当前位置: 仪器信息网 > 行业主题 > >

钴酸锂电池

仪器信息网钴酸锂电池专题为您整合钴酸锂电池相关的最新文章,在钴酸锂电池专题,您不仅可以免费浏览钴酸锂电池的资讯, 同时您还可以浏览钴酸锂电池的相关资料、解决方案,参与社区钴酸锂电池话题讨论。

钴酸锂电池相关的资讯

  • 锂电池钴酸锂正极材料中的孪晶界引发的裂纹失效
    锂电池钴酸锂正极材料中的孪晶界引发的裂纹失效圆派科学内容简介钴酸锂是目前应用最为广泛锂离子电池正极材料之一,尤其是在便携设备和移动电子设备中的锂离子电池中,这得益于其优越的体积能量密度和稳定的循环性能。然而,其实际所用的能量密度仅占其理论能量密度的一半,仍然有很大的发展提升空间。提高能量密度最常用的办法是提升充电电压,利用更多的锂源,但这样做会迅速加快钴酸锂正极材料的失效,造成电池性能快速衰退,以及安全性问题。这其中的衰退机制繁多而且复杂,裂纹就是其中之一。本报告中,将介绍我们利用电子显微镜相关的分析技术,研究裂纹在钴酸锂正极材料中晶界处的形核和扩展机制,并探讨循环条件不同时,裂纹产生机制的相同和不同之处。为深入理解裂纹,这一普遍存在于层状正极材料中的失效机制,提供从原子尺度的理解认知,这一工作将有助于寻找合适的途径来抑制裂纹的产生。 2010年博士毕业于中科院金属研究所,2010-2013在日本NIMS从事博士后研究,2013-2017在美国太平洋西北国家实验室(PNNL)从事锂电池相关的透射电子显微学研究。于2017年10月加入北京工业大学固体微结构与性能研究所。研究领域是利用透射电子显微学研究锂(钠)离子电池材料的失效机理,基本结构和离子的传输机理。在相关领域发表SCI论文70余篇,包括9篇ESI高被引论文,论文总引用4000余次。以第一/通讯作者发表Nat. Mater., Nat. Energy, Nat. Nanotechnol., Nat. Commun.等在内学术论文20余篇。 直播内容概要 钴酸锂是成熟的第一代锂离子电池正极材料,是Goodenough于八十年代在剑桥大学发现,也正因此他获得了2019年诺贝尔化学奖。由于钴酸锂很好的电化学储能性能表现,主要是其体积能量密度,目前在小型储能移动设备被广泛应用,尤其是IT设备上,几乎是统治性的。研究钴酸锂,主要是提高其利用率,目前利用率还不到60%,研究目的是提高其理论容量到80-90%。钴酸锂的性能衰退机制有多种,主要是由于价态变化,成分改变和晶格畸变而引起的。本课题组主要从电子显微学来研究其失效机制。主要分两大类:体材料失效机制和界面失效机制。重点要提一下徕卡的三离子束切割设备,用这个设备,我们做到了很多用别的设备完成不了的工作,主要是EBSD看孪晶。我们发现用徕卡的氩离子束,加工面积特别大;通过与其它设备做对比,与FIB对比,通过EBSD观察,我们发现氩离子束对样品的损伤层确实比较好。如何实现对LiCoO2颗粒大面积、大数量的统计性观察?以确定孪晶界是否为普遍存在的缺陷结构我们想到了EBSD的方法,但EBSD需要样品非常平整,我们遇到了一个制样的难题,就是如何获得一个大量颗粒的平整样品?我们首先想到了FIB。但是FIB制样,最大的束流也只能切一个几十微米的区域。用FIB大束流高电压,有经验的人都知道FIB会产生很大的电荷累积效应。不能满足我们的要求,其一是它不能满足我们对数量的要求,其二它表面平整度不够,或表面损伤度太大,我们用EBSD分析,看不出来晶格取向。我们也用机械抛光的办法,做了半年时间,都没有成功。然后我们想到了氩离子束切割技术,偶然引进了徕卡,确实切出了不错的样品,切了五六个样品,目标达成。通过统计发现,在钴酸锂里面孪晶占比至少达到40%,孪晶含量或出现频率是非常高的。对高电压循环性能,孪晶会产生很大影响,这给钴酸锂材料学界产生了一个新的信息,因为之前大家认为钴酸锂是单晶,或没有意识到它是孪晶。如果不做成单晶,由于孪晶界的存在,它很容易造成高电压性能的衰退,这是我们对钴酸锂认识的提升。
  • 赫施曼助力锂电池中镍钴锰的测定
    锂离子电池具有质量轻、寿命长、能量密度大且无记忆效应等诸多优点。锂电池中镍钴锰含量的高低对于电池的性能有直接的影响,因此准确的测定其含量具有重要意义。 根据YST 1006.1-2014,锂离子电池正极材料镍钴锰酸锂中镍钴锰总量的测定方法为:试料用盐酸溶解,在pH值9-10碱性溶液中以紫脲酸胺为指示剂,用EDTA标准滴定溶液滴定至紫红色为终点。根据消耗的EDTA标准滴定溶液的体积计算镍钴锰总量。 主要步骤为:将试料0.1g试样放人100mL烧杯中,用瓶口分液器加人25mL盐酸(1+1),于低温电热板上加热至完全溶解,冷却后移入100mL容量瓶中,加水稀释至刻度,混匀。移取25mL试液于250mL三角瓶中,加入约50mL水,用瓶口分液器加入10mL氨水-氯化铵缓冲溶液和约0.1g紫脲酸胺指示剂,用EDTA标准滴定溶液乙二胺四乙酸二钠滴定至紫红色。按下式的实际浓度: 当三个滴定体积极差在0.10mL范围内时,取三个标定结果的平均值,否则重新标定。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转控制滴定速度、光能板供电无需电池;赫施曼的opus电子滴定器可通过触屏来进行灌液、预滴定、快速滴定和半滴滴定等功能。这两种滴定器均为屏幕直接读数,可连接电脑输出数据,针对性解决了三大痛点,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 锂电池老客户再次购买禾工两套AKF-BT2015C锂电池专用水分仪
    近期,江西一位老客户再次购买上海禾工AKF-BT2015C锂电池专用水分测定仪,该公司主要研发、生产、销售锂电池正负极材料、电解液、隔膜纸等;是一家大型新能源汽车电池、模块及系统开发的高科技企业。 2016年的2月禾工与江西这位锂电池客户结缘,他们当时购买了一套禾工AKF-BT2015C锂电池专用水分测定仪用于公司锂电池原料的生产线上,在使用5个月的时间,仪器运行状态良好,检测精度高,稳定可靠,故障低,操作极为简便等优势得到了用户的肯定。 因公司业务发展需要,在2016年上半年首次购买我们AKF-BT2015C锂电池专用水分测定仪之后至今年3月份总共购买仪器五台,老客户是我公司及其重要的经营资源,能够吸引到老客户的只能是高性价比的产品质量和及时到位的售后服务。 AKF-BT2015C作为一台国内第一台带有卡式加热炉的卡尔费休水分测定仪,至2016年8月低,短短两年内,AKF-BT2015C锂电池水分测定仪在锂电新能源行业创造了累计销售数量过百!客户二次购买率超过60%!锂电市场占有率40%,国产设备占有率100%的非凡销售业绩。完全可替代进口仪器设备。 AKF-BT2015C水分仪能够广泛的应用在锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。 相信在今后,禾工AKF-BT2015C水分仪会应用到更多的锂电池研发、生产单位。
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • 关注“新能源”锂电安全 | 深度分析锂电池鼓胀气体
    关注“新能源”锂电安全|深度分析锂电池鼓胀气体高丽LIBs锂离子电池(LIBs)因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能以及3C等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓胀,出现具有一定安全风险的失效,主要有热失控、胀气、膨胀形变等。因此,了解电池鼓胀气体的组成对于优化电解液的组成是至关重要的。三类成分电池在老化、放电等过程中会产生各种气体成分非常复杂。其中主要有三类成分:1)永久气体如氢气、甲烷、一氧化碳、二氧化碳等;2)短链碳氢化合物(C2-C5);3)其他可挥发性化合物。赛默飞气相色谱锂电池鼓胀气体分析方案锂离子电池鼓胀气体的常见产气成分有H2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体。表1.校正气体组成方案一:气密针进样某些小型LIBs在使用过程中只会产生几毫升的膨胀气体。针对气体量极少的这一类样品,赛默飞推出气密针进样,配置一个TCD和一个FID检测器,一根分析柱和一根预柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8的分析。图1.FID通道校正标样色谱图(方案一)(点击查看大图)图2.TCD通道校正标样色谱图(方案一)(点击查看大图)方案二:气密针/阀进样赛默飞推出气密针/阀进样,配置一个TCD和一个FID检测器。一根分析柱和一根预柱,一根毛细管分析柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8,i-C4H10,n-C4H10,i-C5H12,n-C5H12的分析。图3.TCD通道校正标样色谱图(方案二)(点击查看大图)图4.FID通道校正标样色谱图(方案二)(点击查看大图)完善的解决方案在锂电池产业链中,除了电池鼓胀气体成分分析,还需要围绕产品质量、原材料质控、或锂电池各种性能指标的研发工作进行一系列的理化测试,包括:元素分析、电解液、添加剂成分分析、石墨类负极材料有机物含量测试、电解液未知成分分析、SO42-、Cl-等阴离子及Si等非金属元素分析、电解液等原材料鉴别等。赛默飞在锂电子电池材料检测领域积累了丰富的经验,为广大用户提供完善的解决方案。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 活动回顾 | 锂电池检测专题网络研讨会(内附回放视频地址)
