当前位置: 仪器信息网 > 行业主题 > >

高分子蛋白质

仪器信息网高分子蛋白质专题为您整合高分子蛋白质相关的最新文章,在高分子蛋白质专题,您不仅可以免费浏览高分子蛋白质的资讯, 同时您还可以浏览高分子蛋白质的相关资料、解决方案,参与社区高分子蛋白质话题讨论。

高分子蛋白质相关的资讯

  • 单个蛋白质分子检测技术取得新突破
    中国科学技术大学研究人员领衔的一个团队最近利用钻石中的一种特殊结构做探针,首次在室内温度空气条件下获得单个蛋白质分子的磁共振谱。该成果使利用基于钻石的高分辨率纳米磁共振成像诊断成为可能。   这一发现5日发表在新一期美国《科学》杂志上。负责该研究的中国科学技术大学教授杜江峰说,通用的磁共振技术已被广泛用于基础研究和医学应用等多个领域,但其研究对象通常为数十亿个分子,单个分子独特的信息无法观测。基于钻石的新型磁共振技术在继承传统磁共振优势的同时,将研究对象推进到单个分子,成像分辨率由毫米级提升至纳米级,但其主要难点是源自单分子的信号太弱。   为此,杜江峰的团队利用碳-12富集的钻石为载体,注入氮离子使其产生一种名为&ldquo 氮-空位点缺陷&rdquo 的结构,并使该结构发挥探针作用,在纳米尺度上靠近被探测的蛋白质。此外,他们利用一种名为&ldquo 多聚赖氨酸&rdquo 的物质保护蛋白质,确保其在研究过程中的稳定性。   研究人员选取了细胞分裂中的一种重要蛋白质MAD2为研究对象。经过两年多的努力和逾百次尝试,最终他们成功在室内温度及空气条件下首次获取了单个蛋白质分子的磁共振谱,并通过谱形分析,获取了其动力学性质。   关于这项技术的用途,杜江峰表示,最直接的用途是在不影响蛋白质性质的前提下检测其结构和动力学性质,直接在细胞膜上或细胞内研究蛋白质分子,&ldquo 这对生命科学研究来说有极大吸引力&rdquo 。   总之,该技术拓宽了单个分子领域的研究范围,在分析化学、结构生物学、高分子、磁性材料等领域具有重要应用前景和实用价值。以此为基础,结合扫描探针、高梯度磁场等技术,未来可将该探测技术用于生命及材料领域的单个分子成像、结构解析、动力学监测,甚至直接深入细胞内部进行微观磁共振研究,为获得科学新发现孕育可能。   《科学》杂志的审稿人评价该工作是&ldquo 单个蛋白质分子检测的突破性成果&rdquo ,开启了利用&ldquo 氮-空位点缺陷&rdquo 进一步研究&ldquo 自旋标记&rdquo 蛋白质的可能,有重要应用前景。参与这项研究的还有来自中国科学院强磁场科学中心和德国斯图加特大学的研究人员。   原文检索:Single-protein spin resonance spectroscopy under ambient conditions
  • 蛋白质组:解码生命“天书”
    人类和老鼠的外貌可说是天渊之别,但实际上他们却有着近99%相同的基因组。何以&ldquo 失之毫厘差之千里&rdquo ?正是蛋白质放大了他们基因上的细微差别。 日前,中国人类蛋白质组计划全面启动。&ldquo 基因组学中微小的差异,在蛋白质组学中可以被千倍甚至几近万倍地放大。&rdquo 亚太蛋白质组组织主席、中国科学院院士贺福 初表示,这一计划的实施将对基因组序列图进行&ldquo 解码&rdquo ,进而全景式揭示生命奥秘,为提高重大疾病防诊治水平提供有效手段。 解码生命的&ldquo 密钥&rdquo 提起蛋白质,大家并不陌生。它是生物体内一种极为重要的高分子有机物,约占人体干重的54%。 不过,&ldquo 蛋白质组&rdquo 一词却鲜有人了解。其实,蝴蝶由卵变虫、成蛹、再破茧成蝶,幕后&ldquo 操盘者&rdquo 并非基因组,而是蛋白质组。&ldquo 1994年澳大利亚科学家率先提出蛋白质组这个概念,指某个时刻、某个组织、器官或个体中所有蛋白质的集合。&rdquo 贺福初说。 科学家们之所以对蛋白质组产生浓厚兴趣,还要从人类基因组计划说起。2003年4月,耗资27亿美元、经由6国科学家历时13年奋战的人类基因组计划,以人类基因组序列图的绘制完成为标志,画上了句号。 没想到,更大的挑战还在后头&mdash &mdash &ldquo 科学界曾经认为,只要绘制出了人类基因组序列图,就能了解疾病的根源,但是错了&rdquo 。国际蛋白质组组织启动计划主席萨姆· 哈纳什说,事实上,我们此时只了解10%的基因的功能,剩下的90%仍是未知的。 &ldquo 人类基因组计划并不像事前所预期的那样,能够逾越蛋白质这一生物功能的执行体层次,揭示人类生、老、病、死的全部秘密。基因组序列只是提供了一维遗传信息,而更复杂的多维信息发生在蛋白质组层面。&rdquo 贺福初表示。 就 人体而言,各个器官的基因组是一样的,而它们之所以形态、功能各异,正是其结构与功能的物质基础&mdash &mdash 不同的蛋白质组在&ldquo 操盘&rdquo 。&ldquo 就像蛹化蝶,无论形态如 何变化,基因组是不变的。&rdquo 军事医学科学院放射与辐射医学研究所研究员钱小红说,人的每一种生命形态,都是特定蛋白质组在不同时间、空间出现并发挥功能的 结果。比如,某些蛋白质表达量偏离常态,就能够表征人体可能处于某种疾病状态。 &ldquo 无论是正常的生理过程还是病理过程,最直接的体现是蛋白质以及它们的集合体&mdash &mdash 蛋白质组。&rdquo 上述专家们表示。&ldquo 生,源于基因组;命,却一定由蛋白质组决定。只有蛋白质组才能根本阐释生命。&rdquo 贺福初说。 独辟蹊径的&ldquo 中国画卷&rdquo 事实上,早在上世纪90年代人类基因组计划成形之际,已有科学家提出解读人类蛋白质组的想法。其目标是,将人体所有蛋白质归类,并描绘出它们的特性、在细胞中所处的位置以及蛋白质之间的相互作用等。 《科学》杂志在2001年,也将蛋白质组学列为六大科学研究热点之一,其&ldquo 热度&rdquo 仅次于干细胞研究,名列第二。 不过,严峻的现实挑战,让这一想法迟迟停留在&ldquo 纸上谈兵&rdquo 阶段。&ldquo 生物蛋白质数的差别大概是基因数差别的三个数量级左右,人类基因总数大概2万多个,人体内的蛋白质及其变异、修饰体却是百万级的数量。&rdquo 贺福初表示。 不仅如此,人类基因组图谱只有一张,而蛋白质组图谱每个器官、每个器官的每一种细胞都有一张,且在生理过程和疾病状态时还会发生相应改变。工程的艰巨性可想而知。 但困难并未阻挡住科学家们对其探索的脚步。1995年,首先倡导&ldquo 蛋白质组&rdquo 的两家澳大利亚实验室分别挂牌成立蛋白质组研究中心。随后欧美日韩等国均有行动。 1998年初,从事基因组研究的贺福初敏锐地嗅到这朵夜幕后悄然盛开的&ldquo 莲花&rdquo ,逐渐将精力投入到这个新兴领域。 2001年,&ldquo 基因组会战&rdquo 尚未鸣金,《自然》、《科学》杂志即发出&ldquo 蛋白质组盟约&rdquo 。同年秋,&ldquo 人类蛋白质组计划&rdquo 开始孕育。 2002 年4月,贺福初在华盛顿会议上阐述&ldquo 人类肝脏蛋白质组计划&rdquo 。同年11月,&ldquo 人类血浆蛋白质组计划&rdquo &ldquo 人类肝脏蛋白质组计划&rdquo 正式启动,贺福初担任&ldquo 人类 肝脏蛋白质组计划&rdquo 主席。其后两年间,德国牵头的&ldquo 人类脑蛋白组计划&rdquo 、瑞士牵头的&ldquo 大规模抗体计划&rdquo 、英国牵头的&ldquo 蛋白质组标准计划&rdquo 及加拿大牵头的 &ldquo 模式动物蛋白质组计划&rdquo 相继启动。 然而,很少有人知道,这种以生物系统为单元的研究策略酝酿之初饱受诟病。贺福初回忆,在华盛顿,中国人提出蛋白质组计划必须按生物系统(如器官、组织、细胞)进行一种战略分工和任务分割,一石激起千层浪,争议四起。 &ldquo 要想通过分工合作来完成全景式分析人类蛋白质组的宏大目标,必须以人体的生物系统作为研究单元和分工的规则。这个策略,10年来合者渐众,不过目前仍存争议,中国的先见之明可能得在下个10年成为不可阻挡的潮流。&rdquo 贺福初坦陈。 定位疾病的&ldquo GPS&rdquo 历经10余年的努力,以贺福初为代表的中国蛋白质组研究团队,在该领域向世界交了一份漂亮答卷: 成功构建迄今国际上质量最高、规模最大的人类第一个器官(肝脏)蛋白质组的表达谱、修饰谱、连锁图及其综合数据库; 首次实现人类组织与器官转录组和蛋白质组的全面对接; 在 炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜在药靶、蛋白质药物和生物标志物。如,2008年,张学敏课题组首次发现炎症和免疫的 新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组&ldquo 逮到&rdquo 肝 癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物标记。2012年,张令强课题组研制出世界上首个能特异性靶向成骨细胞的核酸递送系 统,提供了一种基于促进骨形成的全新骨质疏松症治疗途径,向解决骨丢失无法补回这一医学难题迈出了坚实的一步。2014年,张令强课题组首次在国际上揭示 泛素连接酶Smurf1是促进结直肠癌发生发展,并且导致病人预后差的一个重要因子&hellip &hellip 上述几项成果均发表于国际顶级的《科学》、《自然》系列杂志。 还没来得及分享这一喜悦,激烈的角逐又让他们绷紧了神经。日前,英国《自然》杂志公布美国、印度和德国等合作完成的人类蛋白质组草图。研究人员表示,这一成果有助于了解各个组织中存在何种蛋白质,这些蛋白质与哪些基因表达有关等,从而进一步揭开人体的奥秘。 &ldquo 尽 管还有许多不完善的地方,但确实是蛋白质组学领域乃至整个生命科学领域,具有里程碑意义的科学贡献。&rdquo 中国科学院院士饶子和直陈。中国科学院院士张玉奎指 出,虽然中国在蛋白质组的一些领域走在了世界前列,但国外有些团队正快马加鞭,我们不得不警醒,否则很快将被甩出第一阵营。 6 月10日,中国人类蛋白质组计划全面启动实施。&ldquo 蛋白质组,可以揭示疾病的发病机制和病理过程,发现新型诊断标志物、治疗和创新药物,可以全面提高疾病防 诊治水平。这个项目完成后,将揭示人体器官蛋白质组的构成,一旦哪一部位出现异常即可实现&lsquo GPS定位&rsquo ,进而找到针对性的诊断措施、干预措施和预防措 施。&rdquo 记者了解到,中国人类蛋白质组计划第一阶段,将全面揭示肝癌、肺癌、白血病、肾病等十大疾病所涉及的主要组织器官的蛋白质组,了解疾病发生的主要异常,进而研制诊断试剂以及筛选药物。这将在2017年左右完成。 &ldquo 这是真正的原始创新,也是中国能够引领世界科技发展的重要领域之一。&rdquo 贺福初强调说。
  • 三问中国人类蛋白质组计划
    前不久,历经多年论证、被誉为我国生命科学研究领域里程碑事件的中国人类蛋白质组计划(简称CNHPP)正式在京启动,来自清华大学、北京大学、中国科学院、军事医学科学院、解放军总医院、复旦大学等40多所高校、科研机构的近百名专家,共同见证了这一历史性时刻。 蛋白质组计划和基因组计划有何不同?中国的蛋白质组研究在国际上处于什么位置?中国人类蛋白质组计划将如何进行? 围绕上述问题,人民日报记者独家采访了有关专家。 一问 为什么要搞中国人类蛋白质组计划? 生,源于基因组;命,却一定由蛋白质组决定。只有蛋白质组才能从根本上阐释生命 相比&ldquo 蛋白质组&rdquo ,&ldquo 蛋白质&rdquo 一词更为人们所熟知。它是生物体内一种极为重要的高分子有机物,占人体干重的54%,1838年由荷兰科学家格里特首先发现。 基于此,1994年,澳大利亚科学家率先提出&ldquo 蛋白质组&rdquo ,意指某个时刻,某个组织、器官或个体中所有蛋白质的集合,是一个整体的概念。 科学家们之所以对蛋白质组产生浓厚兴趣,还得从人类基因组计划说起。2003年4月,经由6国科学家历时13年奋战的人类基因组计划画上了句号。 &ldquo 科学界曾经认为,只要绘制出人类基因组序列图,就能了解疾病的根源。但我们错了。&ldquo 国际蛋白质组组织首任主席萨姆 哈纳什说,事实上,我们只了解10%基因的功能,剩下的90%仍是未知的。 &ldquo 人们总以为蛋白质组计划是基因组计划的附庸或者说是子产品,这也是一个误区。人类基因组计划并不像事前所预期的那样,能够逾越蛋白质这一生物功能去揭示人类 生、老、病、死的全部秘密,基因组序列只是提供了一维遗传信息,而更复杂的多维信息则发生在蛋白质组层面。&rdquo 国际人类蛋白质组计划执委、亚太蛋白质组组织 主席、中国科学院院士贺福初说,基因组和蛋白质组的关系,好比词典与文章、元素表与化工厂。 &ldquo 基因组学中微小的差异,在蛋白质组学中可以被千倍甚至近万倍地放大,想要解密基因组,必须先系统认识蛋白质组。&rdquo 贺福初认为。 他举例说,人体各个器官如耳、鼻、喉、心、肝、肺,其基因组完全相同,不同的是蛋白质组。因此,不同器官形态、功能各异,是蛋白质组在背后&ldquo 操盘&rdquo 。 &ldquo 就 像蛹化蝶,无论形态如何变化,基因组是不变的。&rdquo 军事医学科学院放射与辐射医学研究所研究员钱小红这样比喻。在她看来,人的每一种生命形态,都是特定蛋白 质组在不同时间、空间出现并发挥功能的结果。比如,某些蛋白质表达量偏离常态的高或低,就能够表征人体可能处于某种疾病状态。 &ldquo 生,源于基 因组;命,却一定由蛋白质组决定。只有蛋白质组才能从根本上阐释生命。&rdquo 贺福初进一步解释道,&ldquo 蛋白质组,可以揭示疾病的发病机制和病理过程,发现新型诊 断标志物、治疗和创新药物,可以全面提高疾病防诊治水平。这个项目如完成,将揭示人体器官蛋白质组的构成,一旦哪一部位出现异常即可实现&lsquo GPS定位&rsquo , 进而找到针对性的诊断措施、干预措施和预防措施。&rdquo 二问 中国能搞人类蛋白质组计划吗? 以贺福初院士为代表的中国蛋白质组研究团队,在该领域向世界交上了一份漂亮的答卷,在某些方面已走在全球前列 近代以来,中国先后错过了多次世界科技革命的机遇。蛋白质组学研究,恰恰是我国生命科学中少数几个能够始终跻身世界前沿的科学领域。 据专家介绍,中国人类蛋白质组事业的发展,也催生了一系列大型研究基地和覆盖全国的协作网络。据不完全统计,目前包括中科院、教育部、卫生计生委、军队以及 湖南、广东、重庆、浙江等在内的省部级重点实验室已超过10个。由贺福初院士发起,以军事医学科学院、清华、北大为代表的7家单位共同筹建的北京蛋白质组 研究中心,于2005年被确立为&ldquo 人类肝脏蛋白质组计划&rdquo 国际执行总部,成为一座世界级的&ldquo 生命之都&rdquo 。 此外,自2000年至2010年,中国累计发表论文2800多篇,位列全球该领域第四。值得一提的是,最近4年,中国在该领域发文量直线上升,历史性地达到1000多篇,年度论文发表数已跃居世界第二(第一为美国),位居全国其他学科前列。 历经十余年的努力,中国蛋白质组研究团队向世界交上了一份漂亮的答卷:成功构建迄今国际上质量最高、规模最大的人类第一个器官&mdash &mdash 肝脏蛋白质组的表达谱、修 饰谱、连锁图及其综合数据库;首次实现人类组织与器官转录组和蛋白质组的全面对接;在炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜 在药靶、蛋白质药物和生物标志物。如,2008年,张学敏课题组首次发现炎症和免疫的新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌 细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组&ldquo 逮到&rdquo 肝癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物 标记&hellip &hellip 上述几项成果均发表于国际顶级的《科学》《自然》系列杂志。 三问 中国人类蛋白质组计划怎样进行? 将分三个阶段进行,计划产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 世界蛋白质组学领域内的新一轮科技竞赛已开始。中科院院士张玉奎指出,虽然中国在蛋白质组一些领域走在了世界前列,但国外有些团队如今正快马加鞭。这警醒我们:必须加快步伐,否则很快将被甩出第一阵营。 &ldquo 逆水行舟不进则退,我们绝不能丧失已经取得的优势。&rdquo 贺福初说。 据悉,中国人类蛋白质组计划将分三个阶段展开。第一阶段,全面揭示肝癌、肺癌、白血病、肾病等十大疾病所涉及主要的组织器官的蛋白质组,了解疾病发生的主要 异常,进而研制诊断试剂、筛选药物,力争2017年左右完成;第二阶段,争取覆盖中国人的其他常见疾病,提升中国人群疾病的防治水平;第三阶段,实现人类 更多疾病的覆盖。 当前,全球每年产生的生物数据总量高达EB级(10的18次方比特),生命科学领域正在爆发数据革命。生物数据最大的是基因组数据,它完成后,蛋白质组数据 无疑将成为更大、更重要和更核心的科学数据。我国已部署建设的蛋白质科学基础设施将相继投入运行,这是国际上最大的蛋白质组学研究基地,将有力支撑和推动 中国人类蛋白质组计划的实施和大数据的产生。中国人类蛋白质组计划产生的大数据将全景式地揭示人体蛋白质组成及其调控规律,解读人类基因组这部&ldquo 天书&rdquo 。 &ldquo 这 项计划,是以中国重大疾病的防治需求为牵引,发展蛋白质组研究相关设备及关键技术,绘制人类蛋白质组生理和病理精细图谱、构建人类蛋白质组&lsquo 百科全书&rsquo , 为提高重大疾病防诊治水平提供有效手段和中国生物医药产业发展提供原动力。&rdquo 贺福初说,&ldquo 我们首先看重科学价值,其次才是经济效益,因为这是真正的原始创 新,是中国能够引领世界科技发展的重要领域之一。&rdquo
  • 揭秘军事医学科学院蛋白质组学创新团队
