新一代100MW级全钒液流电池储能技术及应用示范”作为国家“十四五”重点研发计划支持项目,对高性能全钒液流电池储能系统运行提出了更高的性能要求。而电极系统作为钒离子电化学氧化还原反应发生的媒介,其传质特性与活化特性直接决定全钒液流电池的转换效率。 因此,开发适用于工程化应用的电极结构优化策略与材料调控方法,是实现高性能全钒液流电池运行的基础与核心。近期,中国科学院金属研究所材料腐蚀与防护中心腐蚀电化学课题组在高性能全钒液流电池储能技术研究领域取得一系列新进展。科研人员在深入理解电池极化特性的基础上,以电极系统传质特性和电化学活性为切入点,以工程化应用为导向,先后通过引入流场优化设计和电极改性调控,显著降低了电池浓差极化与活化极化,实现了全钒液流电池高性能长循环运行。 全钒液流电池正负极以不同价态钒离子为活性物质,以水系溶液为支持电解质,具有环境友好和容量可恢复等优势,但受电极内部活性物质传质特性和流阻的局限,目前高功率全钒液流电池电堆运行仍面临挑战。 针对这一问题,研究人员运用有限元仿真与实验相结合的方式,通过在电极系统中引入结构化流场设计,开展传质、传动量与电化学反应多物理场耦合作用下的电池内部模拟分析(图1),优化了高电流密度下电极内部的传质特性,协同降低了电池浓差极化与流动阻力,有效提升了高电流密度下单电池的转换效率。 同时,对32kW电堆的动态模拟预测显示,电堆在200 mA cm-2高电流密度下恒流运行系统转换效率可提升约15%(图2),为实现高功率电堆设计与开发提供了新方法与新途径。相关成果以Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries为题,发表在《化学工程杂志》(Chemical Engineering Journal 2022, 450, 138170)上。 传质特性的优化在提升全钒液流电池高功率运行方面展示了显著效果,但全钒液流电池负极侧V2+/V3+迟缓的电化学动力学特性仍在一定程度制约了全钒液流电池高功率运行下的转换效率。针对这一问题,在课题组前期杂原子掺杂调控电极的研究基础上,科研人员提出了工程化易操作的基于固-固转化的电脱氧工艺方法。 该方法在碱性条件下通过还原涂覆在电极纤维界面Bi2O3粉末,制备了具有高氧化还原可逆性的Bi负载电极(图3),显著提升了负极V2+/V3+电化学动力学特性。理论计算进一步揭示了V-3d和Bi-6p轨道杂化作用对电荷转移过程的促进作用。以此为基础组装的全电池实现了350 mA cm-2电密下450个循环73.6%的稳定能量转换效率输出(图4),400 mA cm-2高电密下运行转换效率有效提升近10%,为高功率电堆开发提供了技术支撑。相关成果以Boosting anode kinetics in vanadium flow batteries with catalytic bismuth nanoparticle decorated carbon felt via electro-deoxidization processing为题,发表在《材料化学杂志A》(Journal of Materials Chemistry A,DOI:10.1039/D2TA09909H)上。 图3.(a)电脱氧制备工艺;(b)热力学计算和脱氧反应机理;(c)电解池示意图及循环伏安曲线图;(d)还原电位及表面形貌图;(e)电极成分表征。图4.(a)电极物理及电化学表征;(b)界面电化学理论计算;(c)全钒液流电池实验。
  • 中国牵头!首项液流电池国际标准正式发布
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 日前,“固定式液流电池2-1:性能通用条件及测试方法”正式颁布,这是我国在该领域牵头制定的首项国际标准,标志着我国液流电池技术水平得到了国际同行认可。标准由 span style=" " 中科院 /span 大连化学物理研究所(以下简称大连化物所)储能技术研究部和大连融科储能技术发展有限公司联合牵头制定,液流电池国际标准的制定和实施,将在推进我国液流电池产业化和提升国际竞争力中发挥重要作用。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/f3c8926b-1bf6-4226-95f5-8a519906b621.jpg" title=" u=1626377183,2483016138& amp fm=214& amp gp=0.jpg" alt=" u=1626377183,2483016138& amp fm=214& amp gp=0.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2014年,以大连化物所储能技术研究部研究员张华民为主任委员的国家能源行业液流电池标准化技术委员会首次向国际电工委员会建议由我国制定液流电池性能通用条件及测试方法国际标准。经国际电工委员会/二次电池及电池组技术委员会(IEC/TC21)各国成员投票,该提议得到批准,并由IEC/TC21与燃料电池技术委员会共同组织的液流电池联合工作组组织制定此标准。该标准还得到了连融科储能技术发展有限公司的联合。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 该标准先后通过项目提案、工作草案、委员会草案、询问、最终国际标准稿等阶段,历时近6年得以正式发布。此次正式发布的首批液流电池国际标准共3项,其余两项为:欧洲牵头起草的“固定式液流电池1:术语及通用要求”标准和日本牵头起草的“固定式液流电池2-2:安全要求”标准。 /span /p
  • 硅基超亲电解液锂电池隔膜研究获进展
    能量型锂金属电池作为下一代电化学储能技术,是电动汽车、航空航天等领域发展的基础。然而,在构建高比能锂金属电池的条件下,锂枝晶不可控生长和中间产物穿梭等问题严重制约了其产业化进程。近日,中国科学院兰州化学物理研究所环境材料与生态化学研发中心和淮阴师范学院合作,在硅基超亲电解液锂电池隔膜研究取得新进展。一种仿树叶结构的锂电池隔膜,用于解决高能量密度锂金属电池中不可控的锂枝晶生长等问题。相关论文发表于Small。据了解,课题组受树叶分级结构及其精细流体通道的启发,研究人员结合液体/温度诱导相分离和原位聚合反应,设计了一种具有分级多孔结构和离子选择性的凹凸棒石/聚合物复合隔膜。研究表明,该隔膜可有效、快速传递锂离子,同时能抑制锂盐阴离子的通过,从而实现了锂离子在锂金属负极表面均匀、定向沉积,改善了电池的界面稳定性和循环稳定性。此外,该隔膜展示了超亲电解液性能、高的电解液吸液率和保留率、良好的热稳定性和阻燃性能。研究人员将其应用于锂-硫电池和锂-磷酸铁锂电池时,在室温或高温条件下均表现出优异的循环稳定性和倍率性能等。仿树叶结构凹凸棒石/聚合物复合隔膜的制备及表征。兰州化物所供图。
  • 2000家铅酸蓄电池企业80%被关停
    标准不一的整治,使得一些三无企业可能继续逍遥法外,或者转入地下生产。   从上海浦东“康桥血铅”事件,到今年5月爆发的浙江“德清血铅”事件,包括2010年江苏大丰、四川隆昌、湖南嘉禾、甘肃瓜州、湖北崇阳、安徽怀宁等地的9起“血铅”事件……用铅量占八成的铅酸蓄电池行业,一度站在风口浪尖。今年5月始,一场史无前例的涉铅企业大整肃,席卷中国。   全国2000余家铅酸蓄电池企业80%被勒令关停。   大力度的整肃,不是短暂的突击,而是寄托了管理层形成长效机制的期望。而被外界视为“污染妖魔”的铅酸蓄电池行业,也希望业界为其正名,还其“行业砥柱”的本色。   环保“台风”   2011年10月31日,“2011国际新能源应用及电池展览会”在北京拉开序幕。   会上,中国电池工业协会副秘书长曹国庆说,频现的“血铅”事件,今年终于引来政策与管理层面的重拳出击。   铅酸蓄电池的铅污染主要集中于生产和回收环节。金属铅熔点低、高温下易挥发,在铅熔化制备合金、铸造工序中极易造成污染。这一行业的环保合格率仅为12.4%。   今年5月启动的整肃,几乎将环保不达标的铅酸蓄电池企业一网打尽,仅有13%的企业可维持正常生产。   处于风暴中心的,无疑是动力电池制造大省浙江:328家铅酸蓄电池生产企业,53家停产,204家直接关闭。   浙江蓄电池协会秘书长姚令春称,该省规模以上的电池制造企业增加值,今年4月份还同比增加45%,5月份下降到9.1%,6月份则是-7.6%。   铅酸蓄电池,主要应用于内燃机打火和电动自行车动力,市场份额分别为100%和98% 2010年,中国汽车和电动自行车的销量分别是1800万和3000万辆。在大力度的整肃下,铅酸蓄电池出现严重供应不足,今年5~6月缺口达40%,价格上升了20%~30%。   