    2019年6月28日,珀金埃尔默联合TESCAN公司,举办了锂电池检测专题网络研讨会。来自全国各地的155位专家和技术人员参加了本次网络研讨会,对锂电池的检测标准、分析方法、综合评估等做了深入的剖析和交流,大家在会上展开了热烈的讨论。首先,珀金埃尔默的原子光谱资深应用工程师陈观宇老师介绍了锂电池正极材料主量元素、负极材料掺杂元素以及电解液的分析方法,例举多个实际案例对分析方案进行了详细说明、介绍了实际工作中要注意的操作要点,并通过实际的结果比对来进一步阐述Avio系列ICP产品主量元素0.1%超凡稳定性的独特优势,以及ICP-MS在杂质元素分析上的特点和方案。除此之外,陈观宇老师还形象地讲解了GC-MS、红外光谱、热重分析等多种类型检测方法在锂电行业的综合应用。珀金埃尔默Avio系列等离子体光谱仪珀金埃尔默Nexion系列等离子体光谱仪珀金埃尔默气质联用仪检测浓度为100 μg/mL的11种碳酸酯色谱图用于原材料检验的珀金埃尔默便携式高性能红外光谱仪及红外显微镜系统珀金埃尔默热分析仪检测电池原材料的热稳定性评价曲线本次会议还特邀广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,对动力电池关键材料检测现状做了详细的分析和报告,报告密切围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术,内容详实、引人入胜。最后,TESCAN公司的资深应用工程师张芳女士介绍了扫描电镜微分析平台在锂电池正负极材料以及隔膜材料微观表征中的应用,以及使用X射线显微镜可以完成电池的三维无损分析,实现从宏观到微观的整体观测。TESCAN 电镜-拉曼一体化系统RISETESCAN 3D 及4D 动态的大面积无损X 射线成像分析系统本次网络专题讨论会是珀金埃尔默与TESCAN公司首度联手,从不同角度和分析手段对锂电池检测进行系统、完整的分析和介绍,进而为广大的用户群提供从含量分析到微观表征的全面方案。回放视频如果您没有及时参与本次讲座,没关系,我们录制了老师报告的视频。进入公众号首页“珀金埃尔默网络讲堂”页面查看:关注“珀金埃尔默”微信公众号点击自定义菜单"网络讲堂"进入网络课堂页面,观看视频关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • HORIBA用户动态 | 光谱分析助力锂电池产业突破:拉曼篇(2)固态电解质锂电池的原位研究
    作者 | LPCM,University of Bordeaux I France.编译 | 文军前言上一篇中,我们向大家介绍了如何用拉曼研究锂电池充放电过程正负。今天,我们仍将和您聊一聊光谱分析对锂电池产业发展的深刻作用。您知道么,现在的拉曼光谱技术可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数,在固态电解质电池分析中经常大显身手。同时越来越多的锂电研究都用到拉曼光谱技术。想要详细了解这些,您就跟我们一起走进拉曼篇(2)——固态电解质锂电池的原位研究吧!利用拉曼我们来分析什么?固态电解质电池相比传统液态电解液电池,可以有效避免电池漏液,而且还可以将电池做得更薄(厚度仅为0.1mm)、能量密度更高、体积更小,是未来锂电行业的发展方向。然而在电池的设计研究过程中,离子的扩散和定向迁移是设计任一款新型电池时必须考虑的因素,它直接关乎到电池的容量、充放电效率、使用寿命等,因此这两项指标的研究是非常重要的。目前,在液态的电解质中,有很多成熟的技术可以测量离子的扩散和定向迁移,但是对于聚合物电解质来说,这些技术已经不再适用。此时,显微拉曼光谱成为一种可供选择的替代工具,可以实时原位跟踪电池中离子浓度的变化,进而确定离子的扩散系数以及离子迁移数。接下来,我们就来以法国波尔多大学分子物理化学实验室的研究为例,看看他们是如何利用拉曼光谱技术进行锂电池研究的。1案例:锂/固态聚合物/锂对称型电池分析本案例中,波尔多大学的研究人员选用Li/PEOLiTFSI/Li对称型电池作为分析对象,利用拉曼光谱得到的浓度曲线,确定锂盐的扩散系数以及离子迁移数。在电池充电之前,研究人员首先进行一遍测量,检查整个电解质中锂盐浓度的均匀性。然后依次施加方向相反的恒定电流,利用 HORIBA 激光拉曼光谱仪原位测量达到稳定状态后电解质,建立浓度梯度。后,通过得到的实验结果,研究人员可以直观的看到电流密度和锂盐浓度值的关系(结果参见下图)。正如预期的那样,浓度梯度的大小随着所通电流密度值增大而增大。据此,我们还可以得出达到稳定状态后锂盐浓度随着弛豫时间变化的信息[1],从而进一步确定扩散系数和离子迁移数。1. (上)锂电和PEOLiTFSI电解质之间的实验测量点,红色标记为选定的测量点,横坐标为各点之间距离2.(下)拉曼光谱成像显示出的锂盐浓度,该浓度值依赖于位置(横坐标),充放电电流和弛豫时间(左侧纵坐标)。2其他案例除了上述对锂/固态聚合物/锂对称型电池进行拉曼分析,波尔多大学的研究人员还做了两项其他方面的研究:1利用显微拉曼光谱解析电解质的P(EO)n LiTFSI薄膜中的锂盐浓度。2利用拉曼光谱对锂离子在LixV2O5负材料中的插入和脱出进行分析,发现拉曼可以作为电测试之外另一种行之有效的手段,从而更好地认识复合电中发生的离子插入。因篇幅所限,本文暂不赘述,您可以手机识别二维码索取详细测试研究分析报告。为什么越来越多锂电研究用到拉曼光谱技术?显微拉曼光谱技术可以通过一个可观察的窗口进行微型电池的原位表征,就是说我们可以实时追踪到电池中正在进行的变化。此外,现代显微拉曼技术所具备以下卓越的性能,较其他测量技术具备以下突出的优势,因此受到越来越多的锂电研究人员的关注。1实时监测锂电池的充放电过程,要求拉曼光谱仪具有快速的数据采集、拉曼成像和高通量等特点。因此,研究人员可以追踪快速的化学反应过程,如离子扩散和迁移。2电池的小型化是未来微电池的发展需求,而在透明的电解质中,显微拉曼的空间分辨率可达到衍射限(亚微米),这就使得显微拉曼助力微电池研究切实可行。致 谢本文结果是在法国波尔多大学分子物理化学实验室取得的。特别感谢J-C. Lassègues教授和L. Servant教授从他们的广泛的拉曼-光谱化学研究工作中提供的实验数据。参考文献[1] Raman spectroelectrochemistry of a Lithium/polymer electrolyte symmetric cell, Isabelle rey, jean-Luc Bruneel, Joseph Grondin, Laurent servant and jean-Claude Lassègues, J. Electrochem. Soc., 145(9), pp3034-3042.免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 锂电池材料水分检测解决方案
    导语 锂电池是一种高新技术产品,同时也是一种新型高容量长寿命环保电池,主要用于电动车,数码产品,UPS电源等。随着新能源汽车和手机等3C数码产品产业的爆发式增长,锂电池作为其关键组成部分也发展迅速。锂电池由四大材料组成,分别为正极材料(核心),负极材料,电解液,隔膜。这些材料都有相应的水分控制要求,一般在数百ppm范围以内,不同厂家不同规格产品要求略有不同,如果超出过多,可能会导致电极涂覆不均或者引发电解液分解,导致HF生成继而引发电极鼓包等不良反应。 因为电极材料非常容易吸水,不能长时间暴露于空气中,所以不宜采用常规的加热失重法测试,通过卡式加热进样的方式再结合卡尔费休库仑法水分测试是目前较好的解决办法。 解决方案卡尔费休库仑法测试石墨粉中的水分卡尔费休库仑法测试磷酸铁锂中的水分卡尔费休库仑法测试正极极片中的水分卡尔费休库仑法测试隔膜中的水分卡尔费休库仑法测试负极极片中的水分卡尔费休库仑法测试电解液中的水分卡尔费休库仑法测试锰粉中的水分卡尔费休库仑法测试钴酸锂中的水分相关仪器推荐 AKF-CH6锂电池卡尔费休水分测定仪是集水分测量模块和加热进样模块于一体的卡尔费休水分测定设备,仪器完全按照锂电行业用户的需求打造,外观设计新颖,使用维护方便,能够涵盖锂电行业从正负极材料、极片、隔膜到电解液;水分范围从1ppm到100%的使用需求。
  • 锂电池浆料与性能之间的桥梁——流变仪
    p  随着近些年新能源汽车、数码电子产品等锂离子电池应用领域的大力发展和推广,锂离子电池市场迅猛发展,预计2020年全球锂离子电池市场规模有望达到4500亿元。/pp  相比于传统的镍氢电池,铅酸电池来说,锂离子电池具有能量密度高,无记忆效应,环境污染小等特点。/pp  锂离子电池的主要材料有正负极、电池隔膜、电解液,这也是锂电池目前研究的热点领域和对象。其中在电极的制备过程中,锂电池浆料的性质,尤其是浆料的流变特性对最终电池的储电性能具有很大程度上的影响。/pp  锂离子电池浆料含有活性材料及多种非活性物质,通过将其涂覆于金属集流体上来制备锂离子电池的电极。/pp  锂离子电池中需要添加各种导电剂和粘结剂以形成导电网络,颗粒聚集在浆料中产生不均匀性,会导致复合电极中出现裂纹和空隙,使电子通路出现中断,从而影响电池性能。因此,制作分散均匀的、稳定的浆料成为重中之重。/pp  锂离子电池浆料多为黑色不透明粘性流体或胶体状态,肉眼无法直接观测到分散是否均匀,不同分散状态的浆料又有着不同的粘度趋势。因此,流变特性是分析锂离子电池浆料分散状态的重要手段。/pp  流变仪可在接近真实加工条件下,对样品在力、热作用下的行为进行研究,如样品的流动特性、加工过程中的结构变化、降解及混合质量等性质。锂离子电池浆料的流动特性与固含、搅拌工艺及加料顺序等都有很大的关系。另外,浆料的粘度和沉降稳定性也会对后续的涂布过程产生影响。/pp  多项研究表明,锂电池的性能与浆料的粘度、添料次序、浆料固含、混合工艺、粘结剂种类、导电剂种类、溶剂种类、添加剂种类有关,且它们均是通过影响锂电池浆料的流变特性而影响最终的重放电性能。在体系相同的情况下,浆料的表观粘度基本与浆料的分散情况相关,浆料的分散程度越好,浆料的表观粘度越低。/pp  制作分散均匀而稳定的浆料已成为提高锂离子电池性能的重要手段,流变仪则已成为锂电池开发研究过程中不可或缺的仪器。/p
  • 手持材料分析光谱仪|怎么区分锂电池分类的成分
