当前位置: 仪器信息网 > 行业主题 > >

各向异性层

仪器信息网各向异性层专题为您整合各向异性层相关的最新文章,在各向异性层专题,您不仅可以免费浏览各向异性层的资讯, 同时您还可以浏览各向异性层的相关资料、解决方案,参与社区各向异性层话题讨论。

各向异性层相关的资讯

  • 多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测
    以碳纤维增强树脂基(Carbon Fiber Reinforced Plastic, CFRP)为代表的先进复合材料,具有高比强度和比刚度、良好的耐疲劳和耐腐蚀、易于大面积成型等优点,正越来越广泛地代替金属材料用作航空/天飞行器主承力构件。受制造工艺复杂、服役环境严苛影响,CFRP容易产生材料退化,甚至分层、纤维褶皱、孔洞等缺陷,威胁结构服役安全。超声无损检测技术是实现制造质量控制和服役性能评估的有效手段,但却面临材料形状复杂、多层结构、弹性各向异性因素共同作用所致超声传播行为复杂的挑战。现有超声检测技术主要是面向声学特性较为简单的各向同性均质材料,直接沿用至CFRP结构时不可避免地存在超声信号混叠、信噪比低、成像质量差等问题。针对以上难题,中国科学院深圳先进技术研究院郭师峰研究员团队开展了系列创新性研究工作,为航空/天复合材料结构无损检测与评估提供了理论和技术支撑,包括:(1)提出了利用相控阵超声和完全非接触激光超声原位测量超声群速度分布的新方法,解决了各向异性复合材料力学性能原位、高精度测量难题,为材料强度及其退化程度定量评估提供技术支撑;(2)建立了定量描述复杂形状、多层结构、弹性各向异性对CFRP声学特性影响规律的理论模型,为复杂超声传播行为理论分析和超声成像算法研究提供可靠的模型基础;(3)提出了基于计算机科学最短路径搜索算法的声线示踪新方法,解决了高分辨率超声成像算法聚焦法则高精度计算难题,大幅提升缺陷检测灵敏度和定位/量精度。上述研究工作为航空/天复合材料结构无损检测与评估提供了理论和技术支撑。2024年9月11-12日,仪器信息网组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。期间,郭师峰研究员团队中的曹欢庆副研究员将作大会报告《多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测》,介绍上述研究工作。本次会议于线上同步直播,欢迎材料、机械、工程、无损检测等相关科研工作者、工程技术人员、科技企业人士等报名,参会交流!关于第三届无损检测技术进展与应用网络会议无损检测,即在不破坏或不影响被检测对象内部组织与使用性能的前提下,利用射线、超声、电磁、红外、热成像等原理并结合仪器对物体进行缺陷、化学、物理参数检测的一种技术手段,被广泛应用于航空航天、交通运输、石油化工、特种设备、矿山机械、核电、冶金、考古、食品等各个领域。为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网定于2024年9月11-12日组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家参会交流。会议链接:https://www.instrument.com.cn/webinar/meetings/ndt2024
  • 中科院物理所率先实现基于石墨烯的各向异性刻蚀技术
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)张广宇研究组与高鸿钧研究组、王恩哥研究组合作,利用自制的远程电感耦合等离子体系统,首次成功实现了石墨烯的可控各向异性刻蚀。这种基于石墨烯的各向异性刻蚀技术是我国科学家在该研究领域中独具特色的工作,相关结果发表在【Advanced Materials (2010)】,并得到了审稿人的高度评价。   石墨烯(graphene),是继富勒烯、碳纳米管之后被科学家们发现的又一种新的碳元素结构形态。作为一种室温下稳定存在的二维量子体系,石墨烯打破了凝聚态物理的理论,推翻了人们以前普遍接受的严格的二维晶体无法在有限的温度下存在的科学预言,对凝聚态物理的发展产生了重大的影响。不仅如此,石墨烯表现出来的一系列独特的电学输运特性、光学耦合和其他新奇的物理特性,以及利于剪裁加工的二维特性,使其在分子电子学、微纳米器件、超高速计算机芯片、高转换效率电池、固态气敏传感器、太赫兹学等领域可能有重要的应用前景。   然而,由于石墨烯的导带与价带之间没有能隙,做成晶体管器件时,很难实现开关特性,而且若要运用于现在普遍使用的逻辑电路,其金属性也是一个巨大的难题。如何在石墨烯中引入能隙,成为人们关注的热点问题,这也为石墨烯的制备提出了新的挑战。一般引入能隙的手段主要有:(1) 利用对称性破缺场或相互作用等使朗道能级发生劈裂,在导带与价带之间引入能隙。这主要通过掺杂、外加电场、化学势场等方式在双层石墨烯中引入对称破缺,实现人工调制能隙。(2) 利用量子限域效应和边缘效应,通过形成石墨烯纳米结构(如 nanoribbons纳米带)引入能隙,通过调节带宽,可以实现对带隙宽度的调节。(3) 利用化学气相沉积法掺杂(如B、N等)产生能隙,通过调节掺杂程度可实现对能隙的调节。(4)利用基底作用诱导(如SiC基底上的外延石墨烯)产生能隙,通过调节基底的作用程度可实现对能隙的调节。此前,张广宇研究组与高鸿钧研究组和陈小龙研究组合作,利用拉曼光谱学的手段,系统地研究了外延石墨烯与碳化硅基底之间的电荷转移机制,为未来这类样品制作电子学器件提供了技术参考依据。相关结果发表在【J. Appl. Phys. 107, 034305, (2010)】。   基于已有的实验结果,大家一致认为这四种方法中最可行、最具应用价值的当属石墨烯的纳米结构。目前,石墨烯纳米结构的制备技术和电学性能的研究都有飞速的发展,但要实现大规模集成石墨烯纳米结构器件的应用,如何利用现有的微纳加工技术获得边缘可控的石墨烯纳米结构是亟待解决的难题。虽然国际上已有少数研究组利用金属粒子催化加氢反应或利用SiO2衬底与石墨烯的选择性反应来实现石墨烯选择性的各向异性刻蚀,但这些方法的刻蚀速率不可控,刻蚀取向不确定,且无法与传统的微纳加工技术兼容,从而无法实现石墨烯纳米结构器件的集成加工。   张广宇等人此次实现的这种基于氢等离子体的干法刻蚀技术受等离子体强度和样品温度的调控,刻蚀速率可以精确控制在几个nm/min,且不会引入新的缺陷。由于石墨烯特殊的六角对称性,这种方法可以得到近原子级规则的Zigzag边缘结构。他们还利用这种干法刻蚀技术结合电子束光刻技术首次实现了对石墨烯纳米结构的精确加工和剪裁。这种技术的优势在于可以对石墨烯结构进行原子级尺度加工和对于石墨烯质量的保持性。这种可以沿固定晶向,得到固定的边缘结构的加工剪裁石墨烯的技术是传统技术所无法实现的,为未来大规模精确控制、加工具有确定晶向和边缘结构的石墨烯纳米结构奠定了技术基础。   这项工作得到了中科院“百人计划”、国家自然科学基金和“973”项目的支持。      图1新鲜解理的石墨(a)表面光滑台阶清晰可见,不同功率。(b)50W和(c)100W氢等离子体刻蚀过的石墨表面,显示出了形状规则的正六边形孔。(d)刻蚀速率随温度的变化关系。(e)刻蚀速率随时间的变化关系,证明刻蚀速率可精确稳定的控制在几纳米/分钟。      图2 同样的各向异性刻蚀效应在机械剥离的石墨烯中也如此。氢等离子体刻蚀过的单层(a)、两层(b)及多层(c)石墨烯,正六边形孔洞清晰的形成于缺陷处。(d)单层及两层石墨烯刻蚀速率随温度的变化关系。(e)拉曼光谱表征,几乎看不到代表缺陷态的拉曼D峰,证明石墨烯的晶体质量并没有被温和的氢等离子体破坏。      图3 氢等离子体刻蚀出的单层正六边形孔洞边缘的扫描隧道显微镜成像(a)恒流模式高度像,(b)原子分辨像,(c)二维傅里叶变换图,显示出刻蚀得到的近原子级规则的边缘与zigzag取向平行,且在边缘处观察到了驻波。(d)对应的结构示意图。      图4 利用电子束曝光与各向异性刻蚀方法相结合制备具有特定取向的sub-20nm石墨烯纳米带的流程图(a)。具体过程如图(b)电子束曝光和氧等离子体刻蚀得到的起始宽度为120nm的石墨烯条带,经过氢等离子体各向异性刻蚀之后细化到sub-20nm的石墨烯纳米带如图(c)。(d)石墨烯纳米带场效应晶体管器件的结构示意图,石墨烯为接触电极,(e)不同宽度的石墨烯纳米带的器件,(f)对应的转移特性曲线,证明8nm宽的石墨烯纳米带能在室温下实现2个数量级的开关比。
  • 半导体所观测到各向异性平面能斯特效应
    磁性材料是构成现代工业的重要基础性材料,在永磁电机、磁制冷、磁传感、信息存储、热电器件等领域扮演着重要角色。在自旋电子学前沿领域,利用磁性材料中的磁矩引入额外对称性破缺效应是一个研究热点。最近,中国科学院半导体研究所半导体超晶格国家重点实验室的朱礼军团队在单晶CoFe (001)薄膜器件中观测到各向异性的平面能斯特效应(Planar Nernst Effect),其强度随 (001) 晶面的晶格方向强烈变化并呈现面内双轴各向异性(见图1)。当磁矩在外磁场驱动下在薄膜材料平面内旋转时,电流产生的温度梯度导致的平面能斯特电压表现为一个sin2φ依赖的二次谐波横向电压信号(φ为磁矩相对电流的夹角)。这种有趣的各向异性平面能斯特效应被认为主要起源于内禀的能带交叠效应,可能对谐波霍尔电压、自旋扭矩铁磁共振、自旋塞贝克等自旋电子学实验的分析产生重要影响(见图2),有望应用于能量收集电池和温度传感器等。然而,这种平面能斯特效应的各项异性并没有导致任何极化方向的非平衡自旋流(Spin Current)或自旋轨道矩(Spin-Orbit Torque)的产生。该工作以“Absence of Spin-Orbit Torque and Discovery of Anisotropic Planar Nernst Effect in CoFe Single Crystal”为题发表在期刊Advanced Science上 [链接:https://doi.org/10.1002/advs.202301409]。朱礼军研究员为通讯作者,博士后刘前标为第一作者,博士生林鑫作为合作者完成了有限元分析并参与了器件的加工测量。该工作的完成离不开中国科学院半导体研究所赵建华研究员(单晶CoFe样品生长)、周旭亮副研究员(光刻工艺)、北京师范大学熊昌民副教授(PPMS测试)、袁喆教授(能带理论讨论)的支持和帮助。相关工作得到了科技部国家重点研发计划、国家自然科学基金委面上项目和中国科学院战略先导专项的资助。图1. (a)双十字霍尔器件中的平面能斯特效应;(b)CoFe (001)平面能斯特电压的各向异性。图2. 各向异性平面能斯特效应对(a)谐波霍尔电压、(b)自旋塞贝克、(c)自旋扭矩-铁磁共振等自旋电子实验的广泛影响及其在(d)热电器件方面的应用案例。
  • Nature Communication:范德华晶体光学各向异性研究取得重要进展
    引言范德华晶体,包括石墨烯、氮化硼、过渡金属硫族化合物等广受关注的新型二维材料等,具有优良的力学、电学、光学性质,是构筑功能可控范德华异质结的基本单元,也是组成下一代高性能光电器件的基础材料。 范德华晶体具有层状结构,在层内由较强的共价键相互作用结合,在层间由较弱的范德华力结合。这一层状结构决定了范德华晶体的各种物理性质具有天然的各向异性,其中,光学各向异性对于新型光电器件的设计和优化至关重要,必须得到准确的表征。然而,受限于高质量范德华单晶的尺寸,传统的基于远场光束反射的光学各向异性表征方法,如端面反射法、椭偏法等,均不能准确表征范德华微晶体的光学各向异性。 成果介绍日前,中国科学院纳米科学中心纳米表征实验室戴庆(Quantum Design中国子公司用户)研究团队利用德国neaspec近场光学技术克服了上述范德华晶体有限尺寸导致的困难,成功测量了氮化硼及二硫化钼的介电常数张量。 图1 实验装置和近场成像原理示意图该团队先理论论证了在各向异性范德华纳米片中存在寻常及非寻常波导模式,这两种模式的面内波矢分别与范德华晶体的面内及面外介电常数相关;之后,他们使用neaSNOM散射型扫描近场光学显微镜,在范德华纳米片中激发寻常及非寻常波导模式,并对这些波导模式进行实空间近场光学成像;后,他们通过nanoFTIR纳米傅里叶红外模块对实空间近场光学图像的傅里叶分析,求得所测范德华晶体的光学各向异性。 图2 不同厚度MoS2样品的近场光学像及傅里叶分析 结论这一方法克服了传统表征手段对样品大小的限制,能够对单轴及双轴范德华晶体材料的光学各向异性进行的表征;通过对基底材料的优化设计,这一方法有望用于少层甚至单层范德华晶体光学各向异性的直接表征。该研究结果在线发表于Nature Communications,表征方法已申请发明。相关研究工作得到自然科学基金、青年千人计划等项目的资助。参考文献:Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging (Nat. Commun., 2017, DOI: 10.1038/s41467-017-01580-7)文章来源:中国科学院纳米中心官网 neaSNOM小知识,你了解多少呢? neaSNOM散射式近场光学显微镜采用了化的散射式核心设计技术,大提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像,保证了高度的可靠性和可重复性。技术特点和优势: ☆ 保护的散射式近场光学测量技术 ☆ 的高阶解调背景压缩技术 ☆ 保护的干涉式近场信号探测单元 ☆ 的赝外差干涉式探测技术 ☆ 保护的反射式光学系统 ☆ 高稳定性的AFM系统双光束设计nano-FTIR——纳米红外表征界的杠把子 nano-FTIR纳米傅里叶红外光谱技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,在纳米尺度下可实现对几乎所有材料的化学分辨。而且在不使用任何模型矫正的条件下,nano-FTIR获得的近场吸收光谱所体现的分子指纹特征与使用传统FTIR光谱仪获得的分子指纹特征高度吻合,这在基础研究和实际应用方面都具有重要意义。相关产品及链接1、超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C170040.htm 2、纳米傅里叶红外光谱仪 :http://www.instrument.com.cn/netshow/SH100980/C194218.htm3、太赫兹近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C270098.htm
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 研究|具有各向异性和高垂直热导率的高效热界面材料
    01背景介绍随着集成电路和电子器件技术的快速发展,高功率密度电子设备的有效散热已成为确保其可靠性和使用寿命的主要因素之一。热界面材料通常被用来填补散热器和发热元件之间的间隙,以消除由非流动空气产生的高界面热阻。聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。一种可行的策略是将高导热填料与柔性和绝缘聚合物相结合,从而制备综合性能优良的复合材料。研究人员已经创造性地将各向异性的导热填料有序排列以获得具有优良各向异性导热性的TIM。由于导热路径最短,各向异性填料在基体厚度方向上的有效垂直排列以构建连续的传热路径,并进一步提高垂直透面导热系数,引起了研究人员的高度重视。人们已提出了电场或磁场、流动剪切力、定向冻结法和化学气相沉积等几种有效的策略来构建垂直取向结构以提高TIM的透面导热性。然而,垂直结构排列的二维填料并没有显示出明显的各向异性热导率增强。一维材料在其一个自由度的定向方向上可以达到最大的性能。近年来,碳纤维、碳纳米管、石墨烯等碳材料因其高导热性和优异的力学性能被广泛应用于TIMs的导热填料,其中一维中间相沥青基碳纤维的各向异性导热系数较高,轴向导热系数和径向导热系数分别约600 W/m K和小于10 W/m K,一维材料可以在特定方向上发挥最大的性能。02成果掠影四川大学陈枫教授团队采用中间相沥青基碳纤维,通过熔融挤压法制备了高取向度的短碳纤维(CF)/烯烃嵌段共聚物(OBC)复合材料,可提供高导热性、适度的电绝缘和良好的柔韧性。由于CF/OBC复合材料中CF的高取向度(f0.9,f是CF/OBC复合材料中CF的取向度),在 30 vol%的CF负载下表现出 15.06 W/m K的贯通面热导率,同时实现了良好的电绝缘(~10-9 S/m)和低压缩强度(2.62 MPa)。TIM测量的结果表明,垂直排列的CF/OBC显示出高效的散热能力,相比于随机结构温差可达 35.2°C,可用于冷却高功率LED器件。研究成果以“An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity”为题发表于《Composites Science and Technology》期刊。03图文导读(a)具有垂直排列结构的CF/OBC复合材料的制备流程图;(b)CF的SEM图;(c)CF的拉曼光谱图;(d)挤出的长丝;(e)垂直排列的CF/OBC复合材料。(a)丝状物的横截面和(b)垂直排列的CF/OBC复合材料的SEM图;(c)垂直排列和(d)平行排列的2D-WAXS图案,CF含量分别是1,5,10,15,20,30 vol%时,平行排列样品的2D-WAXS图,虚线标记了CF的(002)平面的环;(e)相应的方位角整合的强度曲线。(f)不同CF含量样品中(002)平面的取向度;(g)纯OBC、CF和10 vol% CF/OBC的一维XRD图;(h)从表面和横截面的X射线方向的说明;(i)表面和(j)横断面的三维XRD图。CF/OBC复合材料的导热性能。(a)垂直、平行和随机样品的热导率;(b)随机、平行和垂直排列时30 vol% CF/OBC的比较;(c)各向异性随着CF含量的增加而增加;(d)反复加热和冷却循环后30 vol% 垂直的CF/OBC的典型热导率值;(e)各向异性热导率 30 vol% CF/OBC在不同温度下的各向异性热导率;(f)CF/OBC的电绝缘性能;100℃的条件下(g)示意图、(h)红外图和(i)样品顶部的温度。CF/OBC的机械性能。(a)打结的长丝;(b)弯曲和(c)扭曲的柔韧性;(d)平行排列和(e)垂直排列的CF/OBC块体的抗压应力-应变曲线;(f)比较平行结构和垂直结构之间的抗压强度随CF含量增加的变化。30 vol%的CF/OBC切片用于界面热管理。用于LED芯片散热测试系统的红外图像(a)加热和(b)冷却;(c)原理图和(d)中心区域的平均温度与运行时间的关系。