一些业界名牌也未能幸免。“中国动力电池第一股”的浙江天能动力(00819.HK),其旗下安徽、江苏和浙江三处工厂被环保部要求停产,占其总产能的54% 但其很快整改达标,后陆续复产。   同在香港上市的另一电池巨头浙江超威动力(00951.HK),因厂房周围500米内有上百户居民,也被叫停。   “500米的防护距离要求是个红线。浙江被关停的铅酸蓄电池企业,80%都是因未达到500米的防护距离。像超威动力、振龙电源、天能动力这样的大型企业,无论生产工艺还是污染排放都已达标。” 姚令春说。   苏州大学化学电源研究所王金良教授介绍,500米防护距离是1989年制定的。制定方法很简单,“就是相关部门选几个有代表性的企业,在不同距离测量其污染排放浓度,当达到基本无害程度时,确定此为卫生防护距离,当时这个距离平均大约就是500米”。   《财经国家周刊》记者获悉,《铅酸蓄电池行业准入条件》将于年内发布。除了这500米红线,还规定“低于50万KVAh的企业将不允许再立项,低于20万KVAH企业不再允许继续生产”。   如此,国内2000多家铅酸企业将留下不足300家。而历史上,想进入铅酸蓄电池行业,只需产品通过沈阳蓄电池研究所检测即可,门槛低得惊人。即便后来有了环评要求,一些地方也未严格执行。比如浙江台州的“速起”和德清的“海久”两家公司,虽然都做过环评并通过了审批,但直至“血铅”事件爆发后,调查组才发现,两家企业均存在未按要求设置卫生防护距离问题。   在这两起“血铅”事件中,除了企业主全部被刑拘外,有多名地方官员被停职、撤职。《财经国家周刊》记者还了解到,“海久”是德清县“标兵企业”,当地官员此前正在力推其上市IPO。   此前追责已逐步升级。环保部今年5月下发的《关于加强铅酸蓄电池及再生铅行业污染防治工作的通知》中明确要求,“建立重金属污染责任终身追究制”。   同时,《重金属污染综合防治“十二五”规划》成为第一个获批的“十二五”国家规划,足见高层对重金属污染防治的关注。   大浪淘沙   “企业原先规划和建设时符合500米的防护要求。但后来许多村民纷纷在防护区附近建房子,有的村民干脆把小卖部盖在了厂区门口。企业除了劝阻,别无他法。结果整顿一来,企业不是搬迁就得转产。” 超威动力总裁办主任刘建铭对《财经国家周刊》说。   中国电池工业协会副理事长王敬忠称,此次政府是真正祭出了铁腕政策、采用了休克疗法,鱼目混珠的铅污染企业受到了惩罚,但一刀切也让整个行业付出了惨痛代价。   天能动力董事局主席张天任告诉《财经国家周刊》记者,正规大企业并不惧怕整肃。早在“十一五”期间,天能动力就已投入2亿多元用于环保设备改造和工艺革新,早将铅污染的防治重心从生产环节延伸到了再生铅环节。目前,分三期建设、共投资了18亿元的天能动力循环经济产业园区,每年可回收15万吨废旧蓄电池,循环利用10万吨再生铅,形成年产600万KVAh的动力能源及风能、太阳能用储能电池产业基地。   纵览近期的券商报告,各分析师普遍认为,门槛提高让铅酸蓄电池行业迎来大洗牌,其带来的产品价格持续提升,对行业巨头的业绩是一个正面影响,纷纷看多风帆股份(600482.SH)、骆驼股份(601311.SH)、圣阳股份(002580.SZ)和南都电源(300068.SZ)等股票。   刘建铭告诉《财经国家周刊》记者,“超威的铅电极生产、涂布已基本实现无人化 自行车动力电池和汽车启动电池的电池极化已全部采用内化成技术 铅电池生产工艺已避免了铅尘和酸雾的无组织排放 大型生产线上,你再也看不到支口大锅炼铅板,一排排工人忙着安装焊接电池的景象”。   张天任认为,一部分人“谈铅色变”,是不了解铅酸蓄电池的生产工艺现状,“从2000~2010年,国内铅酸蓄电池年产量增长了10倍,产能接近1.5亿KVAh。中国铅酸蓄电池产业10年时间,就走完了欧美将近60年的产业发展历程,其生产状态早已发生了翻天覆地的变化”。   “一粒老鼠屎坏了一锅粥。”王金良教授告诉《财经国家周刊》记者,一些不具备清洁生产条件和缺乏社会责任感的企业,直接造成了大量铅污染事件的发生。   “对于大型上市企业而言,早就回头是岸了。”刘建铭说,“超威的环保固定资产投入已达到年投资额的25%,并且早在外省按照500米的防护距离集中建设了新的生产基地。”   但是,短板决定容水量——正是诸多还处在原始手工作坊状态的小企业,使这个行业被整体抹黑,尽管业内诸多大型上市企业已能和美国同行比肩。 “二八定律”,同样适用于中国铅酸蓄电池行业:20%的大企业,生产了行业80%的产量 而80%的小企业,生产了行业20%的产量。   那种使用简单熔炉就能从事铅酸蓄电池生产的作坊,投资最多数十万,且多处于难以监管的乡村,根本谈不上环保投资和监管。   “大量小企业靠省略环境成本、肆意压价生存,形成了劣币驱逐良币现象。”王敬忠认为,“铅酸蓄电池生产工艺简单成熟、进入门槛较低,引得一批没有实力、资质的小企业纷纷上马,留给社会一个‘坏孩子’印象。” 而此次将要出台的新厂不低于50万KVAh、旧厂改造不低于20万KVAh的门槛,意味着企业年产值至少超亿。有了规模,才可能保证环保有足够的投入。   巨头时代   中国铅酸蓄电池行业,即将进入“巨头”时代。采访发现,一些业内人士和准巨头们,却对未来的洗牌有些担忧。   “进入10月份,市场供应竟然迅速得到了补充。目前铅动力电池居然供过于求,价格回落到了原先水平。”姚令春反问,“占全国铅动力电池产量45%的浙江还没有恢复生产,为什么市场货源能够如此神速地得到补充?”   “作为此次整顿风暴的中心,浙江严格实施了关停,而其他省份和一些三无企业仍在拼命生产。”姚令春说。   天能动力张天任亦分析,此次整顿最为严厉的是浙江、广东、江苏三省,广东180多家企业几乎全部关停,江苏近500家企业停产产能60%,而有一些省份的停产产能约占1/3。   “标准不一的整治,一些三无企业可能继续逍遥法外,或者转入地下生产。”张天任说,“市场上还充斥着各种各样的价格便宜、质量低劣的三无电池。” 中国消费者对电池价格非常敏感,尤其是保有量高达亿辆以上的电动自行车主。姚令春说,“如果个别企业试图把环保、回收、科研成本在价格上有所体现,其市场竞争力将大大削弱”。   分析人士指出,近期爆发的血铅事件其均属于人为因素造成,或者企业违法肆意排污,或者少数官员疏于监管甚至为违法者提供保护。   “此次关停,一些小企业有可能在联合重组旗号下,依然搞以前的分散生产——如果地方政府想保护这些企业,那就变化不大。”一位参加“2011国际新能源应用及电池展览会”的厂商如是说。   一些业内人士更担心的是“铅酸蓄电池已被严重妖魔化”。   比如说“500米”问题,天能动力张天任对《财经国家周刊》记者表示,“如果企业环保措施达标,100米也没有问题 如果企业环保工作做得不好,别说500米,1公里也没用。”   2008年相关部门曾试图修改此规定,但因铅酸蓄电池行业的卫生防护距离标准只是总标准体系中的一个分标准,对其的修改涉及到整个体系变动,牵扯行业诸多,修改方案不了了之。“此次环保整顿,500米成了硬指标”。   据环保部知情人士透露,目前该部正着手对铅酸蓄电池行业卫生防护距离进行修改,但尚无明确时间表。   王金良教授称,从全球范围看,发明于1859年的铅酸电池,一直是动力电池和蓄能电池的主流,产量用量十分巨大,近几十年来一直鲜闻“血铅”事件和污染情况发生。比如美国,其铅酸蓄电池的用铅量要占其整个国家用铅量的95%以上,但是铅酸蓄电池制造厂排放的铅占不到1.5%。   在“十二五”国家新能源战略规划中,几乎所有绿色清洁能源和IT行业背后,都需要铅酸蓄电池的支撑:每3兆瓦的光伏发电装机,就需要近3亿元的铅酸蓄电池作储能配套 每100兆瓦的风力发电装机,也需要约1亿元的铅酸蓄电池储能 通讯IT行业终端设备尽管广泛采用了锂电池,但其基站、服务器所需备用电源依然是铅酸…… 有业内人士指出,未来20年里,铅酸蓄电池都难以被其他电池取代。譬如在汽车发动机打火领域,要求蓄电池能短时间内释放大电流,适应环境、温度多变等情形 而铅酸蓄电池恰恰能满足这样的要求,而且安全稳定、性价比高。   王金良教授认为,在未来3~5年内,锂电池在电动牵引电池的市场占有率不会超过4% 未来20~30年内,铅酸蓄电池在电动交通工具上的使用依然无法替代。
  • 方案:气相色谱 - 质谱法测定锂电池电解液组分