    16年来,他们针对肝脏疾病、恶性肿瘤、免疫系统疾病、骨质疏松等重大疾病潜在药靶及蛋白质药物方面创造了一批引领世界的创新成果,一篇篇科研论文登上了《自然-遗传学》、《自然-细胞生物学》、《自然-医学》、《自然-免疫学》等国际著名期刊的殿堂。 16年来,中国科学院院士、973项目首席科学家、总后科技金星、&ldquo 千人计划&rdquo 科学家、&ldquo 万人计划&rdquo 科学家等一座座学术&ldquo 桂冠&rdquo 在这里扎根,国家创 新团队奖、国家自然科学奖、国家科技进步奖、何梁何利奖、求是奖、中国青年女科学家奖、中国青年科技奖等一座座丰碑在这里崛起。 16年来,一个个年富力强的杰出&ldquo 海归&rdquo 和国内著名高校的骄子们从这里踏上了为&ldquo 中国梦&rdquo 、&ldquo 强军梦&rdquo 奋斗的新征程。 这就是军事医学科学院蛋白质组学创新团队。 10日,在国家科技奖励大会上,这个创新团队被授予国家科技进步奖框架下的创新团队奖。 梦想,瞄准最浩瀚的&ldquo 生命海洋&rdquo 蝴蝶从卵变虫、成蛹、化蝶,变幻诡异。让科学家们意想不到的是,其幕后操盘者竟是蛋白质组,而非基因组。 2003年,记录人类生命&ldquo 天书&rdquo 的基因组计划宣告完成,但&ldquo 蝴蝶迷案&rdquo 更加扑朔。全球科学家愈来愈意识到一项更艰巨、更宏大的任务&mdash &mdash 解读&ldquo 天 书&rdquo ,即基因组功能的阐明已经摆在面前。人类经过百年跋涉,重返近代生命科学的发源地之一:蛋白质,但不仅关注个体,而是全面揭示数以万计的整体。 1838年,荷兰科学家发现了蛋白质。这是生物体内一种极为重要的高分子有机物,占人体干重的54%。&ldquo 蛋白质组&rdquo 一词,1995年最早由澳大利亚科学家正式提出,其含义是指一个基因组、一种生物或一种细胞/组织所表达的全套蛋白质。 &ldquo 1998年初,我在科学海洋里寻觅更有效的研究工具与策略。机缘巧合之下,敏锐地关注到刚刚出现的蛋白质组学,并逐渐把精力投入到这个新兴领域。&rdquo 国际人类蛋白质组计划的奠基人和开拓者之一、中国科学院院士贺福初介绍说。 蛋白质是基因的编码产物,科学家将它们的关系,比作建筑材料与设计图纸。就人体而言,基因组固定,蛋白质组就能变幻出形态、功能各异的不同器官。由此可见,蛋白质组对进一步阐释&ldquo 生命天书&rdquo 的重要性不言而喻。 拼搏,为中国科学开辟&ldquo 新天地&rdquo 2002年4月,人类蛋白质组计划开始孕育。贺福初院士在华盛顿筹备会议上提出了&ldquo 两谱两图三库&rdquo 的研究策略,阐述了人类肝脏蛋白质组计划暨 &ldquo HLPP蓝图&rdquo ,打动了各国与会学者。他们接受邀请,来到北京香山继续研讨。2002年11月,第一届国际人类蛋白质组学大会在五四运动爆发的源头&mdash &mdash 法国凡尔赛召开,40岁的贺福初院士在这里当选为&ldquo HLPP&rdquo 首任执行主席,成为该领域全球科研大军统帅。时任国家科技部部长徐冠华说,这是首次由我国科 学家牵头负责的重大国际合作计划。 &ldquo 酝酿之初争议非常大。&rdquo 贺福初院士回忆到。&ldquo 2002年,在华盛顿,论证中我们提出:蛋白质组计划必须按生物系统(如器官、组织、细 胞)进行一种战略分工和任务分割。否则,就是一盘散沙。这个策略从华盛顿争到凡尔赛,争到蒙特利尔,然后再争到北京,后来是德国慕尼黑,一直在争。可现 在,国际上不少科学家已逐步按照这个方式进行了。&rdquo 在华盛顿会议上,中国学者的发言激起了千层浪,来自世界各国的科学家议论纷纷,有赞赏、有疑惑、更有激辩,可是唯独没有无动于衷!事实证明,中国科学家在蛋白质组学领域最终赢得国际尊重和广泛支持。
  • 布鲁克公布1.2 GHz高分辨率蛋白质核磁共振(NMR)数据
    德国柏林——2019年8月26日——布鲁克公司(纳斯达克代码:BRKR)在Euroismar 2019(https://conference.euroismar2019.org)上公布了1.2GHz高分辨率蛋白质核磁共振(NMR)数据。布鲁克2台1.2GHz超导磁体已在布鲁克瑞士磁体工厂达到目标场强,创造了稳定、均匀的NMR磁体的世界纪录,可用于高分辨率和固态蛋白质NMR在结构生物学中的应用,以及用于研究固有无序蛋白质(IDPs)。在EUROISMAR 2019上,布鲁克及其科学合作者展示了1.2 GHz高分辨率NMR数据,这些数据是使用新的1.2 GHz 3 mm三通道反向TCI低温探头获得的。布鲁克独特的1.2GHz超高场核NMR磁体采用了一种新的混合设计,高温超导体(HTS)在里层,低温超导体(LTS)在外层,这两者一起为高分辨率蛋白质NMR提供了极其苛刻的稳定性和均匀性。一旦进一步的系统开发和工厂测试完成,意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授有望成为第一批获得1.2 GHz NMR谱仪的客户,这一过程预计还需要几个月的时间。在1.2 GHz系统上对CERM测试样本进行初始数据采集后,他们表示:“在布鲁克瑞士超高场设备上,已经获得了突触核蛋白的高分辨率谱图数据,突触核蛋白是一种与阿尔茨海默氏症和帕金森氏症等疾病相关的固有无序蛋白质。此外,我们还能对与多种癌症相关的蛋白质的第一个1.2 GHz NMR谱图数据进行了审查。毫无疑问,1.2 GHz仪器分辨率的提高——由于在高磁场中色散的增加而成为可能——将有助于推动结构生物学等重要研究领域的研究。一旦最终开发和工厂评估完成,我们期待在实验室收到1.2 GHz NMR谱仪。"布鲁克 BioSpin集团总裁Falko Busse博士表示:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场NMR客户对我们的信任,并且我们为在1.2 GHz频率下生成世界上第一个高分辨率蛋白质核磁共振(NMR)数据而感到自豪。虽然我们尚未完全完成新1.2 GHz系统的所有开发,但我们最近的快速进展证明了我们致力于创新,并致力于与客户合作开发有利的科学能力。”与先前宣布的Ascend 1.1 GHz磁体类似,Ascend 1.2 GHz混合HTS/LTS磁体是一个标准孔(54 mm)的双层磁体系统,其漂移和均匀性规格与布鲁克现有的900 MHz和1 GHz超高场NMR磁体相似,确保与一系列NMR探头类型和谱仪附件兼容。布鲁克公司的Ascend™ 1.2 GHz NMR磁体利用了先进的导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性,这些技术是为ENC 2019宣布作为产品的Ascend 1.1 GHz磁体成功开发的。1.2GHz 1H-15N 2D BEST-TROSY(左)和1.2GHz 3D 15N编辑的NOESY-HSQC 2D平面,500μM泛素样品,13C/15N标记,溶解在90%H2O和10%D2O溶液中。两个实验均使用3mm TCI低温探头进行记录。
  • 超高分辨质谱助力蛋白质组学发展,最新成果登顶 Science !
    近日,郑州大学第一附属医院杨静华教授团队与空军军医大学朱平教授团队、上海大学陈亮教授团队合作在国际顶尖学术期刊Science上发表了题为“Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity”的长篇研究论文。 该研究报道了一种泛蛋白修饰组学技术并发现了新型蛋白修饰和诱导限制性自身免疫。 自身免疫性疾病,如强直性脊柱炎 (AS),机体的免疫系统对外来的抗原会做出相应的免疫应答,结果通常是将外来抗原清除,而对自身的成分通常也会发生无伤害作用的免疫应答。 一般情况下,基因可编码并翻译成蛋白质。但现有蛋白质测定技术却发现了很多与基因编码不同的氨基酸,研究者把这些现代技术检测不到的“非编码氨基酸”(ncAAs)称为人类蛋白质中的黑色物质。 非编码氨基酸包括天然蛋白质中各种形式的氨基酸修饰、变异和衍生物,可反映基因编码以外的蛋白质序列和结构的改变信息,并直接影响着蛋白结构、功能和调控。每一个非编码的氨基酸都可能是蛋白质维度上的疾病标记物和药物靶点,与人类疾病发生发展的分子机制密切相关。 杨静华教授团队经过多年研究,基于超高分辨蛋白质谱和国家超算平台,建立了一套泛蛋白修饰组学的搜索引擎,用于测定大队列人群蛋白质组中的ncAAs图谱。ncAA图谱包括基因编码以外的蛋白质结构信息,是人类疾病发生、发展及转归的分子基础。本研究采用泛蛋白修饰组学搜索引擎,测定了强直脊柱炎患者外周单核细胞的泛蛋白修饰图谱,发现了一系列与疾病相关的非编码氨基酸。论文链接:https://www.science.org/doi/10.1126/science.abg2482
  • ​研究蛋白质热稳定性的几种方法
    研究蛋白质热稳定性的几种方法蛋白跟核酸不一样,核酸都是由四个碱基组成,只是组成的顺序不一样,但是整体的结构都是类似的双螺旋结构。而蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。所以每个不同功能的蛋白长得样子其实都是不同的。蛋白的高级结构决定其功能,行使功能需要正确折叠。蛋白由20多种不同氨基酸组成,需要折叠成正确的三维结构才能发挥自身作用。蛋白质在一定的物理和化学条件(加热、加压、脱水、振荡、紫外线照射、超声波、强酸、强碱、尿素、重金属盐、十二烷基硫酸钠)下,其空间构象容易发生改变而失活,因此研究蛋白的构象和构型变化对其应用有重要的价值。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。热变性是蛋白质变性中最常见的一类现象。蛋白质的热稳定性是指蛋白质多肽链在温度影响下的形变能力,主要体现在温度改变时多肽链独特的化学特性和空间构象的变化,变化越小热稳定性越高。蛋白质的热稳定性受到不同温度、pH值、离子强度等外界因素的影响,在生物技术、药物研发以及食品工业等领域,具有重要意义。蛋白质变性温度是生物学家们研究蛋白质的热稳定性的一个重要的概念,是指蛋白质在特定温度条件下受到热力作用时,其结构发生变化的温度点,一般温度较高时,蛋白质从稳定的三维结构变化成松散的无序结构。蛋白质的热稳定性一般使用热变性中点温度(meltingtemperature,Tm)来表示,即蛋白质解折叠50%时的温度。蛋白质的热变性过程与其空间构象的改变密切相关,Tm值能反映变温过程中蛋白质构象改变的趋势,是衡量蛋白质热稳定性的一个重要指标。蛋白质Tm值的测定在生物医药行业具有广泛的应用,如嗜热蛋白、工业酶等的改造与筛选,蛋白质药物与配体、制剂或辅料的相互作用,蛋白质药物的缓冲液稳定条件筛选等。目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 目前,许多多种方法可以用来测量蛋白质的变性温度,如圆二色光谱法(circulardichroism,CD)、差示扫描量热法(differentialscanningcalorimetry,DSC)、动态光散射法(DynamicLightScattering)和差示扫描荧光法(differentialscanningfluorimetry,DSF)等。 01 圆二色谱法(CD)圆二色光谱(简称CD),或红外(傅里叶变换红外(FourierTransformInfrared,FTIR)光谱),是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单的方法。圆二色谱法诞生于20世纪60年代,其原理是利用左、右两束偏振光透过具有手性结构的生物大分子等活性介质,获得的圆二色谱来分析其结构特点,是蛋白质、核酸、糖类等生物大分子二级结构分析的常规手段之一。蛋白由α螺旋和β折叠构成,α螺旋和β折叠在红外和紫外光段有特异的光吸收。蛋白质对左旋和右旋圆偏振光的吸收存在差异,利用远紫外区(190~260nm)的光谱特征能够快速分析出溶液中蛋白质的二级结构,进而分析和辨别出蛋白质的三级结构类型,变温过程中测量蛋白等物质的圆二色谱,能反映其随温度升高结构变化的趋势。此外,通过测定蛋白质在不同温度下的平均残基摩尔椭圆度[θ]可以获得蛋白质的Tm值。特点:圆二色光谱(CD)适用于测定稀释溶液的热稳定性,操作相对简单,成本较低。但是相关仪器很昂贵,对缓冲液要求也高,要求溶液不能有任何的紫外吸收,也很难做到高通量检测。 02差示扫描量热法(DSC) 蛋白变性时会有温度变化,检测温度变化就能知道蛋白变性程度。差示扫描量热法的应用始于20世纪60年代,是在程序控温下,通过测量输给待测物和参比物的功率差与温度的关系,以获得吸放热量的技术。差示扫描量热法能定量测量热力学参数,可提供与蛋白质热变性过程中构象变化有关的热效应信息。差示扫描量热法(DSC)是一个很经典的一个技术,基于的蛋白变性过程中对热量的吸收。蛋白是有三维结构的,比如氢键,疏水键,范德华力。一旦通过加热然后把结构破坏掉,需要吸收热量。所以可以测量热量变化,就是加热结构变化过程中的热量吸收。通过对参照物和样品同时进行升温或冷却处理,测定两者为保持相同温度所产生的热量差,从而计算蛋白质的Tm值。特点:差示扫描量热法(DSC)能够提供直接的热量变化数据,定量准确、操作简便。但检测通量低、耗时较长,需要的样品体积和浓度比较大。相关仪器中最核心的部件是样品池,对周围环境要求极高。 03 动态光散射法(DLS)动态光散射是基于光学的方法,检测的是蛋白变性之后会发生聚集,导致颗粒的大小发生改变,对散射信号的影响。蛋白在变性过程中,从一个规则高级折叠结构打开,变成一个线性的松散结构。本来外部是亲水的氨基酸,内部是疏水的氨基酸。一旦打开之后,这些疏水的氨基酸会相互就是结合到一起。就是因为疏水的一个相互作用,然后变成一个球状聚集体。此过程会引起这个光的散射的变化。基于动态光散射的信号随着加热的过程的变化就代表粒径的变化,可以计算出蛋白质的Tm值。动态光散射用于表征蛋白质、高分子、胶束、糖和纳米颗粒的尺寸。如果系统是单分散的,颗粒的平均有效直径可以求出来,这一测量取决于颗粒的心,表面结构,颗粒的浓度和介质中的离子种类。DLS也可以用于稳定性研究,通过测量不同时间的粒径分布,可以展现颗粒随时间聚沉的趋势。随着微粒的聚沉,具有较大粒径的颗粒变多。同样,DLS也可以用来分析温度对稳定性的影响。特点:动态光散射可以做到孔板式的检测,具有比较高的通量。但是对于某些样品的检测有限制,因为并不是所有的蛋白在变异之后都会形成这种聚集体,而有一些可能需要很高的浓度才会提升,浓度较低条件下,就观察不到粒径的变化。 04 外源差示扫描荧光法(DSF)差示扫描荧光(DSF)也被称为热荧光法(ThermoFluor),是一种经济高效且易于使用的生物物理技术,通过检测当温度升高或变性剂存在时荧光发射光谱的相应变化来确定蛋白质的变性温度(热变性温度Tm值或化学变性Cm值)。Pantoliano等最先应用此技术测定了上百种蛋白质的热稳定性。差示扫描荧光法分为添加外源荧光染料与不添加荧光染料两种方式,都是利用加热使蛋白内部疏水基团暴露这一特点进行检测Tm值。传统DSF经常使用350/330比值法来进行数据分析根据荧光源不同分为内源荧光DSF和外源荧光染料DSF。基于外源染料荧光的DSF其原理是利用能与蛋白内部疏水基团相互作用的染料为荧光源。蛋白质加热变性后疏水基团暴露,疏水基团与亲和性染料结合产生荧光信号,检测荧光强度变化测定蛋白质的Tm值。特点:借助荧光定量PCR适用于高通量筛选,信号强度可控,灵敏度和准确性都较高。但添加的外源染料可能会对蛋白质结构和功能产生影响,且操作较复杂,不适用于所有蛋白研究。比如做膜蛋白研究时,溶液环境中需要添加双亲性的分子,一端疏水一端亲水。这种情况荧光分子会直接结合到疏水端,导致直接产生荧光信号。并且染料种类的选择、浓度的选择也很繁琐。外源荧光染料DSF也可能会产生背景荧光以及非特异吸附等假阳性结果。 05 内源差示扫描荧光法(inDSF)内源差式扫描荧光inDSF,基于蛋白质中特定氨基酸的荧光特性。这些氨基酸的荧光强度与其所处的微环境密切相关,因此,当蛋白质的结构发生变化时,这些氨基酸的荧光信号也会随之改变。不需要额外的荧光染料加入到检测体系中,利用蛋白内部芳香族氨基酸的自发光原理。不需要任何额外的标记或固定步骤,避免引入结果的不确定性。研究发现,蛋白质分子中芳香环氨基酸在处于不同极性的微环境时(如疏水或亲水环境中),其被激发的内源荧光的最大发射光谱会发生位移。蛋白质中内源荧光主要来自含芳香环氨基酸如色氨酸(Trp),苯丙氨酸(Phe)和酪氨酸(Tyr),其中以色氨酸内源荧光最强。当它在蛋白内部时,发射光主要在330波段,当蛋白一旦去折叠,暴露在溶剂中,发出的光就会从330波长红移到350。所以通过280激发,检测330/350的比值变化,就能测量蛋白质的Tm值。以色氨酸为例,在蛋白质疏水的内核微环境中,其内源荧光最大发射波长在330nm左右,而在亲水的极性微环境中,色氨酸的内源荧光最大发射波长则出现在350nm左右。蛋白质热变性或者化学变性通常会导致色氨酸残基周围微环境的极性发生变化,使通常被包埋于蛋白质疏水内核的色氨酸逐渐暴露于亲水的环境中,从而导致发射内源荧光最大发射波长发生红移(RedShift),即向更大的波长区域移动。特点:内源差式扫描荧光DSF无需复杂的样品处理或标记步骤,实验过程简单方便。但不是所有蛋白质都含有足够的荧光基团,所以对于部分样品检测灵敏度不够,且检测可能会受其他基团影响。 06 技术对比总结总得来说,DSF和DLS法在样品用量及测定效率上更有优势,比较适合进行高通量筛选。但DSF法需要样品含有色氨酸、酪氨酸或额外添加荧光染料,这可能会对样品测量范围带来一定限制,DLS对样品浓度有要求。DLS还可以获取聚集体粒径大小的信息。DSC法虽然在样品用量与检测效率上不及DSF,但作为量热的经典方法仍是不可缺少的Tm值测量手段,在进行批量样品的热稳定性筛选时,可以使用DSF法初筛,DSC法复筛。此外,DSC能测定蛋白质变性过程中的热容变化ΔCp、焓变ΔH、解折叠自由能ΔG、玻璃态转变温度、分子流动临界温度等其他重要热力学参数。CD作为检测蛋白二级结构的经典方法,在Tm值测定方面具有其独特优势和一定的局限性,也是研究加热过程中蛋白结构改变的重要方法。蛋白质Tm值测定具有重要的实际应用价值,例如辅助生物药物开发、生产和质量控制,评估生物相似性、优化蛋白药物配方等,还可以作为探索蛋白质高级结构的手段之一指导蛋白质工程,如比较不同突变对蛋白质稳定性的影响,研究结构域改变与功能活性改变关联性等。比较不同Tm值测定方法,全面了解技术特点及测量效果对于Tm值测定的实际应用具有一定的指导意义,在科研或生产工作中可以灵活选用或联用多种技术来阐明不同条件下的结构变化特点。 07 国产蛋白稳定性分析仪PSA-16 北京佰司特科技有限责任公司于2023-10-01日推出了自主研发的第一款国产蛋白稳定性分析仪,该设备性能和参数达到进口设备的水平,价格却远低于进口产品,弥补了目前国产自主设备在蛋白稳定性专业研究分析领域的空白。多功能蛋白稳定性分析仪PSA-16是一款无需荧光染料、高通量、低样品消耗量的检测蛋白质稳定性的设备。该设备基于内源差示扫描荧光技术(intrinsic fluorescence DSF),通过检测温度变化/变性剂浓度变化过程中蛋白内源紫外荧光的改变,获得蛋白质的热稳定性(Tm值)、化学稳定性(Cm值)等参数。可应用于蛋白缓冲液条件筛选及优化、小分子与蛋白结合情况的定性测定、蛋白质修饰及改造后的稳定性测定、蛋白变/复性研究、不同批次间蛋白稳定性对比等多个方面。 多功能蛋白稳定性分析仪PSA-16应用涵盖植物、生物学、动物科学、动物医学、微生物学、工业发酵、环境科学、农业基础、蛋白质工程等多学科领域。蛋白质是最终决定功能的生物分子,其参与和影响着整个生命活动过程。现代分子生物学、环境科学、动医动科、农业基础等多种学科研究的很多方向都涉及蛋白质功能研究,以及其下游的各种生物物理、生物化学方法分析,提供稳定的蛋白质样品是所有蛋白质研究的先决条件。因此多功能蛋白稳定性分析仪PSA-16在各学科的研究中都有重要的意义。1. 抗体或疫苗制剂、酶制剂的高通量筛选2. 抗体或疫苗、酶制剂的化学稳定性、长期稳定性评估、等温稳定性研究等3. 生物仿制药相似性研究(Biosimilar Evaluation)4. 抗体偶联药物(ADC)研究5. 多结构域去折叠特性研究6. 物理和化学条件强制降解研究7. 蛋白质变复性研究(复性能力、复性动力学等)8. 膜蛋白去垢剂筛选,膜蛋白结合配体筛选(Thermal Shift Assay)9. 基于靶标的高通量小分子药物筛选(Thermal Shift Assay)10. 蛋白纯化条件快速优化等