  • 问传统求新知——用扫描电镜揭开铝电解抛光表面的各向异性纳米图案的神秘面纱
    金属的电解抛光,是一种传统而常用的表面处理技术,通过可控的电化学反应使金属表面溶解(凸起部分溶解速度快)来降低表面粗糙度。利用电解抛光技术,可以获得纳米级粗糙度的镜面光泽表面,而且可以去除前序机械加工遗留的表面和亚表面损伤层。不过,不为一般仅使用该技术的研究者注意的是,在一定的电化学条件下,电解抛光后的金属表面会出现纳米级的图案(pattern),其中对金属铝的研究较多。研究者发现,金属铝(Al)经短时间电解抛光处理后,表面会出现周期或特征周期为几十至一百多纳米的有序条纹状(stripe)、六边顶角状(hexagon)及点状(dot)等多种有序或无序图案。这一现象,已经引起了研究者对其在金属表面微纳工程、微纳模板加工、微纳电子学等领域应用的关注。研究者已经开始深入挖掘纳米图案形成的机理,关键是揭示材料表面结构和界面电化学行为决定纳米图案类型及周期的物理化学规律。但是,目前已经发表的研究,缺少对多晶和单晶铝表面纳米图案形成行为的系统实验研究,定性的多定量的少,零散的多系统的少,难以用来检验和改进现有的表面纳米图案形成理论。其中一个被长期忽略的关键问题,就是铝表面结构差异导致的纳米图案的各向异性。哈尔滨工业大学化工与化学学院的甘阳教授和他指导的博士生袁原(论文第一作者)、张丹博士、杨春晖教授及机电学院的张飞虎教授,首次采用电子束背散射衍射(EBSD)对电解抛光后的多晶铝和单晶铝进行了定量的表面晶体学取向分析,并采用蔡司的Sapphire Supra 55场发射扫描电镜(FE-SEM)和原子力显微镜(AFM)对纳米图案的类型(type)和周期(size)进行了系统表征和量化分析,揭示了铝电解抛光表面纳米图案的类型和周期对于表面结构和晶体学取向的依赖性的规律。同时,基于表面物理化学的理论框架,对结果进行了深入分析和讨论,定性解释了大部分的实验结果,并指明了下一步的研究方向。研究结果近期以长文形式发表于电化学领域的国际知名期刊Journal of the Electrochemical Society,国际同行评审专家认为该工作是对本领域的重要贡献。甘阳教授课题组首先对多种铝样品的电解抛光表面纳米图案进行了系统的研究:1)多晶铝(polycrystalline Al)中不同取向的晶粒;2)切割角可控的系列单晶铝(monocrystalline Al)样品。通过EBSD测试获得晶粒表面的晶体学取向图,并结合定位SEM表征,他们发现,铝电解抛光表面纳米图案对晶面取向具有依赖性(如图1所示为多晶样品中三个毗邻的晶粒)。(背景知识:描述铝表面晶体学取向的EBSD反极图三角(IPF triangle)中,可划分为围绕三个低指数晶面方向(primary direction,主取向)的晶体学主取向区域—[101] //ND,[001] //ND和[111]//ND,单个晶粒或单晶的表面取向偏离主取向的角度称为取向差角(misorientation angle)。)通过对数十个不同取向的多晶晶粒的逐一定位SEM表征,他们发现了一系列未被报道过的现象(图2):1)纳米图案类型和周期对晶面取向的依赖性是否显著取决于所属的主取向区域;2)在同一主取向区域内,纳米图案类型和周期随着取向差角的改变呈现渐变性规律;3)对于具有相同取向差角但偏向不同主取向的晶面,纳米图案类型和周期也发生变化;4)在两个或三个主取向的交界处,纳米图案类型和周期基本相同。他们进一步测试和分析了一系列取向差角可控的单晶铝样品(图3),证实了上述多晶样品的结果,并揭示出目前尚难以解释的单晶和多晶样品间的图案周期性大小的差异问题(图4)。图1 (a)电解抛光多晶Al样品的EBSD分析IPF图,(b)放大后的IPF图和IPF三角显示三个相邻的A、B、C晶粒及其所属的主取向区域和各自的晶面取向差角值,(c)三个晶粒的定位SEM形貌图像,相邻晶粒被晶界隔开并交于一点,(d–f)三个晶粒的AFM形貌图像和细节放大图及FFT分析图,(g–i)为对应AFM图中白线段的线轮廓分析图。图2 (a)电解抛光后不同晶面取向的多晶铝晶粒在IPF三角中的位置图,(b–y)不同晶粒表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图3 (a)不同晶面取向的单晶铝样品在IPF三角中的位置图,(b–s)电解抛光后不同单晶样品表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图4(a,b)单晶和多晶样品的表面纳米图案周期(L)随取向差角(θ)变化的L–θ图,上方刻图轴给出了三个主取向区域内与θ对应的所属表面的表面台阶宽度(w)。(c,d)单晶和多晶样品的各晶面在IPF三角中的对应位置图。L–θ图和IPF三角中的几条连线,表示的是连接了近似位于延某个主取向辐射出去的直线上的若干晶面(及IPF三角中的若干对应的点)。为了解释实验结果,他们建立了一系列不同取向晶面的表面原子排列的“平台–台阶”模型(图5),还特别关注了更复杂的“平台–台阶–扭折”表面结构(图6)。尽管尚没有考虑表面驰豫、重构等的影响,他们根据表面结构特征随取向差角的变化规律,解释了实验观察到的纳米图案类型和取向差角的关系。比如,在一个主取向区域内,随着取向差角的增大,表面台阶宽度逐渐减小而不是突变,界面能的变化也应该呈现渐变的特性,这就解释了纳米图案的类型随取向差角改变的渐变现象。此外,在两个或三个主取向区域的交界处,大取向差的晶面的表面结构(平台宽度和台阶处的原子排列)很相似,所以导致纳米图案的类型基本相同。而不考虑上述结构特征,就很难解释实验上观察到的现象。图5(a–f)[001]和[101]//ND主取向区域内6个不同取向差角的晶面的表面“平台–台阶”结构模型的正视图和侧视图。表面单胞用红色平行四边形或矩形表示。(g)6个晶面在IPF三角中的位置图。图6 (a–c)[001]//ND主取向区域内3个取向差角相等但偏向不同方向的晶面的表面“平台–台阶–扭折”结构模型的正视图。表面单胞用红色平行四边形表示,特别给出了平均台阶宽度。(d)3个晶面在IPF三角中的位置图。图7 在电解抛光过程中吸附分子在不同平台宽度“平台–台阶”表面的扩散和脱附行为差异的示意图。(a)宽平台表面;(b)窄平台表面。他们基于表面结构影响电化学溶解和界面分子吸附、扩散行为的理论框架,对文献中现有的“吸附–溶解”理论进行了深化,进一步提出了表面平台宽度和台阶位点的数量会影响电解抛光液中的表面吸附分子(如乙醇)在表面的扩散(以扩散系数表征)和吸脱附(脱附速率常数)行为。取向差角越大,平台宽度越窄(台阶密度也越大),分子在表面的扩散障碍越大,但同时脱附也更困难,这二者的竞争导致图案的周期先增加并逐渐达到峰值后减小。以外,他们还提出了一套结合SEM测量和图像的FFT处理的分析步骤,以此为基准来准确确定准无序纳米图案的平均周期大小,有效避免了单点测量的较大偏差。以上研究工作,对铝及其它金属(如Ti,Ta,Zn,W)及合金的电解抛光表面纳米图案化研究具有普通意义。甘阳教授课题组正在继续深入研究更多实验因素的影响、图案演化的计算机模拟及理论模型的建立,力图全面揭示金属电解抛光表面纳米图案的形成机理。该研究得到了国家自然科学基金重点项目、国家重点研发计划项目等的资助。恭喜哈尔滨工业大学化工与化学学院甘阳老师课题组使用蔡司场发射扫描电镜做科学研究,取得丰硕的科研成果!
  • 清华大学李晓雁教授课题组《Small》:混合多层级点阵材料的构筑设计与力学性能
    自然界中的许多轻质生物材料同时具有多种优异的力学性能,例如高模量、高强度、高断裂韧性和损伤容限等。研究表明,这些生物材料优异的力学性能与其多层级的结构密切相关。近些年,多层级的设计策略被成功地应用到三维力学超材料的构筑设计和制备中,但是目前这些三维多层级力学超材料主要是采用桁架作为材料的基本单元。另一方面,在许多无法事先判断载荷方向的应用场景下,人们往往期望结构材料具有各向同性,原因在于各向异性较强的结构可能仅在某一方向或某些方向上承载能力较强,而在其他方向的载荷作用下则很容易失效。因此,对于多层级点阵材料而言,研究其各向异性的程度并设计出各向同性的多层级点阵材料具有十分重要的意义。近期,清华大学李晓雁教授课题组采用桁架和平板单胞作为基本单元构筑设计了多种新型的混合多层级点阵结构(图1),并采用面投影微立体光刻设备(microArch S240,摩方精密BMF)制备了相应的多层级微米点阵材料。有限元模拟表明,通过在不同层级上选取合适的单胞结构,混合多层级点阵可以达到期望的弹性各向同性,并且具有比已有的自相似octet桁架多层级点阵更高的模量(图2)。对制备的不同取向的多层级微米点阵材料的原位力学测试表明,相比于各向异性的自相似octet桁架多层级微米点阵,混合多层级微米点阵在相同相对密度下具有更高的杨氏模量和压缩强度,并且可以更接近弹性各向同性,与有限元预测的结果一致(图3)。对于表现出弹性各向同性的ISO-COP混合多层级点阵材料,研究团队通过理论分析建立了其杨氏模量及失效模式与各层级结构几何参数的依赖关系,并给出了其失效模式相图(图4),有助于进一步理解多层级结构各层级之间力学性能的传递关系并据此进行结构几何参数的优化设计。相比于单一层级的平板点阵,桁架-平板混合多层级点阵具有密度更低、易于制备的优点;并且这种混合多层级的设计策略可以扩展至不同尺度和不同组分材料,在构筑轻质且具有优异力学性能的新型结构材料方面具有重要的应用前景。图1. 混合多层级点阵材料的构筑设计 图2. 多层级点阵结构的有限元模拟结果。(a-b)单轴压缩和剪切变形下的应力分布;(c-d)不同结构杨氏模量及各向异性度随相对密度的变化;(e-f)不同方向的杨氏模量 图3. 不同取向的多层级微米点阵材料的应力-应变曲线 图4. ISO-COP混合多层级微米点阵材料杨氏模量及失效模式的理论预测
  • 中科院苏州纳米所钱波团队《AMT》:一种3D打印层状石墨烯气凝胶的新策略
    中科院苏州纳米所钱波团队的郭浩等人提出一种3D打印层状石墨烯气凝胶的新策略。应用3D打印定制的针对不同氧化石墨烯墨水的狭缝挤出头,并在墨水中加入叔丁醇,抑制冰晶生长,最后应用定制挤出头3D打印制备得到层状石墨烯气凝胶,实现相比同类材料更高的电导率和电磁屏蔽性能,以及高灵敏压阻传感性能。图1 3D打印层状石墨烯气凝胶及其电磁屏蔽和压力传感特性 二维材料气凝胶因其在电磁屏蔽、传感器、柔性器件、超级电容器及油污吸附等方面的应用吸引了人们广泛的研究兴趣。由于二维材料本身的各向异性特性,相比各向同性结构,层状二维材料气凝胶在特定方向展示出优异的机械、电子、热性能。然而,目前制备层状结构二维材料气凝胶的方法较少,比较常用的是定向冷冻方法,但该制备方法在尺寸和形状上尚缺乏自由度,在性能上也仍有提升的空间。同时由于,二维材料分散液具有剪切变稀的特性,在剪切力的作用下,可以实现液晶形态的取向分布,如果能充分利用这一特性,将有望通过挤出装置实现取向结构二维材料气凝胶的制备,从而提升样品制备的自由度,并进一步提升材料性能。中科院苏州纳米所钱波团队的郭浩等人针对这一问题,提出一种3D打印层状石墨烯气凝胶的新策略。为充分利用氧化石墨烯墨水的剪切变稀特性,研究团队根据不用配方墨水的剪切变稀特性定制设计并应用摩方精密nanoArch S140高精度光固化3D打印机制备了可使对应氧化石墨烯墨水实现长程有序液晶形态的狭缝挤出头,狭缝尺寸50 μm,应用该挤出头在冷冻衬底上逐层3D打印相对应墨水。由于氧化石墨烯水基墨水中的水在冷冻衬底上结晶生成大尺寸冰晶,这将破坏狭缝挤出氧化石墨烯的液晶形态,为解决这一问题,团队通过调节叔丁醇在墨水中的含量,减小了冷冻衬底上冰晶生长的尺寸,从而降低了冷冻过程对于取向结构的破坏,最终通过冷冻干燥和化学还原实现了层状结构石墨烯气凝胶的制备。图2 根据墨水的流变性能设计并打印挤出头 研究显示,通过3D打印新策略制备的石墨烯气凝胶的层状结构清晰。得益于该层状结构,本研究3D打印的石墨烯气凝胶展示出比同类石墨烯气凝胶更高的电导率(705.6 S m−1)、更高的电磁屏蔽性能(3 mm样品在X波段可实现最高电磁屏蔽能效68.75 dB),并可实现高灵敏的压阻传感性能(清晰的语音和脉搏信号传感分辨能力)。图3 通过墨水配方调控获得良好层状结构的石墨烯气凝胶图4 3D打印层状石墨烯气凝胶的电导率和电磁屏蔽性能图5 3D打印层状石墨烯气凝胶的力学和传感性能研究者相信,此项研究将为具有剪切变稀性能的材料制备层状取向结构材料提供一条新的路径,为纳米材料通过3D打印有序可控组装并实现更高的性能提供一个新的思路。相关论文在线发表在《Advanced Materials Technologies》上。苏州纳米所郭浩为本文第一作者,钱波为本文通讯作者,苏州大学石学军为本文的软件模拟提供了支持。论文信息:A New Strategy of 3D Printing Lightweight Lamellar Graphene Aerogels for Electromagnetic Interference Shielding and Piezoresistive Sensor ApplicationsHao Guo, Tianxiang Hua, Jing Qin, Qixin Wu, Rui Wang, Bo Qian, Lingying Li, Xuejun ShiAdvanced Materials TechnologiesDOI: 10.1002/admt.202101699原文链接:https://doi.org/10.1002/admt.202101699官网:https://www.bmftec.cn/links/7
  • 科学岛团队在高压调控CrSiTe3结构和层间耦合方面获新进展
    近期,中科院合肥物质院固体所计算物理与量子材料研究部丁俊峰团队联合南开大学王维华教授等,实现了二维磁性材料CrSiTe3的高压结构及层间耦合调控,并利用超低频高压拉曼光谱阐明了其高压相的空间群信息。相关结果发表在Journal of Physical Chemistry Letters上。   二维磁性材料因具有高度可调的物理性质以及在自旋电子学中的潜在应用价值,近年来引起了研究者的广泛关注。二维层状材料由于层间只靠微弱的范德瓦耳斯力(vdW)作用连接, 可通过机械剥离法将其减薄至原子级厚度。具有磁各向异性的二维磁性材料, 其物理性质与层数、堆叠形式等密切相关且可被多种外场调控。其中,CrSiTe3作为一种二维铁磁半导体,由 CrTe6 八面体单元形成六角蜂窝晶格, 剥离后仍能保持长程磁序等诸多优异的物理性能,同时也是一种带隙可调的拓扑磁性材料。虽然,已有研究发现了CrSiTe3中压致超导电性和磁性的增强,但是其高压结构尚不清楚,这不利于分析和理解压力诱导的新奇现象和机制。为了解决这一难题,研究团队结合超低频高压拉曼光谱实验和第一性原理计算,明确了高压下CrSiTe3的结构。   研究团队采用机械剥离法获得了少层的CrSiTe3薄片,并将其置于金刚石对顶砧装置(DAC)中进行高压实验,利用超低频高压拉曼光谱技术系统地研究了二维层状铁磁半导体CrSiTe3的压力诱导结构相变。该实验首次在CrSiTe3中中观测到位于42.1 cm-1左右的层间呼吸模式。结合理论计算,发现CrSiTe3在大约5.0 GPa到8.2 GPa之间经历了从R-3到R3空间群的结构相变,并伴随着居里温度(Tc)的显著提高。该研究明确了CrSiTe3的高压结构,提供了一种调节及探测二维vdW材料层间耦合的有效途径,并表明层间耦合的增强可以显著提高CrSiTe3的铁磁性,这有助于进一步理解CrSiTe3的构效关系,为设计具有高性能二维vdW铁磁体提供了指导。   合肥物质院丁俊峰研究员、博士生程鹏和南开大学王维华教授为论文共同通讯作者,硕士生潘孝美和博士生辛保娟为论文共同第一作者。上述工作得到了国家自然科学基金,中科院创新项目和山西省科技创新团队专项资金的支持。图1. CrSiTe3分别在常压下和高压下的晶体结构图和拉曼光谱图。图2. (a)室温下CrSiTe3的高压拉曼光谱图; (b)压力下的拉曼光谱强度变化三维图,其中LP代表低压相,HP代表高压相;(c) 压力下的拉曼峰位置变化图; (d) 压力下的拉曼峰强度变化图;(e) 压力下的拉曼峰半峰宽(FWHM)变化图。
  • 药物传输系统(DDS)中脂质体的测定
    1. 前言药物的传递系统DDS近年来备受人们的关注,人们期望利用它提高药物疗效。脂质体是一种基于双层膜的纳米囊状结构,由于它良好的生物安全性和对药物的容纳性,常作为DDS中的药物载体。图1 脂质体模型为了判断脂质体是否适用于药物传递系统(DDS),需要评估它的膜流动性和相变温度。常用的评估方法是在脂质体中引入荧光探针,测量荧光各向异性来评价膜的流动性和相变温度。 日立具有超高灵敏度和高扫描速度的荧光分光光度计,可以选配荧光偏振附件和控温附件,准确获取脂质体的荧光各向异性。 2. 应用实例样品:DPPC脂质体荧光探针:DPH/TMA-DPH附件:带有控温装置的样品池支架 荧光偏振附件仪器:日立荧光分光光度计 测量模式:定量分析图2 荧光偏振附件(左)和程序控温附件(右)使用荧光分光光度计和荧光偏振附件测定脂质体样品的荧光各向异性,对于相变变温度的确定,通过可编程控温样品池支架来逐渐改变样品温度,结果如图所示。图3 样品荧光各向异性随温度的变化在不同温度下的荧光各向异性测量结果证实,当温度高于42.5oC时,各向异性会发生变化。 该结果表明该脂质体的相变温度为42.5oC。3. 总结日立荧光分光光度计F-7100具有超高灵敏度和60000nm/min的扫描速度,而且可以选用多种附件,为生物领域的研发提供多种解决方案。
  • 仪器情报,科学家首次发现SrTa2S5超导性与条纹电子相的证据!