    目前针对电解液成分组成的测定方法或文献非常稀少,本文的目的是建立 简单,高效的气相色谱质谱检测方法,灵敏、快速测定锂电池电解液成分及 含量。 锂电池电解液是电池中离子传输的载体。一般由锂盐和 有机溶剂组成。有机溶剂主要是酯类化合物,这些酯类 化合物种类和含量对锂电池的性能起关键性作用。 本方法是将锂电池电解液样品直接稀释,用气相色谱 - 质谱进行定性、定量。方法操作简单,9 种酯类化合物检 出限在 3.0 μg/L-30.0 μg/L 之间。结论样品中的 9 种酯类化合物用乙酸乙酯稀释至合适浓度后 直接进样,采用赛默飞世尔新型的气相色谱质谱仪检测 和确证,外标法定量。结果表明,9 种酯类化合物的回 收率为 92.4.3-105.3%,6 次平行测定的 RSD 值≤ 4.16%。此 法操作简单,科学准确,灵敏度高,能够满足锂电池电 解液组成成分分析要求。 点击气相色谱 - 质谱法测定锂电池电解液组分 下载方案
  • 高分辨质谱技术丨赋能锂电池电解液成分表征
    概述锂电池与我们生活密切相关,比如手机、ipad、电脑、充电宝、玩具、电动汽车、电动轻型车和新型储能等都有锂电池的身影,锂电池综合优势与下游领域对电池大容量、高功率、使用寿命和环境保护日益提升的需求相契合,存在广阔的市场应用前景。锂离子电池四大关键材料包括正极材料、负极材料、隔膜、电解液。锂电池的正极材料中,行业已经认可镍钴锂、磷酸铁锂等材料,不过也有许多企业逐渐转入了新型复合材料的研发中,液相色谱串联高分辨质谱仪在该研发过程中,可以在探究新型材料氧化还原反应机理研究、及活性基团位置不同对电化学性能的影响等方面贡献力量。金属锂的高化学活性使其易于与大多数电解质发生不可逆反应,从而在阳极表面形成固体电解质层(SEI)。液相色谱串联高分辨质谱仪可以对SEI膜成分进行结构解析,帮助研究其形成机制,减少其形成。电解液被誉为电池的“血液”,是实现锂离子在正负极迁移的媒介,对锂电容量、工作温度、循环效率以及安全性都有重要影响。所以对电解液体系中的特有成分的鉴定,杂质鉴定,其在不同电极作用,不同循环次数,不同放置时间,不同添加剂等等条件变化下电解液组成的变化,反应机理的研究,这对电池性能研究都具有重要作用。X500R QTOF 系统在锂电池电解液成分分析的应用研究本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,仪器标配的ESI源和APCI源可兼顾不同性质的化合物,IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件对数据分析,为表征电解液提供解决方案。图 1 数据处理流程图流程一:SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程SCIEX OS软件可以设定的条件,快速筛选出一级偏差准确,同位素分布合理,二级质谱图匹配得分高的结果,帮助我们快速鉴定化合物。图2 TOF MS和TOF MS/MS谱图流程二:统计学分析得到差异化合物鉴定流程对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以采取组学的思路,使用SCIEX OS软件中MarkerView&trade 统计学分析模块进行PCA,T-test等统计学分析,MarkerView&trade 统计学分析模块和Explorer鉴定化合物模块互相链接,无需不同软件间转移,减少格式转化带来的数据丢失。可以将原始数据导入MarkerView&trade 统计分析后得到样本间具有统计学差异的离子后,可以直接查看一级和二级质谱图,进行鉴定分析。图3 MarkerView&trade 统计学界面展示流程三:非靶向流程软件可以设置空白样本,根据设定的峰面积比扣除空白样本中的离子,软件自动将不同加和离子形式和不同电荷数进行分组,增加鉴定准确度并减少重复鉴定的工作量。提取出来的离子会自动给出分子式,链接SCIEX本地数据库或者在线数据库进行检索,根据和二级质谱图匹配的情况,给出得分,同时也可以根据软件自动给出的二级偏差判断碎片归属,二级碎片可以和结构一一对应,有助于我们进行结构解析,分析合理性图4 非靶向流程中部分界面展示小结本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,分别使用ESI源和APCI源对样本进行采集,兼顾不同性质的化合物,可以更全面的表征化学成分。IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程简便且准确。对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以使用统计学软件找到统计学差异的离子,进行鉴定分析。也可以采用软件自动扣除空白,自动识别离子的不同加和离子形式,电荷形式,结合SCIEX本地数据库或者在线数据库的非靶向流程,是结构鉴定和解析的有力工具,为表征电解液提供了的解决方案。 参考文献 [1]冯东,郝思语,谢于辉,等.锂离子电池电解质研究进展[J].化工新型材料,2023,51(2):35-41.[2]付文婧,汪熙媛,柯伟,等.汽车电动化的重要发展方向——锂电池技术[Z].时代汽车,2023(7):123-125.[3]Ma, Ting, et al. "Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective." Polymers 14.17 (2022): 3452.
  • 日本电镜企业竞逐中国锂电池市场
    p   日本朋友来家里做客时,时常谈到中国汽车业的未来,特别是电动汽车近年来在中国的大发展。 br/ /p p   “中国人喜欢买‘特斯拉’吗?”日本朋友常常会问。于是我就带他们下楼站在北京五道口的街边数“特斯拉”,基本是过不了几分钟就会有一辆驶过。 /p p   日本朋友于是惊叹,北京的“特斯拉”拥有量一定超过东京了!当然,我还会告诉他们,中国电动汽车市场的未来增长点,不仅在于美国生产的“特斯拉”,更在于许许多多蓬勃生长的本土品牌。 /p p   中国电动汽车市场的规模和增长潜力,也被相关日本企业看在眼里。电动汽车里的一个关键部件,就是锂电池,而锂电池,正是日本企业的强项。锂电池技术在日本发展较早,日企因此在锂电池电解液和正负极等金属材料方面拥有多项专利,在观察检测锂电池纯度的电子显微镜和锂电池回收上,拥有丰富的经验。这让他们嗅到了在中国市场巨大的商机。 /p p   比如,锂电池对材料纯度要求极高,其中如果混入了金属碎屑,就有可能发生电池着火、爆炸的情况。而一旦发现异物,就需要立即停止生产,汽车电池的生产规模巨大,停产就意味着企业面临数百万元甚至数千万元的经济损失。因此,电动汽车企业需要用精度很高的电子显微镜进行严格检测,以防上述情况的发生。 /p p   以生产领先的电子显微镜知名的日立高新技术公司于是在今年3月直接斥资在上海开设了“日立高新技术科学园”,主打电子显微镜并配备多种相关分析仪器,未来瞄准中国市场的意图非常明确。 /p p   随着电动汽车的普及,还会有大量的废弃锂电池需要回收,这里面也蕴藏着巨大的商机。 /p p   日本三菱材料公司过去一直以生产铜、铅著称,目前也开始把重心转移到锂电池回收的研发上来。另外一家以生产相机知名的日本企业富士胶片,也具有电池回收的相关技术,正在积极寻找来中国合作的机会。 /p p   日本的日产汽车更在2018年2月宣布,计划在中国投资600亿元直接生产电动汽车。 /p p   日本企业都非常清楚,未来世界最大的电动汽车市场一定在中国,汽车用锂离子电池生产中心也在这里。 /p p   日立高新技术公司中国事业集团先端分析装置部部长郑艺花说:“我们已经看到,中国的论文发表量超过了日本,仅次于美国,居全球第二位,这表明中国在很多研究领域已经是全球领先水平。所以我们的侧重点也在改变——原先中国只是一个为客户提供产品和解决方案的市场,未来中国会成为前沿产品的研发中心,引领技术变革。” /p p br/ /p
  • 锂离子充电电池电解液以及正极材料的安全性评价