  • Thermo Scientific ICP-MS高效测定蛋白质中的硫元素
    奥维尔多大学成功使用Thermo Scientific ICP-MS可靠且高效地测定蛋白质中的硫元素 英国剑桥 (2011年1月13日) — 全球科学服务领域的领导者赛默飞世尔科技今日宣布,奥维尔多大学光谱分析研究组成功使用Thermo Scientific XSERIES 2 ICP-MS实现蛋白质中硫元素的测定,结果可靠且避免了干扰。一直以来,气态多原子对硫同位素的准确测定带来的干扰是令研究组特别困扰的问题。而XSERIES 2 ICP-MS成功攻克了这些难题,在提供高精度分析结果的同时优化了分析效率。位于西班牙阿斯图里亚斯的奥维尔多大学光谱分析研究组致力于解决科学技术研究中遇到的分析难题。在这个框架下个所成立的一个二级小组专注于研究采用电感耦合等离子体质谱法(ICP-MS)用于生物高分子(如DNA和蛋白质)定量分析的方法进展。该小组面临的主要问题之一就是在使用低分辨仪器测定硫元素时气态多原子(比如氧气)带来的干扰。为了消除这些问题,该小组选择使用碰撞/反应池(CRC)技术的Thermo Scientific XSERIES 2 ICP-MS。蛋白质的定量分析是目前分析化学领域要求最严格的应用之一。传统的质谱技术如电喷雾质谱 (ESI-MS)和基质辅助激光解吸质谱(MALDI-MS),一直在蛋白质分析中发挥着关键作用。而ICP-MS用于蛋白质测定的潜力最近才被发掘。尽管ICP-MS的检测结果不提供任何关于结构方面的信息,但它对大多数元素都具有优越的定量能力,为蛋白质的准确测定带来极大价值。为了与最新科技发展保持一致,奥维尔多大学的研究小组将XSERIES 2 ICP-MS与一台反相毛细管液相色谱仪(μLC)进行联用,准确测定了标准蛋白质中的硫同位素。奥维尔多大学光谱分析研究组的Jö rg Bettmer博士说:“选择Thermo Scientific XSERIES 2 ICP-MS,是因为除它以外没有四级杆质谱仪能够在准确性、可靠性和整体性能等方面满足要求。这次的成功应用使我们实现了硫同位素的测定,结果可靠且无干扰。拥有该系统,我们得以准确高效地检测含硫的标准蛋白质,这在以前是不可能实现的。”基于四级杆技术的XSERIES 2 ICP-MS为常规分析和高性能分析应用提供了卓越的效率。操作人员能够更快地实现分析目标,获取置信度更高的实验结果,而所需操作时间更少。仪器创新的离子透镜设计能将简单磁场升级为碰撞池技术(CCT)的性能,不影响正常的(非CCT模式)灵敏度或背景。碰撞池可以匹配多种反应气,例如匹配纯氧气以抑制复杂基体的干扰。 欲了解更多关于Thermo Scientific XSERIES 2 ICP-MS信息,请拨打电话:800-810-5118,400-650-5118,邮件:sales.china@thermofisher.com, 或访问网站:www.thermo.com.cn 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额超过 100 亿美元,拥有员工约35,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的从复杂的研究项目到常规检测和工业现场应用的各种挑战。 欲了解更多信息,请浏览公司网站:www.thermofisher.com 或中文网站:www.thermo.com.cn,www.fishersci.com.cn。
  • 蛋白质-小分子相互作用分析技术进展与应用——限制性蛋白水解-质谱分析技术
    阐明小分子(包括内源性代谢物和外源性化合物)如何发挥调控作用的关键问题之一是小分子的靶标发现和验证,即蛋白质-小分子相互作用研究。蛋白质与小分子的相互作用模式既有较稳定的共价结合,也有瞬时的弱相互作用。如何灵敏、高效地捕获并解析多种类型的蛋白质-小分子相互作用是分析难点。目前,蛋白质-小分子相互作用的分析策略大致可分为两类:一是靶向相互作用研究,以蛋白质(或小分子)为中心,发现并验证与之相互作用的小分子(或蛋白质);二是非靶向相互作用研究,全面识别多种蛋白质-小分子的相互作用轮廓。应用的具有分析技术包括:表面等离子体共振技术(surface plasmon resonance,SPR)、氢氘交换质谱分析技术(hydrogen deuterium exchange mass spectrometry,HDX MS)、限制性蛋白水解-质谱分析技术(limited proteolysis-mass spectrometry,LiP-MS)、蛋白质热迁移分析技术(cellular thermal shift assay,CESTA)和药物亲和反应靶标稳定性分析技术(Drug affinity responsive target stability,DARTS)等。本期介绍限制性蛋白水解-质谱分析技术(LiP-MS)的原理、技术流程和其在蛋白质-小分子相互作用研究中的应用。1. 原理LiP-MS技术最初由瑞士苏黎世联邦理工学院的Paola Picotti课题组建立 [1] :利用小分子结合蛋白后相较于原蛋白产生蛋白质空间构象和位阻的变化,经蛋白酶切后形成差异肽段,液质联用分析识别和鉴定差异肽段,基于差异肽段推测蛋白质与小分子的相互作用位点。2. 技术流程在非变性条件下提取蛋白,以保留蛋白活性和空间结构。先使用低浓度(1:100, w/w)蛋白酶K在较低温度(25℃)下短时间内(5 min)对蛋白-小分子复合物进行有限的蛋白酶切。蛋白与小分子结合后,相互作用位点存在空间位阻,从而避免被蛋白酶K切割,由此产生差异肽段。随后进行蛋白变性和胰酶酶切,蛋白质组分析识别和鉴定差异肽段,基于差异肽段所处位置预测蛋白质与小分子的相互作用位点(图1)。图1 限制性蛋白水解-质谱分析(LiP-MS)技术流程 [2]3. 试验试剂和分析仪器3.1 蛋白抽提:可依据实际目的和细胞类型选择不同的细胞/组织裂解液,如RIPA、N-PER、M-PER等,进行细胞/组织蛋白抽提,获得的细胞/组织全蛋白提取物可直接与目标小分子共孵育。3.2 蛋白酶切:关键的蛋白酶切试剂,例如蛋白酶K、胰酶等均有市售。3.3 分析仪器:目前多种类型的液相色谱-高分辨质谱联用仪均可用于蛋白质组学分析,已应用于LiP-MS的高分辨质谱仪包括,布鲁克、赛默飞、沃特世和SCIEX等品牌的飞行时间质谱、轨道阱质谱和傅里叶变换离子回旋共振质谱等。4. 应用实例研究人员基于LiP-MS技术在大肠杆菌中探索多种内源性代谢物和蛋白的相互作用模式 [1],先采用凝胶过滤法除去大肠杆菌全蛋白提取物中的内源性代谢物,获得大肠杆菌全蛋白;随后将大肠杆菌蛋白与20个中心碳代谢相关的关键内源性代谢物(三磷酸腺苷、二磷酸腺苷、烟酰胺腺嘌呤二核苷酸、磷酸烯醇式丙酮酸、6-磷酸葡萄糖、果糖-1,6-二磷酸、丙酮酸、谷氨酰胺、甲硫氨酸等,见图2A)分别共孵育。基于LiP-MS流程发现,上述20个内源性代谢物可与大肠杆菌中1678个蛋白发生潜在相互作用,其中1447个相互作用是首次发现的(图2B)。作者将所发现的相互作用与在线数据库BRENDA对比(主要涉及酶的功能和代谢通路等信息),证明LiP-MS技术能够准确地识别已报道的蛋白-内源性代谢物相互作用,假阳性率低于6 %。图2 20个与中心碳代谢相关的关键内源性代谢物(图A)及其在大肠杆菌中发生相互作用的蛋白数量(图B)[1]参考文献:[1] Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T.,Noor, E., Sauer, U., Picotti, P. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.[2] Pepelnjak M, Souza N D, Picotti P. Detecting Protein–Small Molecule Interactions Using Limited Proteolysis–Mass Spectrometry (LiP-MS). Trends in Biochemical Sciences, 2020, 45(10), 919-920.
  • 超高分辨质谱助力组学发展|赛默飞助阵第二届全国代谢组学及蛋白质组学双星峰会
    上海 双星峰会2021年11月27-29日,第二届全国代谢组学及蛋白质组学双星峰会在上海隆重召开,此次会议汇集了近200位国内外相关领域的知名专家、学者以及临床疾病、中医药、肿瘤、植物等多个研究方向的研究人员积极参与,共同交流探讨基于质谱的蛋白组学及代谢组学在精zhun医学、创新药、植物生理、营养健康、环境和食品等转化应用,共商我国代谢组学和蛋白质组学在后疫情时代的研究与发展。为降低疫情影响,大会采取线上同步直播的方式,在线人数达到600人。在此次会议中,赛默飞质谱组学应用专家鼎力助阵,分享超高分辨质谱技术在组学研究中的应用及进展,助力组学研究发展。在本次大会主会场上,赛默飞质谱组学应用资shen工程师范自全报告了“组学前沿-超高分辨质谱技术在组学研究中的应用和进展”,引起大家高度关注。上世纪90年代初开展的人类基因组计划,在破译人类遗传信息密码的同时,为科研学者提供了大量的完整基因编码序列,从而奠定了大量、快速鉴定蛋白质序列的坚实基础。然而,蛋白质以及代谢物的数量远远超过基因组中基因数量——基因分析量在万级,而蛋白质分析量可能在十万-百万级。完整的组学分析对质谱的性能提出了非常高的技术需求。赛默飞Orbtrap超高分辨质谱技术具有超高分辨率、超高质量精度、超高的稳定性及灵敏度等性能优势,助力科学家进行高通量的蛋白质和代谢物的结构表征和定量分析。质谱技术作为蛋白质和小分子物质的主要检测手段,借助赛默飞Orbitrap高分辨率质谱凭借其高精zhun的定性、定量能力,助力蛋白质组学和代谢组学研究实现精确医疗研究。通过蛋白质组、代谢组、脂质组等多种组学的联合研究,为疾病致病机理发现、疾病的早期诊断及预后生物标志物、疾病分型以及新的治疗靶点研究提供理论依据。随着研究人员对蛋白质组学和代谢组学研究的深入,对样品中分子的空间分布情况及其相互作用的需求日益增加。质谱成像技术能够直观的检测样品中分子的空间分布信息,近年来受到了高度关注与广泛应用,成为与传统光学显微成像互为补充的新一代“分子成像显微镜”。基于Orbitrap的成像技术具有超高的质量及空间分辨率,ji致清晰的成像结果为多种应用领域提供全面丰富的多层次数据。例如在赛默飞质谱成像技术支持下,Spengler教授团队研发出低至1.4μm 空间分辨率的应用,小鼠脑组织成像结果更加清晰。这个水平的空间分辨率也使得单细胞质谱成像技术成为可能。在较大的组织甚至整体动物研究方面,国内学者采用自主研发的空气动力学气流辅助解吸电喷雾电离质谱成像技术,在大鼠脑、肾脏和人食道癌组织中观察到数千种代谢物,并且采用人工神经网络算法,突破了定量研究中的难题,为疾病研究提供了有力的分析工具。会场外赛默飞领xian的Orbitrap质谱技术在现场一众质谱厂商中尤显突出。展台上全方位展示了基于其超高分辨的静电场轨道阱(Orbitrap)质谱平台结合其功能强大的软件平台提供的蛋白质组学及代谢组学全流程的整体解决方案,助力科研超越。
  • 超高效液相色谱—UHPLC改进大蛋白质分子的分离度
    首次将 UHPLC 用于小分子分离时,能得到很好的峰形,但是蛋白质峰的分离几乎没有那么好,因此通常不可能显着缩短运行时间。然而,最近对蛋白质进一步改进让UHPLC 可以提供更好的分离度和更短的运行时间。虽然 UHPLC 不能让科学家始终看到蛋白质之间的所有差异,但它可以让他们看到一些差异——例如,在大体形态、二硫化物异构体、脱氨基作用和蛋白质折叠方面。蛋白质研究人员使用不同的色谱模式来实现这一目标,例如反相色谱 ( RPC )、离子交换 色谱( IEX ) 和尺寸排阻 ( SEC ) 色谱。 为了成功分离出蛋白质的细微变化,可以通过仪器控制在储存和分离过程中具有生物相容性和准确的温度控制来保护脆弱的蛋白质样品免受外部因素的影响。许多蛋白质研究人员在质谱 ( MS ) 分析之前使用超高效液相色谱技术分离蛋白质。这可以很好地工作,具体取决于 UHPLC 分析的模式。 色谱填料改进的粒子技术也对提高蛋白质分析有着显著推进作用。传统上,UHPLC 对小分子的定义特征是直径小于 2 微米的全多孔颗粒柱。但是,这些对较大的蛋白质效果不佳,因为它们会导致背压增加、液相色谱柱堵塞和其他仪器维护问题。对于这个问题,改进的色谱填料采用核壳颗粒(也称为表面多孔、几何结构、融合核或混合颗粒)由被多孔外层包围的实心球形内层制成,可提高 UHPLC 的分离效率处理更大的蛋白质。 恒谱生USHA和USHB系列填料从1.8粒径到200、300甚至更大的粒径都具有很好的重现性、选择性和高分离度的优点。独有的键合方式,可实现百分百水相条件。不管是反相分析还是正相分析,都可以找到合适的色谱柱,能够高效分析维生、类固醇、蛋白质、单糖、多糖、氨基酸等多种物质。 UHPLC 的应用正在扩大,并且越来越多地包括生物治疗药物。核壳颗粒通常用于分离免疫球蛋白, IgG 疗法是当今蛋白质治疗工作的zui大份额。未来可能超高效液相色谱会在核壳颗粒以及研究和生物制药应用方面取得进一步的技术发展。作为化学和生物学的交叉点,用于蛋白质的 UHPLC 已准备好进入一系列有趣的应用领域。
  • 蛋白质组学大师John Yates :质谱的狂热爱好者