    【科学背景】不共格调制是指晶体中同时存在两种或多种不相容的周期性结构,例如磁场调制、离子和分子排列的非共格化,以及金属系统中的非共格电荷密度波。这种现象挑战了传统晶体学的描述框架,促使科学家提出超空间群方法来描述这些结构的复杂性。因此呢,科学家们通过工程化的方法,如半导体超晶格和图案化的二维电子气体,成功实现了不共格调制的人工控制。然而,现有平台往往面临原子尺度的高度无序性,限制了它们在研究脆弱电子基态和高迁移率输运中的应用。为了解决这些问题,麻省理工学院物理系J. G. Checkelsky团队团队报道了SrTa2S5体相范德华超晶格,成功实现了对二维过渡金属二硫化物(TMD)层的一维不共格结构调制。通过量子振荡等实验证据,研究团队证明了H-TaS2层中高质量的电子输运,在调制下表现出各向异性和与光刻调制的二维系统相似的共振振荡现象。此外,研究还发现了SrTa2S5中非常规的纯净限制超导性,表现出明显的层间相对层内相干性抑制。通过分析平面磁场依赖的层间临界电流和来自结构调制的电子衍射,研究团队提出了SrTa2S5中超导性是空间调制的可能性,并指出了TMD层之间的不匹配性。这一发现不仅为理解不同晶体材料中电子相的操控机制提供了新的视角,还为开发新型纳米电子器件和超导体提供了新的思路和方法。【科学亮点】1. 实验首次在SrTa2S5体相范德华超晶格中实现了一维不共格结构调制,这一调制影响了H-TaS2层的电子输运性质。2. 通过量子振荡证据表明,H-TaS2层中的高质量电子传输表现出明显的各向异性,这种行为类似于光刻调制的二维系统。3. SrTa2S5展示了非传统的纯净限制超导性,明显抑制了层间相对于层内的电子相干性。4. 平面磁场对SrTa2S5中层间临界电流的依赖性,以及来自结构调制的电子衍射表明其超导性在空间上存在调制特性,并在相邻TMD层之间呈现不匹配。5. 本研究提出了SrTa2S5作为探索密度波配对超导性的潜在平台,为研究非传统序的微观评估提供了一种可能途径。【科学图文】图1 | 周期调制晶体和结构调制的体块超晶格。图2 | SrTa2S5的输运各向异性和费米面结构。图3 | 条纹调制超晶格中的半经典共振振荡。图4 | 抑制层间相干性和平面各向异性的超导性。。【科学结论】本文展示了SrTa2S5体相范德华超晶格作为研究调制电子相的理想平台的潜力。通过实现一维不共格的结构调制,研究人员首次在这一材料中探索到了高度各向异性的电子输运特性,并观察到了与光刻调制二维系统相似的共振振荡现象。此外,SrTa2S5还展现出非常规的超导性质,其中层间相干性显著抑制,这为研究超导性的空间调制性质提供了新的案例。这些发现不仅揭示了体相范德华超晶格在探索调制电子相中的多功能性,还为理解和设计未来范德华异质结构及其宏观应用提供了深远的启示。通过局部扫描探针、宏观散射实验以及范德华器件制备技术,可以进一步探索SrTa2S5中的密度波配对序,这将有助于开拓新的电子材料设计和功能性器件的发展路径。原文详情:Devarakonda, A., Chen, A., Fang, S. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature (2024). https://doi.org/10.1038/s41586-024-07589-5
  • 半导体情报,科学家利用自旋整流器实现低功率射频能量的高效收集与应用!
    【科学背景】随着无线传感器网络在健康监测、环境监测和物联网(IoT)等应用中的重要性日益增加,如何有效供电成为一个关键问题。当前,许多传感器需要在难以接触的地方进行安装,例如用于空气质量、温度和湿度监测的传感器,这些传感器的电力需求通常无法依赖传统电池供给。因此,开发一种能够从环境中收集能量并转化为电力的技术成为了一个重要研究方向。在众多能源收集技术中,射频(RF)能量收集因其全天候可用、易于获取且可以与小型无线传感器网络集成的优点而备受关注。射频能量收集的关键挑战之一是如何在低功率条件下提高能量转换效率。尽管已有技术如肖特基二极管和隧道二极管在较高功率条件下表现出较高的效率,但在环境射频功率低于 -20 dBm 的情况下,这些技术的效率大幅降低,无法满足实际应用需求。此外,传统射频整流器面临热力学极限和高频寄生阻抗等问题,这些因素严重制约了其在低功率环境下的性能。为此,新加坡国立大学Hyunsoo Yang等科学家们致力于改进自旋整流器的性能。例如,作者的研究团队开发了一种新型的自旋整流器 rectenna,其在 -62 dBm 的射频功率下具有约 10,000 mV mW&minus 1 的高灵敏度,能够在弱且嘈杂的环境中有效收集射频能量。此外,作者还开发了一种基于片上共面波导的自旋整流器阵列,该阵列展示了约 34,500 mV mW&minus 1 的零偏灵敏度和 7.81% 的高效率。作者的研究解决了传统自旋整流器在低功率环境下效率低的问题,通过利用电压控制的磁各向异性(VCMA)驱动的自参量效应,显著提高了灵敏度和检测带宽。这一进展使得作者的自旋整流器可以在 -27 dBm 的低射频功率下为传感器提供无线供电,展现出良好的应用前景。【科学亮点】1. 实验首次展示了高灵敏度自旋整流器(SR)rectenna的应用:本文首次报道了一种具有高灵敏度的 SR rectenna,能够在 -62 dBm 的低射频功率下进行能量收集,达到约 10,000 mV mW&minus 1 的灵敏度。这种 SR rectenna 能够在弱且嘈杂的环境中有效捕获射频能量。2. 通过优化器件特性提升灵敏度:研究中指出,单个 SR 的灵敏度与其内在特性密切相关,包括垂直各向异性、器件几何形状和来自极化层的偶极场。这些因素共同定义了纳米磁体的能量景观,并促使低输入功率下的大角度磁化进动。此外,SR 的灵敏度还与磁隧道结(MTJ)的动态响应相关,尤其是零场隧道磁阻(TMR)和电压控制的磁各向异性(VCMA)系数对增强零偏置整流电压的作用。3. SR 阵列的自参量效应提升了性能:实验还显示了 SR 阵列在没有外部天线或匹配设置的情况下,通过 VCMA 驱动的自参量效应,增强了灵敏度和检测带宽。该 SR 阵列基础的能量收集模块(EHM)能够在 -27 dBm 的低射频功率下为商业传感器供电,展示了其在实际应用中的有效性和高效性。【科学图文】图1:利用自旋整流器Spin rectifiers,SRs的射频Radiofrequency,RF能量收集。图2: 自旋整流器SR整流天线的性能。图3: 宽带和谐振整流的调谐。图4:基于宽带低功率自旋整流器SR的能量收集器energy harvesting module,EHM。图5: 肖特基二极管、自旋整流器SR阵列和SR整流天线之间的整流性能比较。【科学启迪】本文的研究通过优化自旋整流器的设计,包括垂直各向异性和设备几何形状,研究成功实现了在极低射频功率下的高灵敏度检测。这表明,通过精细调控材料和结构特性,可以显著提高纳米尺度整流器的能量转换效率,从而扩展其在低功率环境下的应用范围。其次,本文引入了基于电压控制的磁各向异性(VCMA)的自参量效应,展示了在没有外部天线或匹配设置的情况下,如何通过自参量激发实现更高的灵敏度和更宽的检测带宽。这一发现不仅突破了传统射频整流器在低功率和复杂环境下的性能瓶颈,还为未来开发更高效的射频能量收集模块提供了新的思路。最后,本研究表明,基于自旋整流器的射频能量收集模块在实际应用中具有良好的性能,如在 -27 dBm 的低射频功率下为商业传感器供电。这表明这些整流器不仅具备高灵敏度和高效率,还具备良好的实际应用潜力,适合于未来无线传感器网络和物联网设备的集成与应用。原文详情:Sharma, R., Ngo, T., Raimondo, E. et al. Nanoscale spin rectifiers for harvesting ambient radiofrequency energy. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01212-1
  • 半导体所在二维GeSe的偏振光学特性研究中获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   光在传波过程中振动方向对于传播方向的不对称性叫做偏振,偏振是光作为电磁波的重要特征之一。偏振光探测在线性偏光镜(LPL)、偏振遥感以及医疗诊断治疗等方面已展现出广泛的应用前景。目前,对可见波段的偏振检测研究已比较普及,而对其它特殊波段的偏振探测有待进一步探索。近日,中国科学院半导体研究所超晶格室研究员李京波、魏钟鸣,与天津大学教授胡文平合作,围绕二维GeSe材料在短波近红外波段(700-1100 nm)的偏振光探测取得新进展。 /p p   GeSe是一种典型的二元IV-VI硫族化合物,研究显示,GeSe是以高度各向异性的层状正交晶系方式结晶(空间群Pcmn- ,比黑磷的空间群Bmab- 对称性低)。此外,GeSe的带隙范围为1.1-1.2eV,使其适用的二向色性波段分布在1100nm波段以内(可见/短波近红外波段)。在靠近带边处,高态密度直接导致高吸收系数。鉴于上述特性,GeSe在面内各向异性等方面的独特性质有待研究,来实现其在可见/短波近红外波段光偏振探测方面的应用。 /p p   在此背景下,该研究员团队利用GeSe材料高蒸气压的特点,采用真空气相沉积法,获得了高质量的GeSe层状单晶。通过XRD以及TEM表征,证实获得的二维GeSe纳米片具有很高的结晶度。同时,通过拉曼光谱、光吸收谱和光探测器件研究,系统分析了GeSe在晶格振动以及光学方面的各向异性(如图)。由于GeSe的几个典型的拉曼振动模的强度随着入射光和散射光的偏振方向以及样品的夹角而变化,拉曼光谱检测为GeSe晶向的确定提供了快速简便的方法。在光学方面,GeSe的各向异性体现在偏振度可分辨的光吸收谱和光电流谱等方面,在532nm激光波长下二向色性比为1.09,在638nm下为1.44,在808nm下为2.16,与吸收谱测试结果基本符合(对应的各向异性吸收比分别是1.09,1.26,3.02),这两种测试方法系统地确定了GeSe最佳的各向异性的光响应在808nm波长附近。结合理论计算的佐证,系统探测显示8-16nm厚度的GeSe有助于实现最优质的光探测结果。该研究成果显示出,二维GeSe在线偏振探测领域有潜在的应用价值。 /p p   相关研究成果近期发表在 em Journal of the American Chemical Society /em 上。研究工作得到中科院和国家自然科学基金委员会的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171123391449326616.jpg" src=" http://img1.17img.cn/17img/images/201711/uepic/753d9b4e-23b3-45db-b3a8-e7fd4a6082c2.jpg" uploadpic=" W020171123391449326616.jpg" / /p p style=" text-align: center " 由GeSe低晶格对称性导致的角度依赖各向异性拉曼信号和808nm激光下的探测性能。 /p
  • 合肥研究院阐明贵金属微纳结构的拉曼增强和光催化活性
    近期,中国科学院合肥物质科学研究院智能机械研究所刘锦淮课题组的杨良保研究员等人在阐明单个的各向异性的金微米片上拉曼增强与光催化活性之间关系的研究上取得新进展。相关成果已发表在《欧洲化学》杂志上。该研究对于理解SERS活性纳米结构的增强机制和等离子体有关的催化效应具有重要的意义。   各向异性贵金属微纳结构因其独特的尺寸依赖效应和形状依赖效应,成为了越来越多的研究领域的热点,逐渐应用于光学、催化等领域。但是,在如何克服化学效应的贡献并获得分子层面信息的同时,阐明贵金属结构上的拉曼散射和光催化活性之间的关系,仍然是一个巨大挑战。   研究人员刘洪林博士等人通过简单的方法合成了纳米厚度的金微米三角片和六角片,并直观地展示了这些结构不同位置上拉曼信号和光催化活性之间关系。通过等离子体光催化敏感分子的结构的变化,利用其SERS信号峰相对强度的变化,成功刻画了金微米片角、边、面上不同位置的光催化活性的可视画面,排除了常规研究中浓度效应和分子覆盖度差异的问题。   研究结果表明,金微米片上特定位点分子吸附数目的增加,并不必然导致更高的光催化转化率,而是与其等离子体共振强度、电磁场强度密切相关,这与理论模拟的结果一致。相关研究策略排除或者弱化了等离子体局域热效应,也在一定程度了成功克服了浓度差异效应和化学贡献效应在贵金属等离子体光催化中的作用,清晰的刻画了等离子体共振强度相关的催化特性。   该研究工作得到了科技部重大科学研究计划纳米专项项目&ldquo 应用纳米技术去除饮用水中微污染物的基础研究(2011CB933700)&rdquo 以及国家重大科学仪器设备开发专项子任务&ldquo 动态表面增强拉曼光谱技术用于农药残留检测&rdquo 和&ldquo PERS仪器在环境污染物检测领域中的应用&rdquo (2011YQ0301241001 & 2011YQ0301241101)等项目的支持。    合肥研究院阐明各向异性贵金属微纳结构的拉曼增强和光催化活性之间的关系
  • 试验机海外直播丨实现高精度CAE分析实验的材料评价案例?技术介绍
    什么是复合材料? 复合材料是指由两种或两种以上具有不同物理、化学性质的材料,以微观、细观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一个材料系统。复合材料具有高比强度和高比刚度,可设计性强、抗疲劳、耐腐蚀性能好等独特优点,具有传统材料无法比拟的一些优越力学和物理性能。其在宏观上表现出明显的不均匀性和各向异性的材料特性,而这种特性直接影响了复合材料的宏观力学性能表现,准确的测量这种不均匀和各向异性的力学性能是复合材料设计和应用的重要实验数据。 岛津试验机有多强? 岛津制作所试验机研发团队经过长期的设计、优化、验证,打造出了高级别高规格的先进试验机AGX-V,控制器搭载了2个处理器和3个控制单元,实现了高达10kHz的采样频率;力值传感器的精度保证范围可从1/2000开始,减少了传感器的更换次数和校准费用;最大信号输入数量多达20个通道;机器出厂同轴度满足ASTM E1012 10级等。 海外直播讲什么? 为了降低以汽车为首的运输机器的环境负荷,寻求车体的轻量化,CFRP等复合材料的活用也陆续开始了。复合材料与以往的材料不同,由于内部结构的复杂,需根据应力负荷主轴方向来显示较复杂的破坏行为,因此是较难看到高精度结构分析模型的一种材料。本次会介绍通过实际试验和数值分析模拟的比较,来验证热塑性CFRP拉伸行为的案例。 本直播采用在岛津最新型试验机AGX-V上搭载非接触式引伸计TRViewX和DIC分析软件,以高数据密度的的全场测量方法来准确的获取复合材料的不均匀和各向异性的力学性能数据。
  • 预算1.32亿元!中国石油大学(华东)近期大批仪器采购意向