    近年来,随着全球新能源电动汽车的快速发展,锂电池的消耗量也迅速增加,镍、钴和稀有金属等原材料作为制造电池的常用材料,其需求量也骤然激增。面对与日俱增的需求和全球供应链的紧张,许多国家出现了原材料短缺的问题,废旧锂电池回收是获取原材料的重要来源之一。回收锂电池行业虽然热门,但是它的“水也很深",想要赚大钱不仅要有专业的回收设备,还要懂得行内话,了解锂电回收的“行话",还能让你判断对方在圈内的“道行"。手持材料分析光谱仪|怎么区分锂电池分类的成分-1、按正极材料分:“铁锂":即磷酸铁锂电池;“钴锂":即钴酸锂电池;“锰锂":即锰酸锂电池;“三元":即三元锂电池;手持材料分析光谱仪|怎么区分锂电池分类的成分-2、按产品形态分:“铝壳":即方形锂电池“钢壳":即圆柱锂电池;“聚合物/铝塑膜":即软包锂电池。手持材料分析光谱仪|怎么区分锂电池分类的成分-3、按用途分:消费类锂电池;动力锂电池;储能锂电池。可以为锂电回收行业提供系统的解决方案,为了帮助刚入行或者想要入行的客户快速了解锂电回收行业, 不同类型的锂电池价格可是天差地别,区分锂电池的种类,来给废料定价,是达到现场结算的基础;快速收货,以免上当,是回收的目的!千万别把铁锂的当成三元的带回家!手持光谱仪正极片及粉中镍(Ni)、钴(Co)、锰(Mn)等元素的成分检测;废旧电池负极材料铜箔中铜(Cu)含量的检测、电池金属外壳及粉料中成分检测;可以对大量废旧电池进行现场检测和快速分类;数秒便可判断出废旧电池的型号和成分含量;为购销双方在交易时,作出迅速判断提供必要的信息依据林巴斯合金分析仪是一种XRF光谱分析技术,可用于确定物质里的特定元素,同时将其量化。在这个飞速发展的时代,无论是什么行业,对于效率的要求就非常高了。  SciAps手持合金分析仪之所以被各个厂家和企业青睐,SciAps手持式合金分析仪设备耗电量低,适合野外检测,避测过程中电量不足导致实验中断的现象发生,弥补了大多数合金分析仪续航时间短这一共性缺陷。SciAps手持式合金分析仪重量仅有1.54公斤,这一特性也让它在野外检测工作中奠更受欢迎。
  • iCAP PRO锂电池分析利器——稳如泰山
    iCAP PRO锂电池分析利器——稳如泰山原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼 颜儿作 曹琦 贺静芳 李小波 锂电池自上世纪90年代商用化后,作为电子设备的移动能源储备服务于各个领域,2019年诺贝尔化学奖颁发给美国德州大学约翰古迪纳夫、美国纽约州立大学斯坦利威廷汉和日本旭化成株式会社吉野彰三人,以表彰他们对锂离子电池研发的zuo越贡献。目前在国内研究较多的包括钴酸锂、锰酸锂、磷酸铁锂和镍钴锰酸锂新能源电池,锂已经融入汽车制造、家电、轨道交通、办公设备甚至guo防jun工等诸多国民经济领域,无法离开和替代。 2020年10月29日,中共zhong央委员会审议通过了国民经济第十四个五年规划和2035年远景目标,为2021-2025年国民经济发展宏观定调,2021年为十四五发展元年,而新能源产业作为科技创新、gao端制造和“新基建“的基础产业自然也列入了国家重点发展规划产业内,国内新能源股价应声大涨,作为新能源汽车long头企业特斯拉股价在2020年一年内拉升近10倍,再次造就马斯克财富神话,国内新能源电池制造巨头宁德时代再一次深度布局锂电池的研发和创新,汽车制造商特斯拉、蔚来、小鹏、比亚迪、理想纷纷发布新型新能源汽车,在续航能力上进一步刷新历史极值,而随着恒大“恒驰”和“小米”汽车涉猎全新疆场,互联网新能源造车领域竞争和发展进入bai热化阶段,势必国内造车新势力将实现弯道超车,未来产业发展可期。 不同的电池为什么具有不同的续航能力?其实在锂电池的充放电循环过程中,由于多种杂质元素的存在常常导致材料晶体结构的塌陷,最终会严重的影响电化学循环寿命和带来安全性的潜在因素。而不同锂电池的主量元素则直接影响到电池的性能(续航能力)和企业的成本,所以能够保证锂电池中主含量元素的稳定,是确保锂电池质量稳定的关键之一。赛默飞iCAP PRO系列是Thermo Fisher 于2020年发布的全新电感耦合等离子体发射光谱仪,是在继承iCAP 7000系列优点基础上创新新技术而生的产品,性能优异、设计独特、测试高效、成本务实。针对锂电池材料中主量元素能提供所有同类产品中Zui具竞争力的稳定性,为锂电池的安全和性能保驾护航。 Thermo Scientific™ iCAP™ PRO ICP-OES 紧凑精密恒温的光学系统:在波长200nm处光学分辨率小于7pm,确保zuo越的检出限,控温精度可达±0.1℃,超高光学控温稳定性全新400万像素CID检测器:2MHz高速全波长范围同步扫描,分析速度提高30%-40%,-45℃以下三级制冷,确保Zui佳信噪比高效固态功率发生器设计:耦合效率>85%,可实现功率稳定性0.15%垂直矩管双向观测设计:可同时满足高低含量测试,保证轴向观测灵敏度和径向观测基体耐受性完全可拆卸矩管:便捷客户维护,使用成本低廉高精度MFC气体控制系统:精度达0.01L/min,保证等离子体稳定运行采用赛默飞iCAP PRO系列电感耦合等离子体发射光谱仪能够实现锂电池行业主含量元素的稳定测试的原因如下:稳如泰山一采用±0.1℃高精度控温光室,充分保证长时间测试过程光学稳定性,克服实验室环境温度变化造成的数据波动稳如泰山二采用高效固态功率发生器,可实现RF功率0.15%的稳定性,确保等离子体功率中心温度的稳定性,实现待测元素的稳定激发稳如泰山三采用3路精度为0.01L/min的质子流量计,可实现等离子体气稳定流速,确保样品雾化均匀的雾化气,可实现整个样品引入和激发过程的稳定性稳如泰山四采用垂直炬管双向观测设计,可通过径向观测提高对锂电池复杂基体耐受性,也可通过径向观测提高对于低含量元素(如Cu Fe)等元素的超痕量检出稳如泰山五采用400W像素超高分辨率和-45℃以下制冷温度的CID检测器,可实现高效光子量子化效率和超低检测器背景噪音,改善检出限和信号稳定性既然iCAP PRO有如此强大仪器稳定性的设计特点,让我们一起看下锂电池样品真实测试数据吧,Exciting and Unbelievable!! 无内标校正Ni-Co-Mn-Li重复10次测试稳定性数据 内标在线校正Ni-Co-Mn-Li重复10次稳定性数据无内标校正Ti-Mg-Al重复5次稳定性数据 内标在线校正Fe Ni Cu Al P Zn多元素4h稳定性数据采用赛默飞iCAP PRO系列电感耦合等离子体发射光谱仪, 按照锂电池新能源线性方法,针对Ni-Co-Mn-Li、P-Fe-Li和Mg-Ti-Al等不同类型正极材料内标在线校正进行短期和长期的稳定性测试,结果表明iCAP PRO ICP-OES可对锂电池中主量元素进行超级出色的准确和稳定的测量。
  • “锂电池检测专题”网络研讨会成功举办
    2019年6月28日,TESCAN联合珀金埃尔默公司,首度举办了“锂电池检测专题”网络研讨会,来自全国各地的155位专家和技术人员参加了本次网络研讨会,对锂电池的检测标准、分析手段、综合评估等做了深入的剖析和交流,大家在会上展开了热烈的讨论。珀金埃尔默的原子光谱资深应用工程师陈观宇老师介绍了锂电池正极材料主量元素、负极材料掺杂元素以及电解液的分析方法,例举多个实际案例对分析方案进行了详细说明、介绍了实践中要注意的操作要点,并通过实际的结果比对来进一步阐述Avio系列ICP产品主量元素0.1%超凡稳定性的独特优势,以及ICP-MS在杂质元素分析上的特点和方案。除此之外,陈观宇老师还形象地讲解了GC-MS、红外光谱、热重分析等多种类型检测方法在锂电行业的综合应用。图1 珀金埃尔默Avio系列等离子体光谱仪图2 珀金埃尔默Nexion系列等离子体光谱仪图3 珀金埃尔默气质联用仪检测浓度为100 μg/mL的11种碳酸酯色谱图图4 用于原材料检验的珀金埃尔默便携式高性能红外光谱仪及红外显微镜系统图5 珀金埃尔默热分析仪检测电池原材料的热稳定性评价曲线本次会议还特邀广州能源检测研究院主任工程师,广东锂电关键新材料产业技术创新联盟专家技术委员会委员邵丹博士,来会上对动力电池关键材料检测现状做了详细的分析和报告,报告密切围绕动力电池产业背景、动力电池关键材料检测标准以及全方位的测试评价动力电池及其关键材料的新技术,内容详实、引人入胜。TESCAN公司的资深应用工程师张芳女士介绍了新颖的以扫描电镜为平台组建的综合微分析系统在锂电池正负极材料以及隔膜材料微观表征中的应用,以及使用X射线显微镜完成电池的三维无损分析,实现从宏观到微观的整体观测。图6 正极材料的表面形貌图7 正极材料的截面图8 锂元素的检测图9 负极材料石墨化/非晶化分析图10 负极材料析锂分析图11 电池的内部结构的三维成像 本次网络专题讨论会是TESCAN公司和珀金埃尔默公司首度联手,从不同角度和使用不同的分析手段对锂电池检测进行系统、完整的分析和介绍,进而为广大的用户群提供综合有效的结果方案。珀金埃尔默公司和TESCAN公司都有各自擅长且独特的解决方案,此次携手合作,势必为多个领域的用户群体提供更多的前沿分析技术和专业的行业解决方案。
  • 科研赋能:珀金埃尔默在锂电池行业分析中的应用
    锂电池是一种以锂离子为电荷载体的可充电电池,广泛应用于便携式电子设备、电动汽车(EVs)、能源存储系统以及其他多种应用中。锂电池由正极材料、负极材料、电解液、隔膜、电池外壳等部件组成,其中 01正极材料: 常见的有锂钴氧化物(LiCoO2)、锂铁磷酸盐(LiFePO4)、锂镍锰钴氧化物(NMC)等。 02 负极材料: 通常使用石墨或硅基材料。 03 电解液: 含有锂盐的有机溶剂,如六氟磷酸锂(LiPF6)溶解在碳酸酯类溶剂中。 04 隔膜: 一种多孔材料,允许锂离子通过,同时防止电极间的物理接触。 05 电池外壳: 保护内部组件并提供结构支持。 如新能源汽车上使用的磷酸铁锂电池和三元锂电池,正极使用的配方与主量元素间的配比,直接决定电池的能量密度、充放电循环效率等。正/负极材料与点解液中的杂质元素含量,对电池品质也有着重要影响,珀金埃尔默分析仪器对上述质量控制节点,均有很好的解决方案。 1 ICP-OES/ICP-MS 正极材料分析中的应用 锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁(Fe )、铜(Cu)、铬(Cr)、镍(Ni)、锌(Zn)、铅(Pb)等金属杂质时,电池化成阶段的电压达到这些金属元素的氧化还原电位后,这些金属就会先在正极氧化再到负极还原,当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电。自放电对锂离子电池会造成致命的影响,因而从源头上防止金属异物的引入就显得格外重要。 图1. 电池正极材料 现阶段的众多锂电池企业,均采用ICP-OES作为主量元素配比以及杂质元素浓度的测定工具。使用ICP-OES测试主量与杂质元素时,可能会遇到的一些问题如: 1.主量元素浓度高,仪器动态范围是否够宽? 2.测定主含量元素的同时,能否测定微量杂质元素? 3.测定主含量元素仪器是否稳定? 4.测定杂质仪器是否有足够的灵敏度? 等等 得益于珀金埃尔默公司Avio系列ICP-OES上的独特设计,配备平板等离子体技术、双向观测模式、丰富的元素谱线库、专利性的光谱干扰校正技术(MSF,多谱拟合技术)能够有效解决上述问题。 (点击查看大图) 伴随着产业的发展以及工艺的提升,对杂质的管控越发严格,杂质浓度限值一直在往下调。ICP-OES由于其仪器原理的限制,在测定低浓度杂质元素时遇到瓶颈。Cr、Cu、Fe、Zn、Pb这些元素尤其明显。据调研,部分厂家该5个元素浓度控制在1ppm以下(部分厂家Fe含量在10 ppm以内),在常规100倍固液稀释比前处理后,样品溶液中该元素浓度在10 ppb以下,因此使用ICP-OES进行检测遇到了极大的挑战,尤其在谱线干扰严重的情况下。而ICP-MS由于其灵敏度更高,检测下限更低,是一个非常好的检测手段。 图2. NexION系列ICP-MS 使用ICP-MS测试正极材料中杂质元素的挑战包括: 1. 杂质元素会受到主量元素质谱干扰; 2. 对不同类型的质谱干扰,需要不同的干扰校正模式。 通过对多个厂家的锂电正极材料做测试,运用空白实验、平行样、加标回收等质控手段进行测试,验证了珀金埃尔默NexION系列ICP-MS,标配AMS进样系统,配合大锥孔三锥设计,四极杆离子偏转器,可以获得优异的基体耐受性、仪器稳定性,以及更低的记忆效应。 图3. NexION ICP-MS测试正极材料 杂质元素加标回收率 (点击查看大图) 图4. NexION ICP-MS测试正极材料 杂质元素校准曲线 (点击查看大图) 实验结果表明,通过选择合适的同位素以及仪器强大的耐基体性能保证了数据的准确性与稳定性。该方法十分适合分析高基体锂电正极材料。 2 ICP-MS在锂电池 电解液分析中的应用 电解液是锂离子电池的重要组成部分,在电池中作为离子传输的载体,使锂离子在正负极间移动。电解液通常由锂盐、溶剂和添加剂组成,其中溶剂提供离子传输介质,锂盐增强电解质的离子传输率。 电解液样品无法用传统的微波消解前处理,因为样品中含有乙醇与其他挥发性有机物,微波消解会发生爆罐。马弗炉灰化会产生大量有毒的氟化磷,而电热板消解需要大量酸同时实验人员必须在边上值守防止样品碳化,耗时且会引入污染。所以对于这类样品用有机溶剂直接溶解后快速直接进样。短时间内即可处理完样品,同时避免了容器与酸引入的污染。 珀金埃尔默公司的ICP-MS搭配全基体进样系统(AMS)为电解液中杂质元素分析提供一条全新思路。利用ICP-MS极高的灵敏度,可以采取更大稀释倍数降低Li元素带来的高盐影响,在前处理方面,仅采使用10%甲醇(电子级),50倍稀释上机,AMS使用氩氧混合气,实现加氧防止有机物积碳,同时用氩气减少基体效应。实现了电解液中杂质元素的准确、高效、环保分析。 电解液直接进样也会引入大量C相关的质谱干扰,如Mg、Al、Cr会分别受到CC、CN、ArC等干扰,另外Ar与H2O也会是K,Ca,Fe等收到干扰。NexION系列ICP-MS全系列均可使用纯氨气作为反应气体,消除相应的质谱干扰。从而获得最准确的结果。 图5. NexION ICP-MS测试电解液杂质元素1ppb(Hg 0.1ppb)加标回收率 (点击查看大图) 图6. NexION ICP-MS测试 电解液杂质部分元素校准曲线 (点击查看大图) 3 GCMS在锂电池 电解液分析中的应用 通常用于商用锂电池的电解质溶液含有锂盐、有机溶剂和一些添加剂。有机溶剂主要是环状碳酸酯,例如碳酸亚乙酯和碳酸丙烯酯,或链状碳酸酯,例如碳酸二乙酯和碳酸甲乙酯。这些碳酸盐的构成和比例对锂离子电池的能量密度、循环寿命和安全性有重要影响。因此,研究电解质溶液中碳酸盐的构成和含量对锂离子电池的开发和质量控制起着重要作用。 图7. 珀金埃尔默 GCMS 2400 珀金埃尔默 GCMS 2400配 EI 源测定了锂离子电池电解液中的9种碳酸盐。实验结果显示该方法具有良好的精确度、回收率、线性和检测限,能够满足锂离子电池行业的需求。 表1. 精确度、回收率以及方法检出限、定量限 (点击查看大图) 4 GC在锂电池中 鼓包气体成分分析中的应用 锂离子电池因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓包, 从而带来极大的安全隐患。因此,了解电池鼓包气体的组成对于优化电解液的组成是至关重要的。 珀金埃尔默独特的解决方案,采用气相色谱TCD和带甲烷转化炉FID检测器串接技术对锂离子电池中产生的鼓包气体进行检测,获得鼓包气体的主要成分和定量分析。常见鼓包气成分有H2,O2,N2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体,采用TCD和带甲烷转化炉FID检测器串接技术可以同时满足高含量的CO,CO2分析以及低含量的CO,CO2 ,CH4,C2H4,C2H6等烷烃分析,该方法CO,CO2及烷烃类检出限小于1ppm,H2检出限小于10 ppm,该方法可实现手动气密针进样以及气体阀进样,可以获得待测锂离子电池鼓包气体完整、精准的分析结果。 表2.n=7次进样的相对标准偏差(RSD%) (点击查看大图) 图7.鼓包气气体成分参考谱图 (点击查看大图) 5 热分析设备 在电池领域的应用简介 在电池组原材料领域, DSC设备可用来分析聚合物以及金属材料的各种相变过程以及相应吸放热量的大小(比如分析聚丙烯的玻璃化转变温度以及结晶熔融过程等);STA同步热分析仪可以研究各种材料的热稳定性,确定热分解温度,定量测定复合材料的相对组成比例等。典型图谱如下图8和图9所示; 图8 电池原材料熔融和结晶过程评价 (点击查看大图) 图9 电池原材料热稳定性评价曲线 (点击查看大图) 电池组件由正极、负极和隔膜等各种组件构成,珀金埃尔默公司所提供的逸出气体联用装置可用于研究各组件在温度变化过程中产生各类逸出气体的定性定量数据。图10为典型的STA-FTIR联用测试曲线; 图10 电池组件逸出气体分析测试谱图 (点击查看大图) 在电池封装领域,可对组件封装材料——EVA(乙烯-醋酸乙烯共聚物)等材料的交联率进行快速测试,进而替代传统的溶剂测试法。典型测试谱图如图11所示; 图11 电池封装材料交联度预测曲线 (点击查看大图) 扫描左侧二维码 获取《珀金埃尔默锂电池检测总体解决方案》 关注我们
  • “续航”新动力 | 助力锂电池产业升级——锂电产业一站式解决方案
    锂离子电池作为智能手机、笔记本电脑等电子电器设备,以及电动汽车、混合动力汽车等的电源,其性能的提升一直深受行业关注。日立科学仪器作为先进的技术企业,可为锂电领域的“研发”、“制造”、“品质管理”,以及当下广泛关注的“电池回收”等产业链环节,提供从仪器到零配件再到方案等全面解决方案。1. 研发(R&D):创新驱动,助力锂电池研发突破【背景介绍】国内新能源汽车产业经过几十年的发展,已经形成一定的产业规模并取得很大技术突破。动力电池作为新能源汽车核心部件,是新能源汽车产业发展的关键因素之一,动力电池综合性能的提升是重要的支撑。电池的化学性能、电性能、循环性能、安全性能、可靠性能等评价能力的迫切要求下,推动电池产业界在技术创新投入方面不断加码。日立科学仪器可以为锂电研发、制造、品质管理等提供电子显微镜、分析仪器产品与解决方案。【案例分享】浓度分析——原子吸收分光光度计ZA3000为了提高锂离子电池的性能,需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,对某些元素的检测灵敏度低, 而且使用成本较高。分析实例:正极活性物质相关分析左:正极活性物质中的组成元素摩尔比;右:原子吸收分光光度计ZA3000日立偏振塞曼原子吸收分光光度计ZA3000系列可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。分析实例:正极活性物质相关分析左:钴酸锂中的锂分析;右:钴酸锂中的钴分析分析实例:电解液(电解质)相关分析左:碳酸锂中的钠分析;右:六氟磷酸锂中的钾分析2. 制造:智能制造,提升锂电池生产效能【背景介绍】锂电是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。其生产环节需要经历多道复杂工序,这对提高生产效率、提高良品率等都提出很高的要求。同时,随着锂电产业的不断升级发展,智能制造、自动化、数字化等成为锂电制造当下的发展趋势。【案例分享1】高速检出隐藏于表面之下的微米级金属异物——X射线异物分析仪EA8000A原材料中的金属异物会使电池失效,甚至发生事故。X射线异物分析仪EA8000A具备强大的X射线异物检出能力,可以高效检出20μm级微小金属异物颗粒,并对其进行元素识别。这套异物检测系统能帮助用户提高成品率、提升锂电制造工序的效率、构建工序管理并不断改进,从而有效控制异物混入情况。X射线异物分析仪EA8000A(产品来自日立分析仪器(上海)有限公司)EA8000A在锂电领域的应用【案例分享2】成分和水分测试——自动电位滴定仪COM-A19自动电位滴定仪COM-A19可以高精度地测定氢氟酸、氢氧化锂、碳酸锂等电解液中的各种成分。锂电池电解液成分浓度测定案例左:氢氧化锂和碳酸锂的测试结果案例;右:自动电位滴定仪COM-A19对于非水相体系的锂电池材料而言,水分是一个关键指标,因为它不仅会对材料的稳定性有影响,而且可能引起一系列有害的反应。在自动滴定装置上增设“水分测定单元”,可以同时测定水分含量。另外,平沼的单室电解单元由于不需要阴极液,能够降低运行成本。锂电池原料:聚氨酯硬化剂多元醇中水分含量测定案例左:测试结果案例;右:MOICO-A19与卡式蒸发炉3. 品质管理:精准监控,确保锂电池卓越品质【背景介绍】锂电产品安全性至关重要,这决定了锂电行业对产品品控和管理的高规格要求,如何在生产环节中保证锂电产品的性能稳定性、均一性等尤为重要,精准的检测技术和分析手段此时便可以发挥重要的支撑作用。【案例分享】仅需3分钟即可观察影像——TM4000Plus IITM4000Plus II是日立台式扫描电镜系列中最新的型号。样品无需前处理,从放入样品到获得图像只需要短短几分钟。从形貌观察到元素分析,以及生成报告都可以迅速完成。尤为适合各工序的锂离子电池的品质管理。 上左:EDS颗粒分析;上右:日立台式扫描电镜TM4000Plus II;下:宽范围成分图4. 回收:环保先行,推动锂电池可持续发展【背景介绍】我国新能源汽车行业在“双碳”政策引导下进入规模化快速发展阶段。在电池需求大力拉升下,镍、锂、钴等金属价格持续上涨,,锂电回收不仅复合减污降碳的政策方向,且目前全球镍、锂、钴等原生矿产资源相对稀缺。通过对废旧动力电池的循环利用,可有效解决资源枯竭问题。如何推动锂电回收产业由规模速度型向质量效益型有序化转变已经成为当下的重要命题。【案例分享】:锂电材料综合评测—SEM和AFM联动分析SÆ Mic.是指将SEM、AFM的特点功能结合使用得到综合评价。在同一视野下,对锂离子电池正极材料进行测试。将SEM得到的成分信息和AFM的SSRM像的电气特性进行匹配,得到全面的样品信息。左:SEM-AFM联合观察SÆ Mic.;右:锂电正极材料的SEM/AFM同一视野下的测评观察锂电材料,SEM和AFM联用2023年,随着新能源汽车产业进入叠加交汇、融合发展新阶段,面对全球不断壮大的发展需求,动力电池产业进入新的发展阶段,电池的安全、可控、低碳等发展方向为对应检测技术提出越来越高的要求。日立科学仪器将在锂电解决方案的开发中不断加码,在锂电领域“研究开发”、“制造”、“检测”的价值链中,提供从仪器到零配件的高端及前沿的解决方案。携手广大客户,共同为锂电升级不断赋能。欢迎垂询日立科学仪器(北京)有限公司电话:400-898-1021邮箱:contact.us@hitachi-hightech.com 欢迎扫描下方二维码,官微更多产品内容等您来看!公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 中科院锂电池实验室落户金华