    回顾质谱的百年发展史,得益于机械、电子和计算机行业的不断创新,质谱仪的性能也在不断提升。而真正推动质谱实现飞跃的是那些偶然的革命性创新,即具有颠覆性的技术创新——创造全新的分析规模和能力水平。蛋白质组学的大规模分析亦是革命性创新所推动实现的,John Yates III便是实现这项工作的关键科学家之一。John Yates:I was instantly hooked when I first saw a mass spectrometer. 迷恋 | 与质谱的初见作为MudPIT (Multi-dimensional Protein Identification Technology) 与SEQUEST的发明者,John Yates为蛋白质组学技术带来了突破性的进展,而他的每一份成就离不开对质谱的热爱。Yates也在某次采访中直言,在他第一眼看到质谱时,就被“迷倒了 (instantly hooked)”!MudPIT与SEQUEST的发明者——John Yates据Yates回忆,当时他还是个本科生,看到质谱仪是怎么运作的那个瞬间,他惊呼:“这好酷!”;而当看到实验室里满满当当的计算机时,他又被其强大的数据处理能力所震撼。因此,1980年获得缅因大学 (University of Maine) 动物学学士学位的Yates,选择继续在本校攻读化学专业的研究生课程。在学习过程中,为了深入探究质谱法与蛋白质组学研究的关联性,实干派Yates联系了弗吉尼亚大学(University of Virginia)的Don Hunt(弗吉尼亚大学的化学和病理学系教授)。不久后,他收到了一封手写的邀请函,并就此开展了他在弗吉尼亚大学的研究。与此同时,Yates已经看到了质谱的潜力,并希望将其应用于蛋白质组学研究中,但受限于“无法通过人工对数据进行快速解析”。因此,他带领团队在1994年开发了质谱数据的翻译器——软件工具SEQUEST。 John Yates发明SEQUEST算法释放质谱的魅力 | “翻译器”SEQUEST某种程度上而言,SEQUEST的开发是一种必然。1990年,美国能源部 (United States Department of Energy) 和美国国立卫生研究院 (National Institutes of Health, NIH) 向美国国会 (United States Congress) 提交了人类基因组测序的联合计划。自那时起,数据库开始充满了DNA序列信息,用于挖掘数据生物信息学的相关算法也大量涌现。1994年是数据依赖型采集 (data-dependent acquisition, DDA) 的诞生元年,开创性成果SEQUEST也在这一年诞生,万众瞩目。作为自下而上蛋白质组学(自下而上法:对蛋白质进行酶解处理后,得到多肽进行分析) 检索程序的开山鼻祖,SEQUEST的开创不仅奠定了蛋白质组学研究的核心基础,使更多生命科学领域中的研究人员意识并认同蛋白质组学的价值,更向全世界展示了质谱的魅力与潜力。简单来说,SEQUEST是通过利用人类基因组学的信息来解释质谱的信息(即肽和蛋白)。在研究细胞中的蛋白时,得益于这个方法,研究人员不需要对每个蛋白进行纯化,只需要对整体蛋白进行剪切,再通过质谱分析其中的每一种蛋白,便可获得全部蛋白的信息。SEQUEST分析方法可分为四步:(1)对质谱数据进行压缩;(2)通过比对蛋白质数据库 (database)与实验质谱数据在分子质量层面的信息,匹配 (compare)可能的多肽序列;(3)将从数据库中得到的序列的预测片段离子与质谱信息进行比较,从而产生最佳匹配序列表;这个序列被用于进行打分和统计学运算,进而(4)得到分析结果。SEQUEST分析步骤这套方法不仅采用了彼时最前沿的技术,如求互相关性的快速傅里叶变换(fast Fourier transform, FFT),还融入了作者在对质谱数据深入理解后的大胆假设,如对数据进行的系统归一化处理和多项经验打分权重等。SEQUEST提高了质谱技术的有效性和准确性,可以使关键性的生物和临床问题得以解决。自其开发以来,世界各地的研究人员对细胞器中的大部分蛋白质进行研究,根据正常和疾病状态中蛋白质表达差异进行“画像”,从而揭示疾病发生发展的机理。此外,这项工作也促进了蛋白质组学的大规模应用(将在下文进行介绍),他本人将其应用于确定单细胞生物体和哺乳动物细胞中蛋白质复合物成分的大规模研究中。一系列的其他软件亦在SEQUEST的影响下被开发,促进了蛋白质组在分子和细胞生物学研究中的各种应用,包括肽/蛋白的定性定量分析、翻译后修饰的鉴定、蛋白质结构动态研究等等。新战场 | 蛋白质大规模鉴定1998年,Yates提出鸟枪法蛋白质组学 (Shotgun proteomics),以推动蛋白质组的大规模鉴定分析。这个思路来源于人类基因组草图的制作方之一——塞莱拉基因组公司 (Celera Genomics)。他们采用了彼时非常先进的基因测序技术:鸟枪法 (Shotgun)。这种方法跳过将基因组拆分、克隆的过程,直接将其打成小片段进行随机测序,就像拼图一样:我们把一块完整的拼图买回家,彻底打乱后,再开启游戏之旅。2001年,基于鸟枪法蛋白质组学的想法,John Yates团队开发了MudPIT技术,并将其成果发表于 Nature Biotechnology,文章题目为Large-scale analysis of the yeast proteome by multidimensional protein identification technology。实现将鸟枪法应用于蛋白质组学是一件里程碑式的发展成就,其不仅颠覆了传统的蛋白质分析方法,还推动实现大规模分析。Yates带领团队开发MudPIT彼时应用最为广泛的蛋白质分析鉴定方法是二维聚丙烯酰胺凝胶电泳 (Two-dimensional gel electrophoresis, 2D-PAGE),该技术是通过等电点(isoelectric point, pI) 和分子量 (molecular weight, MW) 两个维度,对蛋白质进行鉴定,拥有高分辨率的特点。然而,2D-PAGE存在着一些难以克服的缺陷:(1)虽然该技术可以提供蛋白质的相对分子质量、等电点、表达丰度的相对量等信息,但它无法完成一些更为“精细”的任务,如低丰度蛋白质点的检测,极酸性和极碱性区蛋白质及高分子质量区蛋白质的分离等;另一方面,(2)这项技术自动化程度低,重复性差且耗时长;除此以外,(3)鉴定量和通量一直是这项技术的瓶颈。反观MudPIT,这是一种非凝胶技术,可以实现复杂蛋白质和多肽混合物中某一成分的分离与鉴定工作。首先,肽段先在二维液相色谱中被分离,然后再进入多维毛细管液相色谱中分离、而后进行串联质谱分析以及最后的数据库检索工作。该技术可对样品量较少的蛋白质进行快速分析,适用于蛋白质组学中大规模蛋白质的分离鉴定研究。Yates的文章将MudPIT较之2D-PAGE技术的优势全盘展示。他们完成了彼时鉴定量最大的蛋白质鉴定研究:从酿酒酵母 (S. cerevisiae) 的蛋白质组中分离鉴定了1484个蛋白质;作为对比,当时最大的基于2D-PAGE的蛋白质组学研究,仅鉴定出了流感嗜血杆菌 (Haemophilus influenza) 蛋白质组的502个蛋白质。总体来看,MudPIT的灵敏度和动态监测范围都有了更大的进步,且应用范围更广、自动化程度高。因此,MudPIT也成为了二十世的最初的十年里,研究复杂生物样本中大规模蛋白质表达、定性和定量的强有力工具。制胜密码 | 创新与协作John Yates:I’ve become very intrigued with the concept of innovation.科研进展十分依赖于研究人员的高强度攻坚,及不断创新。他们需要不停地“刁难”自己、“刁难”别人,保持新方向、新想法的敏感度。Yates也一直非常希望更多的科学家可以在他的方法上继续创新。为了帮助各位科学家早日创新、淘汰自己的方法,Yates分享了自己的“创新书单”,希望大家一起从书中学习创新路径并得到启发,如Jon Gertner的 The Idea Factory(这是一部关于传奇科研机构——贝尔实验室的传记,其中共孕育了9位诺贝尔奖得主),以及Steven Johnson的 Where Good Ideas Come from(在这本书中,作者深入发明的创新自然史,对其进行跨越学科、领域的追踪,确定了创新的七种关键模式)。Yates也回忆道,在2003年与一家质谱制造商讨论合作时,他的第一个问题是“扫描速度可以更快吗?”也正是这个问题使得我们迎来了现在的升级版质谱仪。此外,当新设备准备落地时,Yates还会不断提出新的想法,与合作方商讨,寻找更优解。除创新以外,Yates还十分主张团队协作性,并先后培养出来70多位优秀的科学家。其中一位曾在Yates实验室进行博士后工作的研究员Michael Washburn(目前是美国堪萨斯大学医学中心肿瘤生物学教授)称,Yates使他深刻认识到建立一个多学科团队的必要性。因为质谱研究不是一场单机游戏,它极度需要跨学科的方法论,复合型人才的相互教导,才能解决研究瓶颈取得成果。因此,在当年与Yates一起开发出MudPIT后,Washburn在蛋白质组学研究领域继续开疆拓土,并以基于质谱来研究染色质重塑复合物而闻名。Michael Washburn成就、扎根 | 年轻的蛋白质组学SEQUEST 与 MudPIT 的开发,及其他杰出的科研成果奠定了Yates在蛋白质组学领域的泰斗地位,他也毫不意外地入选了 2011年 “2000-2010年全球顶尖一百位化学家”名单。John Yates入选2011年 “2000-2010年全球顶尖一百位化学家”名单此外,他于2019年获得ASMS质谱杰出贡献奖及 Khwarizmi 国际奖,以表彰他对蛋白质组学的贡献。蛋白质组学诞生(1997年)至今才二十余年。得益于全球科学家和HUPO的不懈努力,这个年轻的前沿学科已获得许多令人振奋、惊叹的里程碑式成果。未来,我们亦期待、欢迎有更多的年轻研究人员参与进来,一同以蛋白质组学为支点,揭示生命的奥秘,开创疾病治疗的新篇章。年轻科研力量的崛起是科技创新、发展的重要引擎。2015年,HUPO特设Early Career Researchers (ECRs)项目,以推动年轻科研人员对新知识、新思想和前沿科技创新的引领作用。具体而言,该项目的主旨为:(1)为ECR提供更多研究和交流平台,提高他们的科学知名度:HUPO设立稿件竞赛 (Manuscript Competition),以便让杰出的年轻科学们展示自己最新工作成果;(2)为ECR策划职业发展相关活动,提高他们在学术界、工业界的竞争力:HUPO邀请来自不同科研、技术和商业领域的世界知名科学家,分享他们的科研经历与职业生涯;(3)提高蛋白质组学领域的公平性、多样性和包容性。参考资料1. Washburn, M. P., Wolters, D., & Yates, J. R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology, 19(3), 242-247.2. Proteomics goes global. Nature biotechnology, 24, 302–303 (2006). https://doi.org/10.1038/nbt0306-3023. Eng, K. J., McCormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society Mass Spectrometry, 5(11), 976–989.4. Yates, J. R. (2013). The revolution and evolution of shotgun proteomics for large-scale proteome analysis. Journal of the American Chemical Society, 135(5), 1629-1640.5. Vivien, M. (2013). Digging deep into proteomes. Nature Method, 10(1), 3.6. MICHGAN STATE UNIVERSITY. (n.d). Dr. Michael Washburn. Retrieved from https://bmb.natsci.msu.edu/about/awards/john-a-boezi-memorial-alumnus-award/dr-michael-washburn/7. Scripps Research. (2019). Chemist John Yates receives 2019 ASMS John B. Fenn Award for innovations that advanced mass spectrometry. Retrieved from https://www.scripps.edu/news-and-events/press-room/2019/20190614-yates-amsmaward.html
  • 最新发现:世界上第一个单分子高精度蛋白质图像出炉
    在人体内,有数千不同的蛋白质。每个蛋白质都有独特的形状,这样决定了它们独特的功能。科学家们至今都有很难捕捉单个蛋白的图像。问题在于,高功率成像工具往往会抹导致脆弱的蛋白质结构发生破坏,因此研究人员拍摄数以百万计的照片,来全面地了解一种蛋白质的晶体结构。这些工具所产生的图像,通常是模糊的,并且一些蛋白质不能被拍照,因为它们无法形成晶体。  现在,一个研究团队已经可以用新的石墨烯材料来采集单个蛋白的图像。根据最近公布的arXiv上的一项研究,这种使用全新材料石墨烯获得的蛋白质图像是第一个针对单个蛋白质的高分辨率图像。  捕捉单个蛋白质的图像时,研究人员将蛋白质的溶液雾化,并混合到非常薄的石墨烯片上。然后他们使用了低能量的全息电子显微镜,通过弹跳电子束来撞击蛋白质,然后记录这些电子与其它电子的如何相互作用产生的图像。这种低能量的电子束可以保证蛋白质结构不会出现太大的破坏。不同于以前其他成像方法,研究人员使用全息电子显微镜可以保证蛋白质结构的完整性和可靠性。利用计算机技术,研究人员使用了全息电子显微镜产生的图像来重建蛋白质的原始结构。  细胞色素C图像。A)从全息电子显微镜获取的细胞色素C蛋白的图像。B)三种不同的蛋白质观察角度的重建。C)使用电子计算机技术来数字重建的蛋白质的不同角度的模型。  (图片来自:Jean-Nicolas Longchamp et al, 2015, arXiv)  研究人员试图将自己解析的结构与几种已经广为人知的蛋白质结构做对比,比如血红蛋白(在红血球中携带氧气的蛋白),牛血清白蛋白(在实验室常用的蛋白)和细胞色素C(细胞内的电子转移在他)。他们比较了所得图像,并与其他成像技术获得的图像做对比,并发现,他们的照片有更高的清晰度。研究人员接下来希望获取其他未解析过的蛋白质图像。如果科学家更好地了解蛋白质结构,他们可以找可能存在的错误折叠的蛋白、如阿尔茨海默氏症,帕金森氏和亨廷顿氏病相关的蛋白质,这对于人类健康和基础生物学的研究大有益处。
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K,et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel JV, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )   上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。   本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。   蛋白质结构解析六十年来大事件   在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。   然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。   进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。   在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。   下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。   蛋白质结构解析的常用实验方法   1.X-ray衍射晶体学成像   X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。   后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。   X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。   上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)   2.NMR核磁共振成像   核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。   RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。   使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)   3.Cryo-EM超低温电子显微镜成像   电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。   Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )   将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。   近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。   除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。   蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • 布鲁克宣布世界上首个1.2 GHz高分辨率蛋白质核磁共振数据
    p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 8月26日,布鲁克公布世界上第一个1.2 GHz高分辨率蛋白质核磁共振(NMR)数据。两块1.2千兆赫的超导磁体现已在布鲁克的瑞士磁体厂达到全磁场,创造了稳定、均匀的核磁共振磁体的世界纪录,用于高分辨率和固态蛋白质核磁共振在结构生物学中的应用,以及用于研究本质无序蛋白质。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 在Euroismar 2019上,Bruker及其科学合作者展示了1.2 GHz高分辨率核磁共振数据,这些数据是使用新的1.2 GHz 3 mm三反TCI低温探针获得的。Bruker独特的1.2 GHz超高场核磁共振磁体采用了一种新型的混合设计,在先进的低温超导体(LTS)外插入高温超导体(HTS),这一设计共同为高分辨率蛋白质提供了极其苛刻的稳定性和均匀性。核磁共振1.2 GHz 1h-15n 2d Best-Troy和1.2 GHz 3d 15n的2d平面编辑了500μm泛素样品的noesy-hsqc,13c/15n标记于H2O:d2o 90%:10%。两个实验都是用3毫米TCI低温探针记录的。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授预计将成为第一批接收1.2 GHz核磁共振波谱仪的客户,一旦进一步的系统开发和工厂测试完成,这一过程将需要几个月的时间。在对1.2 GHz系统中的一个进行了CERM测试样品的初始数据采集后,他们说:“在瑞士的Bruker的超高频设施中,已经在α-突触核蛋白上获得了高分辨率光谱,这是一种与阿尔茨海默病(alzheime)等疾病相关的固有紊乱蛋白质。此外,我们还能够回顾与几种癌症相关的蛋白质的第一个1.2 GHz核磁共振波谱。毫无疑问,1.2千兆赫仪器的分辨率的提高——通过在高磁场中增加分散度而得以实现——将有助于推进重要的研究领域,如结构生物学。我们期待在完成最终开发和工厂评估后,在实验室接收1.2 GHz核磁共振波谱仪。” /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " Bruker Biospin集团总裁Falko Busse博士说:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场核磁共振客户对我们的信任,并且我们很自豪地实现了在1.2 GHz下生成世界上第一个高分辨率蛋白质核磁共振数据的进一步里程碑。虽然我们还没有完全完成新1.2 GHz系统的所有开发工作,但我们最近的快速进展证明了我们对创新的承诺,以及与客户合作开发使人信服的科学能力。” /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 与先前宣布的Ascend 1.1 GHz磁铁类似,Ascend 1.2 GHz混合HTS/LTS磁铁是一个标准孔(54 mm),两层磁铁系统,具有与Bruker现有900 MHz和1 GHz超高场NMR磁铁类似的漂移和均匀性规格,确保与一系列核磁共振探针类型和光谱仪附件。Bruker的Ascend& #8482 1.2 GHz核磁共振磁体采用了与在ENC 2019上宣布为产品的Ascend 1.1 GHz磁体相同的先进导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性。 /p