    近日,中国石油大学(华东)发布29项仪器设备采购意向,预算总额达1.32亿元,涉及高温高压岩石物理声-电-核磁联测综合实验系统、超高温压钻井液流变仪、超高温超高压高含酸性气体油气PVT测试仪、深层油气藏储层改造物理模拟实验系统等,预计采购时间为2024年10~12月。中国石油大学(华东)2024年10~12月仪器设备采购意向汇总表序号采购项目需求概况预算金额/万元采购时间1高温高压岩石物理声-电-核磁联测综合实验系统设备主要用于深层油气岩石物理参数原位监测,揭示高温高压环境、复杂地质条件孔隙-流体岩石物理响应机理,为流体成像和储层评价提供依据。系统包括声学、电学和核磁测量三大模块,实现声、电、核磁同时测量,以及波场、电磁场、放射性等的大型模拟计算,能够模拟深层-超深层下的高温度、压力环境,复现多物理场耦合的复杂情况。通过获得数据理解温压条件孔隙-流体相互作用多物理场响应机制,支撑深层油气地球物理探测。10102024年12月2超高温压钻井液流变仪可实现零下20至高温320℃、0-220MPa条件下的钻井液、压裂液、完井液等液体样品的流变性测量,并且可以实时连续测试CO2等气体与钻井液、完井液样品反应导致的粘度变化特性。1502024年11月3超高温超高压高含酸性气体油气PVT测试仪实现超高温(300℃)、超高压(200MPa)、高含酸性气体(H2S含量10%)油气的PVT相态测试。2002024年11月4深层油气藏储层改造物理模拟实验系统--模块1: 井筒-射孔-动态扩展裂缝全耦合压裂材料评价与工艺优化模块水力压裂是实现深层、超深层、特深层油气高效开发的核心利器。高温、高压、高盐、高应力“四超”条件下,水力压裂改造体积有限、调控难。支撑剂铺置效果差、回流严重,裂缝导流能力低,亟待攻关支撑剂运移铺置机理和回流机制,建立全尺度裂缝有效加砂工艺方法和压后返排制度优化方法。实验研究是解决上述难题的有效手段,目前国内外尚缺乏考虑井筒-射孔和裂缝耦合、考虑裂缝动态扩展的大型可视化材料评价装置。实现压裂材料(压裂液、支撑剂、暂堵球/剂等)在井筒、射孔和动态扩展裂缝中的流动及运移模拟,评价压裂液性能及压裂材料的运移封堵特征,推动深部储层压裂改造理论与技术方面取得突破。 设备功能:可开展闭合压力作用下动态扩展复杂裂缝中的颗粒可视化运移实验、井筒-射孔-裂缝耦合的暂堵球/剂运移封堵实验,并具备相应的数据采集及检测功能。4852024年12月5深层油气藏储层改造物理模拟实验系统--模块2: 深层酸化动态模拟与工艺评价模块酸化是实现深层、超深层油气高效开发的重要方法,深层高温(240℃)、高压(70MPa)、高应力(围压100MPa)下,酸液易失稳、失能、失效,酸蚀效果差,亟待明确酸液与深层岩石-流体间相互作用机制,研发新型工作液体系,创建储层酸化增产改造设计方法。拟购置深层酸化动态模拟与工艺评价模块,实现深层高温(240℃)、高压(70MPa)、高应力(围压100MPa)下的岩石蠕变特性、酸蚀过程中岩心孔隙结构变化的动态精细监测、反应/非反应流体储层渗流多维度实时成像,推动深层酸化酸压理论与技术取得显著突破。 设备功能:高温(240℃)、高压(70 MPa)、高应力(围压100 MPa)下酸液流动反应过程模拟监测。多场作用下酸蚀轨迹动态扩展的实时监测与蠕变特性的精细表征。4702024年12月6深层油气藏储层改造物理模拟实验系统--模块3: 压裂液渗流与返排模拟评价模块深层、超深层条件下,压裂液易失稳、失能、失效,储层伤害严重。亟待明确改造工作液与深层岩石-流体间相互作用机制,研发新型工作液体系。升级体积压裂工艺和裂缝监测方法(示踪剂)。为此拟购置压裂液渗流与返排模拟评价模块。实现深层高温(240℃)、高压(70MPa)、高应力(围压100MPa)下的压裂液渗流过程中岩心孔隙结构变化的动态精细监测,压后返排过程中的支撑剂及示踪剂返排模拟。 设备功能:高温(240℃)、高压(70 MPa)、高应力(围压100 MPa)下压裂液渗流模拟及动态监测。压裂液返排及支撑剂回流实验,示踪剂返排特征实验,并具备相应的数据采集及检测功能。4652024年12月7CVA径向波速各向异性测量装置地应力是影响深部储层压裂改造的关键因素,开展深层地应力预测方法研究,能够为深层油气高效低成本勘探开发提供有力的方法支撑。地应力叠前地震预测具有预测范围广、横向连续性强等独特优势,是实现深层地应力横向预测的重要手段。孔隙压力是影响地应力的重要因素,常规孔隙压力预测方法欠缺对有效应力的敏感性分析,难以适应深层复杂条件。深部储层多表现出介质复杂、孔隙压力高、地质构造复杂等特征,地应力受多重因素影响,现有地应力地震预测方法无法满足深部储层地应力预测的精度需求。如何考虑深层多因素影响,开展适应深部储层复杂条件的地应力地震预测方法?因此,拟购置“CVA径向波速各向异性测量装置”,用于岩石地应力测试,测量岩心不同角度和高度的P波和S波波速,自动确定岩石主应力方向,分析地层压力敏感指示因子及地震数据的定量表征关系,为地应力地震预测提供高温高压条件下的实验数据支撑,提高深部储层地应力预测的精度和可靠性。设备建成后可以形成一套CVA径向波速各向异性测量与地应力测试装置,该装置可在不同温压条件下开展岩石地应力测试,即通过测量岩心试样在不同角度和高度时的P波和S波波速,从而确定岩石上的主应力方向。2002024年11月8DSA差应变测量装置(岩石三轴仪)深层地震信号弱、信噪比低、储层参数预测多解性强的复杂地球物理特征,导致利用地震数据挖掘深部油气储层的非均质和各向异性信息难度大,主要表现在:高温高压条件下裂缝、多重孔隙及流固非线性耦合效应更加复杂,高温高压条件下深层岩石物理性质、流固非线性耦合效应及地震响应规律不明确;现有地层压力地震预测技术主要是通过弹性模量及各向异性参数来间接反映深部油气储层地层压力信息,欠缺考虑针对性的地层压力敏感指示因子及地震数据定量表征关系,始终缺少高温高压条件下岩石物理测试的实验数据支撑,难以稳定预测深部油气储层地层压力信息。因此,拟购置“DSA差应变测量装置(岩石三轴仪)”,主要用于测试受压条件下的立方体岩石试件,以确定其原位应力状态、裂缝孔隙分布及裂缝方位特性分析、三轴应变状态、数据智能分析、应力诱导裂缝的研究等,奠定深部储层压力预测的物理基础。该项设备建成“DSA差应变测量装置”,可以实现测试受压条件下的立方体岩石试件,以确定其原位应力状态、裂缝孔隙分布特性及裂缝方位特性分析、三轴应变状态、数据智能分析、应力诱导裂缝的研究等,主要面向地质资源与地质工程、地球物理、资源勘查技术与工程、石油工程、材料物理、力学等多学科,推动多领域多学科生态群建设。2002024年11月9多通道分布式声传感仪器仪器用于深油气储层流体识别和微弱地震信号的探测,该仪器具备多通道实时同步探测、高空间分辨率、宽频带测量的优势,可弥补深层储层探测精度不足、流体识别不准确等缺陷,对于提升地球物理探测精度、强化油气勘探能力有着重大实际意义。仪器可开展多通道地震信号的实时同步测量,压制本征仪器噪声,提升地震资料平直。其标距长度任意可调,可针对不同尺度的勘探目标按需改变空间分辨率,增强深层储层流体识别精度。1952024年11月10储层流体流动电磁震一体化实时动态监测仿真实验系统系统可用于直观深入理解储层流体流动电、磁、震多中地球物理信息传播过程,进行全面和规律性实验,提升动态监测精度,为进一步深入开展深层油气储层流体流动地球物理动态监测提供重要的理论支持,特别是对实际工程应用提供了科学依据,具有重要意义。该系统包含储层流体流动仿真模拟、电磁震多参数一体化同步动态监测功能、地面和井中立体化联合测试实验功能,可实现储层流体地球物理多元多分量信息高精度同步探测,解决单一方法监测的局限性和多解性难题,全面提升深部储层流体地球物理动态监测精度。3222024年11月11多维核磁共振测井高温高压测试系统主要用于深层油气岩心多维核磁共振探测,弥补国内岩心核磁仪器难以匹配核磁测井仪器的难题,发展核磁共振测井探测技术,解决深层油气储层评价及流体识别等问题。系统由核磁共振主磁体和梯度单元、核磁共振谱仪及序列编辑器、温度压力模拟装置与流体注入系统和多维核磁共振信号采集与处理系统组成。系统可在不同温度和压力下对岩心进行原位测试,以获得与测井设备接近的实验条件,用于核磁共振脉冲序列及信号采集方法开发、兼容模拟核磁共振测井和实验室条件开展T2、T1、T1-T2、T2-D、T1-T2-D等多维核磁共振测量。2302024年11月12黄金管热模拟系统用于深层-超深层油气生成模拟,满足我国主要沉积盆地深-超深层的温压模拟需求,解决古老烃源岩形成与潜力评价、深层油气来源与相态模拟及有机质生氢气潜力评价等关键问题,建设国内领先的深层-超深层实验模拟平台。 拟采购可以实现多种升温速率的黄金管热模拟系统,最高模拟温度应在700摄氏度以上。1502024年10月13立式连续波电子顺磁共振波谱仪深层的典型特点是高温高压,这种背景下,自由基反应可能是干酪根、烃类、孔隙水和矿物等有机组分和无机组分之间相互作用的的重要途径。干酪根和原油热演化、原油炼化过程中,自由基反应可能充当了重要角色,但目前校内缺少原位检测自由基的设备,限制了相关化学作用过程和作用机制的深入研究。电子顺磁共振波谱仪是研究物质中未成对电子状态的重要工具,可精确、快速地测定物质原子或分子中所含的未成对电子,并探索其周围环境的结构特性和动态信息。是目前唯一能够直接检测含有未成对电子的设备,定性和定量直接检测自由基、过渡金属离子、稀土金属离子、杂质、缺陷、空位等,无损原位检测,可搭建原位变温、光催化、电催化等实验,对样品无伤害,实现高灵敏度检测。能够为高温高压化学反应过程提供直接支撑。2702024年10月14深层油藏温压条件下剩余油表征系统用于深层油藏温压条件下真实岩样、多种驱替方式、可视与多信息采集一体化剩余油物理模拟,弥补深层油藏剩余油表征设备的空白,解决开发中后期深层油藏微观剩余油形成机理与赋存规律问题,是深层剩余油形成与分布理论基础研究以及前沿性科技创新研究的必备实验装置。设备由高温高压驱替模块、地质信息采集分析模块、模型可视化模块及相关配套模块组成,可模拟深层温压环境真实岩样剩余油形成过程,突破高温高压条件,实现真实岩样的剩余油动态可视化观测与多信息实时采集,开展剩余油形成过程表征与机理探索,为提高油气采收率提供理论与技术支撑。3402024年10月15变温压深层储层流体超声波探测系统目前中国石油大学(华东)相关团队在深层储层地球物理识别与智能预测理论方面特色突出,优势明显,在国际上处于领先地位。其中深层流体识别方面,国内最早提出“岩石物理驱动下地震流体识别”理念,利用地震数据解决深层流体识别等问题;但缺少相应物理模拟及实验硬件支撑,开展储层流体地震物理模拟实验,在物理模拟实验的基础上推动地震勘探理论的发展。深层储层流体是五维地震方位信息差异的重要基础,流体识别的地震实验室模拟分析现仅限于数值模拟分析,尚无物理模拟分析,为更深入的刻画深层储层流体与五维地震之间的理论机理,攻克地震勘探如何识别流体这一关键科学难题,亟需建设变温压储层流体地震波反射探测装置。目前国内外尚无类似的变温压储层流体超声波反射探测装置,大多数是常温常压、无法进行流体驱替。设备建成后可以形成一套专门面向深部储层非均质流体、孔裂隙结构的变温压储层流体超声波反射探测装置,为深部储层地球物理预测与流体识别提供高精尖设备基础,全面提升面向深部油气储层地震流体识别领域的国际竞争力。3002024年10月16高温高压岩石物理与岩石力学多参数测量系统深部裂缝型储层因其具有复杂裂缝系统、多重孔隙空间、流固耦合及岩性多样化等地质条件,且存在深层地震信号弱、信噪比低、储层参数预测多解性强的复杂地球物理特征,导致利用地震数据挖掘深部油气储层的非均质和各向异性信息难度大,主要表现在:高温高压条件下裂缝、多重孔隙及流固非线性耦合效应更加复杂,缺乏描述深部油气储层强非均质性、各向异性等特征的微观物理机制,高温高压条件下深层岩石物理性质、流固非线性耦合效应及地震响应规律不明确;现有地层压力地震预测技术主要是通过弹性模量及各向异性参数来间接反映深部油气储层地层压力信息,欠缺考虑针对性的地层压力敏感指示因子及地震数据定量表征关系,始终缺少高温高压条件下岩石物理测试的实验数据支撑,难以稳定预测深部油气储层地层压力信息。仪器是是一种具有多种功能的试验系统,同时230℃、200 MPa下高温高压试验、高温高压声波-电阻率联测试验、高温高压条件下声波-电阻率-渗透率联测试验、高温高压声波-电阻率-力学参数联测试验。模拟环境:最高温度不低于230℃;最高围压不低于200MPa,最高轴压不低于500MPa(针对试样尺寸为Ф25mm×50mm),最高孔压为140MPa。该试验系统可实现高温高压条件下声-电联测功能,其中:声波纵、横波及全波列可同时采集,数量分别为1个和2个,电阻率可实现不同频率下(0.01Hz~100kHz)测量;可实现高温高压条件下声-电-渗联测;可实现高温高压条件下声-电-力学联测。6002024年11月17深层强动载改造岩石动力学模拟实验系统目前国内外尚缺乏考虑高应力(100 MPa)、高破裂强度(120 MPa)条件下强动载冲击改造实验系统,制约了深部储层改造基础理论进步和工艺创新。拟采购深层强动载改造岩石动力学模拟实验系统,可实现深层高应力(100MPa)、高破裂强度(120MPa)条件下强动载冲击破岩过程模拟,助力深层油气藏压裂配套工艺进步。 设备功能:评价井下工具在不同角度液体环境下耐压、耐温性能。实现强动载冲击条件下岩石应变动态变化的跟踪测试,评价致裂前后岩石渗透性变化,表征致裂模式及形态。4902024年12月18沉积地形精细定量扫描系统本系统包含两个子设备,分别为激光雷达扫描仪和激光坐标投影设备,应用于沉积物理模拟实验和地层地貌学物理实验中的地形精细检测。该系统要能够在多角度和复杂三维表面上投射精确的网格线和坐标,能够高精度地、定量检测沉积物的分布和形态变化,提供准确的实验数据支持,可用于构建精细的地质结构模型,展示沉积物的空间分布和沉积环境的变化,为沉积过程和地质历史研究提供重要依据。1302024年11月192024年10月
  • Cell子刊:杨扬/韩华团队开发听觉皮层亚细胞结构三维电镜重构算法
    生命科学  Life science  2022年8月2日,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。  中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。  大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。  为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。  为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。  综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。  图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。  该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。  作者专访  Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。  CellPress:  过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?  杨扬研究员:  电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。  CellPress:  多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?  杨扬研究员:  一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。  CellPress:  人工智能算法在这个研究中发挥着怎样的作用?  刘静博士、韩华研究员:  近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。  CellPress:  可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?  刘静博士、韩华研究员:  突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。  CellPress:  您认为该项研究对类脑计算有什么启发吗?  刘静博士、韩华研究员:  类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。  作者介绍  谢启伟   教授  谢启伟,北京工业大学现代制造业基地教授  研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。  韩华   研究员  韩华,中国科学院自动化所研究员  研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。  杨扬   研究员  杨扬,上海科技大学生命科学与技术学院助理教授、研究员  研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。  相关论文信息  ▌论文标题:  Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
  • 如何将9T磁场测量系统秒变9T-9T-9T矢量磁场?