    锂电池的应用十分广泛,如手机、笔记本、电动汽车等已成为生活中不可或缺的产品。随着其在汽车以及电力储藏等领域大型化的应用、对其高性能和安全性要求也越来越高。锂离子电池具有极高的能量密度,这是因为电池中封装了更多活性材料,且电极和隔膜越来越薄、越来越轻。这些均需要电池组成材料之间的完美搭配、若设计不足或者滥用,就会出现热失控现象,导致冒烟、起火甚至爆炸等事故。 因此对锂电池的生产和使用过程中的安全性评价非常重要,下面就让我们用日立DSC7000系列对锂离子充电电池电解液以及正极材料进行安全性评价。 样品处理和容器■ 样品处理的气氛LIB的构成中包含很多反应性高的材料。实际产品被封装在惰性气氛中,因此DSC测定也必须将其密封在惰性气体中进行。(为了避免大气中的水分、氧气、二氧化碳等气氛对样品的影响、样品处理在手套箱中进行。)■ 容器样品分解产生的气体、会污染DSC传感器、可能造成仪器功能损坏,因此需选择密封形的容器。另外测试时容器内部压力增大,故需要选择高耐压值的SUS密封容器。电解液正极材料的热特性的研究■ 电解液电解液的DSC结果如上图所示:样品中溶剂为高介电常数溶剂碳酸乙烯酯(EC)和低粘度溶剂碳酸甲基乙基酯(EMC),电解质为六氟磷酸锂(LiPF6)。在升温过程中,该电解液先熔融再分解,在244℃开始熔融,分解放热峰温度278℃,同时还可以得到其分解放热量。■ 电解液+正极材料这里显示把电解液和正极材料混合密封在容器中的样品的DSC测定结果。正极材料是充电状态的锰酸锂(LixMn2O4、X=0(充电状态))。183℃附近有一个放热反应,随后有一个放热峰,放热峰峰值约为290℃,与上述的电解液相比、在低温测得(183℃)开始放热,这是正极材料的热分解,释放氧气、使得电解液氧化分解。从上述DSC测定中,可观察到热分解的起始温度、可以评价LIB的热稳定性、起始温度越高热稳定性越高。本资料显示的是完全充电状态的结果、也有充电越多,Li脱离量越多、热稳定性也会越降低的报告。综上所述,通过差示扫描量热仪DSC对电解液以及正极材料进行热特性的评价,我们可以了解电解液以及正极材料在程序升温过程中的吸放热现象,为锂电池安全生产、加工和使用过程作参考。关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 广州飞升 | 第二代FSH-LA线性注液泵,助力圆柱、数码电池注液
    广州飞升 | 第二代FSH-LA线性注液泵,助力圆柱、数码电池注液广州飞升的FSH-LA系列集成式线性注液泵是为满足圆柱电池注液需求,减少安装空间而设计开发的。搭配工业平板调机使用,方便快捷,网口通信,实现工业互联。广州飞升FSH-LA系列集成式线性注液泵技术规格表:技术规格表型号FSH-LA10-D-PNFSH-LA30-D-PN注液范围0-10mL0-30mL最大流量15mL/s20mL/s系统独立注液精度±0.3%驱动方式 伺服电机注液量调节方式自动调节活塞材质特殊陶瓷管道配置进液φ8mm/出液φ6mm出液压力0.3Mpa适用介质水、电解液、酒精等无颗粒、低粘度液体电源电压DC 24V设备功率100W重量6Kg7Kg泵体尺寸(L*W*H)343*65*185mm420*65*185mm温度范围0-40°CFSH-LA系列集成式线性注液泵适用电池种类包括:14500/18650/21700/26650圆柱类电池、3C数码类电池等FSH-LA系列集成式线性注液泵系统特点:&bull 驱控一体式;&bull 自带工业平板;&bull 高精度,重复精度0.3%以内;&bull 线性运动,无脉冲,更平稳注液;&bull 不卡泵;&bull 数字化闭环控制。
  • 复合相变材料与液冷耦合的动力电池热管理系统的研究
    HS-TGA-103热重分析仪主要由加热系统、称重系统、温度控制系统和数据处理系统组成。在测试过程中,样品被放置在加热系统内,通过温度控制系统进行升温。同时,称重系统监测样品的质量变化,并将数据传输至数据处理系统进行分析。通过测量样品质量随温度的变化,热重分析仪能够揭示材料的热稳定性和动力学行为等信息。复合相变材料与液冷耦合的动力电池热管理系统的研究【南昌大学 刘自强】复合相变材料与液冷耦合的动力电池热管理系统的研究上海和晟 HS-TGA-103 热重分析仪
  • 原子吸收法对锂电池正极活性物质/电解液高精度分析
    随着技术的不断革新,锂电池正在逐渐朝着小型轻量化,大容量化,长寿命化发展,对于锂电池的安全性能有了更高的要求,锂电池中每种材料的主成分、添加物和杂质都会影响其安全性和性能,因此需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,这种方法对某些元素的检测灵敏度低。而且使用成本较高。日立偏振塞曼原子吸收分光光度计可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。 ■ 分析实例对钴酸锂中的锂元素和钴元素进行定量分析,最终得到两种元素的摩尔比基本为其理想摩尔比1:1,其精度低于1%。采用日立偏振塞曼原子吸收分光光度计可以高精度地测定正极材料中组成元素的摩尔比。从电解液结果可知,分别使用火焰法测定电解液中钠元素,石墨炉法测定电解液中钾元素,可得到准确地测定结果,并且石墨炉法测定钾元素灵敏度高,可轻松实现ppb级别测定。采用日立偏振塞曼原子吸收分光光度计可以准确高灵敏度测定有机溶剂-电解液中含有的异物。 关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 环保风暴将至 铅酸蓄电池业命悬一线
    《重金属污染综合防治‘十二五’规划》日前已正式出台,记者日前从中国电器工业协会铅酸蓄电池分会了解到,铅酸蓄电池行业已经被明确为今年的排查重点。全行业都需要加大环保投入,部分企业还面临着重新选址搬迁的问题。   协会人士表示,“很多企业没有觉得压力大,但实际上我们已经命悬一线。”不久前,国务院正式批复了《重金属污染综合防治‘十二五’规划》,今年排查的重点还是铅酸蓄电池行业。   铅酸蓄电池行业成为排查重点不是偶然事件。2011年伊始,安徽省怀宁县高河镇新山社区23名儿童在省儿童医院检测出血铅超标,后经安徽省安庆市人民政府初步调查后认定,血铅事件与当地环保部门对博瑞电源有限公司长期违法试生产,并未采取有效措施有重大联系。此前的血铅污染事件还曾出现在陕西凤翔、湖南武冈和福建上杭等地。   因此《重金属污染综合防治‘十二五’规划》明确了内蒙古、江苏省等14个重金属污染综合防治重点省份、138个重点防治区域和4452家重点防控企业,同时根据污染排放情况和环境情况划定了141家铅酸蓄电池企业、7个重点区域,开展铅酸蓄电池的综合防控。   根据环保部门的思路,届时将“发现一个,解决一个,警示一片”。据透露,此次的调子是“态度要坚决,手段要严厉”。   事实上,部分铅酸蓄电池企业对生产环境和环保设备的投入也在逐年增加,一些大型的铅酸蓄电池生产企业甚至实现了零排放。但是在目前已发生产许可证的1700多家蓄电池企业中,环保设施有问题企业的比例依然不小。   因此该人士认为,“今后一段时间,全行业都需要重新审视环保的重要性并投入更多的资金,有些企业在最多五年内面临着重新选址搬迁的问题。”   市场人士认为,环保风暴给行业龙头带来的更多是机遇。长时间以来,一部分蓄电池行业的环保投入很少,没有正规纳税,加之不当的竞争手段,“导致行业的盈利能力普遍偏弱减弱,大多都是艰难求生存”。   今后,通过加强铅酸蓄电池行业的整顿,一些不规范的企业会被淘汰出局,而可持续发展的规范企业也会从中受益,净化后的蓄电池行业经营秩序和环境也将得到改善。目前,A股市场上铅酸蓄电池行业的龙头企业是风帆股份。
  • 中国排查1930家铅蓄电池企业 逾8成被停产
    中国环境保护部2日发布消息称,截至2011年7月底,中国各地共排查铅蓄电池企业1930家,其中,取缔关闭583家、停产整治405家、停产610家 另有252家企业在生产,80家在建。   为遏制儿童血铅超标高发态势,环境保护部、国家发展改革委等9部委于今年3月底召开联合会议,部署对铅蓄电池全行业进行彻底排查,并要求各地在7月底之前公布辖区内所有铅蓄电池企业名单。   目前,相关省份均已按时公布排查情况。从地域分布看,中国铅蓄电池企业主要集中在江浙地区。其中,江苏484家,居全国之首,浙江以328家紧随其后。广东、山东、河北、安徽的铅蓄电池企业也均在百家以上。青海、西藏、海南这3个地区没有发现铅蓄电池企业。   从行业分类看,全部1930家企业中,从事蓄电池极板加工生产的企业639家,单纯组装企业1105家,回收企业186家。仍在生产的252家企业中,极板加工生产的企业121家,单纯组装企业108家,回收企业23家。   环保部表示,从近期国务院9部门联合督查看,各地铅蓄电池企业仍存在规划布局凌乱、企业规模普遍偏小、工艺技术水平不高、污染防治设施不完善等问题。个别地区对铅蓄电池整治工作认识不高、整治工作力度有待加强。   环保部要求,各地应进一步加强对各类铅蓄电池企业的环境监管。对已经下达取缔关闭决定或自行关闭的,应督促企业做好后续环境整治工作,拆除生产设备,妥善处置危险废物 对自行停产或被责令停产整治的,未经验收不得擅自恢复生产 对限期治理的,逾期未完成治理任务,要报请当地人民政府责令关闭。   今年2月,《重金属污染综合防治“十二五”规划》被国务院正式批复,成为中国首个“十二五”国家规划。但血铅事件随后仍屡有发生。3月中旬,浙江省台州市168人被查出血铅超标,其中儿童53人。5月份,血铅事件又在浙江德清上演,332人被检测出血铅超标。
  • 斯坦福团队突破水系电池瓶颈, 液晶相引领新方向!