  • 蛋白质分子检测技术取得突破
    据德国卡塞尔大学网站报道,近日,该校科学家研制的一种带磁场的微型传感器获得突破,样机在年内即能完成。该传感器通过遥控牵引磁化纳米生物分子,可将检测液中极少量的蛋白质分子检测出来。该技术有望革新医疗诊断方式,其中利用磁性纳米粒子运送生物分子的方法已申请了专利。   一般情况下,病人体内某些蛋白质组分会“泄露”病情,因此,医生有时可以通过检测体液中的某些蛋白质来及时确诊疾病。不过,由于有的疾病,例如阿尔茨海默氏症(老年痴呆症),其在血液中只含有少量这种蛋白,进行血液检查时蛋白质不一定能够到达传感器表面,所以往往需要用含较多这种蛋白的脊髓液来检查。而穿刺抽取脊髓液不仅需要麻醉,还给患者带来了手术的风险。   现在,德国卡塞尔大学物理研究所和多学科纳米结构科学与技术研究中心(CINSaT)阿诺埃雷斯曼博士领导的科研小组提出一个新的传感器概念,通过遥控牵引磁化纳米生物分子,可将血液中极少量的特定蛋白质分子检测出来,从而通过正常的血液分析取代脊髓液检查。   科学家们首先在表面覆盖受体分子的磁性纳米粒子的帮助下,从检测液体中捕捉特定的蛋白质分子。为此,磁性纳米粒子在回旋磁力场作用下穿过检测液体,并因此产生一个分子漩涡,这在一定程度上起了“搅拌器”的作用。随后,捕获了生物分子的纳米粒子会被磁力场牵引至可识别磁性粒子的传感器上。这个回旋磁力场通过部分磁化材料制成的水平堆积纳米层来产生。科学家们还克服了结构上的障碍,找到了避免纳米粒子通常在检测液体中会相互吸引而产生凝聚的方法。   研究人员认为,除了在医学诊断上的作用,该新型粒子运输概念还可在化学工业中得到应用,可能会迅速给医疗诊断和生物技术带来革命性影响。
  • Nature Reviews Methods Primers|Top-Down 蛋白质组学
    在生物学的中心法则中,信息从DNA流向RNA,最终转化为执行生物学功能的蛋白质。由于遗传变异、RNA可变剪接和翻译后修饰(PTMs)的存在,蛋白质形成了多样的蛋白分子形式(proteoforms)。目前,Top-Down 蛋白质组学(TDP)已经成为了全面研究蛋白分子形式的最强大技术,它通过Top-Down质谱(TDMS)的实验,不需要酶切,直接分析完整的蛋白质,以提供蛋白分子形式的整体视图。TDMS既需要对完整蛋白的精确质量分析(Top),也需要控制下游气相离子的碎裂来获取序列的信息和PTMs的位点(Down)。与TDP不同,Bottom-Up蛋白质组学(BUP)通过分析酶切后的肽段(通常小于3 KDa)来获取蛋白质的信息,由于多肽相对于完整蛋白更加容易分离、电离和断裂,BUP有着比TDP更加广泛的应用。但是由于BUP获取的肽段数量有限,因此提供的序列覆盖普遍偏低,这就导致了蛋白分子形式信息的丢失。此外,相较于TDP来说,BUP无法提供组合的PTMs信息。(如图1) 图1. TDP和BUP的对比TDP的基本实验流程如图2所示,包括前端样品制备和分离,完整质量分析和碎片分析,以及关于蛋白分子形式的鉴定表征和定量的信息学。 图2. TDP的基本工作流程样品制备传统的蛋白质提取方法使用Good’s缓冲液,它具有高盐浓度(100 mM),蛋白酶抑制剂、磷酸酶抑制剂和表面活性剂,用于总蛋白质的溶解。这些常规试剂往往与TDP不相容,因为它们会干扰蛋白质离子检测并抑制质谱信号。不相容的盐和小分子可以通过超滤管离心或使用尺寸排除色谱(SEC)自旋柱去除。在样品制备过程中应注意尽量减少人工引入的蛋白分子形式。例如,蛋白酶和磷酸酶抑制剂通常包括在萃取缓冲液中,以尽量减少体外蛋白质降解和去磷酸化。蛋白应该低温保存,以减慢任何的修饰反应。表面活性剂能促进疏水膜蛋白的细胞渗透和增溶,但是表面活性剂会对蛋白的质谱分析造成信号抑制。蛋白质沉淀法通常使用氯仿/甲醇混合物或丙酮,可以去除表面活性剂和其他质谱不相容的污染物。然而,蛋白质沉淀方法耗时且可能导致蛋白质损失、实验变异性或溶解性问题。因此,可切割表面活性剂已被开发出来,如可酸降解的Rapigest、ProteaseMAX、MaSDeS;可光降解的4-己基苯基偶氮磺酸酯;可氧化还原降解的N-十二烷基二硫-β-d-麦芽糖苷等。样品分离和富集前端分离和富集策略可以选择性地分离亚蛋白质组,在质谱分析之前从复杂的生物样品中捕获和富集低丰度蛋白质。例如,可以通过差速离心的方式获取细胞器,蛋白再从细胞器中提取。另一种方式是通过亲和纯化的方式,基于抗体的方式已经在完整蛋白的靶向分析上得到了应用,但是该方法受到高特异性和高质量抗体需求的限制。为了解决这些挑战,可特异性捕获蛋白的表面功能化的多价超顺磁性纳米颗粒和集成纳米蛋白质组学的方法被开发出来。仪器早期的TDP实验依靠单四极杆和三四极杆(分别为Q和QqQ)质谱仪进行完整蛋白分析。这些系统具有较差的质量分辨能力,使得电荷状态测定困难,并且有限的质量电荷比(m/z)范围导致对大蛋白质的适用性较低。高质量分辨能力对于TDP尤为重要,因为完整蛋白质产生的片段离子可以产生卷曲的质谱,其中具有不同电荷态的各种离子可以部分重叠。许多现代质谱仪器可以可靠地实现高分辨率,包括傅里叶变换质谱系统,如离子回旋共振(FTICR)和Orbitrap质谱仪,以及飞行时间(TOF)和四极杆-飞行时间 (Q-TOF)仪器。完整蛋白的分离蛋白质组的复杂性给TDP带来了巨大的挑战,需要在质谱分析之前分离完整的蛋白质。当处理较大的蛋白质(≥30 kDa)时,这一挑战尤其明显,因为随着蛋白质大小的增加,ESI质谱中的离子信号迅速减少。早期的分离方法使用凝胶电泳技术,例如二维凝胶电泳分离、虚拟的二维凝胶电泳分离、直接利用MALDI MS的干胶法和PEPPI-MS等。还可以通过SEC(尺寸排阻色谱)、RPLC(反相液相色谱)、HIC(疏水相互作用色谱)、IEX(离子交换色谱)以及多维的LC方法来分离。例如一个3D LC方法,通过耦合HIC - IEX - RPC,相较于2D IEX -RPLC MS将蛋白质的鉴定数目提高了14倍。此外,CE-MS的最新进展可以用于变性和非变性的TDP分离。离子淌度质谱(IMS)是基于分子在电场作用下的气相运输性质和碰撞截面积(CCS)分离蛋白质,高分辨率的IMS已被证明可以用于分离高序列同源性的蛋白。串联质谱技术串联质谱(MS/MS)技术,在TDP中通常包括通过选择前体蛋白离子,将其解离成更小的片段离子并分析片段离子,从而得出蛋白质的初级结构和修饰(如图3a)。有多种活化/解离方法可用于生成产物离子。大多数仪器可以进行碰撞诱导离解(CID),也称为碰撞激活离解,通过与中性气体分子(如氮气或氩气)相互作用的碰撞激活来产生b/y离子(图3b)。红外多光子解离(IRMPD)涉及吸收低能红外光子产生b/y离子,并可能在吸收多光子后产生二级和高阶片段离子,从而产生更广泛的蛋白质序列信息。基于电子的解离方法(ExD),如电子捕获解离(ECD)和电子转移离解(ETD),在产生高序列覆盖率方面往往优于CID。ExD产生的c/z产物可用于确定的蛋白质形态表征和PTM定位。使用193 nm或213 nm激光,紫外光解离(UVPD)可以生成更复杂的串联质谱,序列覆盖率与ExD方法相当或更高。此外,结合四极质量过滤器、线性离子阱和Orbitrap的混合平台可以进行质子转移电荷还原(PTCR),以简化产物离子谱。图3. a, 串联质谱技术示意图。b, 不同解离方式产生的碎片离子。数据采集可采集的谱图数量取决于仪器的占空比和峰的宽度。最常见的TDP数据采集方法是数据依赖的采集(DDA)。在DDA中,收集一个完整的质谱扫描,并选择几个前体离子(通常是最丰富的)进行片段化。与数据非依赖的采集(DIA),即不分离前体离子的质谱扫描碎片,正在迅速发展并在BUP工作流程中采用,为TDP提供了令人兴奋的机会。结果处理TDP的数据信息丰富但是解析难度大,考虑到同位素和电荷态的影响,以及人类蛋白质组的高动态范围,使得谱图分析和对于低丰度蛋白的检测更加困难。TDP的谱图往往有更加复杂的同位素包络,通常不会观察到单同位素峰。大多数工具依赖于Averagine模型来解同位素并预测理论同位素分布。当谱图不能进行同位素分解时,谱图去卷积可以使用多个电荷态离子来推导出一种蛋白分子形式的平均质量。目前正在开发用于存储质谱数据的标准化文件格式。最通用的文件格式是mzML(最新版本1.1.1),这是一种由人类蛋白质组组织蛋白质组学标准倡议(HUPO-PSI)支持的XML格式。几个开源软件库可以转换,读取和写入质谱文件格式,包括ProteoWizard,JmzML,mzJava和pymzML。获得去卷积谱图后的下一步是针对蛋白质或蛋白质序列数据库搜索去卷积质谱,以识别具有错误发现率(FDR)控制的蛋白分子形式并表征PTMs,具体的搜索原理的概述可以查看原文Results-data analysis部分,在这里不再赘述。最后,定量分析不同样品间丰富度的差异。数据库可以使用来自UniProt、RefSeq、GENCODE或相关资源的蛋白质序列数据库。这些数据库只包含序列,不包含PTMs的信息。可以根据PTMs位点和类型,构建可用的数据库,但要注意限制PTMs的可变数目,否则产生的组合数据会过于庞大。DNA或RNA-seq数据可用于构建具有样品特异性基因突变和备选剪接事件的蛋白分子形式序列数据库。定性与定量分析TDP提供了对蛋白分子形式的全面了解,使鉴定、新蛋白分子形式的发现和深入的序列表征成为可能。TDP具有独特的优势,因为它可以表征组合PTMs与多基因家族中不同基因编码的同型异构体,这些异构体通常具有高序列同源性。例如,肉瘤蛋白具有多种亚型和PTMs,如N端二甲基化、乙酰化、磷酸化和甲基化。单个肌肉细胞的蛋白质形态变化可以通过TDP进行研究。当单个蛋白分子上存在多个PTMs时,TDP是唯一可以解析复杂蛋白形态和组合PTMs的技术。例如,TDP可以鉴定组蛋白的多种蛋白分子形式,以及定量描述PTMs之间的化学计量学。TDP的定量方式和BUP类似,主要有非标记定量(label free):采用不同蛋白分子形式的信号强度定量;同位素标记(isotope labeling):采用不同分子量的同位素标记来定量;化学标记(chemical labeling):采用化学报告基团来定量,尤其是在MS2水平上。(如图4)其他标记技术——如氨基酸稳定同位素标记(SILAC)、同量异位(isoabric)标记、假同量异位(pseudoisobaric)标记和NeuCode SILAC——已经显示出定量TDP的潜力。图4. 不同定量方法统计学分析和错误率计算TDP的软件通常会使用E值和P值来反映串联质谱和蛋白分子形式的匹配程度,此外FDR值也常被用来描述鉴定的可靠性。对于定量的TDP.对于定量TDP分析,统计分析通常使用单向方差分析和Stundent’s 检验(双尾)。多次测试调整通常使用benjamin - hochberg方法进行。如有必要,可采用非参数Kruskal-Wallis单因素方差分析和Wilcoxon秩和检验进行组间比较。对于人类临床样本的定量TDP,随机截距的线性混合效应模型可以进一步表征人类个体之间的异质性。作者还介绍了一些TDP软件,例如,TopPIC、MSPathFinder、TopMG和pTop等。应用作者在这一部分列举了许多相关研究,考虑到篇幅限制,感兴趣的读者可以在原文中的Application部分查看。主要包括(1)全球蛋白分子形式的发现。(2)癌症:例如,一项全球TDP研究从结直肠癌细胞的2332种蛋白质中鉴定出23000多种蛋白分子形式,并揭示了转移性和非转移性细胞之间蛋白分子形式水平的巨大差异。(3)心血管疾病:将蛋白质组学应用于心脏生物学和临床诊断已经取得了进展。例如,TDP分析了“CARDIA研究”中的配对血清样本,揭示了载脂蛋白AI和AII与心脏代谢指标之间的蛋白分子形式特异性关联。(4)神经退行性疾病:失调的PTMs可以影响神经退行性疾病中的蛋白质聚集,许多PTMs是神经退行性疾病中蛋白质病变的调节剂。例如,阿尔茨海默病受到β或tau淀粉样蛋白磷酸化和β淀粉样蛋白中异天冬氨酸形成的影响。(5)传染病。(6)生物制剂:例如单克隆抗体,抗体偶联药物等基于蛋白的药物。(7)临床TDP,例如,使用MALDI-TOF-MS鉴定病原体,它可以直接从完整的细菌细胞表面快速检测到蛋白分子形式。重现性与数据存储TDP是一个相对较新的领域,与成熟的BUP方法不同,普遍接受的实验方法和数据报告标准尚未制定。由CTDP(Consortium for TDP)领导的标准化工作正在推动实验室间的比较,以更好地了解挑战并提高重现性。蛋白分子形式易受样品处理和仪器方法变化的影响,因此科学的严谨性和充分的数据报告实践非常重要。所有TDP数据都应公开提供。许多期刊已经实现了这一要求,但这需要共同的努力来确保正确的数据处理和报告实践得到执行。CTDP的Proteoform Repository为科学家提供了一个独特的中心,可以浏览存储的蛋白分子形式并提供TDP数据集。数据存储库对于TDP数据遵守FAIR数据存储标准是必不可少的。将TDP数据集平台化并作为中央存储库的新途径和举措将对促进TDP数据的可访问性和共享非常有价值,这反过来将使TDP领域受益。面临的挑战与优化策略TDP的新技术在不断地发展,但是仍旧面临着诸多的挑战:(1)灵敏度。传统的TDP工作流程需要大量的样品(微克级的总蛋白或者数百万的细胞),以获得高质量的数据。新的高灵敏度的方法正在开发,例如CE-MS可实现对于单个细胞的检测,Nanopots技术可用于TDP,还有可以提高蛋白提取率的表面活性剂与尿素联用。(2)高分子量的蛋白质分子形式。高分子量的蛋白质难分离、信号差、仪器负担大。这就需要超高分辨率的平台,如FTICR质谱仪。在质谱分析之前,基于SEC或凝胶技术的基于尺寸的分离方法,例如,整合蛋白质组学方法或PEPPI-MS,可以解决大离子分析的挑战。但是没有单一的分离策略或者MS/MS仪器可以分析整个蛋白质组,需要开发新方法、新仪器以及改进的信息学工具来克服。(3)蛋白质的串联质谱。蛋白质在序列末端的片段化效率较高,而在中间的片段化覆盖率有限。这种差异在较大的蛋白质中更为明显,并且被认为是由于在变性条件下仍然存在的。内部碎片离子是由至少两个骨干断裂产生的,没有N或C端,在TDP碎片离子中越来越多地被考虑。最近开发的TDP软件ClipsMS可以将内部片段质量分配给蛋白质序列,从而提高整体覆盖深度。(4)定位修饰位点。由于不稳定的PTMs,低丰度的蛋白形式,PTMs的实验定位和蛋白质分子形式化学成分的精确表征具有挑战性。富集策略可以增强低化学计量或低丰度信号;还需要优化特定的碎片方法,例如,通过使用更温和的基于电子的方法,如ETD或ECD。(5)通量问题。TDP相对较低的吞吐量和较高的数据复杂性是新老用户的主要障碍。基于发现的TDP数据处理包括去卷积和数据库搜索,这可能需要几个小时到几天,具体取决于软件性能和搜索参数。自动制备和分离系统的发展,以及软件性能的提升都有助于改善通量的问题。展望TDP是目前唯一能够确定蛋白质形分子形式特征并量化其丰度的技术。由于蛋白质分子形式的基本重要性及其作为细胞、环境或生物系统健康标志的潜在作用,TDP技术有望继续快速发展。需要解决的两个关键领域是改进复杂蛋白质分子形式混合物的深度表征和大分子量蛋白的识别和表征。一个令人兴奋的发展是单离子测量,它可以在现有的商业仪器和专门的前体类型上实现。液相色谱固定相、CE-MS、基于IMS的分离的发展以及与多维方法的整合将继续改善蛋白质组学的测量。利用基因组、转录组以及BUP的信息,可以构建更精准的数据库,用于分析一些更复杂的PTMs,例如蛋白的糖基化,这也是TDP的一个优化方向。为了将蛋白质分子形式与相关的可测量输出(例如转录物和代谢物)联系起来,并破译生物学的基本原理,可以将多组学的测量结合起来。此外,通过结合微流体、质谱成像和单离子测量等先进技术,有望将单细胞和空间生物学扩展到蛋白质分子形式分析。本文发表在Nature Reviews Methods Primers 上,Top-Down Proteomics[1] ,通讯作者是美国威斯康辛大学麦迪逊分校化学系的Lloyd M. Smith和Ying Ge教授。文章介绍了Top-Down蛋白质组学的基本工作流程、应用以及面对的挑战。[1] Roberts, D.S., Loo, J.A., Tsybin, Y.O., et al. Top-down proteomics[J]. Nature Reviews Methods Primers,2024,4(1):38.