    探索材料角度相关的磁输运性质是凝聚态物理学中应用广泛和重要的课题研究方向。该研究通常需要很宽的样品温度范围,比如从室温到几开尔文或更低,还需要强大的矢量磁场。控制矢量磁场对此类研究尤为重要。然而,传统的超导矢量磁体不仅价格昂贵,而且场强也有限:三个方向上至少两个方向的磁场强度通常不能超过2T。 德国attocube公司是上著名的端环境纳米精度位移器制造商。近期,该公司推出的atto3DR低温双轴旋转台,将施加在样品上固定方向的单一磁场(垂直或水平方向)的改变为三维矢量磁场。通过这种方式,在任何其他方向上也可立即获得非常高的磁场(例如9 T或12 T)。因此,它相当于提供了9T-9T-9T矢量磁铁的等效系统,这是目前尚无法实现的。此外,与常规矢量磁铁(如5T-2T-2T)只能在旋转中提供大2T的磁场相比,此解决方案的成本也非常低。 另外,双旋转轴的应用保证了样品在任意磁场方向上的变化和灵活性,通过水平固定轴的旋转,可控制样品表面与外界磁场的倾角(+/- 90°);而沿面内固定轴的旋转提供了另外+/- 90°的运动,从而实现样品与磁场形成任意相对方向。同时还兼容2英寸样品空间和He气氛,配备Chip carrier,提供多达20个电信号接口。 1. 为什么要旋转你的样品? 物理学家、化学家和材料科学家正在不懈地寻找具有理想性能的新材料。新材料几乎每天都会被合成出来,并经历各种各样的测量和表征。费米面的表征在材料表征中起着核心作用,因为将电子结构与材料的性质相关联,可以设计出具有所需性质的材料,并针对特定的应用进行调整。若能够地控制磁输运测量中的场方向有助于提取样品各向异性的信息。能够旋转样品在面内和面外场之间切换,或沿所需方向(例如,沿准一维样品,如纳米管或纳米线)对准就显的尤为重要。 Attocube公司研发的压电驱动的纳米旋转台有效地取代了价格昂贵的矢量磁铁,甚至提高了它们的性能,不仅扩大了其任意方向上的大可用磁场,而且也能很好的实现自动化的测量。更为重要的一点是:它们优于传统无法避免的机械滞后性的机械转子。此外,当需要超高压条件时,例如在ARPES中,与机械旋转器相比,压电陶瓷旋转台提供了额外的优势-压电陶瓷旋转台不会导致超高压室泄压或者漏气。2. Attocube提供的解决方案2.1 attocube 的纳米精度旋转台 attocube提供了多种可以组合的压电驱动纳米定位器,其中包括水平旋转台和竖直旋转台(attocube纳米旋转器-ANR/ANRv)。旋转台组合包括一系列不同尺寸和方向,以及适用于低温环境、超高真空和/或高磁场的不同环境下的需求。由于其体积非常紧凑,attocube的旋转台能够适配于大多数的超导磁体样品腔。图1: ANR portfolio [4]2.2 atto3DR:在3D中模拟强矢量磁场 atto3DR双旋转器具有两个立的旋转台,它们组合在一起,从而提供相对于样品表面的所有方向上的全磁场(例如14 T),如引言中所述。atto3DR如图2所示。atto3DR可以提供普通低温版本,同时也可根据具体需求提供用于低温真空(如稀释制冷机)的定制版本;有关mK温度下的应用案例,请参阅应用部分。图2: atto3DR:(a)带有无铅陶瓷芯片载体的样品架,配备20个触点;(b) 面内ANR;(c) 另外一个面内的ANR[4]。 3. 应用案例 在概述了ANRs、atto3DR的主要特点和优点之后,本文后一章将重点介绍通过使用基于我们的旋转器获得的传输测量的研究结果。3.1 基于ANR旋转台的应用案例3.1.1 在强磁场和200 mK条件下考察的g因子的各向异性 在Zumbühl集团(瑞士巴塞尔)与RIKEN(日本Saitama)、SAS(斯洛伐克布拉迪斯拉发)和UCSB(美国圣巴巴拉)课题组的合作进行了以显示GaAs量子点中各向同性和各向异性g因子校正的分离实验。这项研究是在两个立的横向砷化镓单电子量子点上进行的。为了在实验上确定g因子修正,通过测量具有不同强度和方向的平面内磁场的隧穿速率来得到自旋分裂。自旋分裂定义了自旋量子位的能量,是磁场中自旋的基本性质之一。在这里,他们测量并分离了两个GaAs器件中对g因子的各向同性和各向异性修正,发现与近的理论计算有很好的一致性。除了公认的Rashba和Dresselhaus项,作者还确定了动量平方依赖的塞曼项g43和穿透AlGaAs势垒gP项[5]。 此项工作是在attocube纳米精度旋转台ANRv51的帮助下完成的:样品安装在压电驱动旋转器上,并在磁场平面内旋转。由于旋转台有电阻编码器,因为能够读出旋转器的状态角度。此外,ANRv51可在高达35 T的磁场环境下使用,并可在低至mK的低温范围内使用-该实验在稀释制冷机中进行,电子温度为200 mK,磁场高达14 T。该磁场强度在任意面内方向上施加,只能通过旋转器实现不同角度下的测量。图3: sample in chip carrier mounted on ANRv513.1.2 mK位移台在材料输运性质随磁场角度的变化研究中的应用 北京大学量子材料科学中心林熙课题组成功研制出基于attocube低温mK位移台研制的低温强磁场下的样品旋转台,用于测量材料的输运性质随磁场角度的变化研究。 该系统是基于Leiden CF-CS81-600稀释制冷机系统的一个插杆,插杆的直径为81 mm,attocube的mK位移台通过一个自制的转接片连接到插杆上,如图4所示,位于磁场中心的样品台的尺寸为5 mm*5 mm,系统磁场强度为10T。系统的制冷功率为340 μW@120mK,得益于attocube低温位移台低的发热功率及工作时非常小的漏电流,使得旋转台能够很好的在<200mK的温度下工作(工作参数:60V,4Hz, 300nF)。 图4. 实现的旋转示意图和ANR101装配好的实物图 图5. 侧视图,电学测量的12对双绞线从旋转台的中心孔穿过 图6中是GaAs/AlGaAs样品在不同角度下测试结果,每一个出现小电导率的点,代表着不同的填充因子。很好的验证了其实验方案的可行性和稳定性。图6. Shubnikov–de Haas Oscillation at T = 100 mK3.1.3 25 mK和强磁场下的自旋弛豫测量 基于量子点的自旋量子位是未来量子计算机的一个有希望的核心元件。2018年,一项国际合作((Basel, Saitama, Tokyo, Bratislava and Santa Barbara)在理论预测电子自旋弛豫现象15年后,次通过实验成功证明了一种新的电子自旋弛豫机[8]。图7: Measurement setup with sample on an ANRv51 for rotating around the angle ϕ in the plane of the magnetic field. 在25 mK 的稀释制冷机和高达14 T的磁场条件下,半导体纳米结构(GaAs)中的电子自旋寿命在0.6 T左右达到了一分钟以上的新记录。有关此记录的更多信息,请参见[9]。对于该实验设置,使用了attocube的ANRv51,只有它完全符合mK温度和高磁场系统的要求。此外,在GaAs二维电子气体中形成的单电子量子点样品可以与平面内磁场相对于晶体轴作任意角度的旋转。3.1.4 从缓慢的Abrikosov到快速移动的Josephson涡旋的转变 来自瑞士苏黎世ETH的Philip Moll及其研究组使用attocube的ANR31研究了层状超导体SmFeAs(O,F)中磁旋涡的迁移率,发现旋涡迁移率的大增强与旋涡性质本身的转变有关,从Abrikosov转变为Josephson[12]。该实验中如果磁场倾斜出FeAs平面,即使小的未对准(图8: Flux -flow dissipation as a function of the angle between the magnetic field (H = 12 T) and the FeAs layers (= 0°) for several temperatures.图9: Rotator setup showing the ANR31/LT rotator carrying the sample and two Hall sensors.3.1.5 用于量子输运分析的超低热耗散旋转系统 在2010新南威尔士大学(澳大利亚悉尼)的La AYOH ET.A.课题组分析了半导体纳米器件中的量子输运。他们的主要目标是获得一个合适的旋转系统来研究各向异性塞曼自旋分裂。为了充分观察测量这种效应,需要在保持温度低于100mK的情况下,在磁场(高达10T)方向旋转样品。该样品安装在陶瓷LCC20器件封装中的AlGaAs/Ga/As异质结构。两条铜线连接到载体上。使用带RES传感器的ANRv51进行位置读出,该小组设计了一个具有两个可选安装方向的样品架(见图10):一个具有芯片载体的平面内旋转,另一个具有芯片载体的平面外旋转(见图)。ANRv51非常适合此应用:先其由非磁性材料制成,完全兼容mK,并具有一个小孔,可将20根铜线送至转子背面。在他们的论文中,研究小组仔细描述了不同驱动电压和频率下,旋转器的散热作为转速的函数[13]。在缓慢的旋转速度下,散热可以保持在低限度,即使连续旋转,仍然能让系统温度低于100 mK。当关闭旋转器时回到25 mK基准温度的时间仅仅为20 min。此外,由于滑移原理,旋转台可在到达终目标位置时接地,从而确保位置稳定性和零散热。图10: Rotation system assembly for rotating the sample in two separate configurations with respect to the applied magnetic field B.3.2. atto3DR 应用案例3.2.1 范德华异质结器件在低温40mK中旋转 理解高温超导物理机制是凝聚态物理学的核心问题。范德华异质结构为量子现象的模型系统提供了新的材料。近日,国际合作团队(团队成员来自美国伯克利大学,斯坦福大学,中国上海南京以及日本韩国等课题组)研究石墨烯/氮化硼范德华异质结具有可调控超导性质的工作发表在《Nature》杂志上。在温度低于1K的时候,该异质结的超导的特特性开始出现,电阻出现一个明显的降低,出现一个I-V电学曲线的平台[14]。图11: 图左低温双轴旋转台;图右下:石墨烯/氮化硼异质结器件,图右上,电输运测试结果,样品通过旋转后的方向与与磁场方向平行。 电学输运工作的测量是在进行仔细的信号筛选后,在本底温度为40mK的稀释制冷剂内进行的。样品的面内测量需要保证样品方向与磁场方向平行,因而使用了德国attocube公司的atto3DR低温双轴旋转台。该atto3DR低温双轴旋转台可以使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在的超导与Mott缘体与金属态的转变,证明了三层石墨烯/氮化硼的超晶格为超导理论模型(Habbard model)以及与之相关的反常超导性质与新奇电子态的研究提供了模型系统。3.2.2 30mk下的扭曲双层石墨烯的轨道铁磁性 范德华异质结构,特别是魔角双层石墨烯(tBLG),是当今固态物理研究的热点之一。尽管之前对tBLG的测量已经表明,铁磁性是从大滞后反常霍尔效应中推断出来的,随后又指向了Chern缘体,但A.L.Sharpe及其同事通过输运测量实验表明,tBLG中的铁磁性是高度各向异性的,这表明它是纯轨道起源的——这是以前从未观察到的[15]。 为了进行测量,该小组将封装在氮化硼薄片中的tBLG样品安装在attocube atto3DR双旋转器上,通过巧妙设计,使其在电子温度低于30 mK的条件下正常工作,在高达14 T的磁场中,使用霍尔电阻对倾斜角度进行专门的现场校准,以便在实验过程中控制准确的面内和面外方向。图12: Angular dependence of hysteresis loops in twisted bilayer graphene, measured with atto3DR at 磁性输运测量通常涉及可变温度和强磁场。能够旋转样品是提取有用信息的关键先决条件,如三维费米表面、电荷载流子的有效质量和密度,亦或块体材料、薄膜或介观结构的各向异性相关的许多其他参数。使用基于压电陶瓷的旋转器有助于获得比矢量磁场更高的矢量场,而且能够大大降低成本。因此,attocube ANR及其成套解决方案——atto3DR——对于每一位在具有磁场依赖和低温下进行电气和磁性输运测量的研究人员来说,都是佳和的解决方案。5. 参考文献[1]L.W. Shubnikov, W.J. de Haas, Proc. Netherlands Roy. Acad. Sci. 33, 130 (1930)[2]Fermi Schematics, Sabrina Teuber, attocube systems AG[3]http://www.phys.ufl.edu/fermisurface/[4]attocube systems AG[5]L.C. Camenzind et al., Phys. Rev. Lett. 127, 057701 (2021)[6]U. Zeitler et al., attocube Application Note CI04 (2014)[7]P. Wanget al., Rev. Sci. Instrum. 90, 023905 (2019)[8]L.C. Camenzind et al. Nat Commun 9, 3454 (2018)[9]https://www.unibas.ch/en/News-Events/News/Uni-Research/New-mechanism-of-electron-spin-relaxation-observed.html[10]Y. Pan et al., Sci. Rep. 6, 28632 (2016)[11]A.M. Nikitin et al., Phys. Rev. B 95, 115151 (2017)[12]P.J.W. Moll et al., Nature Mater. 12, 134 (2013)[13]L. A. Yeoh et al., Rev. Sci. Instrum. 81, 113905 (2010)[14]G. Chen et al., Nature 572, 215 (2019)[15]A.L. Sharpe et al., Nano Lett 2021, 21, 10, 4299 – 4304 (2021)
  • VPIdeviceDesigner 2.7新版本发布:简化材料定义与强化3D设计仿真能力
    VPIphotonics公司近日宣布推出全新升级的VPIdeviceDesigner 2.7版本,这是一款专为分析和优化光学器件、波导和光纤而打造的多功能设计工具,特别侧重于集成光子学应用。它采用2D和3D全矢量有限差分光束传播法(BPM)和本征模式扩展法(EME)求解器来模拟光学器件,以及一系列半矢量和全矢量有限差分模式求解器来模拟由各向同性和各向异性材料(包括等离子体材料和旋光性材料)制成的直线和弯曲波导及光纤。VPIdeviceDesigner通过提供先进的数值求解器,能够精确模拟各种复杂光学器件、波导和光纤的光传播特性,支持多种材料和结构的建模需求,是集成光子应用中不可或缺的强大工具。VPIdeviceDesigner 2.7版本带来了全新功能,旨在简化材料定义、优化3D设计流程以及提升光传播仿真能力。以下是该版本的主要更新内容:1、材料定义简化:分散各向异性和渐变折射率材料现在拥有专用类别,极大地提高了用户配置材料的便捷性。2、非晶半导体材料支持:新增Cody-Lorentz和Tauc-Lorentz介电常数模型,以支持非晶半导体材料的模拟。3、3D几何内核升级:全新的3D几何内核使得用户能够创建复杂的三维结构,如光子灯笼和锥形光纤耦合器等。4、S矩阵计算增强:EME和BPM求解器现在支持计算带有垂直位移端口和高折射率漏波基板的器件的S矩阵。5、EME求解器性能提升:自动仿真设置可加快收敛速度,尤其是在锥形区域,同时,更多的用户控制选项使得调整仿真参数和设置更加灵活。6、S矩阵界面改进:经过重新设计的S矩阵界面提供了包括相位展开、群时延以及实时最小二乘法拟合调整在内的多项功能。VPIdeviceDesigner 2.7版本在光子器件建模、光子波导和光纤仿真方面的能力得到了显著提升,并新增了四个应用示例,帮助用户更好地理解和应用新版本的各项功能:各向异性分散铌酸锂波导类多量子阱层叠结构的有效折射率模型多量子阱(MQW)波导中的高效模式计算基于光束传播法(BPM)的光子灯笼这些新增功能和示例为用户提供了更加全面和灵活的仿真工具,为光子学领域的创新研究与发展提供了强有力的支持。除了强大的内置功能外,VPIdeviceDesigner 还支持与VPI生态系统(如VPIcomponentMaker&trade 和VPItoolkit PDK )的无缝集成,使得用户能够轻松地将设计的波导和设备集成到更大的光子电路中,并进行全面的系统级仿真。如需了解更多详情或进行版本升级,请访问VPIphotonics官方网站或联系凌云光公司。
  • HORIBA 用户动态|中科院半导体所关于角分辨偏振拉曼光谱配置的研究