    【研究背景】水系电池是一种具有安全性优势的电化学储能技术,已在多个领域获得广泛应用,如电动汽车和可再生能源存储。与传统的锂离子电池相比,水系电池具有成本低、环境友好等优点。然而,水系电池的能量密度和循环寿命相对较低,限制了其应用范围。因此,提升水系电池的能量密度和延长其循环寿命成为了当前的研究挑战。近日,来自美国斯坦福大学材料科学与工程系崔屹教授团队的课题组在水系电池的研究中取得了新进展。他们设计了一种新的液晶相,利用微量非离子表面活性剂实现了电极材料的沉积和晶体结构的控制。该研究表明,通过原位形成的液晶相,可以有效地引导锌和二氧化锰的沉积,显著增强了电池的电化学循环稳定性。具体而言,该团队的液晶相在电池充放电过程中展现出高度可逆的沉积行为,使得双电极无电池(DEFB)在长达950个循环后保留了80%的容量。通过这一创新的方法,成功获取了高达213 Wh/kg的能量密度,显示出液晶相在电池制造过程中的广泛应用潜力。该研究不仅解决了锌和二氧化锰沉积过程中的可逆性问题,还为未来的电池技术提供了新的方向,推动了电化学设备性能和寿命的提升。【表征解读】本文通过多种表征手段深入探讨了液晶相的形成及其在水系电池中的应用,揭示了液晶相对锌/二氧化锰沉积行为的影响。作者使用了扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、接触角测量、椭偏仪等仪器,对电极材料的微观结构和表面特性进行了全面的表征。首先,利用SEM观察到电极表面沉积的形貌变化,表明在表面活性剂的作用下,锌和二氧化锰的沉积更为均匀。该现象反映了液晶相的存在,促使沉积过程更加有序和可控,从而提高了材料的电化学性能。随后,通过XRD分析,作者证实了沉积材料的晶体结构和取向,液晶相的形成促进了锌和二氧化锰晶体沿c轴的对齐,进一步提高了电池的循环稳定性。针对液晶相形成过程中的微观机制,作者通过TEM观察到了液晶模板在电极表面上的动态变化。具体而言,在沉积前,表面活性剂形成了一层有序的分子双层,沉积后则转变为梯度液晶相,包括层状液晶和六角液晶,这一过程的动态切换为电极材料的沉积提供了理想的模板。这一发现不仅解释了高可逆性的镀层/剥离行为,还揭示了液晶相在电池应用中的潜在优势。在此基础上,作者通过结合上述表征手段,进一步探讨了液晶相对电池性能的促进作用。通过电化学阻抗谱(EIS)测试,作者发现,液晶相显著降低了电池的界面阻抗,提高了离子传输速率。这一结果强调了液晶相在改善电极界面特性方面的重要性,表明其在电池制造中的应用前景广阔。总之,经过SEM、XRD、TEM等多种表征手段的深入分析,作者揭示了液晶相在水系电池中的形成机制和作用,最终实现了新型电极材料的制备。该新材料不仅提高了电池的能量密度和循环寿命,还为电池技术的进一步发展提供了新的思路。作者的研究为推动电化学设备的性能提升和实际应用打下了坚实基础,展示了液晶相作为电池界面层的巨大潜力。【图文速递】图1:表面活性剂添加剂通过原位形成的液晶相界面促进Zn/MnO2沉积的设计框架。图2:原位沉积Zn金属的沉积形态和晶体结构。图3:原位形成的液晶相界面用于模板化沉积图4: 液晶相界面策略用于MnO2沉积和DEFB的电化学性能。文献信息:Li, Y., Zheng, X., Carlson, E.Z. et al. In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01638-z
  • 高能量密度、长寿命锌碘液流电池研究新进展
    p   近日,中国科学院大连化学物理研究所储能技术研究部研究员李先锋、张华民领导的研究团队在高能量密度、长寿命锌碘液流电池研究方面取得新进展。研究成果作为“Very Important Paper”在线发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。 /p p   大规模储能技术是实现可再生能源普及应用的关键核心技术,液流电池由于具有安全性高、储能规模大、效率高、寿命长等特点,在大规模储能领域具有很好的应用前景。锌碘液流电池由于电化学活性好,电解质溶解度高,能量密度高(理论能量密度可达250.59Wh/L)等优势,具有很好的研究和应用前景。但是目前锌碘液流电池存在循环寿命短,功率密度低的问题。 /p p   为解决以上问题,该研究团队提出利用廉价的聚烯烃多孔膜(15美金/m2)替代昂贵的全氟磺酸离子交换膜,大大降低了电池成本。此外,该体系使用KI和ZnBr2的混合溶液作为电池的正负极电解质,大大提高了中性环境下电解质的电导率和稳定性。由于聚烯烃多孔膜的多孔结构在中性环境下表现出优异的离子传导能力,电池的工作电流密度大幅度提高。实验结果表明,在80mA/cm2下运行,单电池能量效率达82%,较之前报道的锌碘体系提高了8倍,能量密度达80Wh/L 在180mA/cm2运行条件下,电池的能量效率超过70%,表现出很好的功率特性。更为重要的是,聚烯烃多孔结构中充满的氧化态电解液I3-可以与锌枝晶反应,解决了由于锌枝晶导致的电池循环寿命差的问题。即便是电池因为锌枝晶发生短路,电池性能也能够通过膜孔中I3-对锌枝晶的溶解作用实现自恢复。该体系单电池在80mA/cm2下连续运行超过1000圈,性能无明显衰减,表现出很好的稳定性。为进一步证实该体系的实用性,研究团队成功集成出kW级电堆,该电堆在80mA/cm2下稳定运行超过300个循环,能量效率稳定在80%,表现出很好的可靠性。该电池目前仍处于研究初期阶段,需进一步提高其高电流密度下的可靠性,推进其实用化和产业化。 /p p   上述工作为开发新一代高性能的液流电池新体系提供了很好的借鉴,也为其他锌基液流电池的研发提供了新的思路。 /p p img title=" v183344_b1526963928105.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/ac1d0392-cdeb-44ed-937f-f9f31f657397.jpg" / /p p   大连化物所高能量密度、长寿命锌碘液流电池研究取得新进展 /p p /p p /p
  • 我国科学家在水溶液电解质的锂离子电池研究方面取得重要进展
    在国家自然科学重点项目、杰出青年基金等资助下,复旦大学新能源研究院夏永姚教授课题组多年来一直从事锂离子嵌入化合物在水溶液电解质中特性的研究,近期在这一领域取得重要进展,最新研究成果发表在《Nature Chemistry》上(2010, 2,760-765)。   众所周知,相对于目前广泛用于摄像机、笔记本电脑、移动电话等移动通讯器件的有机电解质溶液锂离子电池,水溶液电解质的锂离子电池具有价格低廉,无环境污染,高安全性能等优点而倍受人们关注,但其循环性能差的问题一直未能解决。夏永姚研究组从理论和实验上证实,在水和氧气存在下,作为电池负极的电极材料会被氧气氧化是造成水系锂离子电池容量衰减的主要原因。他们通过消除氧(电池密封)和选择合适的电极材料,大幅提高了电池的循环性能。这种电池将来可望用于风力、太阳能发电等能量储存、智能电网峰谷调荷和短距离的电动公交车等。该研究成果发表后,得到包括Chemistry World,科技日报、科学时报等媒介的报道。
  • 【行业应用】赛默飞发布气相色谱-质谱法测定锂电池电解液组分
    赛默飞世尔科技(以下简称:赛默飞)近日发布法测定锂电池电解液组分的解决方案,通过操作简单,科学准确,灵敏度高的分析方法,满足锂电池电解液组成成分分析要求。锂电池电解液是电池中离子传输的载体,一般由锂盐和有机溶剂组成。有机溶剂主要是酯类化合物,这些酯类化合物种类和含量对锂电池的性能起关键性作用。 本方法是将锂电池电解液样品直接稀释,用气相色谱质谱进行定性、定量。方法操作简单,9种酯类化合物检出限在3.0 μg/L-30.0 μg/L 之间。 样品中的9 种酯类化合物用乙酸乙酯稀释至合适浓度后直接进样,采用赛默飞新型Thermo ScientificTM TRACETM 1300 气相色谱仪,配合Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统检测和确证,外标法定量。结果表明,9 种酯类化合物的回收率为92.4.3-105.3%,6次平行测定的RSD 值≤ 4.16%。解决方案下载,请查看:http://tools.thermofisher.com/content/sfs/brochures/Measurements%20of%20electrolyte%20components%20in%20the%20lithium%20battery%20by%20GCMS.pdf 更多产品信息,请查看:TRACETM 1300 气相色谱仪https://www.thermofisher.com/order/catalog/product/14800400?ICID=search-product ISQTM 系列四极杆 GC-MS 系统https://www.thermofisher.com/order/catalog/product/IQLAAAGAAJFALOMAYE?ICID=search-product ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 热像仪应用 —制造业 铅酸电池桥接检测