  • GE医疗携完整蛋白质研究解决方案亮相第八届中国蛋白质组学大会
    2013年9月7日, 重庆 &ndash 在今天开幕的第八届中国蛋白质组学大会上,GE医疗生命科学部以&ldquo 成功的要素&rdquo (Ingredients for Success)为主题精彩亮相。通过仪器展示、技术培训等多种形式,向参会嘉宾、学者全面展示其完整的蛋白质研究解决方案。 GE医疗此次从&ldquo 探索、 发现、纯化、鉴定、确证&rdquo 五个方面展示了其领先的蛋白质研究解决方案。从组学的解析和修饰的鉴定,到分子及细胞水平的结构与功能的探索,GE医疗都可以提供一系列的世界领先的科研工具,以跨学科的技术与手段,帮助科学家解决蛋白质组学研究中的难题。 GE展台 会议期间,GE医疗展示了AKTA Pure 和AKTA Avant蛋白纯化系统,这两款世界知名的生物大分子纯化系统已经成为基础科研机构和医药企业的必备工具,而其丰富的色谱柱与填料产品,更是为应对分离纯化的各种挑战提供了多样化的选择。就在会议前夕,GE医疗发布了最新的AKTAPure150纯化系统,其系统单泵最高流速可以达到150mL/min,且可以兼容直径范围在70~100mm的工业层析柱。伴随着这款高流速系统的推出,Ä KTApure 系列选择将更丰富,涵盖从实验室级别到小规模工业级别的梯度解决方案,用户可以根据预期的纯化规模选择更为合适贴心的系统。 GE医疗的Biacore与 MicroCal非标记生物物理技术,是全面解析生物分子相互作用的不二选择,此次展示的ITC200从高灵敏的热力学角度解密分子间的相互作用,及其结构和功能,在分子水平上描述相互作用的发生机制,在药物设计、蛋白质和酶工程,以及蛋白质结构等领域有这广泛的应用。此外GE医疗还展出了DeltaVision高分辨活细胞显微镜,DV Elite拥有创新的优秀光学组件,是目前最灵敏的显微镜之一,已成为长时间活细胞成像和研究的利器。 GE医疗员工向参会代表介绍高分辨活细胞成像系统 在大会举办的&ldquo 蛋白质组学新技术培训&rdquo 中,GE医疗生命科学部应用工程师张名昌进行题为&ldquo 如何成功进行荧光Westernblotting实验&rdquo 的技术培训,介绍了运用GE医疗生命科学部的ImageQuant LAS和Typhoon系列成像系统实现荧光WesternBlotting的整体解决方案。同时,还与到场嘉宾一同分享和讨论荧光Western Blotting的实验经验和应用。 更多相关信息,请咨询GE医疗生命科学部热线:800-810-9118 或 400-810-9118。
  • ​ 王方军、田瑞军等用高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,中科院大连化学物理研究所研究员王方军团队与南方科技大学教授田瑞军、副教授李鹏飞等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。相关研究成果发表在Cell Chemical Biology上。与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。团队通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位和蛋白质组学规模化序列鉴定。相关论文信息:https://doi.org/10.1016/j.chembiol.2022.01.005
  • 高分子表征技术专题——基于原子力显微镜的单分子力谱技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!基于原子力显微镜的单分子力谱技术在高分子表征中的应用Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization作者:张薇,侯矍,李楠,张文科作者机构:吉林大学超分子结构与材料国家重点实验室,长春,130012作者简介:张文科,男,1973年生. 分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为Hermann E. Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究. 2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授. 2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助. 以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等.摘要基于原子力显微镜(atomic force microscopy, AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一. 本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理. 介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展. AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.AbstractAtomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) has been used widely in the investigation of molecular forces because of its friendly user interface (e.g., easy to operate and canwork in liquid, air and high vacuum phase) and worldwide commercialization. This review is aimed to introduce the principle and protocol of AFM-based SMFS including the setup, the working principle, typicalcurves, the choice of AFM tip and substrate, immobilization of samples, manipulation of the device, empirical criteria for single-molecule stretching and data analysis. Recent progresses on the application of AFM-based SMFS in the characterization of synthetic polymers and biopolymers were reviewed. For synthetic polymers, the effects of primary chemical compositions, side groups, tacticity and solvents on the single chain elasticities were discussed. The applications of AFM-SMFS in disclosing the structure of unknown molecule, polymer-interface interactions and polymer interactions in polymer assemblies (e.g., polymer single crystal) were introduced. In addition, the nature of mechanochemical reactions and characterization of supramolecular polymers were realizedvia this technic. For biopolymers, the effects of base-pair number, the force-loading mode (unzipping or shearing) on the stability of short double-stranded DNA (dsDNA) were reviewed. According to this knowledge, the single-molecule cut-and-paste based DNA assembly was then discussed. The typical force fingerprints of long dsDNA, proteins and polysaccharides as well as the force-fingerprint-based investigation of molecular interactions were illustrated. Finally, the application of AFM-SMFS in revealing the intermolecular interactions and the mechanism of virus disassembly as well as the antivirus mechanism of tannin in tobacco mosaic virus were reviewed.Therefore, AFM-based SMFS is essential for revealing the relationship between the conformation/composition of polymer chains and micro/macro-mechanical properties of polymer materials as well as correlating the molecular structure/interaction of biopolymers with their biofunctions. 关键词AFM单分子力谱  合成高分子  生物大分子KeywordsAtomic force microscopy-based single-molecule force spectroscopy  Synthetic polymers  Biopolymers 合成高分子材料自诞生以来,迅速地以其优良的物理、化学及力学性能等在军事、航空航天、医疗及其他民用领域得到了广泛应用. 其力学性能是最基本、最重要的性质之一,同时受到高分子的单链弹性及链间相互作用的影响[1,2]. 因此,建立高分子链一级结构、单链弹性及链间相互作用与材料宏观力学性能间的联系, 对高分子材料的理性设计至关重要. 然而,传统的材料学研究方法,如宏观拉伸实验、X射线晶体衍射、固体核磁及拉曼等技术无论从样品制备到检测均涉及大量分子,体现平均效应,表征宏观力学性能,无法获得单个链或键的性质及行为的相关信息. 此外,传统研究方法也无法连续、动态及精确地体现出单个事件的不同步骤(例如高分子在不良溶剂中的塌缩行为),导致很多重要信息无法获取. 因此,可在纳米尺度精确操纵与测量的单分子技术,例如基于AFM的单分子力谱,被广泛应用于单个分子的结构、功能及其动态行为的研究中[1~5]. 利用该技术,人们获得了溶剂、取代基以及立构规整度等因素对高分子单链弹性的影响,验证并改进了一些经典高分子理论模型[1,6~9]. 该技术还可以研究高分子的构象变化及其在界面的吸附行为,揭示外力诱导下高分子链中化学键类型的变化规律(力化学)[1,10~12]. 同时,该技术还被用于凝聚态(晶体、层层组装薄膜等)中高分子间相互作用的相关研究[13,14].生物大分子(核酸、蛋白质及多糖等)结构与功能的研究对于认识复杂生命过程的本质,了解疾病的发生发展机制以及开发新型药物与生物医用材料至关重要. 因此,AFM单分子力谱技术也被广泛用来研究生物大分子,例如DNA的解链及动态结构变化、蛋白质的折叠与解折叠、生物大分子间的相互作用(病毒的遗传物质与蛋白质外壳的相互作用)等[9,15~20]. 相关研究深化了人们对这些生物分子所参与的生命过程的认识,并为其功能调控奠定了坚实基础.本文将重点评述AFM单分子力谱技术的基础原理、实验技巧以及该技术在合成高分子及天然高分子领域的典型应用及前沿进展.1单分子力谱的基础原理1.1几种典型的单分子力谱技术迄今为止,诞生了许多单分子操纵技术,例如生物膜力学探测技术、玻璃纤维技术、光学镊子(光镊)、磁性珠技术(磁镊)以及AFM单分子力谱技术[9,21~25]. 后3种技术的应用较为广泛. 光镊利用聚焦激光束产生辐射压力形成的光学陷阱来捕获修饰有样品分子的小球,通过移动激光光束控制小球的移动,实现对样品分子的三维操纵,其时间分辨力能够达到10-4 s,被广泛应用于蛋白质折叠及解折叠等研究. 但光镊系统构造复杂,对环境要求极高,有效样品捕获率低以及激光束容易对样品造成光和热损伤等不足亟待解决. 磁镊技术将样品固定在基底与超顺磁性小球之间,利用外加磁场控制磁球,操纵样品分子,例如旋转等 [22]. 因此,磁镊被广泛用于DNA缠绕及解缠绕等研究中. 该技术可以检测低至10-3 pN的力值,也被应用于一些极微小力的测量. 该技术还能同时对多个磁球进行操纵,实现高通量测试. 由于需要通过成像观测磁珠,因而相机的拍摄速度决定了磁镊的时间分辨率,通常在10 -2 s以上. 在众多的单分子力谱技术中,AFM单分子力谱技术的应用最广,理论发展更为成熟 [1~5,9,26,27]. 该技术将样品分子固定在AFM探针与基底之间,通过控制AFM探针的位移来操纵样品分子. 该技术具有较高的时间和空间分辨率,较宽的力学测量范围,可以在真空、水相以及有机相等多种环境下工作,因此被广泛地应用于合成与天然高分子等众多体系中的分子内及分子间相互作用的研究. 综上所述,光镊及磁镊的力学精度稍高,适用于由弱相互作用及熵弹性所控制的力学性质的研究;AFM单分子力谱更适合较强相互作用或者由焓控制的弹性性质的研究. 为了更全面地认识聚合物的结构与力学性质,可以将上述3种单分子力谱技术联合使用.1.2AFM单分子力谱1.2.1仪器构造基于AFM的单分子力谱是AFM的工作模式之一. 因此,其基本构造与AFM相同,主要由位置控制系统(压电陶瓷管)、力学传感系统(AFM探针的微悬臂及其顶端针尖)以及光学检测系统(激光二极管、棱镜、反射镜与四象限光电检测器)三部分组成(图1)[9,21,28,29]. 对压电陶瓷管两端施加电压,可以控制其驱动样品台或AFM探针进行亚纳米精度的位移.z方向的移动用于调整探针与样品间的距离;x,y方向的移动用以调整探针在样品表面的探测位置及范围. 光学检测组件中的激光器将激光照射在微悬臂靠近针尖的一端,再反射到四象限光电检测器上. 当AFM探针受到样品分子的牵拉发生弯曲时,其反射的激光的位置也会随之变化. 据此,可以计算出微悬臂的偏转量,结合微悬臂的弹性系数,可以获得待测样品分子的相关力学信息[3~5].Fig. 1The schematic diagram of AFM-SMFS.1.2.2工作原理实验前,样品分子的一端通过物理吸附、特异性相互作用或化学偶联等方法被固定在基底. 随后,驱动压电陶瓷管使AFM探针逼近待测样品(图2(a)). 如果基底对探针没有长程的吸引或排斥作用,微悬臂将处于松弛状态. 探针与基底接触后,受力向微悬臂上表面方向弯曲,引起二极管的2个象限间的差分信号(pha-b)的变化(图2(a)与2(b),状态2→3). 在此过程中,样品分子会通过化学、物理或特异性作用吸附在探针上,在探针与基底之间形成桥联结构. 随后,探针远离基底并恢复松弛状态(图2(a),4),pha-b也恢复初始数值. 探针继续远离基底,桥联于探针与基底间的样品分子受到拉伸,导致微悬臂向针尖方向偏转(图2(a),5),引起pha-b的增加(图2(b),5). 最后,桥联结构中稳定性最薄弱的部分发生断裂,微悬臂迅速恢复为不受力的松弛状态(图2(a),6),表现为pha-b的突然回落(图2(b),6)[1,9,21,29]. 每个完整的逼近-回缩过程都会产生pha-b对应压电陶瓷管位移的原始曲线(图2(b))[29].Fig. 2(a) Schematic illustration of the basic working principle of AFM-SMFS (b) Original volt-piezo displacement curves (c) Typical force-extension curves.Fig. 3Electron microscopy images of a commercial Si3N4 AFM probe. Fig. 4Molecular immobilization based on (I) physical absorption, (‍Ⅱ) specific binding, (‍Ⅲ) gold-thiol chemistry, (‍Ⅳ) silanization and enzymatic biosynthesis.Fig. 5Immobilization of thiol-labeled DNA based on silanization and bifunctional PEG.Fig. 6Typical curves obtained in constant velocity (a) and force-clamp mode (b), respectively.原始曲线经过校正才能正成为最终的力-拉伸长度曲线(图2(c))[1,2,4,9,21,29]. 将具有弹性的微悬臂看成弹簧,根据胡克定律F=kcΔx(kc为微悬臂弹性系数,Δx为微悬臂偏转量)可以计算出微悬臂受到的作用力,即样品分子内或分子间的作用力.kc通过对微悬臂在远离基底时热振动所获得的能量谱的积分即可获得;Δx利用图2(b)中斜线部分(状态2→3)的斜率(s),即Δx=s-1pha-b就可以计算出. 样品分子的拉伸长度通过从原始数据横坐标记录的压电陶瓷管的位移中扣除Δx获得. 至此,pha-b对应压电陶瓷管位移的原始曲线被成功地转化为样品分子的力-拉伸长度曲线.1.2.3力曲线及其含义AFM针尖逼近和远离样品表面的一个循环中可以获得2条力曲线,称为逼近力曲线与回缩力曲线(图2(c))[1,2,4,9,21]. 逼近力曲线上B区域的形状可以给出样品模量等信息. 例如:当AFM探针接触较软的样品时,受到的排斥力随位移缓慢增加;而接触硬度较大的样品时,受到的排斥力快速增加,B区域的力信号与水平基线之间形成近90°的直角. 对于回缩力曲线,C-D区域可以给出单分子弹性性质、链结构信息以及分子内、分子间相互作用强度等定量信息.2AFM单分子力谱实验技巧2.1探针与基底的选择AFM探针直接影响力学探测的稳定性、精确度及测量范围[1,2,4,9,21,29]. 