    撰文:刘雪璐等众所周知,实验上已经有多种手段可以实现角分辨偏振拉曼光谱(arpr)测试,但是不同配置往往会呈现出不同的结果。常用的arpr实验配置是固定入射激光和散射信号的偏振方向,旋转样品。但是,随着低维材料的兴起,样品尺寸往往只有微米量级,而旋转样品会导致样品点移动,很难实现对微米级样品的原位角分辨拉曼光谱测试。所以重新系统地研究各种arpr配置的优缺点并且找到对于微米级晶体材料优的实验方法显得十分必要。近,中国科学院半导体研究所谭平恒研究组系统全面地分析了三种测量arpr光谱的实验配置,给出了一般形式的拉曼张量在不同配置下拉曼强度的计算方法,并具体地以高定向热解石墨(hopg)的基平面和边界面为例,研究了这些arpr配置在二维材料拉曼光谱方面的应用。该工作使用了horiba公司labram hr evolution型全自动高分辨拉曼光谱仪,分析软件为labspec 6.0。全自动拉曼光谱仪快速的数据采集和强大的数据处理功能,为本工作的顺利完成提供了技术保障。今天在本文中,你将读到: 三种测量arpr光谱的实验配置及优缺点分析 高定向热解石墨的基平面和边界面arpr光谱测量及结果分析三种测量arpr光谱实验配置及优缺点分析图1. 三种测量arpr光谱的实验配置示意图:(a)αlvr和αlhr,(b)vlvr和vlhr以及(c)θlvr和θlhr。其中光路中偏振镜(polarizer)的使用是为了保证入射激光保持竖直偏振。单色仪入口的检偏镜(analyzer)用于选择沿竖直或水平偏振的拉曼信号。半波片用于改变入射激光或者散射光的偏振态。实验室坐标系(xyz)用黑色的箭头表示,而晶体坐标系(x’y’z’)用灰色的箭头表示。红色的双向箭头代表了照射到样品上的入射激光的偏振方向,蓝色的双向箭头代表了由竖直或水平检偏镜选择出的拉曼散射光的偏振方向。测量arpr光谱的实验配置如图1,三种配置的优缺点分别为:(a)αlvr和αlhr:改变入射激光的偏振方向,固定散射信号的偏振方向,而样品固定不动。这种偏振配置在测试过程中只需要通过旋转入射光路上半波片的快轴方向来改变入射激光的偏振方向。其优点在于便于操作,且保证了arpr光谱的原位测试。目前商业化的拉曼光谱仪,如labram hr evolution型拉曼光谱仪集成了自动化控制的半波片,这相比于手动旋转入射光路上半波片快轴方向的操作更为方便,测量结果更准确。(b)vlvr和vlhr:固定入射激光和散射信号的偏振方向,旋转样品。这种偏振配置被广泛应用于研究晶体材料拉曼光谱的各向异性,分别对应于常说的平行偏振(通常记为vv或yy)和交叉偏振(通常记为vh或yx)。其优点在于光路简单,而缺点为在旋转样品过程中不可避免地会导致样品点的移动,很难实现对微米级样品的原位角分辨拉曼光谱测试,使得测试技术难度增加。(c)θlvr和θlhr:在入射激光和散射信号的共同光路上设置半波片,通过旋转半波片的快轴-方向,同时改变入射激光及散射信号的偏振方向,而样品固定不动。这种偏振配置的优点同样是保证了arpr光谱的原位测试,但在低维材料的arpr光谱测量中尚未得到广泛的应用。上述三种arpr光谱的实验配置中,种配置(a)αlvr和αlhr可以借助自动化控制的半波片实现快速测量,是一种快速有效地测量arpr光谱的实验配置。第二种(b)vlvr和vlhr和第三种配置(c)θlvr和θlhr是等价的,这可以通过计算一般形式的拉曼张量在这两种配置下拉曼强度证实, 而后一种配置以其简便性和准确性等优势可以作为前一种的替代,从而可以更为高效地测量诸多微米级样品的arpr光谱。高定向热解石墨的基平面 & 边界面arpr光谱测量及结果分析二维层状晶体材料以其独特的物理、机械、化学和电学特性等迅速成为过去十余年国际科学研究的热点。近报道的一些垂直排列的二维层状晶体材料以及它们的异质结构,它们在边界面上能呈现出某些优于基平面的性质。这些各向异性材料的诸多性能随晶向而变,使其在纳米器件方面有着非常广阔的应用前景。hopg是石墨烯的母体材料,其由单层碳原子层即石墨烯依靠层间范德华力有序地堆垛而成,所以hopg可以作为二维层状晶体材料的代表。为了展示了不同arpr光谱的实验配置在二维层状晶体材料拉曼光谱测量以及各向异性研究方面的应用,研究人员对高定向热解石墨hopg的基平面(如图2)和边界面(如图3)分别进行了arpr光谱的测量。通过研究hopg基平面以及边界面上g模的拉曼强度对不同arpr光谱实验配置的依赖性,进一步证实了旋转样品的偏振测试技术(图1(b)vlvr和vlhr)和在入射激光及散射信号共同光路上放置半波片的偏振测试技术(图1(c)θlvr和θlhr)的等价性。后一种偏振测试技术可以作为前一种的替代,使得平面内各向异性材料的arpr光谱测量更为简便和准确。图2.(a)hopg基平面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr,hopg基平面的g模拉曼强度igb(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg基平面的g模拉曼强度igb(g)随变化的坐标图。(d)偏振配置θlvr和θlhr下,hopg基平面的g模拉曼强度igb(g)随θ变化的坐标图。图3.(a)hopg边界面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr下,hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg边界面的g模拉曼强度ige(g)随β变化的坐标图。(d) 偏振配置θlvr和θlhr下,hopg边界面的g模拉曼强度ige(g)随θ变化的坐标图。对于垂直排列的二维层状晶体材料,单层厚度仅有亚纳米的级别,无法用光学显微镜对它们的晶向进行准确判断,目前急需一种快速、无损的鉴别方法。中国科学院半导体研究所谭平恒研究组进一步发现,当入射激光偏振方向与hopg碳平面取向平行时,其g模强度达到大值。基于这一特征,研究人员利用arpr光谱对hopg的边界面进行了晶向指认。这种方法还将有望推广到其他垂直排列的层状材料晶向的无损快速鉴别。图4. (a)hopg的边界面的光学图像,hopg边界面碳平面的方向y’与实验室坐标系y轴的夹角为β0=0o,20o和40o。(b)偏振配置αlvr下,β0=0o,20o和40o时hopg 边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置αlhr下,β0=0o,20o和40o时hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。以上工作得到了国家重点研发计划和国家自然科学基金委的大力支持,并于近期以highlights文章发表于中国物理b《chinese physics b》上:liu xue-lu, zhang xin, lin miao-ling, tan ping-heng. different angle-resolved polarization configurations of raman spectroscopy: a case on the basal and edge plane of two-dimensional materials. chinese physics b, 2017, 26(6): 067802horiba科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 新型五边形PdTe2二维材料的外延生长技术!
    【研究背景】随着二维材料研究的深入,越来越多的二维材料以六边形作为基本结构单元,这些材料由于其优良的性能和广泛的应用前景受到广泛关注。然而,近年来研究发现,五角形结构的二维材料同样具有独特的性质和应用潜力,这引起了科学界的高度关注。五角形二维材料的主要特点是其基本结构单元为五角形,而不是更为常见的六边形。这种五角形结构由于已知的五角形铺砖规则,通常会形成褶皱层,导致其具有低晶体对称性、较大的面内各向异性和低热导率,这使其在未来的各向异性电子学和热电学应用中展现出良好的前景。尽管理论上预测了大量的五角形二维材料,并预示其具有诸如超高强度、室温量子自旋霍尔效应、磁性狄拉克费米子以及铁磁性等引人注目的性质,但实际实验中对这些材料的研究仍然较少。这主要是因为许多预测中的五角形二维材料处于亚稳态,其直接合成和稳定性存在挑战。已有的实验研究中,虽然如 PdSe2 等少数五角形材料已经被研究,其具有热力学上稳定的五角形结构,并展示了高迁移率、大的面内各向异性以及巨大的非线性光学活动,但对于大多数五角形二维材料,尤其是亚稳态的五角形相,仍缺乏有效的合成方法。这种情况限制了五角形二维材料的进一步探索和应用。为了解决这一问题,普渡大学Dmitry Y. Zemlyanov, Yong P. Chen以及任苏州大学FUNSOM研究院李有勇特聘教授合作通过对称驱动的外延生长技术来合成这些材料。作者的研究团队成功地通过对 Pd(100) 基板进行直接硒化,合成了亚稳态单层五角形 PdTe2。作者采用了高效的外延生长方法,并通过多种结构和光谱表征手段,如扫描隧道显微镜(STM)、低电子能量衍射(LEED)、X 射线光电子能谱(XPS)、高分辨率电子能量损失光谱(HREELS)以及角分辨光电子能谱(ARPES),对该材料进行了全面的分析和验证。研究结果表明,单层五角形 PdTe2 具有良好的原子结构和稳定性,并且展现出 1.05 eV 的间接带隙,这与理论计算和实验数据一致。【表征亮点】1. 实验首次成功合成了亚稳态单层五角形 PdTe2。这种二维材料通过对称驱动外延合成法在 Pd(100) 基板上合成,获得了五角形结构的单层 PdTe2。2. 实验通过扫描隧道显微镜(STM)和低电子能量衍射(LEED)测量,确认了单层五角形 PdTe2 的原子结构,显示出具有良好排列的低对称性原子链,并与 Pd(100) 基板的晶格匹配良好。3. X 射线光电子能谱(XPS)验证了 PdTe2 的形成以及单层厚度。高分辨率电子能量损失光谱(HREELS)和理论计算的声子色散结果一致,进一步确认了晶格振动模式。4. 计算的能带结构和扫描隧道光谱(STS)结果表明,单层五角形 PdTe2 是一种具有 1.05 eV 间接带隙的半导体。角分辨光电子能谱(ARPES)测量揭示的价带结构与计算结果一致。5. 本研究展示了对称驱动的外延生长方法在合成五角形基二维材料中的潜力,为研究和应用五角形二维材料开辟了新的途径,特别是在功能电子学、光电学和热电学等领域。【图文解读】图1: 单层六角形和五角形 PdTe2 的合成。图2. 单层五角形 PdTe2 的声子。图3. 生长后的单层五角形 PdTe2 的 STM 和 LEED 测量。图4. 在不同偏置电压下的实验和模拟 STM 图像。图5: 单层五角形 PdTe2 的能带结构。【科学启迪】本文通过对称驱动外延合成技术成功实现了亚稳态单层五角形 PdTe2 的直接合成,展示了合成新型二维材料的可行性。这一突破不仅扩展了二维材料的研究范畴,还为五角形基材料的实际应用奠定了基础。研究中通过高分辨率电子能量损失光谱(HREELS)和角分辨光电子能谱(ARPES)等技术,揭示了单层五角形 PdTe2 的晶格振动模式和电子结构特性,确认了其为具有 1.05 eV 间接带隙的半导体。这一发现表明,五角形二维材料不仅在物理性质上与六边形材料存在显著差异,还展现了巨大的应用潜力,如在多功能纳电子学、柔性电子学和热电器件等领域。未来,五角形二维材料的研究有望推动新量子态的发现,探索更广泛的功能特性,进一步拓展二维材料的应用边界。参考文献:Liu, L., Ji, Y., Bianchi, M. et al. A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01987-w
  • Nature Catalysis:最新二维电催化材料研究进展
    p style=" text-align: justify "   二维材料独特的各向异性和电子性能引起了人们对其基本电化学和广泛的应用领域的极大兴趣。从2D材料原型——石墨烯开始,对其他超薄层结构的广泛研究逐渐出现。其中包括过渡金属二硫代化合物TMDs、层状双氢氧化物LDH、金属碳化物和氮化物(MXenes)以及单元素化合物的黑磷族。随着可持续能源的发展得到全球的关注,评估各种二维纳米材料在这些领域的有效性已成为当务之急。电催化技术是未来清洁能源转化技术的核心,主要通过析氢反应(HER)、氢氧化反应(HOR)、氧还原反应(ORR)、析氧反应(OER)和二氧化碳还原反应(CO2RR)实现。而二维纳米材料可作为昂贵的铂基催化剂的经济替代品。 /p p style=" text-align: justify "   【成果介绍】 /p p style=" text-align: justify "   最近新加坡南洋理工大学的XinyiChia与布拉格化工大学的MartinPumera教授以”Characteristics and performance of two-dimensional materials for electrocatalysis“为题在Nature catalysis上发表综述,主要讨论了这些二维材料的相似之处,并强调了它们在电化学和电催化性能上的差异。介绍了工业重要反应中与能源有关的电催化二维材料的研究进展。 /p p style=" text-align: justify "   【图文导读】 /p p style=" text-align: justify "   1. 2D材料的结构 /p p style=" text-align: justify "   二维材料独特的各向异性和电子性能引起了人们对其基本电化学和广泛的应用领域的极大兴趣。从2D材料原型——石墨烯开始,对其他超薄层结构的广泛研究逐渐出现。文章主要探讨了超薄2 D纳米材料的结构、电催化性能及其影响因素,包括石墨烯、单或一些层次化的过渡金属(TMD),如金属氧化物、水滑石(类)、六角氮化硼(h-BN), g-C3N4, MXenes,黑磷等,其结构如图1所示。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 111111111111.webp.jpg" alt=" 111111111111.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/46566102-1ac7-4757-bab6-7787b308ae47.jpg" / /p p style=" text-align: center "   图1 二维材料结构构型示意图. (a)石墨烯 (b)氮化硼 (c) g-C3H4 MoS2的两种物相(d)2H型, (e)1T型 黑磷的两种物相(f)三方晶系, (g)正交晶系. (h)MXenes, 以Ti3AlC2为例。 /p p style=" text-align: justify "   2. 二维电极材料的电化学稳定性 /p p style=" text-align: justify "   由于材料在使用过程中可能会发生化学或结构变化,因此了解二维电极材料的稳定性对于二维纳米材料的应用是必不可少的。电极的稳定性是由其固有的电化学性质和催化反应倾向来决定的,即取决于电解液的选择和应用的电位窗口。如Bonde[1]等首先报道了酸性条件下MoS2和WS2进行HER反应后,通过XPS观察到催化剂表面形成了MoO3,SO42-等氧化产物。最近有相关报道VIB族元素化合物在电位区间为1.0~1.2V(vs. Ag/AgCl)易被氧化成高价金属离子。此外,不同的非金属元素也影响着TMDs的稳定性,如报道了VIB族元素化合物的氧化峰电位符合WSe2& lt mose2& lt ws2 & lt MoS2的规律。因此在研究TMDs此类材料中,应着重关注电极材料的电化学稳定性。 p style=" text-align: justify "   由于石墨烯、g-C3N4、MXene等具有较高的还原电位,在ORR、HER、OER、CO2RR的电位区间都难以被氧化还原,因此这些材料具有广泛的电化学反应窗口。 /p p style=" text-align: justify "   文献信息 /p p style=" text-align: justify "   [1] Hydrogen evolution on nano-particulate transition metal sulfdes. (Faraday Discuss. 140, 219–231 (2009).) /p p style=" text-align: justify "   原文链接: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" bonde2009.pdf" href=" https://img1.17img.cn/17img/files/201812/attachment/0f62cb46-d16a-4d4d-8df0-95918f65443e.pdf" target=" _blank" textvalue=" Hydrogen evolution on nano-particulate transition metal sulfdes" & nbsp Hydrogen evolution on nano-particulate transition metal sulfdes /a /p p style=" text-align: justify "   3. 