    铅 酸 电 池 桥 接 检 测铅酸电池内部由数个至数十个单格组合而成,连接部位即桥接可能因安装质量 问题造成过热,严重影响产品质量,甚至于在电池产生氢气没有及时通风条件 下还会有爆炸隐患。本文介绍使用红外热像仪对铅酸电池充电时桥接部位的质 量检测的应用,保证铅酸电池的产品质量。 铅酸电池桥接处发热(本文得到蔡黎平和朱文浩的大力协助) 什么是铅酸电池的桥接?铅酸电池一般由数个或数十个单格组合而成,每个单格由若干正极板与负极板间隔重叠,正负极板间用玻璃纤维隔板隔离 ;数片正极板用铅合金焊接在一起组成正极群,数片负极板用铅合金焊接在一起组成负极群,正负极群装于铅酸电池槽内 组成单体铅酸蓄电池;单体铅酸蓄电池之间用链接条从单格之间的铅酸蓄电池槽隔板顶端以串联形式连在一起,这种链接 条即为桥接。桥接过热会造成哪些后果? 桥接过热可能受到两方面的因素影响:一是桥接线过短,二是安装时插入过深;过热会严重影响铅酸电池的产品质量,导 致充电不良,造成退货、换货增加;甚至在电池产生氢气没有及时通风条件下还会有爆炸隐患。 桥接部位可否被直接检测到? 桥接部位在铅酸电池内部,被外壳和盖板遮挡,无法直接检测,故通常用检测外壳的温度来发现桥接问题。 铅酸电池各单体充电 硫酸加注完成 在原先的铅酸电池质量检测中使用什么仪器?一般没有使用仪器,少部分使用红外测温仪。使用红外测温仪进行检测有什么缺点? 红外测温仪无法对整个铅酸电池表面进行温度检测,在对于大量铅酸电池的生产线检测时,容易造成漏检。 因硫酸的腐蚀性,红外测温仪至少需要在1米外进行检测,所以显示的温度是至少大于5厘米的圆的平均温度,但铅酸电 池表面的最高温度区域范围比5厘米小,这样就无法进行准确检测,同样会造成漏检。 如何使用红外热像仪检测铅酸电池? 热像仪在铅酸电池生产时可以检测外壳的发热情况,当外壳最高温度在60℃以上,说明内部的桥接处有严重过热,这时 铅酸电池可能会因为内部高温产生充电或放电故障,甚至引发爆炸事故。 铅酸电池外壳最高温度57.7℃,已接近温度报警限制使用红外热像仪检测铅酸电池桥接不良的注意事项 1 现场电池数量较多,注意不同距离的电池需要分别准确调焦; 2 铅酸电池表面有腐蚀性,检测时注意安全。 行业应用 各大、中型铅酸电池生产厂商。
  • 电弛观察:电池气体内压测试与固态电池安全技术
    传统锂电池内的气体释放通常是由高度电解的阴极分解和SEI的形成和分解引起,对电池安全构成极大威胁,会导致电池膨胀、变形、热失控等安全危害。由于固态电池采用固态电解质取代了传统的液态电解质,在消除传统锂电池的安全焦虑方面,人们对固体电池有很高的期望。 那么是不是固态锂电池就不会有内部产气和压力升高的顾虑了呢? 德国卡尔斯鲁厄理工学院的Timo Bartsch等人研究了一种基于β-Li3PS4固体电解质和富镍层状氧化物阴极的典型全固态电池的产气行为。研究显示,在45°C时,Li/Li+在4.5 V以上电位时检测到明显的氧气和二氧化碳产气。 中科院物理所聂凯会等人对PEO基固态电池体系,结合实验和计算系统地研究了其在高电压状态下的产气行为,发现了尽管PEO基聚合物电解质的电化学窗口只有3.8V,但是单纯PEO电解质直到负载电压达到4.5V时才开始出现明显的产气分解的行为。 以上研究说明固态电池同样存在电池内部产气并产生内部压力的问题, 因此对固态电池的产气行为和内压研究同样重要。 电弛的解决方案2023年,武汉电弛新能源有限公司研发团队经过技术攻关,成功推出了DC IPT原位气体内压测定仪,为锂电池测试提供了全新的解决方案。该产品方案得到了行业内先进企业的认可,其具有以下优点: (1)直接穿刺,精准测量大道至简,摒弃“间接法”测量方式,采用类似于外科穿刺方式,直接对锂电池内部气体及压力进行取样和测量。通过锂电池穿刺取样这种直接测量方法,可以快速获取真实、准确的数据,从而极大地提升检测质量效率。这种直接测量方法的实现原理是,利用专门设计的密封穿刺装置在电池表面制造一个局部密封的小孔,然后将电池内部气体导出到测量探头,直接测量电池内部的压力或进行进一步的气体成分分析。这种测量方式不仅可以避免系统漏气而产生的误差,还可以实现对不同类型锂电池(如软包电池、方形电池、圆柱电池等)的快速取样。 (2)气体采样,兼容并包“间接法”测量的另一大弊端在于其兼容性。由于这种方法只能针对特定类型的锂电池进行测量,这无疑增加了测试成本和时间。为了解决这一问题,我们开发了一种全新的锂电池气体采样接口,该接口具有广泛的兼容性,可以同时测量不同类型的锂电池,包括软包电池、方形电池和圆柱电池等。这一创新性接口的设计与开发基于我们对电池内部气压监测的深入理解和多年的专业经验。通过这种新型气体采样接口,我们可以快速、准确地获取各种类型锂电池的气体内压数据,从而更好地评估其安全性能。这种兼容并包的测量方式不仅提高了测试效率,也降低了测试成本和风险。① 兼容性强:DC IPT创新性地引入了“锂电池气体采样接口(GSP)”这一技术,类似于广泛使用的Type-C接口,实现了不同品牌和类型电池测试的兼容性和互换性。DC IPT锂电池气体采样接口(GSP)打破了传统测量方法的局限性和弊端,可同时进行软包电池、方形电池、圆柱电池的测试,无需因不同类型的电池更换不同的测量设备或方法。② 高效便捷:用户无需在不同的测量设备之间切换或等待适配,提高了测试效率,降低了时间和人力成本。③ 数据准确:采用先进的测量技术和算法分析,确保数据的准确性和可靠性。④ 高重复性:由于采用了标准化的接口设计和测量流程,保证了测量结果的可重复性和一致性,有利于结果的比较和分析。 (3)网络接口,云端数据数据也是生产力,高效率的信息传递可以提升企业测试效率,对每块电池的质量状态做出快速预判。为了满足这一需求,DC IPT预设网络接口,实现了数据联云上网,以及与其他测试设备或系统进行数据交互和共享。这使得企业可以构建一个完整的电池测试和管理系统,实现对电池测试数据的全面管理和分析。用户可以跨平台(PC 、手机、Pad等)访问每块电池的气体内压测试数据,掌握质量情况。 (4)多通道定制,高通量测试在电池测试中,通道数量是衡量设备测试能力的重要指标之一。单台设备的通道数量越高,可承载的测试容量就越大,高通道带来的经济优势,不言而喻。DC IPT标准款为8通道设计,可以大大提高测试效率,降低测试时间和成本。也可以根据客户需求,定制设计更多通道提高测试通量,使得设备可以适应多种测试场景和需求,具有更强的灵活性和可扩展性。无论是大型企业还是研究机构,都可以根据自身的测试需求和规模,选择适合的通道数量和配置。此外,DC IPT的多通道设计还具有优秀的稳定性和可靠性。每个通道都采用了独立的测量电路,确保了测试的准确性和一致性。 参考文献Increasing Poly(ethylene oxide) Stability to 4.5V by Surface Coating of the Cathode. DOI: 10.1021/acsenergylett.9b02739Gas Evolution in All-Solid-State Battery Cells. DOI: 10.1021/acsenergylett.8b01457
  • 补贴滑坡、材料涨价 锂电池企业面临大洗牌
    p   补贴滑坡、材料涨价,双重压力下,当前我国锂电池产业或将面临一场大洗牌。 /p p   近几年新能源汽车的快速发展极大地带动了我国锂电池产业的发展。有数据显示,2017年,我国锂电池的市场规模已经达到了1130亿元左右,其中动力锂电池规模大约600亿元。目前我国电池生产企业已超过200家,是全球拥有锂电池生产企业最多的国家。预计到2020年,我国在全球电池市场所占的份额将达七成以上。 /p p   然而,自今年2月12日开始新能源汽车补贴标准的“断崖式”下降,也影响到了锂电池企业。根据新的标准,补贴分档从3档增加到了5档,补贴门槛也从续航里程100公里提高到150公里,基本上遵循了续航里程越长补贴标准越高的原则,由于补贴标准调整太快,不少以生产低能量密度锂电池的企业还未来得及转型,同时随着近几年国内锂电池产业的大热,锂电池产品的相关材料普遍涨价,在补贴滑坡、材料涨价的双重背景下,今年锂电池企业的业绩基本都发生了大幅下滑。 /p p   锂电池产品除了做成动力电池外,还可以做成储能电池,两者之间动力电池的价格更高一些,与动力电池不同,储能电池对能量密度的要求不高,但对电池的安全性与寿命的要求极高,比如磷酸铁锂电池,由于能量密度比较低,在动力电池领域逐渐被三元锂电池取代,而磷酸铁锂电池的安全性非常好,大多数储能电站都选择磷酸铁锂电池作为储能电池,事实上,正是由于磷酸铁锂电池的安全性,比亚迪曾长期将其作为新能源汽车的首选电池,也正因如此,在逐渐强调长续航里程的今天,比亚迪的锂电池产量被主打高能量密度锂电池的宁德时代超越。 /p p   不过,锂电池储能电站一般用在新能源电站上,在传统电站内的应用还比较少。由于风电和太阳能电压不稳,发电时间不确定,使用储能电站作为电力中继更有利于电网的健康运行,有些太阳能电池公司也把太阳能电站与储能电站组合成一个产品来销售,减少了客户部署的难度,近几年随着锂电池产业的快速发展,常规电站建设锂电池储能电站逐渐成为一种热潮,同抽水蓄能电站相比,电池储能电站更加灵活,占地面积更小,基本上在各地都可以都快速进行布局。 /p p   纵观国内的锂电池产业,高能量密度电池技术依然比较薄弱。在低能量密度电池相对供应过剩的前提下,适当地发展锂电池储能技术有望让锂电池产业更加健康地发展。 /p p   中国对新能源汽车行业新政下的补贴退坡会对新能源汽车行业产生一定的洗牌效应,这种洗牌效应对我国锂电池产业的影响非常明显,在补贴退坡的新政下,很多锂电池企业将面临一场优胜劣汰式的大浪淘沙。强者恒强,弱者恒弱甚至出局,这或许是大势所趋,难以阻挡。 /p p br/ /p