其材质通常是硅或氮化硅,由针尖、微悬臂及承载微悬臂的基片组成(图3). 针尖通常是四面体形状,最尖端的曲率半径(tip radius)为几个到几十纳米,高度(tip height)通长为3~28 µm. 微悬臂有矩形和三角形2种,长度为7~500 µm,厚度为0.5~7 µm. 其材质及几何尺寸均对共振频率和弹性系数有重要影响,需要根据实验体系来选择探针. 对于弱相互作用体系(例如双链DNA的解拉链)[30],应选择相对柔软,即弹性系数小的探针;而强相互作用体系(例如:共价键强度的测量)[31],则需选择相对坚硬,即弹性系数较大的探针. 值得注意的是,刚性较大的探针在应力松弛时其内部储存的能量释放速度更快,更适于研究多重键的连续打开与形成的动态过程,例如聚酰胺(PA66)单晶中聚合物链在受力熔融过程中的黏滑运动(stick-slip)[32]. 此外,一些公司也生产了许多功能化的AFM探针. 例如:满足基于巯基-金的化学分子偶联的镀金AFM探针;为了增加激光束在微悬臂上表面的反射率,只在上表面蒸镀金属涂层(铝或金等)的探针等. 然而,只存在于微悬臂上表面的镀层,往往导致其上下表面的膨胀系数产生差异,引起热漂移[33]. 为了减小该热漂移,有些探针只在其微悬臂的尖端进行有限的金属蒸镀(例如MLCT-BioDC型号探针). 如需增加时间分辨率,可以选用超短探针[34]. 但超短探针的弹性系数通常较大. 科研人员曾利用离子束刻蚀的方法将微悬臂做成镂空结构,同时保证了时间分辨率和弹性系数[35]. 然而,使用较小尺寸微悬臂时,激光容易“漏射”到样品表面,发生反射,与微悬臂表面的反射光产生干涉,导致力曲线出现大幅度波动. 为了减少这种干涉效应,通常可以采取以下几种策略:(1)减小汇聚到微悬臂表面的激光光点的大小,从而减小漏光;(2)选用横向尺寸较大的微悬臂,增大反射面积;(3)选择透明基片(例如玻璃片)固定样品,降低基片的反射率;(4)适当增加样品平面相对于微悬臂平面的角度,降低反射光的相干性.AFM探针需要被牢固地固定在夹具上,以减少系统漂移. 为了提高微悬臂检测的灵敏度,将激光光斑尽可能地照射在微悬臂的最前端. 仪器调试完毕,让整个系统平衡10~30 min,使微悬臂上下表面材质差异所引起的界面张力达到平衡,减小系统漂移. 如在同一个样品上进行力谱探测的时间较长,且实验前期及后期羧甲基化淀粉以及多聚蛋白质的力学指纹谱是被经常采用的单分子拉伸指示剂. 为此,可以将待测分子与已知指纹图谱的分子进行串联(图7)[49]. 需要注意的是待测体系的力学稳定性要大于内标分子产生力学指纹谱所需的力值.Fig. 7Basic strategy to isolate/identify single chain/molecule pair stretching.2.5力谱数据的分析处理单分子力谱数据可以给出的信息包括长度及力值的定量信息. 为了更精确地描述这些定量信息,通常需要对大量力学信号进行统计分析[1]. 常用的统计方法是将所得数据以柱状图形式呈现,进行高斯拟合,得出最可几值.此外,还可以利用自由连接链模型及蠕虫链模型对数据拟合,获得库恩长度、相关长度或者链段弹性系数等信息[1]. 近年来,这些经典模型不断被修正,应用范围逐渐被拓展[56]. 例如:FJC模型中了增加参数Ksegment,表征高分子链中每一个链段的弹性,被修正为可伸长的FJC模型(eFJC). 该模型中,每一个链段类似弹簧,受力过程中伸长,可以更加精确地描述高分子受力时的弹性行为. 为了更好地描述高分子主链的固有弹性,即本征弹性,由量子力学(QM)计算得到的非线性单链焓弹性模量被整合到WLC、FJC及FRC模型中,得到了QM-WLC、QM-FJC与QM-FRC模型[57]. 在特定情况下,如水环境或真空条件,侧基和环境的非共价相互作用会对高分子链弹性产生影响. 为了得到上述情况下高分子主链的弹性,基于两态(two-states)系统的非共价作用动力学被引入,创建了TSQM-WLC、TSQM-FJC及TSQM-FRC模型. 上述修正模型能够更加精确地定量高分子链的结构及性质[57].一些非平衡态体系,例如受体配体的解离、力诱导下的转变等,力加载速率会影响力-拉伸长度曲线的形状. 因此,可以在较大力加载速率范围内,观察上
  • 大连化物所:基于nMS表征影响蛋白质结构的分子机制
    近日,连化物所生物分子结构表征新方法研究组(1822组)王方军研究员、刘哲益副研究员团队与西南交通大学封顺教授团队合作,利用我所自主搭建的高能紫外激光解离—串联质谱仪器,揭示了质子化氨基酸侧链的正电荷在电喷雾离子化过程中影响蛋白质结构的分子机制,为质谱精确表征蛋白质高级结构提供了参考。非变性质谱(nMS)是研究蛋白质及其复合物组成和高级结构的前沿质谱技术。在nMS分析中采用生物兼容溶液和非变性电喷雾离子化将蛋白质从液相转移至气相并保持高级结构和相互作用。然而带正电荷的质子化氨基酸侧链在失去水分子的溶剂化稳定作用后,会与空间接近的蛋白骨架羰基形成氢键,通过分子内溶剂化稳定侧链正电荷。虽然有报道通过离子迁移—质谱检测到了分子内溶剂化引起的蛋白质碰撞截面积变化,但是对其发生的具体位点和引起结构变化的区域仍然缺乏有效分析手段进行精确表征。在本工作中,研究团队利用我所自主搭建的高能紫外激光解离—串联质谱仪器和蛋白质光解离质谱数据处理软件系统,通过蛋白质紫外光解离碎片离子的价态分布和位点解离碎片产率分析,探测到肌红蛋白带电残基侧链分子内溶剂化的具体位点,以及对蛋白质结构影响的区域位置。团队系统表征了不同价态(质子化数目)下的蛋白质结构差异,发现高电荷价态下蛋白质气相结构易受分子内溶剂化效应的影响而偏离溶液态结构,低电荷蛋白质离子的气相结构更加接近溶液状态。研究团队进一步证明,冠醚18C6与蛋白质带电侧链的络合主要发生在溶液中,随后在电喷雾离子化过程中起到稳定蛋白质结构的作用。紫外激光解离质谱分析揭示冠醚主要结合在蛋白质离子的高电荷密度区域,通过阻断带电侧链的分子内溶剂化使蛋白质气相结构更加接近溶液状态。相关研究结果展示了高能紫外激光解离质谱在同时获取蛋白质序列和动态结构信息中的显著优势,为nMS表征中蛋白质溶液结构的保持和高效表征提供了重要的理论和技术参考。近年来,我所王方军和肖春雷研究员通过交叉学科联合创新攻关,在大连相干光源搭建了高能紫外激光解离—串联质谱实验线站,兼容50-150nm极紫外自由电子激光和193nm准分子激光解离模式,已在多肽(Anal. Chim. Acta,2021)、蛋白质(Cell Chem. Biol.,2022)、金属团簇(J. Phys. Chem. Lett.,2020;Sci. China Chem,2022)等大分子体系的解离和结构表征中取得了系列研究成果。相关研究成果以“Ultraviolet Photodissociation Reveals the Molecular Mechanism of Crown Ether Microsolvation Effect on the Gas-Phase Native-like Protein Structure”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的共同第一作者是我所1822组联合培养硕士研究生周伶强和刘哲益。
  • 王方军:高能紫外激光解离质谱实现蛋白质识别机制解析
    近日,大连化物所生物分子结构表征新方法研究组(1822组)王方军研究员团队与南方科技大学田瑞军教授、李鹏飞副教授等人合作,利用193nm紫外激光解离—质谱装置,实现了免疫共受体CD28磷酸化胞质端与激酶PKCθ的C2结构域识别结合机制解析。 与常规毫秒级碰撞诱导质谱解离(CID)相比,5ns单脉冲193nm紫外激光解离(UVPD)可直接激发非变性蛋白质骨架共价键至高能态引发高效解离,激发解离速率提升6个数量级,位点解离效率和碎片离子产率与其局部非共价作用和微观结构密切相关,通过碎片离子和解离产率分析可同时获得蛋白质序列和结构信息。目前,193nm紫外激光解离质谱尚未商品化设备,仅在少数实验室有自主搭建设备。  免疫共受体CD28是癌症免疫治疗的重要靶点,其胞质端酪氨酸磷酸化激活引起的下游蛋白识别结合机制尚不清楚。本工作中,研究人员采用光亲和质谱法发现CD28磷酸化胞质端与激酶PKCθ的C2结构域特异性结合;利用193nm紫外激光解离质谱对C2结合前后进行了全序列覆盖位点光解离效率的差异分析,发现了光解离效率显著下降的三个关键结合区域和核心识别位点K49、H63、R68;证明了高能紫外激光解离策略在蛋白质动态识别结构变化分析中的高灵敏度和单位点分辨高精度优势。  大连化物所王方军和肖春雷研究员通过交叉学科联合攻关,在大连相干光源搭建了193nm紫外激光解离-高分辨质谱装置,在前期工作中通过高能光子对多肽分子的高效激发解离实现了多磷酸化肽修饰位点精确定位(Chin. Chem. Lett.,2018)和蛋白质组学规模化序列鉴定(Anal. Chim. Acta.,2021)。  相关研究结果以“Motif-dependent Immune Co-receptor Interactome Profiling by Photoaffinity Chemical Proteomics”为题,于近日发表于Cell Chemical Biology上。
  • 中国科大建立新的蛋白质从头设计方法
    近期,中国科学技术大学教授刘海燕、副教授陈泉团队采用数据驱动策略,提出一条全新的蛋白质从头设计路线,相关成果2月9日以“用于蛋白质设计的以主链为中心的神经网络能量函数”为题发表于《自然》(Nature)杂志。  蛋白质是生命功能的主要执行者,其结构与功能由氨基酸序列所决定。目前,能够形成稳定三维结构的蛋白质几乎全部是天然蛋白质,其氨基酸序列是长期自然进化形成。在天然蛋白结构功能不能满足工业或医疗应用需求时,想要得到特定的功能蛋白,就需对其结构和序列进行设计。目前,国际上报道的蛋白质从头设计工作主要使用天然结构片段作为构建模块来拼接产生人工结构。然而这种方法存在设计结果单一、对主链结构细节过于敏感等不足,限制了设计主链结构的多样性和可变性。蛋白质从头设计中最困难的问题是如何充分地探索蛋白质主链结构空间,发现新颖的、“高可设计性”主链结构,目前还缺乏相关的系统性解决方法。   中国科大相关团队长期深耕计算结构生物学方向的基础研究和应用基础研究。刘海燕、陈泉团队十余年来致力于发展数据驱动的蛋白质设计方法,经过长期不懈努力,建立并实验验证了给定主链结构设计氨基酸序列的ABACUS模型,进而发展了能在氨基酸序列待定时从头设计全新主链结构的SCUBA模型。SCUBA采用一种新的统计学习策略,基于核密度估计(或近邻计数,NC)和神经网络拟合(NN)方法,从原始结构数据中得到神经网络形式的解析能量函数,能够高保真地反应实际蛋白质结构中不同结构变量间的高维相关关系,在不确定序列的前提下,连续、广泛地搜索主链结构空间,自动产生“高可设计性”主链。  理论计算和实验证明,用SCUBA设计主链结构,能够突破只能用天然片段来拼接产生新主链结构的限制,显著扩展从头设计蛋白的结构多样性,进而设计出不同于已知天然蛋白的新颖结构。“SCUBA模型+ABACUS模型”构成了能够从头设计具有全新结构和序列的人工蛋白完整工具链,是RosettaDesign之外目前唯一经充分实验验证的蛋白质从头设计方法,并与之互为补充。在该研究中,团队展示了9种从头设计的蛋白质分子的高分辨晶体结构,它们的实际结构与设计模型一致,其中5种蛋白质具有天然蛋白质中尚未观察到的新型拓扑结构。   Nature审稿人认为,“与现有方法不同,现有方法要么使用参数方程来描述预定义螺旋结构的空间,要么基于片段组装的方法依赖于已知蛋白质片段。SCUBA方法原则上允许人们探索任意主链结构,然后填充序列,允许人们设计比自然界中观察到的更广泛的蛋白质几何结构”,“蛋白质从头设计仍然具有挑战性,本工作中六种不同蛋白质的高分辨率设计是一项重要成就,表明此方法工作良好”,“本研究中报道的成功设计数量之多令人印象深刻,并提供了强有力的证据,证明了基础技术是鲁棒的。所采用的基于神经网络的能量项是新颖的,因为它们刻画了更传统的统计方法无法企及的多维特征,该方法具有足够的新颖性和实用性”。   该研究为工业酶、生物材料、生物医药蛋白等功能蛋白的设计奠定了基础。研究工作得到科技部、国家自然科学基金委和中科院的资助支持。   论文链接
  • “海上升明月”——军事医学科学院蛋白质组学创新团队全景素描
    蛋白质组创新团队主要成员钱小红和应万涛正在实验室交流。   新华网消息:今年初,在国家科技奖励大会闭幕之际,记者慕名来到世界知名的科技&ldquo 硅谷&rdquo &mdash &mdash 北京中关村生命科学园,探访军事医学科学院蛋白质组学创新团队。园区内正在兴建的&ldquo 凤凰工程&rdquo &mdash &mdash 我国生命科学领域投资最大的基础设施。顺着环形道路向北步行200米左右,能见到一座坐西朝东、棕红色、斜切式、平卧地面的U形建筑,那正是记者要去的北京蛋白质组研究中心。U形建筑的西侧,耸立着一个高大的红色立体造型&ldquo P&rdquo ,这是蛋白质组学的首个英文字母。正面墙上,嵌着银色&ldquo proteome&rdquo (蛋白质组),这是人类历史上第一次将诞生仅十年的&ldquo proteome&rdquo 词汇镶入建筑物的墙中,形成国际上众多蛋白质组大师留影的背景。   U形建筑的中央,是一个长方形的荷花池,别有情趣。在夏天,沿着U形开口的方向,能够看到柳叶飞扬,芦苇飘香,流水潺潺,波光粼粼,候鸟栖息,鱼儿戏水的美景。那是科学家们心中的&ldquo 凤鸣湖&rdquo 。   步入中心大厅,记者看到,墙壁上挂满了相关领域世界著名科学家的照片和成就介绍。楼上楼下的实验室十分洁净,整齐划一,许多世界一流的实验设备在这里紧张运行。 蛋白质组创新团队带头人之一杨晓明课题组。   梦想,瞄准最浩瀚的&ldquo 生命海洋&rdquo   生命是地球孕育的奇迹。   蝴蝶从卵变虫、成蛹、化蝶,变幻诡异。让科学家们意想不到的是,其幕后操盘者竟是蛋白质组,而非基因组。   &ldquo 今天的人类文明已经高度发达,但实际上,生命现象就像一个浩瀚的太平洋,而我们迄今仍在渤海湾里探索。&rdquo 作为团队带头人之一的杨晓明研究员说。   2003年,记录人类生命&ldquo 天书&rdquo 的基因组计划宣告完成,但&ldquo 蝴蝶迷案&rdquo 更加扑朔。全球科学家愈来愈意识到一项更艰巨、更宏大的任务&mdash &mdash 解读&ldquo 天书&rdquo ,即基因组功能的阐明已经摆在面前。人类经过百年跋涉,重返近代生命科学的发源地之一:蛋白质。这不仅关注个体,而是全面揭示数以万计的整体。   1838年,荷兰科学家发现了蛋白质。这是生物体内一种极为重要的高分子有机物,占人体干重的54%。&ldquo 蛋白质组&rdquo 一词,1995年最早由澳大利亚科学家正式提出,其含义是指一个基因组、一种生物或一种细胞组织所表达的全套蛋白质。   &ldquo 1998年初,我在科学海洋里寻觅更有效的研究工具与策略。机缘巧合之下,敏锐地关注到刚刚出现的蛋白质组学,并逐渐把精力投入到这个新兴领域。&rdquo 国际人类蛋白质组计划的奠基人和开拓者之一、中国科学院院士贺福初介绍说。   蛋白质是基因的编码产物,科学家将它们的关系,比作建筑材料与设计图纸。就人体而言,基因组固定,蛋白质组就能变幻出形态、功能各异的不同器官。由此可见,蛋白质组对进一步阐释&ldquo 生命天书&rdquo 的重要性不言而喻。 蛋白质组创新团队主要成员之一张成岗课题组。   拼搏,为中国科学开辟&ldquo 新天地&rdquo   井冈山,被誉为&ldquo 红色摇篮&rdquo 。毛泽东领导的工农红军在这里开辟了&ldquo 农村包围城市&rdquo 的新道路。   明朝的闭关锁国政策,让领跑数千年的中国迅速落后于世界。当新兴的全球科技浪潮再次袭来,中国将如何应对?   2002年4月,人类蛋白质组计划开始孕育。贺福初院士在华盛顿筹备会议上提出了&ldquo 两谱两图三库&rdquo 的研究策略,阐述了人类肝脏蛋白质组计划暨&ldquo HLPP蓝图&rdquo ,打动了各国与会学者。他们接受邀请,来到北京香山继续研讨。2002年11月,第一届国际人类蛋白质组学大会在五四运动爆发的源头&mdash &mdash 法国凡尔赛召开,40岁的贺福初院士在这里当选为&ldquo HLPP&rdquo 首任执行主席,成为该领域全球科研大军统帅。时任国家科技部部长徐冠华说,这是首次由我国科学家牵头负责的重大国际合作计划。   &ldquo 酝酿之初争议非常大。&rdquo 贺福初院士回忆到。&ldquo 2002年,在华盛顿,论证中我们提出:蛋白质组计划必须按生物系统(如器官、组织、细胞)进行一种战略分工和任务分割。否则,就是一盘散沙。这个策略从华盛顿争到凡尔赛,争到蒙特利尔,然后再争到北京,后来是德国慕尼黑,一直在争。可现在,国际上不少科学家已逐步按照这个方式进行了。&rdquo   历史必将铭记,在华盛顿会议上,中国学者的发言激起了千层浪,来自世界各国的科学家议论纷纷,有赞赏、有疑惑、更有激辩,唯独没有无动于衷!军事强调服从,但科学包容争议。事实证明,中国科学家在蛋白质组学领域最终赢得国际尊重和广泛支持。   借助国际计划的东风,经过10多年发展,目前该团队已经拥有2位中国科学院院士,1位发展中国家科学院院士,5位入选国家&ldquo 千人计划&rdquo 、&ldquo 万人计划&rdquo 科学家,3位何梁何利奖获得者,7位国家973项目首席科学家,7位&ldquo 国家杰出青年基金&rdquo 获得者,6位中国青年科技奖获得者,20人次被军地评为科技金星、银星、新星,成为蛋白质组学领域中具有显著国际竞争力的精锐之师。3位科学家分别当选党的十六大、十七大、十八大全国代表;2人获全国百篇优博。   团队成员先后在《自然》《细胞》系列子刊及《科学》等国际顶级刊物上发表文章280余篇,影响因子合计1600余。2006年,他们荣获&ldquo 首届全军优秀科技群体&rdquo ,并于2004年-2009年获得国家自然基金委创新群体基金的连续资助,刚刚又获得了2013年度国家科技进步奖创新团队奖。团队带头人贺福初院士成为中国蛋白质组学的奠基人与开拓者,担任国际人类蛋白质组计划执委(全球8位),并当选为亚太人类蛋白质组组织主席。   2009年,该团队在国际蛋白质组学领域最权威杂志一期刊登3篇文章,创同一单位同期刊发数全球最高纪录。2011年,他们又在《自然》子刊连发两篇重大成果,引起广泛关注。2012年2月1日,《新闻联播》用1分11秒的时间播发张令强课题组联合香港、深圳专家在骨质疏松症治疗领域取得重大突破并在线发表于《自然医学》的好消息。2012年5月,《人类肝脏蛋白质组计划10周年专著》正式发表,这是世界上首次以大百科全书的方式出版人类组织器官的蛋白质组专著。   据统计,2010年底,贺福初院士课题组在蛋白质组学领域发文影响因子及引用累计排名跃居全球第4位;2012年4月《自然》出版集团宣布,张学敏院士课题组在《自然》系列刊物年度发文数位居亚洲所有高校、科研机构前50名。