    “我们已经与中科院上海微系统与信息技术研究所签订合作协议,在金华成立以动力和储能锂离子电池相关课题研发为主的联合实验室,首期合作三年,全面提升金华汽摩配产业在动力研究方面的话语权。”昨天,浙江南博电源科技开发有限公司董事长陈庆武告诉记者,该公司的锂电池产品已经通过中试鉴定。  南博公司成立于2006年,在国家有关科研院所的技术指导下,从事研发、生产锂离子动力电池科技型新能源产品。  据了解,目前我国汽车产销量已达1300万辆。到2020年中国汽车保有量肯定要突破2亿辆,油品供应问题将非常突出。除了电动汽车,没有其他更有效的解决方案,因此电动汽车产业化发展已经列入国家“十二五”规划中。陈庆武告诉记者:“金华有青年、众泰、康迪、绿源、金大等多家整车制造厂,2009年锂电池市场需求已经超过9000万元,今年还要翻番。南博公司将投入1.8亿元资金,专门用于生产锂电池,加强产业化技术和工艺的研发。”  浙江力霸皇工贸集团副总经理李家亮,对锂电池的好处如数家珍。锂电池重量只有2.5至5公斤,是普通电池重量的1/4,使用寿命却为铅酸电池的3~5倍,锂电池电动车顺应了国家的环保要求,是我市电动车产业可持续发展的必然选择。浙江金大车业有限公司总经理章小理告诉记者,我市电动车产业发展路线一直采用跟随战略,虽然具备整车优势,但在新能源领域,是否能够摆脱跟随路线,逐步向领导者行列跨进,锂电池技术将成为关键突破口。如果南博公司能将电动车锂电池从目前的1200元降到800元,将改变金华电动车行业在国内的竞争格局。
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 岛津原子力显微镜在锂电池行业应用集英
    锂离子电池广泛用于手机、相机、玩具等小型电子设备以及混合动力汽车和电动汽车中。锂离子电池由阴极、阳极、隔膜和电解质组成,其中构成阴极和阳极的粉末状材料往往通过粘合剂保持聚集状态。无论是现有锂电池的各部分材料、工作性能,还是新型锂电池的开发,原子力显微镜均深入应用其中。01隔膜材料的工作状态下的孔隙变化目前最常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜是非常合适的观察工具。对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,隔膜需要实现在快速产热(温度120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状。范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。02锂电池正极材料工作状态观察为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。另一方面,正极中的三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图1至图3示出了EPMA数据,图4至图6示出了SPM数据。在EPMA结果中,图1是成分图像(COMPO),图2是C和F分析的叠加图像,图3是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图2中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图3中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图4是SPM获得的表面形貌图像,图5是低偏压激励下小电流分布图像,图6是高偏压激励下大电流分布图像。结合图4和图2,对比可知道活性材料的分布与形貌;结合图2,可认为图5中电流区域为导电剂;同时对比图5和图6,从图5中扣除图6的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图5和图3,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解各个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。03新型负极材料的开发最常用的负极材料是石墨,但近年来硅(Si) 因其理论容量高于石墨而被视为下一代负极材料。但是由于Si负极材料在充放电过程中随着Li离子的进出而显着膨胀和收缩,因此Si材料的短板是容易破裂且寿命短。为了弥补这个问题,需要选择合适的硬粘合剂以牢固地粘合Si材料。我们设置了两种环境观察Si负极材料的不同,一种是现实中锂电池使用的电解液,另一种是N2气体环境。样品由附着在玻璃基板上的三种聚丙烯酸粘合剂(1)、(2)和(3)组成。在电解液环境为(A),N2气环境为(B)中进行观察。(A)将样品在含有1mol/LLiPF6的碳酸二甲酯(DMC)和碳酸亚乙酯(EC)的混合溶液中浸泡24小时。24小时后进行观察,同时样品仍浸入电解液中。(B)将上述样品置于密闭环境控制室中,用N2置换室内气氛后,在N2气体中进行观察。实验结果如上图所示。(A)在电解液中的样品(1)上观察到约10nm的突起,而样品(2)和(3)都是平坦的。该结果表明样品(粘合剂)(2)和(3)均匀分布在电解液中。(B)在N2气体中观察时,样品(1)和(2)是平坦的,但在样品(3)上观察到20nm的突起。该结果不同于在电解质中观察到的结果,并证明了在实际用例环境中进行测量的重要性。04固态锂电池开发研究目前的锂离子电池内部使用有机溶剂电解液,在制作、运输、使用过程中电解液可能泄漏,从而造成燃爆事故。而固态电池是采用固态电解质的锂离子电池,不含有任何液体。相比传统的液态锂离子电池,固态电池首先安全性能高,固体电解质取代可燃的液体电解质,有望克服锂枝晶的产生;其次能量密度高,负极可采用锂金属负极,极大提高能量密度;再次循环寿命长,可避免液体电解质再充放电过程中持续形成和生长固体电解质界面膜,理论上循环寿命可提高10倍以上;此外,固态电池电化学窗口宽达5V,高于液态锂离子电池的4.25V,适用于高电压正极材料;最后,固态电池无废液,处理相对简单,回收更加方便。当然,固态电池技术也存在一些很棘手的问题。粉体颗粒在电池充放电循环中会发生体积膨胀与收缩,由于不含有液体,因此颗粒与颗粒之间、层与层之间容易产生缝隙,带来接触不良,影响离子和电子的传输,电池内阻就会增加,在充放电过程中就会发生极化问题,导致倍率性能下降。因此,对固态电池的测试,除了要观察其形貌外,更重要的是获得表面形貌与其导电性之间的联系,分析不同形态与聚集状态对其工作状态的影响。为此,设定实验对两种固态电池材料进行分析,分别是钴酸锂(LiCoO2:以下称为LCO)和钛酸(Li4Ti5O12:以下称为LTO)。为了模拟固态电池内部工作环境,使用环境控制舱调节气氛,氧气0.7ppm或更少,水蒸气0.75ppm或更少。30微米范围内LCO形貌图像与电流分布图像30微米范围内LTO形貌图像与电流分布图像30微米LCO形貌图像和30微米LTO形貌图像均显示出2μm左右的高度差,并且表面粗糙度(Sa)分析显示,二者分别为341.5nm和333.6nm,非常相近。在LCO中还发现了几个缺口。相比之下,在LTO中没有发现间隙,表面较为完整。在30微米LCO电流分布图像中,表面电流分布不均匀,在41.7%的面积上检测到电流(使用颗粒分析软件分析)。在30微米LTO电流分布图像中,没有检测到电流,可能的原因是在未充电状态下LTO具备高电阻特性。5微米范围内LCO形貌图像、电流分布图像、粘性力分布图像5微米范围内LTO形貌图像、电流分布图像、粘性力分布图像5微米LCO形貌图像显示该电极材料中的晶粒尺寸约为2-5微米左右,并且它们之间存在间隙。同时也存在几百纳米大小的颗粒,如箭头所示。LTO形貌图像显示电极材料为板状晶体结构,箭头所示。在5微米LCO电流分布图像中,可发现电流在黄色虚线的左右两侧明显不同。对比5微米LCO形貌图像,可推测黄色虚线是裂缝的边界。此外,很明显箭头所指的几个几百纳米大小的晶粒处没有电流。推测其原因是这些颗粒因破碎脱落隔离于其他材料,未能形成电流通路。在5微米LTO电流分布图像中依然没有检测到电流。对比以上图像发现,5微米LCO粘性力图像与5微米LCO高度图像(e)和5微米LCO电流图像中的分布相关。同时5微米LTO粘性力图像与5微米LTO高度图像中的板状晶体(箭头所示)分布相关。通常,粘性力被认为是由毛细力、范德华力或样品表面水膜导致的电荷聚集引起的。然而,在本次测量中,水蒸气浓度为75ppm或更低,因此毛细力的影响很小。所以,粘性力图像可能代表范德华力或电荷力,这两种力可被用于展示电极材料的组成分布。根据上述信息,很可能LCO电流分布反映了材料的成分分布,并且电流的路径受晶粒之间的裂纹或间隙影响。LTO在这种情况下无法获得电流图像,可尝试充电以降低其内阻,然后进行测量。由以上案例可知,原子力显微镜可以广泛适用于现行的锂电池材料测试,同时在各类新型电池的研发中,也具备非常重要的作用。本文内容非商业广告,仅供专业人士参考。
  • 锂电池正极材料中杂质元素的准确测定,很难吗?
    锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁 (Fe)、铜 (Cu)、铬 (Cr)、镍 (Ni)、锌 (Zn)、铅 (Pb) 等金属杂质时,电池化成阶段电压达到这些金属元素的氧化还原电位后,它们就会先在正极氧化,然后再到负极还原成单质。当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电,对电池造成损害,甚至致命影响。因此,从正极源头上保证其纯度,防止金属杂质异物的引入,对电池生产质控就显得格外重要。目前的锂电池企业通常采用电感耦合等离子体发射光谱法 (ICP-OES) 测定主量元素配比以及杂质元素含量。ICP-OES仪器相对较低的购买和使用成本,使之在相关企业有着广泛的使用。随着锂电池产业升级加速,生产质控愈发严格,对正极材料中元素杂质含量限度要求越来越苛刻。ICP-OES由于其自身原理的局限性,在部分含量较低的杂质元素如Cr、Cu、Fe、Zn、Pb的准确检出方面出现瓶颈。例如,在某些生产工艺控制严格的企业,上述5个元素的控制浓度在1ppm左右(个别厂家Fe含量在10ppm以内),在日常检测中,经过100倍固液稀释比的样品前处理后,样品上机测定时的浓度低至10ppb以下。由于在主要检测观测区的谱线干扰严重,能否实现上述杂质元素浓度的准确分析,对ICP-OES的性能提出了非常大的挑战。与ICP-OES相比,电感耦合等离子体质谱(ICP-MS)的测定灵敏度更高,检出能力更强,检测下限更低,更加符合锂电池企业高效率准确检测低含量杂质元素的需求。ICP-MS的工作原理决定了其受到的干扰与ICP-OES有较大的区别。ICP-MS受到的干扰主要分为基体干扰和质谱干扰。通常情况下,锂电池正极样品前处理的固液稀释比例在100~200倍,而且前处理时使用较多的酸,使得样品中的固溶含量和酸度都很高,造成ICP-MS的空间电荷效应和电离抑制,待测元素受到基体干扰;对于正极材料样品来说,较高浓度的主量元素会与O、Cl、N等元素结合,形成分子量为M+16、M+35、M+14等质谱干扰。另外,主量元素的高浓度还会产生拖尾,影响分子量M±1元素的测定。如何帮助锂电池企业使用ICP-MS有效克服上述诸多干扰,提高生产效率以及产品质量和性能,成为ICP-MS供应商面临的重要任务。标配全基体进样系统 (AMS) 的珀金埃尔默NexION系列ICP-MS,配合大锥孔三锥设计,QID四极杆离子偏转器,以及具备标准、碰撞和反应三种模式的UCT通用池,可以获得优异的基体耐受性、仪器稳定性和更低的记忆效应。通过进行简单易行的仪器参数优化、干扰消除模式选择和同位素质量数选择,有效消除基体和质谱干扰,准确测定锂电池正极样品中的低含量杂质元素。下述表格显示了NexION 1000G ICP-MS对来自锂电池生产企业的正极材料样品中Cr、Cu、Fe、Zn、Pb杂质元素含量的测定结果,以及仪器方法的优异性能。表1.锂电池正极样品测定结果表2.锂电池正极样品加标回收率测定结果** Cu、Pb、Cr加标5μg/L;Zn、Fe加标50μg/L如何简单有效地做到准确测定锂电池正极材料中低含量杂质元素?请扫描下方二维码即刻获取《ICP-MS测定锂电池正极材料中Cr,Cu,Fe,Zn,Pb杂质元素含量》。扫描上方二维码即可下载右侧资料➡
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 欧阳明高院士详解锂电池技术发展方向
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/60583ae0-3699-426f-8348-785105fbf7fb.jpg" title="ouyangminggao.jpg"//pp  近年来,随着国内外电动汽车产业的快速发展,作为核心零部件的动力电池产业备受关注,各家企业不仅要扩张产能规模确保产量供应,还面临着持续提升产品能量密度等关键指标的“攻坚战”。当前国内外动力电池技术进展如何?有哪些值得关注的前瞻性技术?未来数年的发展节奏是怎样的?近期,中国电动汽车百人会执行副理事长、中国科学院院士欧阳明高对上述行业关心的重点话题从技术角度进行回应,对业内外人士全面了解当前动力电池技术水平概况提供了重要参考。/pp style="text-align: center "strong  300瓦时/公斤目标取得重大突破/strong/pp  《汽车纵横》:安全、续驶里程长、寿命长等是消费者选购新能源汽车时考虑的关键性指标,动力电池是决定这些指标的核心零部件,近年来,在消费者需求及相关部门的政策法规推动下,安全、长寿命、高比能量的动力电池已成为产业需求的主流。比如2017年3月份,国家工信部等四部委联合颁布《促进汽车动力电池发展行动方案》,指出到2020年,要求新型锂离子动力电池单体比能量超过300瓦时/公斤。目前国内动力电池技术在这些方面进展如何?达到哪些指标?/pp  欧阳明高:按照规划,2020年要实现动力电池能量密度300瓦时/公斤目标。目前承担新能源汽车专项项目的有三个团队:宁德时代新能源、天津力神和合肥国轩。这三个团队目前采用的技术路线大同小异,即正极采用高镍三元,负极是硅碳,这种电池目前技术指标已经接近应用要求,到2020年,比能量300瓦时/公斤的电池的产业化已经取得了实质性突破,现在从比能量角度看都已经达到,例如宁德时代新能源的电池研究成果的循环寿命基本在1000次左右,能量密度达到304瓦时/公斤,其他两家也差不多。当然还有部分企业安全性标准还没有完全满足。用300瓦时/公斤的单体电池大概能做出200-210瓦时/公斤的电池系统,因为基本是软包电池,而非方形电池。国内在去年年底、今年年初,动力电池的能量密度单体达到230瓦时/公斤左右,系统大约150瓦时/公斤左右。到2018、2019年还需要再提高50-70瓦时/公斤,我认为是可以做到的。至于单体350瓦时/公斤、系统260瓦时/公斤是我们力争的目标。/pp  如何落实2025年400瓦时/公斤的目标?/pp  《汽车纵横》:刚刚您提到,实现2020年300瓦时/公斤的目标在技术上已经有重大突破。再往后展望五年,到2025年动力电池将力争实现哪些目标?将采用何种技术路线?您认为哪种前瞻技术最值得关注?目前中国在这些前瞻技术领域有无研究?/pp  欧阳明高:面向2025年产业化,我们希望冲击单体电池能量密度达到400瓦时/公斤的目标。300瓦时/公斤的实现改变的是负极,从碳变成硅碳,到400瓦时/公斤要变的是正极,目前可选的正极材料有好几种,现在新能源汽车重点专项取得突破性进展的是高容量富锂锰基正极材料,有两个单位承担了前沿基础项目,一个是物理所,改善了富锂锰基正极循环的电压衰减,达到的指标是正极循环100周之后电压衰减降到了2%以内,这是一个重大的进展。另外一个是北京大学的团队,首次研制出了比容量400毫安时/克的富锂锰基正极,实现400瓦时/公斤应该是没有问题的,甚至可能更高。这更为开发比能量大于500瓦时/公斤的新型锂离子电池提供了可能,但循环尚存在一定不确定性。/pp  更加前沿的技术是固态电池。目前国内有多家研究机构和产业单位在做,包括中科院青岛能源所、宁波材料所,物理所等,也包括宁德时代新能源、中航锂电等。最近宁波材料所与赣锋锂业合作,投资5亿元人民币,致力于推进固态电池产业化,计划2019年量产,2020年产品进入电动汽车市场。固态电池无疑是2017年全球电池领域最热的一个技术名词。/pp style="text-align: center "strong  全固态锂电池技术何以在全球大热?/strong/pp  《汽车纵横》:固态电池与我们听到的全固态锂电池是否是一回事?什么才是全固态锂电池?如何理解这些概念上的区别?/pp  欧阳明高:全固态锂电池,这几个词每一个字都不能少、不能变,“全固态”与“固态”不同,“锂电池”和“锂离子电池”不是一个概念。所谓“全固态锂电池”是一种在工作温度区间内所使用的电极和电解质材料均呈固态,不含任何液态组分的锂电池,所以我们全称是“全固态电解质锂电池”。根据其是否可以反复充放,可进一步分成全固态锂一次电池和全固态锂二次电池,一次电池其实已经有用的。全固态锂二次电池又分成全固态锂离子电池和锂金属电池,这两个概念又要区别,所谓全固态金属锂电池的负极用的是锂金属,目前在用的动力电池的负极多为碳、硅碳或者钛酸锂。/pp  全固态锂电池的概念比锂离子电池出现得更早,锂离子电池只有25年左右的历史,是日本人发明的,真正用于车上也就10多年,很年轻但是进步很快。早期所指的全固态锂电池,都是以金属锂为负极的全固态金属锂电池。这就是以前的概念。/pp  《汽车纵横》:固态锂离子电池跟全固态锂电池的具体区别是什么?/pp  欧阳明高:固态电池,不一定是全都是固态电解质,还有一点液态,是液态与固态混合的,差别在于混合的比例是多少。真正的固态锂离子电池,其电解质是固态,但在电芯中有少量的液态电解质 所谓半固态,就是固态电解质、液态电解质各占一半,或者说电芯的一半是固态的、一半是液态的,所以还有准固态锂电池,即主要为固态,少量是液态。/pp  《汽车纵横》:全固态锂电池有哪些特点特别是优势?为什么能引起全球动力电池产业的关注和投入研发?/pp  欧阳明高:主要因素是它能解决目前困扰动力电池发展的两大关键问题,即安全性差和能量密度低。全固态锂电池有几个潜在的技术优势,首先,它安全性高,由于采用高热稳定性的固态电解质,代替了易燃的常规有机溶剂电解液,电池燃烧问题可以得到有效解决。第二,能量密度高,由于金属锂的容量超高,基于相同正极时,固态金属锂电池与常规液态锂离子电池相比,其能量密度可以得到大幅提升。需要说明的是,由于固体电解质密度和使用量高于液态电解质,在正负极材料相同时,全固态锂电池优势不明显。第三,正极材料选择的范围宽,因为全固态锂电池可以直接采用金属锂为负极,不要求正极结构中必须含锂,一些高容量的贫锂态材料也可以作为正极 此外,无机固态电解质宽的电压窗口也为高电压正极材料的应用提供了可能。第四,系统比能量高,由于电解质无流动性,可以方便地通过内串联组成高电压单体,利于电池系统成组效率和能量密度的提高。