  • 如何在1秒内实现锂离子电池的微米级全CT扫描 --- 高亮度液态靶X射线源助力高产量电池高效检测
    高效电池是电动汽车(EV)转型的关键,也是在使用更多可再生能源时实现储能平衡电网的关键。如今,每一个电动汽车电池都要经过二维(2D)X射线检查以进行质量控制,及早发现可能导致火灾的缺陷。然而,即使采取了这一步骤和其他几个质量控制步骤,这些缺陷也时常发生,导致经济和人身伤害方面的灾难性损失。 相较于二维X射线检查方法,100%三维(3D)X射线检查,或在不清楚的情况下对二维检查进行三维补充,是一条有希望实现令人满意的质量控制的道路。但是, 3D X射线CT检查通常需要很长的时间,会大幅降低检测效率,因此需要一个具有微米焦点的高功率X射线源——这是市场上从未曾有过的。 瑞典Excillum是一家致力于研发、生产超高亮度微焦斑X射线光源的公司,经过十余年的研发与改进,发布了10倍于普通固体阳X射线光源所发射的X射线通量(在相同焦斑面积上)的高亮度液态靶X射线源MetalJet D2+,今年又研发出新一代的高亮度液态靶X射线源MetalJet E1+,在相同焦斑面积上的通量约2倍于MetalJetD2+。该公司一直在寻求解决方案,以实现对电池和其他工业部件的高速3D X射线检查。在如下视频中,您将看到如何在1秒内实现锂离池的微米全CT扫描。这些实验均在瑞典的Excillum工厂进行,使用其MetalJet E1+、直接转换的高性能探测器(Thor FX20.256 CdTe)和高速、高精度旋转台。 1秒内实现锂离子电池的微米全CT扫描MetJet E1+160KV液态靶X射线源 技术参数性能参考 在1000瓦的功率下,新的MetalJet E1+在宽光谱范围内提供的X射线通量是具有相同30 µm光斑尺寸的30 W传统钨固体阳微焦点源的17倍。在24-29千电子伏的光谱范围内,铟和锡的特征发射线存在,通量优势高达100倍。 尽管在1000 W的高热负荷下运行,MetalJet E1+在连续长期运行期间保持优于1µm的位置稳定性。
  • 锂电池回收产业百亿风口来临 仪器企业是否需要关注?
    p   据了解,自2014年国内推广应用新能源汽车以来,截至2017年底累计装配动力蓄电池约86.9GWh。动力电池的使用年限一般为5-8年,意味着前期投入市场的新能源电池基本处于淘汰临界点。中国汽车技术研究中心数据显示,2018-2020年,全国累计报废动力电池将达12万-20万吨 EVTank通过经济模型测算认为,到2020年中国动力电池回收拆解和梯次利用的总体市场规模将达到66.8亿元,到2022年整体市场规模将达到131.0亿元。“我们分析认为,2018年之后,国内退役动力电池的规模将会快速上升。”工信部国际经济技术合作中心助理研究员白旻说。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/262098ce-ffa8-4f58-9a8f-ded05c5f7235.jpg" title=" 1521426015618006.png" / /p p   面对即将到来的动力电池报废高峰,政策层面及时跟进。近日,国家陆续发布:《新能源汽车动力蓄电池回收利用管理暂行办法》、《新能源汽车动力蓄电池回收利用试点实施方案》 2016年以来,《车用动力电池回收利用拆解规范》、《车用动力电池回收利用余能检测》等标准已经出台实施。针对即将到来的“报废潮”,《暂行办法》中可看出,回收的汽车动力电池将通过梯次利用和报废拆解两种方式实现资源的再循环。 /p p   我国对钴、锰、镍等稀缺金属的严重进口依赖和市场需求的不断释放,导致以钴为代表的锂电池材料价格持续上涨,让产业链各方面临巨大的制造成本压力。通过对废旧锂电池中的镍、钴、锂等有价金属进行提取进行循环再利用,锂电池回收的经济效益显而易见,这对整车、电池厂商等产业链而言都是一座可待挖掘的金矿。三大势力已经竞逐锂电池回收产业蓝海:(1)以华友钴业、寒锐钴业、厦门钨业、天赐材料、天齐锂业和赣锋锂业等为代表的锂电材料系。(2)以比亚迪、宁德时代、国轩高科、天能动力、中航锂电等为代表的动力电池主流企业。(3)以格林美、湖南邦普、赣州豪鹏、芳源环保、金泰阁、长优实业、威能环保等为代表的第三方动力电池回收拆解企业。可以看到,2015年,宁德时代通过子公司宁德和盛持股69.02%,取得主业为废旧锂电池拆解的广东邦普控制权 2017年8月,国轩高科公告显示,与钴产品生产商兰州金轩分别出资5000万元在安徽、甘肃成立了安徽金轩和甘肃金轩两家电池资源循环利用技术公司 2018年,3月9日,国内的电池制造商骆驼股份发布公告,拟投资50亿元建设骆驼集团动力电池梯次利用及再生产业园项目。 /p p   按《车用动力电池回收利用余能检测》标准,梯次利用的电池需利用性能检测仪进行性能评估。废旧电池回收利用涉及拆解、萃取等物理和化学复杂工序回收有价值元素,并进行无害化处理,减小对于环境的压力,这需要具有冶金、化工、物理等行业的专业技术及仪器设备的支持。业内普遍认为,废旧动力电池回收途径、安全拆解、环保处理、保证产品质量以及再利用技术仍是行业面临的共性难题,国内针对动力蓄电池的回收工艺路线还处于探索阶段,以循环制造为目标的回收技术还未开展。随着最新的《新能源汽车动力蓄电池回收利用试点实施方案》发布,众多相关仪器设备供应企业或可对这锂电池回收“蓝海”加以关注。 /p p   a href=" http://www.instrument.com.cn/news/20180328/243064.shtml" target=" _self" title=" "  《新能源汽车动力蓄电池回收利用试点实施方案》发布(附全文) /a br/ /p p    a href=" http://www.instrument.com.cn/news/20180302/240981.shtml" target=" _self" title=" " 六部委联合发布《新能源汽车动力蓄电池回收利用管理暂行办法》 /a /p p br/ /p
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 冠亚电池水分测定仪参与华为石墨烯电池研究
    冠亚电池水分测定仪参与华为石墨烯电池研究 原标题:华为石墨烯电池研究获突破:寿命是锂离子电池2倍 12月1日消息,近日,华为中央研究院瓦特实验室在第57届日本电池大会上宣布在锂离子电池领域实现重大研究突破,推出业界高温长寿命石墨烯基锂离子电池。实验结果显示,以石墨烯为基础的新型耐高温技术可以将锂离子电池上限使用温度提高10℃,使用寿命是普通锂离子电池的2倍。  华为瓦特实验室首席科学家李阳兴博士指出,石墨烯基高温锂离子电池技术突破主要来自三个方面:在电解液中加入特殊添加剂,除去痕量水,避免电解液的高温分解;电池正极选用改性的大单晶三元材料,提高材料的热稳定性;同时,采用新型材料石墨烯,可实现锂离子电池与环境间的高效散热。  “高温环境下的充放电测试表明,同等工作参数下,该石墨烯基高温锂离子电池的温升比普通锂离子电池降低5℃; 60°C高温循环2000次,容量保持率仍超过70%;60℃高温存储200天,容量损失小于13%”, 李阳兴博士表示。  这一研究成果将给通信基站的储能业务带来革新。在炎热地区使用该高温锂离子电池的外挂基站工作寿命可达4年以上。石墨烯基锂离子电池也将助力电动车在高温环境下持久续航,以及无人机高温发热下的安全飞行。  去年,华为瓦特实验室在第56届日本电池大会(The 56th Battery Symposium in Japan)上发布了5分钟即可充满3000mAh电池48%电量的快充技术成果,引起业界广泛关注。据李阳兴博士透露,华为快充电池已经商用,并将于今年12月底正式对外发布超级快充手机。 期间冠亚电池水分测定仪参与华为电池研究(代工厂)部分实验,冠亚电池水分仪系列包括有:电解液水分含量检测仪,特殊添加剂固含量检测仪,电池正极水分测定仪,石墨烯水分仪,锂电池水分仪等。采用国际标准方法可对电池材料水分含量在2-3分钟之内测试完。水分含量下限10ppm,检测方便科学精准,是电池厂商,实验室,检测部门的水分检测仪。