二维材料的电子转移 /p p style=" text-align: justify "   电催化剂的电子转移强弱直接决定了催化反应的速率快慢。而电催化剂的各向异性、电子和表面特性已经被发现在电子转移(HET)中显示出重要的意义。二维材料中,如TMDs的边缘和基面具有明显的电子转移特性。以MoS2为例,如图2,以电化学探针进行检测边缘与基面的活性,发现边缘的反应速率常数远高于基面的反应速率常数,因而边缘原子的活性高于基面原子的活性。除了TMDs以外,石墨烯也显示相同的规律。如图3,氧化石墨烯表面含氧基团数量影响着石墨烯的电子转移,含氧官能团比例越高,电子转移速率越差。此外,异质元素掺杂也会改变二维材料的电子传递特性。如氮掺杂石墨烯可以提高其电子转移速率,由过渡金属掺杂的TMDs也同样能够引起电子传递变化。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 222222222.webp.jpg" alt=" 222222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a377e54d-320a-4733-9c49-a736b1f531c6.jpg" / /p p style=" text-align: center "   图2 影响二维材料电子传递的各向异性效应. (a)MoS2的边缘和基面示意图, 插图:宏观辉钼矿晶体 MoS2(b)底面与(c)边缘面. /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 3333333333333333.webp.jpg" alt=" 3333333333333333.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ff003f31-27f0-435f-a46d-d5d923bb6910.jpg" / /p p style=" text-align: center "   图3 影响二维材料电子传递的表面特性 /p p style=" text-align: justify "   4.二维电催化材料的研究进展 /p p style=" text-align: justify "   材料的传质效应、各向异性和本征活性决定了二维材料的电催化效率。电催化中的各向异性因子建立在二维材料不同的催化位点。电催化剂体系中材料的内在活性是通过火山图关系来评价的,火山图关系是根据Sabatie原理进行定量描述的。理想情况下,高活性的催化剂与反应中间体的结合既不应太强烈也不应太弱。催化剂载体的选择也属于催化剂的设计范围,选择一个合适的载体可以优化催化剂的活性。 /p p style=" text-align: justify "   从传质效应上看,由于界面反应物种类(H+或OH-)的快速消耗和气态产物的生成阻碍了反应速率,因此良好的传质对于高活性催化剂是至关重要的。在二维催化剂中,相邻薄片之间的间隙存在二维通道,可以有利于提高液相和气相之间的传质效果。如图4,将间隔物结合到MoS2纳米薄片中,产生了开放的通道,增大物质传达的表面积及改善离子扩散,整体增强HER的催化性能。 /p p style=" text-align: justify "   & nbsp /p p style=" text-align: center " img title=" 444444444.webp.jpg" alt=" 444444444.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/b2311091-5db0-4639-be2a-48caf0f09a83.jpg" / /p p style=" text-align: center "   图4传质效应影响二维材料的电催化性能 /p p style=" text-align: justify "   从各向异性上看,二维材料的各向异性因子对其催化性能的影响表现在活性的边缘面和惰性的基面。二维材料边缘上的原子所处的化学环境与基体平面不同,基体平面一般具有饱和配位,而基体平面具有较大的非饱和配位倾向。由于边缘位点对二维材料的催化活性起着重要作用,因此优化边缘结构以提高其性能变得至关重要。在HER电催化中,2H-TMDs的催化活性位点主要来自于边缘面原子。如合成具有双陀螺形貌的介孔MoS2结构(图5),可以获得高比例的外露边缘位置,从而增强了MoS2的HER活性。此外,也有相关报道关于通过提高边缘位点及导电性来改善1T-TMDs的HER活性。总之,提高二维材料的边缘活性位点数量,有利于提高二维材料的电催化活性。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 555555555555.webp.jpg" alt=" 555555555555.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7bd7f2cf-707b-453a-8efd-35920f27f312.jpg" / /p p style=" text-align: center "   图5 各向异性效应影响二维材料的电催化性能 /p p style=" text-align: justify "   从本征活性上看,引入掺杂剂或官能团等可以最大限度地提高二维材料催化的内在活性。由于边缘是二维材料的催化活性位点,在边缘掺杂或附着官能团可以增强其催化活性。而基底位掺杂或功能化也同样可以调节惰性基底平面的内在活性。如由于吡啶氮被认为是中间COOH*形成CO的活性吸附位点,因此N掺杂石墨烯可以表现出优异的CO2RR催化活性(图6)。此外,缺陷工程是一种提高活性位点固有活性的方法。表面结构缺陷包括配位数低的边缘 所以才会出现悬空键和原子空位。如由于金属空位可以提高了邻近金属中心的原子价态,从而有利于提高OER活性,而利用等离子体技术处理CoFe-LDHs可以导致Co、Fe和O出现多个空位,这些空位是可以降低水的吸附能同时提高OER活性。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 66666666666.webp.jpg" alt=" 66666666666.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/0ccc76a4-e8d4-4a91-a345-5066f093a19d.jpg" / /p p style=" text-align: center "   图6本征活性影响二维材料的电催化性能 /p p style=" text-align: justify "   【总结与展望】 /p p style=" text-align: justify "   二维材料丰富的电化学特性为其在能源催化中的应用提供了新的机遇。尽管二维材料具有多样性,但其最终的电催化性能和电荷转移性能取决于各向异性和表面特性。二维材料在ORR、HER、OER和CO2RR电催化中取得了巨大的成功,其中边缘面为主要的催化活性中心。 /p p style=" text-align: justify "   提高二维材料的电催化活性主要从以下几个方面进行:①改变二维纳米结构来增加活性边缘位点的密度 ②异质元素掺杂二维材料或与官能团结合、或引入缺陷增强催化活性 ③改善二维材料电子转移能力提高材料催化活性,如使用合适的催化剂基底材料。展望未来,二维纳米材料领域充满了各种可能性。通过集成两种或两种以上的材料来开发混合2D材料,可以创建新的复合结构,以显示出独特的性能和针对特定应用的定制属性。各向异性和表面特性可以作为设计不同化合物的指导原则。 /p p style=" text-align: justify "   【文献链接】 /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" 1212121.pdf" href=" https://img1.17img.cn/17img/files/201812/attachment/4901c2e3-062f-4ae5-a435-f30cd6f2f33f.pdf" target=" _blank" textvalue=" Characteristics and performance of twodimensional materials for electrocatalysis" Characteristics and performance of twodimensional materials for electrocatalysis /a /p p & nbsp /p p & nbsp /p p & nbsp /p p & nbsp /p p /p /p
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • 新技术,美国成功制造了用于半导体纳米晶体的液池透射电镜仪器
    不同尺寸和形状的半导体纳米晶体可以控制材料的光学和电学性质。液池透射电子显微镜LCTEM是一种新兴的方法,用于观察纳米尺度的化学变化,并为具有预期结构特征的纳米结构的精确合成提供信息。科学家们正在研究半导体纳米晶体的反应,方法是研究过程中通过液体辐解产生的高反应环境。在最近发表的一份新论文中,科学家们利用了辐射分解过程,取代了典型半导体纳米材料的单粒子蚀刻轨迹。工作期间使用的硒化铅纳米管代表了各向同性结构,以通过逐层机制保持用于蚀刻的立方形状。各向异性箭头形硒化镉纳米棒保持了带有镉或硒原子的极性刻面,透射式液体细胞电子显微镜的轨迹揭示了液体环境中特定表面的反应性如何控制半导体的纳米级形状转变。半导体纳米晶体包含广泛可调的光学和电学特性,这些特性取决于其尺寸和形状,适用于多种应用。材料科学家已经描述了特定块体晶体小面对生长和蚀刻反应的反应性,开发出任意的图案纳米晶体的多面性及其反应机制使其成为直接研究的热点,胶体纳米晶体的热力学可以影响限定它们的有机或者无机界面。液体细胞透射电子显微镜提供了所需的时空分辨率,以观察纳米级动力学,如自组装过程。因此,科学家们在两个透射电子显微镜网格的超薄碳层之间夹了一个含有纳米晶体的水性袋,并使用三(羟甲基)氨基甲烷盐酸盐,这是一种有机分子来调节敏感半导体纳米晶体的蚀刻。LCTEM和纳米晶体的现有研究仅限于贵金属,因为它们在辐射分解过程中无法调节化学环境,导致活性材料降解。这项新的研究表明,有可能为LCTEM设计新的环境,以观察反应性纳米晶体的单粒子蚀刻轨迹。在实验过程中,三氨基甲烷盐酸盐添加剂调节了蚀刻过程的电化学电位,团队使用动力学建模来估计液体电池中胺自由基物种的浓度和电化学电位。为了证明这一概念,美国科学家们获得了真空中硒化铅纳米立方体的代表性透射电子显微镜图像,并在硒化铅奈米晶体的逐层蚀刻过程中收集了一系列图像。LCTEM成像结果显示,作为蚀刻反应的产物,在硒化铅纳米晶体周围形成了具有较高图像对比度的物质,似乎在蚀刻过程中,硒氧化并分散到液体中,以促进氯化铅的形成,铅袋中有氯离子。与硒化铅的立方晶格相比,纤锌矿硒化镉具有各向异性晶格,镉和硒原子交替层。在纤锌矿硒化镉纳米晶体的生长过程中,表面活性剂配体有利地结合到镉区域,以促进硒区域的快速生长。未来的研究将或者利用核/壳纳米晶体以及通过无机或者有机界面组装的纳米晶体,获得关于功能纳米结构阵列转化的实时信息。
  • 张跃飞团队:富镍层状氧化物正极单颗粒电化学-力学耦合作用失效机制的原位扫描电子显微学研究
    【研究背景】富镍三元层状材料NMC(LiNixMnyCo1−x−yO2,x0.6)因具有能量密度高,成本低等优点成为锂离子电池中应用前景广阔的正极材料。但其较差的结构稳定性导致循环性能不理想,极大地限制了该类材料在的广泛应用。目前商业化的富镍正极材料大多是由纳米级别一次颗粒团聚而成的几到十几微米左右的二次球型多晶材料。在实际使用时反复脱嵌锂过程中,尤其是在深度充放电中,由于一次颗粒各向异性的体积变化引起的机械应力会诱导NMC沿着内部晶界产生晶间裂纹,导致二次颗粒破碎而失去电化学活性,阻碍离子扩散和电子传输,引起电池性能衰退。这种正极材料体相行为已经受到研究者的广泛关注,但其中针对单个颗粒内部的充放电性能和内部裂纹形成与演变之间的关系一直难以窥探。近年来,原位透射电子显微镜(in-situ TEM)表征手段已被广泛用于研究电池纳米电极材料中的电化学和力学之间关联耦合问题,并获得了原子尺度下耦合效应导致的表面相转变以及裂纹形成扩展的微观结构信息,加深了对电极材料失效机制的理解,但该方法研究的单体电极材料在百纳米厚度范围,引入的原位电化学反应也并不符合实际的电池工况环境(粘结剂/颗粒接触)。而原位扫描电子显微镜(in-situ SEM)兼具较大的样品安装空间,低损伤,对环境真空度要求低等优点,通过构建接近锂离子电池实际工况条件,可以在微纳米尺度原位观察块体电极在循环过程中的形貌和结构演变。目前已经少量报道关于运用原位SEM技术研究锂离子电池电极块体结构变化的实验方法和结果,但是在接近锂离子电池实际工况条件下能够用到单颗粒电极行为的研究方法还未见报道。更重要的是,目前普遍认为二次颗粒级NMC内部裂纹的产生是性能衰退的主要原因之一,但是单颗粒NMC在电池循环中裂纹形成早期阶段以及扩展路径还未被直接观察到。【成果简介】为了探究循环过程中富镍二次颗粒内部体相微结构的演变过程,近日,北京工业大学材料与制造学部张跃飞研究员和吕俊霞副研究员等人通过构建扫描电镜-电化学工作站联合测试系统,以LiNi0.8Co0.1Mn0.1O2(NMC-811)正极为研究对象,开展了电池工况条件下的原位扫描电子显微学研究。在纳米级分辨水平实时观察到了富镍正极NMC-811二次颗粒在充放电循环过程中内部微裂纹形成与扩展的演变过程,表征了不同电压窗口下正极材料裂纹的产生过程,发现了高电压充放电裂纹更容易形成,初始裂纹均形核于颗粒内部,并沿着晶界向外扩展。直接的实验证据研究表明NMC-811二次颗粒内部裂纹形成后随充放电循环次数呈现“生长-暂停-生长”的周期性扩展规律。这些结果在纳米分辨水平展示了层状正极材料充放电早期裂纹产生的全景图像,对进一步提升NMC-811的循环寿命提供了直接实验依据。这项工作以题为“Real-Time Observation of Chemomechanical Breakdown in a Layered Nickel-Rich Oxide Cathode Realized by In Situ Scanning Electron Microscopy” 发表在国际顶级期刊ACS Energy Letters,IF:19。博士研究生程晓鹏为本文第一作者,共同第一作者为李永合博士(德国卡尔斯鲁厄理工学院(KIT)洪堡博士后),其他主要参与作者曹天赐,吴睿,王明明均为北京工业大学在读博士生。【图文导读】图1图1扫描电镜(SEM)-电化学工作站观察真实电池循环中单个富镍NMC-811正极颗粒内部变化的装置示意图。该原位电池结构和组成与真实扣式电池一致,包括锂负极,隔膜,和NMC正极。两侧的Cu和Al集流体通过特制接口连接到外部电化学工作站。为保持更加接近商业化电池的液态反应环境,采用饱和蒸汽压极低的离子液作为电解质,从而能够维持在电镜高真空环境中稳定传输锂离子。同时采用特制夹具固定电极施加压力,装置上方敞口,用于原位扫描观察形貌,颗粒截面通过聚焦离子束(FIB)技术切割制备得到。图2图2 (a) NMC-811电极恒流充放电曲线。(b-d) 在截止电压为4.1V时,充放电循环第1圈和第3圈时对应的颗粒截面SEM图像,显示低电压下循环近4000分钟,颗粒保持完好状态。(e-g) 将截止电压提高到4.7V,充放电循环第5圈和第6圈时对应的颗粒截面SEM图像,箭头指示将电压提高后循环过程中颗粒中心形成裂纹。图3图3 在高截止电压4.7V下对NMC-811电极在循环过程中的原位观察。(a) 充放电曲线。(b-h) 不同充放电循环圈数下颗粒内部的SEM图像,对应(a)图中的箭头所示位置,比例尺为5µm。(i) 基于灰度直方图得到的分割图像,红色代表裂缝区域。(j) NMC-811二次颗粒内部形成的裂纹长度和总裂纹面积随循环次数变化关系。(k)电化学循环过程中NMC-811二次颗粒裂纹生长扩展的理论模拟结果。图4图4 (a,b,c) 初始NMC-811颗粒的HAADF-STEM表征以及层状结构的晶格示意图。(d,e,f) 在4.7 V下,循环10圈后NMC-811颗粒的HAADF-STEM表征以及岩盐石结构的晶格示意图。可以看到高电压循环后明显的树枝状裂纹出现在颗粒中心,并沿一次晶粒的晶界扩展。 图5图5 (a) NMC-811二次颗粒在4.1V和4.7V截止电压下内部微观结构演变的示意图。(b) 有限元模拟不同荷电状态下的等效应力分布示意图。核心区域随机排列的晶粒之间产生相对较大的失配应变,使更高的应力集中在晶界。这种高集中应力(1.5 Gpa)对于弱晶界很难维持,从而导致晶间裂纹的萌生和扩展。【总结和展望】充分理解电池材料中复杂的反应机制,才能有效促进开发高能量密度和长寿命的锂离子电池,在这里我们利用in-situ SEM先进表征手段对富镍正极材料的衰退机理进行了深入挖掘。通过在SEM中搭建接近工况条件的液态原位电池,以富镍正极NMC-811二次颗粒为研究对象,实现了单个NMC-811颗粒体相微结构变化的可视化观察,揭示了其内部电化学循环诱发力学失效引起的裂纹形成及扩展机制。实验结果表明二次颗粒在循环过程中内部裂纹产生与电压窗口有着密切关系:在较低的循环电压 4.1 V 条件下,颗粒内部不易有微裂纹产生,然而将循环电压提高到 4.7 V,在循环的初期颗粒内部已经逐渐产生裂纹,并且裂纹从二次颗粒中心区域开始形成,逐渐延伸扩展到表面。有限元模拟结果表明颗粒内部核心区无序排列的晶粒之间会在晶界处产生相对较大应力集中,脱嵌锂过程中会诱导核心区域率先开裂,并在后续重复循环过程中扩散到整个颗粒。通过对裂纹长度和面积的统计,结果表明裂纹生长呈现“生长-暂停-生长”的机制,与理论模拟结果一致。进一步结合透射电镜测试表明在裂纹尖端处存在明显的阳离子混排,形成厚度约为10 nm相变层,是诱导裂纹的进一步扩展的主要原因。该研究工作测试了锂离子电池体相失效的关键驱动因素,将进一步丰富对富镍三元正极材料在长循环过程中失效行为的认知。同时本工作构建的in-situ SEM-电化学工作站联合测试实验方法,可进一步推广到全固态电池,锂金属电池等体系中,可以在微纳米尺度定量化揭示在不同工况条件下相关材料的失效机制,为全面理解高性能电池材料的充放电工作机制提供重要的参考依据。Xiaopeng Cheng, Yonghe Li, Tianci Cao, Rui Wu, Mingming Wang, Huan Liu, Xianqiang Liu, Junxia Lu, and Yuefei Zhang. Real-Time Observation of Chemomechanical Breakdown in a Layered Nickel-Rich Oxide Cathode Realized by In Situ Scanning Electron Microscopy. ACS Energy Lett. 2021, DOI:10.1021/acsenergylett.1c00279