/pp style="text-align: center "strong  真正的全固态金属锂电池技术尚未成熟/strong/pp  《汽车纵横》:从您介绍的优势来看,全固态锂电池能解决当前动力电池产品的不少不足之处。但它为何还没有大规模应用于市场?主要存在哪些问题?您如何评价这类技术的整体发展水平?/pp  欧阳明高:它的第一个问题是固态电解质材料的离子电导率偏低。现在有三种固态电解质,一种是聚合物,一种是氧化物,一种是硫化物。现在有用聚合物电解质的电池,搭载于法国的一些车辆上,它的问题就是需要加热到60度,离子电导率才上来,电池才能正常工作。目前氧化物电解质一般比液态的还要低很多。只有硫化物固体电解质的一些指标接近液态电解质,比如丰田就是用硫化物的固体电解质,所以固体电解质主要的突破是在硫化物的固体电解质。/pp  第二个问题就是固/固界面接触性和稳定性差。液体跟固体结合是很容易的,渗透进去即可。但是固体和固体接触性和稳定性就是它的很大的一个问题。硫化物电解质虽然锂离子导电率已经提高,但是仍然有界面接触性和稳定性问题。/pp  第三个问题是金属锂的可充性问题。在固态电解质中,锂表面同样存在粉化和枝晶生长问题。其循环性甚至安全性等还需要研究。当然还有一个问题,就是制造成本偏高。/pp  基于上述问题,特别是固态界面接触性、稳定性和金属锂的可充性问题,真正意义上的全固态金属锂电池技术,现在仍然还是不成熟的,还存在技术不确定性。目前展现出或者有突破的、有性能优势和产业化前景的主要是固态锂离子电池和固态聚合物锂电池。/pp  《汽车纵横》:目前国内外关于固态锂电池的研究进展如何?有哪些值得关注的企业或技术突破?/pp  欧阳明高:现在固态锂电池持续升温,美国、欧洲、日本、韩国、中国都在投入。各个国家心态不太一样。例如美国,以小公司、创业型公司为主。美国有两家公司值得关注,都是初创公司,一个是S-akit3,其最新研发的电池有望使电动汽车的续驶里程达到500公里,现在还处于初级阶段。还有一个Solid—State。美国主要立足于颠覆性技术。日本则专注于无机固体电解质的大容量的固态锂电池,最着名的是丰田公司,其产品将在2022年实现其商品化。丰田做的不是全固态锂金属电池,而是固态锂离子电池,其负极是石墨类,用硫化物电解质,高电压正极,单体电池容量15安时,电压是十几伏,我认为这是靠谱的。所以在日本,并没有颠覆,还是基于锂离子电池,正负极还可以用以前的一些材料或技术。韩国专注于无机固体电解质的大容量固态锂电池的研发工作,也采用石墨类负极而不是金属锂负极,与日本相似。中、日、韩三国的情况类似,因为我们已有了很庞大的锂离子电池产业链,不希望推倒重来。/pp style="text-align: center "strong  如何评价动力电池各技术路线的前景?/strong/pp  《汽车纵横》:针对当前国内外动力电池领域的技术发展现状,请您综合评估一下各种技术路线或研究方向的前景。/pp  欧阳明高:第一,锂离子动力电池有望于2020年前实现300瓦时/公斤目标,目前国内外技术研发基本处于同一水平,但安全性研究尚待加强。这种电池的核心是安全性。/pp  第二,作为实现远期目标的两类新体系,锂硫、锂空气电池方面,目前国内外进展相对缓慢,2017年没有看到突破性的进展。从原理来看,锂硫电池的重量比能量跟体积比能量基本相当,所以它的体积比能量要提上来是有相当难度的。新能源乘用车特别是轿车对体积比能量的要求可能比重量比能量还要重要,虽然有400瓦时/公斤的电池,体积比能量也只有400瓦时/升,这对于轿车而言不太好用。一般情况下,锂离子电池的重量比能量能达到300瓦时/公斤,体积比能量就可以达到600瓦时/升。锂空气电池集合了锌空气电池、氢燃料电池、锂二次电池的所有难点。相比而言氢燃料电池更具竞争优势。/pp  第三,固态电池的研发产业化持续升温,但受到固/固界面稳定性和金属锂负极可充性两大问题的制约,真正的全固态锂电池技术还没有成熟,但是以无机硫化物作为固态电解质的锂离子电池出现突破。总体看固态电池发展的路径,电解质可能是从液态、半固态、固液混合到固态,最后到全固态。至于负极,会从石墨负极到硅碳负极再到合金化负极,我们现在正在从石墨负极向硅碳负极转型,最后有可能采用金属锂负极,但是目前还存在技术不确定性。/pp  第四,中国在高容量富锂正极材料方面于2017年取得了一些突破,基于高容量富锂正极和高容量硅碳负极的革新型锂离子电池比锂硫和锂空气电池更具可行性。/pp  《汽车纵横》:根据各种技术进展的分析,您如何判断未来动力电池技术的发展趋势?预计将按照怎样的节奏推进?/pp  欧阳明高:我们专家组对动力电池技术的发展趋势做了一次优化迭代,(但这不是国家电池技术路线图的依据,仅供参考),具体如下:/pp  2020年,实现动力电池比能量300瓦时/公斤、比功率1000瓦时/公斤,循环1000次以上,成本0.8元/瓦时以内的目标是确定的,相对应的材料是高镍三元,现在国内动力电池用的镍、钴、锰的比例由3:3:3转向6:2:2,再转变为8:1:1,即镍变成8,钴的比例进一步降到1甚至是0.5。负极要从碳负极向硅碳负极转型。这是我们当前的技术变革。/pp  到2025年,正极材料性能进一步提升,富锂锰基材料目前取得重要突破,当然还会有其他材料。2020-2025年,我们要努力实现动力电池比能量从300瓦时/公斤上升至400瓦时/公斤,每瓦时成本从0.8元以内降到0.6元以内。此时一般性价比的纯电动轿车合理的续驶里程是300—400公里。/pp  到2030年,希望在电解质方面取得突破,也就是2025-2030年最大的突破可能在电解质,固态电池会实现规模化、产业化,电池单体比能量有望冲击500瓦时/公斤。2030年,常规的电动汽车续驶里程应该可以达到500公里以上。当然需要其它技术的配合。如果电耗极大,例如冬天百公里电耗高达三四十度,电池再好也实现不了。现在电动车越做越大,例如大型SUV,车身重、风阻系数大,是一个值得改进的问题。/ppbr//p
  • 方案:气相色谱 - 质谱法测定锂电池电解液组分
    目前针对电解液成分组成的测定方法或文献非常稀少,本文的目的是建立 简单,高效的气相色谱质谱检测方法,灵敏、快速测定锂电池电解液成分及 含量。 锂电池电解液是电池中离子传输的载体。一般由锂盐和 有机溶剂组成。有机溶剂主要是酯类化合物,这些酯类 化合物种类和含量对锂电池的性能起关键性作用。 本方法是将锂电池电解液样品直接稀释,用气相色谱 - 质谱进行定性、定量。方法操作简单,9 种酯类化合物检 出限在 3.0 μg/L-30.0 μg/L 之间。结论样品中的 9 种酯类化合物用乙酸乙酯稀释至合适浓度后 直接进样,采用赛默飞世尔新型的气相色谱质谱仪检测 和确证,外标法定量。结果表明,9 种酯类化合物的回 收率为 92.4.3-105.3%,6 次平行测定的 RSD 值≤ 4.16%。此 法操作简单,科学准确,灵敏度高,能够满足锂电池电 解液组成成分分析要求。 点击气相色谱 - 质谱法测定锂电池电解液组分 下载方案
  • 三元锂电池的异物分析
    本文要点随着科技的进步,3C产品的多元化,集成化,便捷化,产品的体积越来越小,锂电池作为储能设备,不仅用于手持式电器,如手机,电脑,也广泛应用于汽车行业,得益于仅使用电能,几乎不产生CO2,相比传统燃油车具有更好环保效果,因此锂电池成为了当前应用最广泛的储能电池。目前主流的锂电池技术有磷酸铁锂和三元锂电池。其中三元锂电池具有更高的能量密度,更小的重量下具有更高的续航能力。然而三元锂电池相比于磷酸铁锂电池,耐高温性较差,如果电池因外部撞击破坏或内部异常损伤,均可导致电池短路,发生放热现象,更严重的会直接自燃。因此,有关锂电池的安全性,近来成为网上的热点话题,也是很多科学家及企业需要攻克的难题。三元锂电池结构三元锂电池是由正极,负极,隔膜,外包材,电解液等组成的。其中隔膜具有隔离电池正负极,仅让锂离子通过的作用。如果电池内部隔膜发生破坏,就会出现正负极联通导致电池短路放热,引燃电解液的现象发生。一般引起隔膜穿刺现象的原因有外部撞击破坏或内部异物破坏导致的。其中,外部的机械滥用或是电滥用均有可能导致电池热失控而发生意外自燃;内部异物破坏的诱因可能是原材料内部不纯净或工艺问题,而引入一些微米级别金属磁性单质,导致在电池使用过程中出现金属磁性单质刺破隔膜,发生短路现象。因此针对于三元锂电池原材料异物解析,可以采用扫描电镜及能谱异物分析功能,实现对原料或工艺后期引入的异物的自动寻找及分析。日立钨灯丝扫描电镜Flexsem1000 Ⅱ型(左)和场发射扫描电镜SU5000(右)本次测试采用日立钨灯丝扫描电镜Flexsem1000Ⅱ和牛津Aztec Feature软件,对微孔滤膜上的三元正极粉末的生产原料进行大区域自动采集,分析,找出关注颗粒单质Fe,对单质Fe进行统计,给出统计结果,进而评估原料是否合格。在整个测试过程中,设备自身的自动化功能调整,条件的标准化把控以及Feature软件自行检测,记录与统计,大大的降低了人的依赖性。测试特点1、 Flexsem1000Ⅱ可以一键切换高低真空,无论是导电与不导电样品,都无需对样品进行喷金处理而直接测试。2、 Flexsem1000Ⅱ配置了高灵敏5分割BSE探头,可轻松获得高衬度图像;且标配了自动聚焦,自动亮度对比度等自动化功能,快速准确调整电镜图片。3、 使用大面积拼图功能,可以测试整个微孔滤膜上的样品,获得全部颗粒的结果;同时,对每一个测量位置也可以实现追溯,再分析等功能。4、 根据自身需求,自行设置分类异物,在最终结果中得到异物颗粒的某一单一数据或所有异物的数据,如总个数,占比等结果。5、 在测试分析过程中,可实现后期无人监看,电镜自行完成样品台上样品的全部测试并获得最终结果。日立为三元锂电池异物分析提供了扫描电子显微镜及能谱,Feature软件的解决方案,不仅帮助检测原料异物,同时在工艺管控,品控测试环节提供更多的帮助。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
  • 成就卓越品质,保障使用安全 —— 珀金埃尔默锂电池检测解决方案