  • 日本押宝全固态电池 几十家企业、大学等机构联手
    p   全固态锂电池作为可兼顾高能量密度和安全性的蓄电池备受关注,在世界各国正积极推进交通工具电动化的大环境下,日本新能源产业技术综合开发机构(NEDO)为了尽快实现全固态锂电池的实用化,启动了第二期研发项目。 /p p   在该项目中,汽车、蓄电池、材料领域的23家企业,15所大学及公立研究生所将展开合作,确立能解决全固态锂电池当前瓶颈的基础技术,同时将采用原型单元,开发对新材料特性、量产工艺以及是否适合配备于纯电动汽车(EV)等进行评估的技术。另外,还会以日本主导推进国际标准化为目标,开发关于安全性和耐久性的试验评估方法。此外,在推进研发的同时,还将讨论电动汽车大量普及的未来社会体系的方案设计。 /p   EV用バッテリーとして安全性耐久性を確保しつつ、高エネルギー密度化高出力化が実現可能。——确保作为EV用电池的安全性和耐久性,同时实现高能量密度和高输出功率。 p   1.概要 /p p   今后,预计很多国家都将强化汽车的二氧化碳排放规定和燃效规定,交通工具将朝着电动化的方向发展。因此,很多汽车厂商都宣布了到本世纪二十年代每年销售数百万辆纯电动汽车和插电式混合动力车(PHEV)的计划。在这种情况下,车载电池将成为决定EV和PHEV的便利性(续航距离、充电时间等)及价格的主要因素,因此,急需通过提高能量密度来提高电池的性能和降低成本。 /p p   目前的EV和PHEV使用的锂电池(LIB)采用有机电解液制造,其能量密度与安全性属于此消彼长的关系,只要一方面出问题,就可能冒烟甚至起火。对此,如图1所示,采用无机固体电解质的全固态锂电池充分发挥固体电解质的阻燃性及热稳定性和化学稳定性,即使提高能量密度也能确保安全性和耐久性。此外还能简化电池组的冷却系统和冒烟起火时的排气系统等,提高体积能量密度。而且,全固体电池有望使EV充电时间降至10分钟以内,实现超快速充电。不过,要想实现期待的这些性能,还存在很多瓶颈,而且单元的结构、材料构成和制造工艺等基本概念尚未确定,目前,面向实用化的研究开发的效率并不高。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201806/insimg/71b893a4-64dc-4eee-9ecf-ead6726c6e50.jpg" title=" u=5987533,886558873& amp fm=173& amp app=25& amp f=JPEG.jpg" / /p p style=" text-align: center "   图1:EV电池的技术转移设想 /p p   因此,在NEDO的“先进创新蓄电池材料评估技术开发一期(2013~2017年度)”项目中,开发了全固态锂电池的标准电池模型(200mAh级单层层压单元)以及采用该模型的材料评估技术,并对企业和大学等面向全固态锂电池开发的固体电解质和电极活性物质等进行了评估,将评估结果反馈给样品提供者。 /p p   此次启动的二期项目将在一期项目取得的成果的基础上,开发实现大型化和高容量化的标准电池模型(Ah级层压单元)以及采用该模型的材料评估技术。一期项目的评估技术是为了掌握材料的基本特性,而二期项目的评估技术将进一步升级,将评估量产性以及是否适用于EV等。因此,此次有4家汽车及摩托车企业、5家蓄电池企业及2家材料企业新加盟了受理评估委托的“技术研究联盟锂电池材料评价研究中心”(LIBTEC)。另外,14所大学和研究所也作为新的委托对象加入二期项目,将与LIBTEC进行合作。 /p p   如图2所示,在EV电池市场上,预计目前研究开发比较领先、采用硫化物固体电解质的第一代全固态锂电池将在2025年左右成为主流,到2030年左右,采用具备高离子导电性的硫化物固体电解质或者化学稳定性较高的氧化物固体电解质的新一代全固态锂电池将成为主流。第一代全固态锂电池和新一代全固态锂电池都将是二期项目的研发对象。 /p p   2. 业务内容 /p p   【1】业务名称 /p p   先进创新蓄电池材料评估技术开发(二期) /p p   【2】业务总额(预定) /p p   100亿日元 /p p   【3】时间 /p p   2018~2022年度 /p p   【4】研发内容 /p p   (1)开发通用基础技术 /p p   将开发能解决全固态锂电池的大型化和量产化瓶颈的基础技术,包括固体电解质的量产与低成本合成、向电极活性物质涂敷电解质、电解质层与电极层的成膜等。 /p p   另外,通过组合全固态锂电池用新材料和元器件,评估单元的性能、耐久性和安全性,将制作用于掌握新材料与元器件的利弊、技术课题及是否适合单元量产工艺等的标准电池模型,并编订规格说明书及性能评估程序手册。 /p p   此外,还将开发通过计算机模拟,预测全固态锂电池的单元及电池组的不稳定性、劣化和发热情况的技术,以日本主导推进国际标准化为目标,开发关于耐久性和安全性的试验评估方法等。 /p p   (2)讨论社会体系设计 /p p   将调查并分析各国与全固态锂电池及电动汽车有关的政策、市场和研发动向,制定以EV普及为前提的整个未来社会体系的方案设计,同时与“(1)开发通用基础技术”联动,推进相关研究开发。制定方案时,还将考虑充电基础设施建设、资源限制、3R原则(Reduce、reuse、recycle,即减量化、再利用和再循环)等,讨论低碳化社会的方案设计。 /p p br/ /p
  • 韩国锂电池工厂火灾致23人死亡,相关企业该如何有效避免?
    6月24日,韩国京畿道华城市某电池厂发生火灾,该事故致23人死亡,8人受伤。据悉这是由锂电池快速起火引发的灾难,锂电池从冒出白色烟尘到剧烈燃烧,再到烟气充满整个作业空间,仅仅耗时15秒。此次韩国工厂火灾并非个案。今年5月,美国加利福尼亚州的Gateaway储能电站也发生了火灾,火势持续数周。锂电池因其高能量密度而广泛应用于储能领域,但其安全性问题也日益凸显。一旦发生火灾,其内部化学反应可能产生大量有毒烟雾,对人员安全构成极大威胁。因此,锂电池的火灾预防一定要重视!实时监控:源头杜绝火灾苗头锂离子电池耐过充、放电性能差,在过充和短路的情况下,还有穿刺、撞击、挤压乃至外部高温等,都很容易引发火灾甚至爆炸。因此在锂电池的制造、存储、安装的过程中,都可以选择FLIR Axx系列高级智能传感器热像仪,进行7*24小时实时监控,一旦锂电池出现温度异常升高,立即发出警报的同时开启降温模式,将火灾的苗头直接扼杀在摇篮里!案例解析:锂电池组装必须带电防爆炸?FLIR A系列热像仪从源头解决危险定期检测:延长锂电池的使用随着锂电池广泛应用在新能源汽车领域,其在充电时偶有发热现象,一般情况下的发热是正常现象,而异常发热很有可能会使电池容量降低、缩短电池寿命,因此用户要定期检测锂离子电池充电时的状况,确保电池的持久性和安全性!FLIR T500监测发热的电池元件, 定位接触不良的热点FLIR T500系列热像仪配备高达464 x 348(161,472)像素的红外分辨率,内置先进的测量工具,借助由强大的FLIR专利MSX® (专利号:201380073584.9)、UltraMax和专有型自适应滤波算法支持的FLIR Vision Processing技术,确保生成的热图像具有高强的清晰度,让用户能够更准确、更快捷地发现和诊断电池中存在的问题,避免更大问题的出现,大大延长了锂电池的使用寿命!产品解析:技术创新 | FLIR T500系列微距模式:针对小目标红外成像的单镜头解决方案严控研发:提升锂电池的质量锂电池在批量生产前,都需要进行各种性能和滥用实验,来测试锂电池在异常情况下的反应和安全性能,从而评估锂电池的安全性和可靠性。这对于提高锂电池的安全性能、改进电池设计和制造工艺等方面都具有重要的指导意义。选择FLIR高速热成像仪对锂电池研发的实验过程进行监控,研究人员不仅可以很容易看到在滥用测试时电池外部发生的情况,还可以看到内部发生的情况,以及热量的变化情况,提供的热数据既准确又全面!FLIR 高速热成像捕捉到针刺测试过程中电池的热扩散案例解析:电池被刺爆破的瞬间,FLIR高速热像仪精准收集各项热数据!安全救援:穿透烟雾看清现场锂电池火灾具有事故突发性强,火势蔓延迅速,燃烧温度高,灭火技术要求高等特点。当电池热失控时,会释放出大量易燃可燃气体,导致燃烧速度极快,并伴随爆炸。因此,当救援锂电池相关的火灾发生时,消防员可选用FLIR K系列消防用热像仪,它不仅能够帮助消防员在黑暗、烟雾滚滚的环境中导航,还能帮助消防员看清现场情况,精准定位被困人员。案例解析:浓烟密布让消防员“身陷险境”,FLIR红外热像仪带他们找到方向由于充放电速度快、容量大等优点在日常生活中锂电池被广泛应用在新能源汽车、电动自行车、笔记本电脑等因此在设计、制造、使用的过程中要严格把控避免锂电池等发生火灾想要详细了解上述FLIR产品FLIR工作人员将为您详细讲解当然您还可以拨打官方客服电话直接问询哦~
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制