  • CINOGY光束质量分析仪—角度响应校准:应用于大角度发散角的激光光束测量
    Cinogy光束质量分析仪—角度响应校准:应用于大角度发散角的激光光束测量1.1 应用范围有不同种类的应用需要考虑角度响应。这些应用大多使用(非常)发散的光束。在这种情况下,我们在一幅图像中有连续的入射角范围。照相机的灵敏度取决于激光束的入射角,这是由过滤器和传感器造成的。1.2 角度线性原因1.3过滤器这里,我们将只考虑吸收滤波器。如果光束没有垂直入射到滤光器上,则通过滤光器的路径较长。较长的路径导致较强的吸收,因此相机(滤光片和传感器)的响应较低。与过滤器相关的效果是各向同性的。但是,如果滤光器相对于传感器倾斜(取决于相机型号),则会在滤光器倾斜的方向上产生各向异性。入射角αin的线性透射可以用数学方法描述,如果透射指数为垂直光束T0和折射率n已知。因为对吸收性滤光片来说,T0与波长有很大的线性关系,与入射角度有关的相对透射率Trel也与波长密切相关。1.4 传感器角度响应取决于传感器技术、传感器类型、波长和微透镜。通常它不是各向同性的。图1:KAI-16070对单色光(未知波长)的角度线性灵敏度。参考:KAI-16070的 数据表图2 CMX4000白光的角度线性灵敏度如这些示例所示,对于不同类型的传感器,角度响应可能完全不同。因为这种效应还 取决于波长和单个传感器(每个传感器表现出稍微不同的行为),取决于波长的校准是必要的。两个传感器都显示出各向异性。为了考虑校准中的各向异性,需要比仅在x和y方向上更复杂的测量。2 涂层通过一种特殊的涂层,我们可以消除(主要是抑制)传感器本身的角度产生。剩余的影响角度的灵敏度是由滤波器引起的。这产生了以下主要优点:1)剩余的角度响应是各向同性的,这意味着它不再取决于入射角的方位角。2)剩下的角度响应的校正系数更小,因此更不容易出错。下面的图表显示了CinCam cmos Nano 1.001在940nm下的两个角度响应测量值,前面有CMV4000传感器和OD8吸收滤光片。第1张图表中的摄像机采用默认设置,没有特殊涂层。图3:CMV 4000传感器在x(蓝色)和y(橙色)方向的角度响应,前面有OD8吸收滤光片,在940nm处测量。上半部分显示相对角度响应,下半部分显示测量点和蕞佳拟合曲线之间的相对偏差。第二张图中的相机是用特殊涂层制作的。图4:CMV 4000传感器在x(蓝色)和y(橙色)方向的角度响应,该传感器具有特殊涂层,前面有OD8吸收滤光片,在940纳米处测量。上半部分显示相对角度响应,下半部分显示测量点和蕞佳拟合曲线之间的相对偏差。这里,角度响应是各向同性的、平滑的,对于大角度,下降效应不太明显。CinCam CMOS Nano Plus-X针对传感器和外壳正面之间的极短距离进行了优化。这使得入射角度高达65°时的角度响应测量成为可能。3 角度响应的拟合函数拟合函数是Zernike2多项式,其中入射角的正弦用于半径。这些多项式为入射角的任意方向提供了x和y方向的简单插值。用这种方法,我们可以用少量的系数描述高达±60度的测量结果。4 均匀性由于生产原因,涂层并不在任何地方都具有完全相同的厚度。这导致照相机灵敏度的不均匀性增加。这个缺点通过进一步的均匀性校准来补偿。图5:940纳米无涂层传感器(紫色)和均匀性校准后(绿色)的相对灵敏度。5 精度整体精度取决于以下几点:1)拟合精度。2)角度响应的各向同性。3)垂直光束位置(x,y)的精度。4)顶点到传感器的光学距离的精度(z)。5)蕞大角度下的角度响应下降。通过特殊的涂层,我们可以提高拟合精度和角响应的各向同性。此外,大角度灵敏度的相对下降要弱得多。6 RayCi中的校正要求为了根据角度响应校正图像数据,必须满足以下要求:1)角度响应校准数据必须可用于每个波长。该数据由蕞佳拟合的Zernike多项式系数组成。2)为了生成从每个像素到相应入射角的映射,必须知道光束垂直的x和y传感器位置。3)需要传感器和激光焦点位置之间的光学距离。4)CINOGY Technologies提供外壳和传感器之间的光学距离作为额外的校准数据。5)外壳和焦点之间的距离必须由用户提供。6)软件版本必须是RayCi 2.5.7或更高版本。 昊量光电提供的德国Cinogy公司生产的大口径光束分析仪,相机采用CMOS传感器,其中大口径的CMOS相机可达30mm,像素达到惊人的19Mpixel。是各种大光斑激光器、线形激光器光束、发散角较大的远场激光测量的必不可少的工具。此外CinCam大口径光束分析仪通用的C/F-Mount 接口设计,使外加衰减片、扩束镜、紫外转换装置、红外转换装置更为方便。超过24mm通光孔径的大口径光束分析仪CinCam CMOS-3501和CinCam CMOS-3502更是标配功能齐全的RayCi-Standard/Pro分析软件,该软件可用于光束实时监测 、测量激光光斑尺寸 、质心位置、椭圆度、相对功率测量(归一化数据)、二维/三维能量分布(光强分布) 、光束指向稳定性(质心抖动) 、功率稳定性 (绘制功率波动曲线)、发散角测量等 ,支持测量数据导出 ,测试报告PDF格式文档导出等。主要特点: 1、芯片尺寸大,可达36mm 2、精度高,单像元尺寸可达4.6um 3、支持C/C++, C#, Labview, Java语言等多种语言二次开发主要技术指标:RT option: CMOS/ccd-xxx-RT:响应波长范围:320~1150nmUV option:CMOS/CCD-xxx-UV:响应波长范围:150nm~1150nmCMOS/CCD-xxx-OM:响应波长范围:240nm~1150nmIR option:CMOS-xxx-IR:响应波长范围:400~1150nm + 1470nm~1605nm 关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 科学家研制出稳定且双折射可调的深紫外液晶光调制器
    近日,中国科学院院士、中科院深圳先进技术研究院碳中和技术研究所(筹)所长成会明与副研究员丁宝福团队,联合清华大学深圳国际研究生院教授刘碧录团队、中科院半导体研究所研究员魏大海团队,首次发现了二维六方氮化硼(h-BN)液晶具有巨磁光效应,其磁光克顿-穆顿效应高出传统深紫外双折射介质近5个数量级,进而研制出稳定工作在深紫外日盲区的透射式液晶光调制器。   双折射是引起偏振光相位延迟的一个基本光学参数。有机液晶因双折射可受外场连续调制,而被广泛用作光调制器的核心材料。然而,传统有机液晶在深紫外光照射下吸收强且不稳定,液晶光调制器仅能工作在可见及部分红外光波段,无法工作在紫外及深紫外波段。同时,透射式深紫外光调制器在紫外医学成像、半导体光刻加工、日盲区光通讯等领域颇具应用前景。因此,发展一种在深紫外光谱区稳定、透明度高及具有场致双折射效应的新型液晶材料,有望推进透射式深紫外液晶光调制器的发展。   科研团队研制出一种基于二维六方氮化硼无机液晶的磁光调制器。研究采用的氮化硼二维材料具有极大的光学各向异性因子(6.5 × 10-12C2J-1m-1)、巨比磁光克顿-穆顿系数(8.0 × 106T-2m-1)、高循环工作稳定性(270次循环工作后性能保留率达99.7%)和超宽带隙等优点,同时二维六方氮化硼是通过“自上而下”的高粘度纯溶剂辅助研磨法剥离制备而成。由于超宽的带隙,二维六方氮化硼液晶在可见、紫外和部分深紫外光谱区具有颇高透明度。在磁场作用下,基于二维六方氮化硼液晶的磁光器件在正交偏振片下呈现出明显的磁控光开关效应。   科研人员通过观察入射光偏振态与磁场作用下液晶透射率关系的实验揭示了二维六方氮化硼在外场作用下顺磁场的排布方式。在入射光的偏振态被调整为平行和垂直于磁场的两种状态下,后者呈现较高的光透射率,间接印证了二维六方氮化硼纳米片平行于磁场方向排布。该研究针对层状二维六方氮化硼薄膜的磁化率各向异性测试揭示了面内易磁化方向,进一步证实了二维六方氮化硼纳米片顺磁场排布的物理机制。结合二维氮化硼纳米片的极大的光学各向异性,研究发现了二维六方氮化硼液晶的巨磁致双折射效应。   该研究选用波长处于深紫外UV-C日盲区的266 nm激光,测试二维氮化硼液晶在该光谱区的光学调制性能。通过开启和关闭0.8特斯拉的磁场,研究实现了该调制器在深紫外光波段的透明与不透明两种状态之间的切换。经过270个不间断开关循环测试后,性能的保持率达99.7%。   鉴于二维材料家族成员庞大、带隙覆盖宽,基于无机超宽带隙二维材料液晶的光调制器的光谱覆盖范围有望向更短深紫外波段延伸,促进液晶光调制器在深紫外光刻、高密度数据存储、深紫外光通讯和生物医疗成像重要领域的应用。   相关研究成果以Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride为题,发表在Nature Nanotechnology上。研究工作得到国家自然科学基金、科技部、广东省科学技术厅、深圳市科技创新委员会等的支持。六方氮化硼无机二维液晶及其磁控光开关效应 六方氮化硼无机二维液晶的磁致排列和磁致双折射效应表征基于六方氮化硼无机二维液晶的深紫外光调制器性能研究及对比
  • 磁性薄膜测量新突破:铁磁共振FMR实现全方位搭配、升级!
    2018年度“亚洲磁学联盟奖”(aums award)于6月4日在韩国揭晓,物理所韩秀峰研究员凭借“基于磁性缘体的磁子阀效应”项目荣获此奖。韩秀峰研究员团队创新性地采用yig磁性缘体作为磁性电、au作为中间层研制出了高质量、新型磁性缘体/金属/磁性缘体(mi/nm/mi)磁子阀结构,并且在该结构中次观测和发现了磁子阀效应(magnon valve effect),揭示了磁子阀比值主要取决于磁性缘体/金属界面磁子-电子自旋转换效率的原理。[1] 图1:(a) 磁子阀结构、原理和测量示意图(b)-(c) ggg/yig和yig/au/yig区域的透射电镜图该项工作的相关研究进展发表在 phys. rev. lett.[2],并且作为亮点文章在prl网站页重点推荐。在此我们祝贺quantum design的ppms和microsense vsm用户韩秀峰研究员团队,也祝愿他们今后能够再创辉煌!在上述的研究中,yig作为磁性缘体材料,有着其特的物理性能,其拥有低的gilbert阻尼因子。sun[3]等利用铁磁共振系统对yig薄膜进行了阻尼的测试研究,测出yig的阻尼因子大小约10-4。在对磁性材料的研究中,阻尼因子α是一个比较重要的参数,可以帮助我们提升电路及电子器件的传输效率和传输速度。图2:铁磁共振测试系统主机:phasefmr(常温);cryofmr(低温)quantum design携手nanosc提供的高精度铁磁共振测试系统,可以快速有效地获取阻尼系数α,以及有效磁矩 meff、旋磁比γ、非均匀展宽δho等动态磁学参数,也可以表征静态磁学性能,如饱和磁化强度ms、各向异性、交换偏置等。该系统基于共面波导技术,无需矢量网络分析仪,可以提供宽频2~40ghz测试,并应用锁相测试技术,大大提高了信噪比,可以测试到1.4nm厚的薄膜。 图3 :室温测试用共面波导 图4:用于ppms(versalab)铁磁共振样品杆图5:montana低温恒温器升cryofmr铁磁共振测试系统目前该系统可以应用于室温(基于电磁铁平台)、低温(配合ppms、versalab、montana恒温器),在上有包括中国科学院物理研究所、南京理工大学、三峡大学等用户在内的多套设备在运行,并使用该系统在prb等期刊上发表多篇文章。如franco[4]等用铁磁共振测试系统phasefmr对垂直磁化各向异性[cofeb/pd]n多层膜进行了研究,发现有效垂直各向异性随多层重复次数的增加而增大,部分测试数据见图6。 图6:phasefmr用户文章数据铁磁共振测试系统参数如下: 配置 带宽 温度范围 磁场大小phasefmr 2-18ghz 室温 根据电磁铁大小而定phasefmr-40 2-40ghzcryofmr 2-18ghz4-400k:ppms® /dynacool™ 55-400k: versalab™ 10-350k: mi cryostation±9, 14, 16 t:ppms® /dynacool™ ±3 t: versalab™ ±0.7 t: mi cryostationcryofmr-40 2-40ghz 如果您拥有电磁铁平台,快来升铁磁共振测试系统吧!如果您拥有ppms或者versalab,快来升铁磁共振测试系统吧!如果您拥有montana标准型低温恒温器,快来升铁磁共振测试系统吧!如果您也想在squid上进行铁磁共振测试,目前quantum design的工程师正在努力研发中,相信不久后,我们将会为您带来在squid上成功应用fmr的好消息! 参考文献:[1]中国科学院物理研究所官网http://www.iop.cas.cn/xwzx/snxw/201806/t20180605_5021775.html[2] h. wu, l. huang, c. fang, b. s. yang, c. h. wan, g. q. yu, j. f. feng, h. x. wei, and x. f. han, phys. rev. lett. 120, 097205 (2018)[3] y. sun, h. chang, m. kabatek, y. y. song, z. wang, m. jantz, w. schneider, m. wu, e. montoya, b. kardasz, b. heinrich, s. g. e. te velthuis, h. schultheiss, and a. hoffmann, phys. rev. lett. 111, 106601(2013).[4] a. f. franco, c. gonzalez-fuentes, j. a° kerman, and c. garcia, phys. rev. b 95, 144417 (2017) 相关产品及链接:1、铁磁共振仪(fmr):http://www.instrument.com.cn/netshow/c221410.htm2、ppms综合物性测量系统:http://www.instrument.com.cn/netshow/c17086.htm3、多功能振动样品磁强计versalab系统:http://www.instrument.com.cn/netshow/c19330.htm4、montana instruments超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/c122418.htm5、超导量子干涉仪器件squid:http://www.instrument.com.cn/netshow/c17093.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制