此外,该团队还获得国家自然科学二等奖4项、国家科技进步二等奖3项,省部级一等奖7项。包括诺贝尔奖获得者、美国总统首席科学顾问等在内的数百名国际知名专家纷纷到中心访问交流,寻求合作;在《科学》和《自然》等世界顶级刊物进行系列专题报道。   在军事医学科学院党委的大力支持下,该团队在人才队伍建设上不断探索,创立了&ldquo 固定+流动&rdquo 的用人机制、&ldquo 哑铃+候鸟&rdquo 的引智机制、&ldquo 聚变+裂变&rdquo 的育才机制。他们借助中组部&ldquo 千人计划&rdquo 、北京市&ldquo 海聚工程&rdquo 等政策,诚邀7名海外专家和国内200多位同行加盟,逐步建立了&ldquo 开放、流动、联合、竞争&rdquo 的高效运行机制,实践形成了&ldquo 求实、创新、卓越、和谐&rdquo 的团队精神,为军队实施国际化的科研战略担当起&ldquo 试验田&rdquo 。 蛋白质组创新团队主要成员之一张令强课题组。   深度,探底&ldquo 将军之官&rdquo   &ldquo 肝者,将军之官。&rdquo   此段文字出自中国最早一部生命百科全书《黄帝内经》。   肝脏是人体的&ldquo 发电厂&rdquo 、&ldquo 化工厂&rdquo ,是免疫系统的&ldquo 摇篮&rdquo 、血液的&ldquo 源泉&rdquo 。肝脏相当于人体的&ldquo 国防总部&rdquo ,但因&ldquo 将军&rdquo 负担过重,其疾病同样触目惊心,仅中国就有9300万不同程度的肝病患者,综合治疗费用高达9000亿元。   &ldquo 如果以人类主要的150种疾病进行计算,大约有3000&mdash 15000种蛋白质具有成为药物靶标的可能,迄今用到的只有总量的1/30到1/6。&rdquo 团队主要成员周钢桥介绍说。究其原因,如同钓鱼那样,一般浅水鱼很容易钓到,而深水鱼很难甚至根本钓不到。   &ldquo 蛋白质组学技术的强大能力使其能竭泽而渔,就像把三峡水库彻底放干,常常漏网的小鱼、小虾、螃蟹、泥鳅、黄鳝等,尤其是深水中暗藏的大鱼,都将全部抓住一样,自然给制药界带来巨大前景。&rdquo 团队主要成员杨晓介绍说。   工笔是国画的一种技法,以细腻深入、生动全面著称。该团队采用工笔手法,描绘了整个肝脏数以万计的蛋白质分子群落的&ldquo 社会生活&rdquo 状况,这幅历史巨卷,同样为无数国际同行所折服,并在其它组织器官的蛋白质组研究中所借鉴和效仿。   2002年以来,围绕&ldquo 肝脏计划&rdquo 的全面执行,中国科学家领衔全球10余个国家和地区的100多个实验室共同展开了一幅壮丽画卷。目前,已经初步揭示了人类肝脏蛋白质组的整个&ldquo 太阳系&rdquo ,系统解析出一组、两谱、三图、三库&mdash &mdash 九大&ldquo 行星&rdquo ;鉴定蛋白质13000余种;构建了高可信肝脏蛋白质相互作用网络图;建立了人体首个器官蛋白质组数据库;发现了脂肪肝、肝细胞病毒感染、癌变以及转移相关的蛋白质标志物群、潜在药靶和候选药物;寻找到了一批与肝炎、肝癌等复杂疾病相关的易感基因。   鉴于中国的重要贡献,数位诺贝尔奖获得者、国际蛋白质组组织的历任主席等纷纷给予高度评价;该领域顶级权威期刊《分子细胞蛋白质组学》向世界专栏介绍中国的成就;国际蛋白质组学核心刊物《蛋白质组学》和《蛋白质组研究》分别出版中国蛋白质组学专刊和人类肝脏蛋白质组计划专刊,全面介绍中国在此领域的成就。 蛋白质组学的未来&mdash &mdash 朱云平研究员正在给研究生讲解建设中的&ldquo 凤凰工程&rdquo 。   广度,向着&ldquo 登月之旅&rdquo 前进   2013年12月2日,全球瞩目的&ldquo 嫦娥三号&rdquo 踏上了登月之旅,&ldquo 玉兔&rdquo 的一小步,极大地增强了军事医学科学院蛋白质组学创新团队追求宏伟梦想的信心和勇气。早在创建之初,贺福初院士就将&ldquo 人类蛋白质组计划&rdquo 比喻为生命科学的&ldquo 登月之旅&rdquo ,激励更多的年轻人为之奋斗。   如果在十几年前提到蛋白质组学,恐怕知之者甚少,从事其研究者更是寥若星辰。但是,随着经济的迅速增长和开始建设创新性国家,政府逐步倾力推动基础科学发展。   1998年,我国第一个蛋白质组重大项目获得批准,从此拉开了该领域蓬勃发展的序幕。以贺福初、钱小红研究员为代表的一批科学家率先探索,成为我国蛋白质组学事业的先行者。   21世纪初,国家陆续启动了蛋白质组学首个973项目以及&ldquo 中国人类肝脏蛋白质组计划&rdquo ,这个新兴领域的星火已燎原于九州,逐渐从一支独秀发展成群雄并起、全国争锋的喜人形势。同时,数十位中国科学家开始担任国际组织领导、理事以及权威期刊编委,我国在该领域的世界话语权日益巩固。   山水之作,云雾染意,青松铸魂。   10多年来,在该团队的努力推动下,中国蛋白质组学研究朝气蓬勃,墨润之地,日新月异。从最初以建立技术平台,开展技术方法的研究、整合为主,到以高通量蛋白质组学研究技术平台为基础,深入研究关系我国人民健康的重大疾病问题和重要生命科学问题,在多个领域方向取得国际瞩目的突破性进展。&ldquo 在新兴的生命科学学科里,蛋白质组学是发展最快、成效最显著的领域之一。&rdquo 国家自然科学基金委生物学部原主任强伯勤曾这样评价。   在这幅山水巨卷中,中国科学家用线条一笔一笔勾勒描绘的青松已经漫山遍野,风声呼啸。近4年来,中国在该领域发文量直线上升,紧追美国,成就位居全国其他学科前列。   目前,随着研究工作的日积月累,深埋的&ldquo 石油&rdquo 开始井喷。发展和完善了一批具有自主知识产权的蛋白质组新技术新方法,技术能力成百上千倍地大幅提升,在国际蛋白质组学技术测评中名列前茅;筛选到一批与重大疾病防诊治相关的候选蛋白质标志物群、潜在药靶和候选药物,有望显著提高我国人群健康水平,大力推动生物医药的快速发展;制定一系列数据标准、开发新算法新软件,并逐渐为国际同行所采纳。   &ldquo 在人类蛋白质组计划中,我们抓住了机遇,一些领域和成果走在了世界前列,但整体水平仍有待提高。&rdquo 团队主要成员钱小红如是评价。据文献统计显示,与丹麦44.24、美国26.65的蛋白质组研究论文平均引用次数相比,我国在该领域发表成果的数量虽多,但9.48的篇均引用水平与欧美最高水平尚有差距。   &ldquo 成绩属于过去,未来任重道远。&rdquo 军事医学科学院高福锁政委说,&ldquo 在未来实现中国梦、强军梦的过程中,我们将以党的十八大提出的创新驱动发展战略为牵引,以刚刚获得的2013年度国家创新团队奖为新的起点,从零开始,埋头苦干,以更大的信心和勇气攀登世界科技高峰,为国家生物安全提供更好的技术支撑,为人类生命科学的蓬勃发展做出更大的创新贡献!&rdquo
  • 赛默飞在美开设高级蛋白质组学研究中心
    为了促进利用先进的质谱技术进行标志物蛋白质组学研究,赛默飞世尔科技、格莱斯顿研究所、加州大学和QB3(美国定量生物科学研究所)联合在美国三藩市的格莱斯顿研究所开设了赛默飞世尔科技疾病标志物发现蛋白质组学中心。   此研究中心负责人是格莱斯顿研究所高级研究员、加州大学分子与分子药理学教授和加州大学生命科学研究所主任Nevan J. Krogan 博士。Nevan J. Krogan 说,这里的科研人员来自格莱斯顿研究所、加州大学和QB3 ,在这里的工作会使他们掌握解决复杂生物系统中蛋白质动力学的先进质谱技术。这些技术将使研究者获得前所未有的基因与其产生的蛋白质之间的互动知识,也将帮助解决之前无法解释的生物医学问题。   研究中心进行的研究活动包括高分辨率蛋白质-蛋白质相互作用导图的创建、高级蛋白质表征、基因组定向蛋白质组筛选、大量蛋白质或翻译后修饰蛋白的超高灵敏度定量分析等。   此中心也会展示用于精细生物学发现和定量的最新质谱,包括新的Orbitrap Fusion和TSQ Quantiva三重四极杆LC/MS 系统。除了进行研究之外,赛默飞研究中心将作为促进生物学质谱应用的据点,举办一系列特邀报告会、讨论会、研习班和培训。 编译:郭浩楠
  • 赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展
    赛默飞与蛋白设施达成战略合作,助力蛋白质科学创新发展赛默飞色谱与质谱中国 // 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)携手中国科学院上海高等研究院国家蛋白质科学研究(上海)设施(以下简称:蛋白设施)在上海举办蛋白质动态分析联合实验室签约仪式。双方在蛋白质动态分析研究领域,及通过蛋白设施联合上海临床研究中心开展的临床应用等领域,基于良好的合作意向,同意共建实验室及建立战略合作伙伴关系,并在2024年上海市产业技术创新大会得到会议举办方及与会代表众多领导、专家和学者的见证。本次战略合作基于赛默飞全球领先的高分辨质谱、电镜等平台及蛋白组学解决方案基础上,结合了蛋白设施在蛋白组学领域领先的科研能力、研发成果和强大的技术团队。双方围绕蛋白组学解决方案合作、技术培训交流、人才培养等方面达成了共识,旨在整合双方优势资源,共同提升蛋白组学研究、临床样本队列研究和生物医药领域产业的发展,共创技术新生态,为科研的新质生产力注入活力。高分辨质谱+冷冻电镜打造蛋白质科学创新平台赛默飞高级副总裁、亚太和拉美地区总裁Mark Smedley先生,赛默飞分析仪器事业部中国区商务副总裁周晓斌先生,蛋白设施主任吴家睿教授等出席了本次签约座谈仪式。双方领导共同讨论了高分辨质谱结合冷冻电镜技术,电镜技术结合AI,以及高分辨质谱、电镜技术与Olink方案的整合在蛋白组学领域的创新应用,并探讨了未来共同建立临床质谱标准数据库的落地化方案。滑动查看更多强强携手 加深合作全面推动蛋白质科学创新发展在报告环节,吴家睿主任介绍了蛋白设施成立的背景、技术系统、平台设备、重点方向以及近年来取得的成果。赛默飞材料与分析业务生命科学市场销售发展总监陈昉和色谱与质谱业务科学研究市场高级商务总监周昕分别对之前的技术及培训合作进行了回顾,并对未来计划进行了展望。蛋白组学领域自问世以来,取得了令人瞩目的进展。基于质谱和电镜平台,已经诞生了许多重要的发现。这些发现不仅深化了我们对蛋白质结构、功能和相互作用的理解,还为疾病诊断、药物研发和个体化治疗等提供了重要的指导。 此次合作,将共同推动Orbitrap质谱技术和Cryo-EM冷冻电镜在蛋白组学领域的应用,为蛋白质科学研究和生物医药相关领域产业的发展贡献更多华丽的成果。在未来的合作中,双方将共同努力,充分发挥赛默飞的全球领先技术和蛋白设施的科研实力,为蛋白质科学的创新突破和应用推广开辟更加辉煌的前景。关于中国科学院上海高等研究院国家蛋白质科学研究(上海)设施 蛋白质设施是国家“十一五”规划建设的国家重大科技基础设施项目,是全球生命科学领域首个综合性的大科学装置。蛋白质设施主体位于上海市张江科学城,于2008年经国家发改委批复,2014年建成并开放试运行,2015年通过国家验收正式开放运行。蛋白质设施的目标是建设国际一流的蛋白质科学研究体系和成为我国蛋白质科学及技术发展的重要创新基地。主要任务包括:开展蛋白质科学相关研究;研究蛋白质的多尺度时空结构;分析蛋白质修饰和相互作用;阐释蛋白质与化学小分子之间的相互作用;研究蛋白质相关的计算生物学与系统生物学;发展蛋白质研究的新方法和新技术学;结合创新药物的发展,研究蛋白质药物靶标的功能活动的结构特征等。蛋白质设施将聚焦世界科技前沿领域,在不断创新中实现跨越和发展,充分发挥大科学设施平台效能,全面支撑我国蛋白质科学研究和生物医药相关领域产业的发展。如需合作转载本文,请文末留言。
  • 新研究提供调控大脑疾病中有毒蛋白质的分子机制
    所周知,细胞会自然衰老和死亡,但细胞蛋白质的适当调节对我们衰老时保持大脑健康至关重要。在神经退行性疾病中,蛋白质聚集体(或错误折叠蛋白质的团块碎片)扩散到邻近的细胞,但对这些有毒物质是如何转移的科学家们仍然知之甚少。  近日,发表在《美国国家科学院院刊(PNAS)》上的一项研究中,来自美国罗格斯大学新布伦瑞克分校的研究人员首次从分子水平上了解了在阿尔茨海默症和帕金森病等神经退行性疾病模型中,有毒蛋白质是如何调控的。在这项研究中,研究人员对秀丽隐杆线虫模型进行了研究,线虫受到压力的神经细胞可以将神经毒性蛋白质以囊泡的形式挤压出来,这些囊泡被称为exoophers。研究人员还研究了特定的压力如何影响exoophers被挤压出来。他们发现,形成exoophers需要特定的细胞信号,而出人意料的是,禁食可以显著增加exoophers的产生。此外,这项研究还发现了三种在禁食期间增加exoophers产生的细胞途径。  该研究第一作者、罗格斯大学新布伦瑞克分校分子生物学和生物化学系博士后研究员Jason Cooper说“在神经退行性疾病中,有毒蛋白质会扩散到邻近细胞以促进细胞死亡。鉴于在衰老和神经退行性疾病中管理蛋白质聚集体的重要性以及对这些聚集体如何转移的生物学知之甚少,对转移机制的详细了解可能会揭示以前的未被识别的治疗靶点”。   论文链接:  https://www.pnas.org/content/118/36/e2101410118
  • 蛋白质结构分析新技术创测定速度纪录
    《自然-方法学》:蛋白质结构分析新技术创测定速度纪录   过去需几年时间完成的工作现在仅用几天即可完成   据美国物理学家组织网7月20日报道,隶属于美国能源部的劳伦斯伯克利国家实验室的科学家开发出一种利用小角度X射线散射技术测定蛋白质结构的新方法,大大提高了蛋白质结构研究分析的效率,使过去需要几年时间完成的工作仅需要几天即可完成,这将极大地促进结构基因组学的研究进程。   结构基因组学是一门研究生物中所有蛋白质结构的科学。通过对蛋白质结构的分析,可大致了解蛋白质的功能。结构基因组学重视快速、大量的蛋白质结构测定,而快速结构测定技术正是该学科研究面临的一个瓶颈问题。目前通常使用的两种测定技术,X射线晶体衍射和核磁共振质谱技术,虽然精确,但速度很慢,测定一个基因的蛋白质结构,动辄就需要几年的时间。随着新发现的蛋白质及蛋白质复合物越来越多,目前的分析速度远远不能满足研究的需要。   为解决这个瓶颈问题,劳伦斯伯克利国家实验室的科学家们借助了该实验室的先进光源(ALS)。他们运用一种称为小角度X射线散射(SAXS)的技术,对处于自然状态下(如在溶液之中)的蛋白质进行成像,其分辨率大约为10埃米(1埃米等于1/10纳米),足够用来测定蛋白质的三维结构。ASL产生的强光可以使实验所需材料减至最少,这使得该技术可以用于几乎所有生物分子的研究。   为了最大限度提高测定速度,研究小组安装了一个自动装置,可自动使用移液器吸取蛋白质样品到指定位置,以便利用X射线散射进行分析研究。他们还使用美国能源部国家能源研究科学计算机中心(NERSC)的超级计算资源进行数据分析。利用这一系统,研究小组取得了惊人的研究效率,在1个月内分析测定了火球菌的40组蛋白质结构。如果使用X射线晶体衍射技术,这可能需要花几年时间。同时,他们所获取的信息十分全面,涵盖了溶液中大部分蛋白质样本的结构信息。相比于在结构基因组学启动计划中使用核磁共振和晶体衍射技术仅能获取15%的信息量来说,这是十分巨大的进步。   高通量蛋白质结构分析有助于加快生物燃料的研究步伐,帮助解读极端微生物在恶劣环境中的繁荣之谜,更好地理解蛋白质的功能。研究小组之所以首先选择火球菌进行实验分析,就是因为它可用来生产清洁能源——氢。同时,在许多工业流程中都会出现高酸高热的环境状态,而这正是火球菌喜欢的生存环境。   但这种技术也有不足之处,追求速度会造成一种失衡,使成像质量相应打了折扣。与X射线晶体衍射成像的超高分辨率相比,小角度X射线散射成像的分辨率比较低,大约是10埃米。但这并不妨碍该技术的应用前景,因为并不是所有的研究都需要超高精度成像。对于结构基因组学研究来说,有时只要知道一种蛋白质与另一种蛋白质具有相似的结构,就可以了解其功能。而且,小角度X射线散射技术能够提供溶液中蛋白质形状、结构及构造变化等方面的精确信息,足以弥补其在成像精度方面的不足。   该研究成果刊登在7月20日《自然—方法学》杂志网络版上,美国斯克利普斯研究所和乔治亚州大学的科学家亦参与了该项研究。
  • 全国“最牛”蛋白质实验室可免费“共享”
    p 耗资7.56亿元、总建筑面积超过3万平方米的高规格实验室,居然免费向各大科研机构开放。 /p p   记者8月29日在国家蛋白质科学研究中心(上海)深度体验到这处拥有全世界最顶尖蛋白质相关实验设施的场地如何炫酷。 /p p   相关领域的科学家们做尖端实验,再也不用为昂贵的试验设备担心了,通过这个蛋白质研究中心的官网申请,符合要求即可预约在上海做实验,使用全球最好的实验设施。 /p p   2017年9月,位于上海的张江实验室揭牌成立,蛋白质实验室成为第一个划入张江实验室的国家重大科技基础设施,由张江实验室统一管理,依托法人单位变更为中科院上海高等研究院。 /p p   据悉,只要是获得过国家基金资助的科研项目,无论是高校项目、科研机构项目还是企业项目,都可以通过官网申请到这里来做实验。该试验中心拥有9大技术系统,包括我国自主研制的自动化蛋白质制备系统、蛋白质结构与动态分析系统,300KV电镜为主的集成电镜分析系统、系列质谱组成的蛋白质修饰与相互作用分析系统、超高分辨率显微镜等组成的复合激光显微镜系统等。上述系统各项指标均达到了项目设计的性能指标,部分指标达到国际领先水平。 /p p   海归博士后彭超现在是蛋白质实验室质谱系统负责人,他告诉记者,现在质谱系统一周会收到世界各地寄来的约200个样品,每一件样品每一小时都能产生海量的数据,实验室要根据样品提供者的需求,实验并搜集其中有用的数据以帮助科学家们进行下一步研究。 /p p   “很多机构的实验室并没有专人做质谱实验、分析,我们的7人团队,能为很多机构专业快速地‘代劳’质谱分析。”彭超说,质检、食药监、公安等部门对质谱分析需求极大,此外质谱分析还可以检测空气污染、尿液小分子超标、疾病蛋白质表达等关键问题,可以发挥的空间很大。 /p p   张江实验室脑与智能科技研究院院长、中科院上海分院副院长、院士张旭告诉记者,蛋白质实验室的布局具有重要的战略意义,“蛋白质是脑科学信号传递、采集的主要物质,也是疾病诊断、药物抗体、疫苗、生物技术、现代农业中的重要战略资源。如果把蛋白质相关的生命科学研究和信息技术结合到一起,就可以行进到类脑智能交叉学科。 /p p   张旭说,张江这片区域特别适合发展交叉学科的研究。一方面,这里产业、研究机构集聚,“不像大学,一个研究所的研究目的很明确,只研究自己的领域就好” 另一方面,这里正在打造的“张江实验室”为各种机构都提供了进行学科交叉、互动的机会。以蛋白质实验室为例,这里可以进行生命科学、信息技术、工程技术的多方位交叉实验,为未来我国人工智能的发展提供坚实的基础。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制