    随着手机、数码产品、电动汽车的普及,锂电池在人们生活中扮演着越来越重要的角色。随之而来,锂电池的性能和安全问题成为人们关注的焦点。除了某些外部因素如过充、火源、挤压、穿刺、短路等,以及在锂电池电极制造、装配等过程中的质量控制起到很大影响之外,主要影响因素来源于以下几个方面:(1)正极材料:当锂离子电池使用不当时,导致电池内部温度过快升高,造成正极材料中的活性物质分解和电解液的氧化,从而产生大量热量,使得电池过热,引起燃烧甚至爆炸。(2)负极材料:如果以金属锂做负极材料,电池经过多次充放电后容易产生锂枝晶,进而刺破隔膜,导致电池短路、漏液。目前常用嵌锂化合物作为负极材料,有效避免锂枝晶的产生,提高安全性。(3)隔膜与电解液:锂电池的电解液通常为锂盐(如六氟磷酸铝)与有机溶剂(如碳酸酯)的混合溶液,电池温度较高时下易发生热分解。锂电池的生产环节上游为原材料的开采、加工和冶炼环节;中游涵盖了正极材料、负极材料、电解液以及隔膜的生产;下游主要涉及电芯制造和Pack封装。各个环节都需要用到仪器分析以确保品质符合要求。 珀金埃尔默致力于提供专业、可靠的锂电池检测解决方案,助力锂电安全发展。元素分析方案正极、负极、电解液等锂电池关键材料中的元素含量对成品质量有重大影响,是锂电原材料质控的关键项目。Ni、Co、Mn、Li等常量元素的含量决定了正极材料的性能表现;杂质元素含量决定了锂电池安全等性能。1. ICP-MS应用锂电池的关键材料中的杂质元素的浓度,对电池的充放电性能起到至关重要的作用。通常情况下,金属元素杂质的分析可以采用ICP-OES方法,但由于其仪器原理的局限,无法满足部分浓度较低杂质元素的检测。ICP-MS检出限相比ICP-OES更低,能很好地解决这一问题。针对锂电池元素杂质分析,珀金埃尔默NexION系列ICP-MS具备如下优势:(1)采用AMS全基体进样系统,在线通入稀释气,配合大锥孔设计,有效解决高酸及高颗粒样品中易堵塞锥口的问题;(2)采用四极杆离子偏转器(QID)偏转四级杆,离子90度偏转,可以获得优异的基体耐受性、仪器稳定性以及更低的记忆效应;(3)单颗粒(SP)-ICP-MS技术有效检测铜颗粒、含铜颗粒的数量及粒径分布。2. ICP-OES应用除了锂电池关键材料中的杂质元素外,正极材料,尤其是三元材料中主量元素的比例直接决定了锂电池的性能表现。珀金埃尔默Avio系列ICP-OES除了可以检测杂质元素,还能针对主量元素进行准确测定,助力电池质量精准控制。Avio系列ICP-OES检测锂电池样品具有以下优势:(1)实时内标法带来0.1%的测试稳定性,非常适合主量元素测定;(2)专利的双向观测能同时满足测定高浓度与低浓度的需求;(3)电解液类含有机溶剂样品可稀释后直接进样;(4)独有的扣除光谱干扰功能,解决了ICP-OES分析复杂基体样品中的谱线干扰问题;(5)氩气消耗量低,节省成本。材料表征方案在锂离子电池发展的过程当中,需要大量信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。1. 红外光谱应用傅里叶红外光谱技术(FT-IR)是锂电池研发过程中的一种重要的材料表征手段。它能提供化学键和官能团的具体信息,以确定氧化降解过程中影响锂电池性能的瞬时锂态和杂质情况。采用红外光谱和红外成像技术,可以表征粘结剂和隔膜材料在充放电过程中的化学键变化及劣化情况。珀金埃尔默红外光谱仪配备了一系列先进的创新设计,旨在为锂电池产品研发提供卓越的光谱分析能力。其中Spectrum 3系列还可以升级为具有衰减全反射(ATR)图像功能的 Spotlight™ 400红外成像系统,极小样本也能实现高分辨检测,并通过红外光谱数据可视化地展示材质成分。2. 热分析应用锂离子充电电池所使用的材料的耐热稳定性(热分解、产生气体等)测试非常重要。例如隔离材料,其结晶结构可左右电池性能。另外,如果在封装过程中使用了环氧类固化材料,则需要对其固化度进行检测。使用由热分析仪器与光谱及质谱等仪器联用组合而成的逸出气体分析系统,为您提供可获取材料正确信息的有效快速的分析方法。珀金埃尔默联用系统的应用优势:(1)DSC 8500采用功率补偿型设计原理,能真实直接测量能量和温度而非温度差;(2)DMA 8000自由旋转的测试头,可旋转180度,从而在任何合适的方位进行装样测试;(3)珀金埃尔默提供从色谱、质谱、光谱和热分析等全面产品支持,可将不同产品联合使用,充分利用各个仪器的优势,产生协同效技,达到单次试验,获得多个结果的目的。失效分析方案气相色谱及气相质谱可进行电解液(包括添加剂)成分分析、溶剂组分含量测定,以及石墨类负极材料有机物含量测试。可通过分析充放电后的电解液确认组成比例的变化及分解成分等,进而有助于判断电池失效的原因。珀金埃尔默Arnel Model 4017可用于分析电池内部产生的气体,常见产气成分有H2、CO、CO2 等永久性气体以及CH4、C2H4、 C2H6 等烷烃类气体,从而推测电池的内部状态。珀金埃尔默产品在锂电材料检测中的应用概览扫描以下二维码,获取珀金埃尔默锂电池检测解决方案
  • 锂电池起火屡见不鲜,背后成因是什么?如何避免发生?
    锂离子电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。因其具有电压高、比能量高、循环寿命长、环境友好等优点,被广泛应用于电子产品、轨道交通、新能源等动力领域。然而...关于锂离子电池起火的案例却屡见不鲜这背后究竟有怎样的成因?小谱在线来解答请输入当锂离子电池正极材料中存在铁(fe)、铜(cu)、铬(cr)、镍(ni)、锌(zn)、银(ag)等金属杂质时,电压达到这些金属元素的氧化还原电位后会到负极还原为固体单质,当累积到一定程度,沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电,从而发生起火现象。所以,在新能源锂电池行业中禁用锌、铜、镍元素,其杂质含量也应得到严格管控,从而避免锂电池起火等事件发生。元素检测利器icp-oes电感耦合等离子体发射光谱仪(icp-oes)作为一种快捷、准确检测元素含量的分析仪器,是锂离子电池及相关材料元素检测的常用设备。相关标准如 gb/t 20252-2014《钴酸锂》、gb/t 24533-2009《锂电池石墨负极材料》、gb/t 30835-2014《锂离子电池用复合磷酸铁锂正极材料》、gb/t 30836-2014《锂离子电池用钛酸锂及碳复合负极材料》及iec 62321中,均规定使用icp-oes测试锂离子电池中常量及微量杂质元素含量。难点分析一、杂质元素含量低,常量及微量元素需同时检测;二、锂电池电解液含有机溶液,直接进样易形成积碳;三、基体光谱干扰严重,对仪器的基体耐受性和抗干扰能力带来极大挑战。谱育科技解决方案expec 6000 icp-oes谱育科技expec 6000 是一款经典的高性能国产icp-oes仪器,可凭借优异的产品性能帮助您解决锂离子电池元素检测中遇到的难题。- 基体耐受性强:炬管垂直放置,功率可达1600w,具备更强的抗基体干扰能力;- 高低浓度同时检测:防饱和溢出ccd,智能积分以获得最佳信噪比、高动态线性范围;- 干扰校正功能:多种干扰校正方法和全自动实时背景扣除功能,消除基体背景干扰。- 功能扩展:配置有机进样系统,有机物直接进样;超级微波消解仪实现全自动消解。典型应用数据(一) 磷酸铁锂电池材料中锂元素及13种金属元素含量采用expec 6000测定锂离子电池正极材料磷酸铁锂中13种金属元素含量,样品做5个平行加标。检测结果:各元素检测值与参考值基本吻合,方法精密度和加标回收率良好,检测结果准确可信,完全满足分析测试要求(如下表所示)。(二) 锂离子电池电解液成膜添加剂采用expec 6000测定了2种锂电池电解液成膜添加剂中8种金属元素,每个样品做5个平行加标。检测结果:方法精密度与加标回收率良好(如下表所示),检测结果稳定、准确,仪器完全满足分析测试要求。
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 原子吸收法对锂电池正极活性物质/电解液高精度分析
    随着技术的不断革新,锂电池正在逐渐朝着小型轻量化,大容量化,长寿命化发展,对于锂电池的安全性能有了更高的要求,锂电池中每种材料的主成分、添加物和杂质都会影响其安全性和性能,因此需要高精度“定量分析各材料中的锂元素”、“测定正极活性物质中的组成元素摩尔比”、“测定有机溶剂-电解液中分离出的异物”等。ICP等离子体发射光谱法适合多元素分析,但不适用碱金属和有机溶剂分析,这种方法对某些元素的检测灵敏度低。而且使用成本较高。日立偏振塞曼原子吸收分光光度计可以高精度定量分析碱金属-锂元素,并且可以稳定测定正极材料中组成元素的摩尔比,其精度低于1%。此外,还可以轻松测定有机溶剂-电解液中含有的异物,石墨炉法比ICP等离子体发射光谱法的检测灵敏度更高。 ■ 分析实例对钴酸锂中的锂元素和钴元素进行定量分析,最终得到两种元素的摩尔比基本为其理想摩尔比1:1,其精度低于1%。采用日立偏振塞曼原子吸收分光光度计可以高精度地测定正极材料中组成元素的摩尔比。从电解液结果可知,分别使用火焰法测定电解液中钠元素,石墨炉法测定电解液中钾元素,可得到准确地测定结果,并且石墨炉法测定钾元素灵敏度高,可轻松实现ppb级别测定。采用日立偏振塞曼原子吸收分光光度计可以准确高灵敏度测定有机溶剂-电解液中含有的异物。 关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 应用分享 | 锂电池安全分析
    锂电池是人类可再生清洁新能源发展的重要一环。我国已把“碳达峰“与”碳中和“纳入了政府重点工作计划。一方面,研究人员不断探索通过新材料、新技术增加锂离子电池的能量密度,构建新的能源存储和输出生态;另一方面,其安全性也需要在严格把控的基础上不断提高。 今年,锂电池爆炸起火的事件屡见不鲜,除了热量、穿刺等外部因素外,锂电池本身的构造也可能造成安全隐患,如负极析锂、隔膜瑕疵、极片变形等。 本文中,我们使用扫描电子显微镜(SEM)分别对电池材料的阴、阳极表面、粘合剂以及隔膜进行了观测。 01正负极 负极析锂也被认为是引发锂离子电池安全性的可能原因。在大倍率充电、低温充电,或者是电池制造中的涂布偏差等均可能导致负极中析出金属锂,由于金属锂反应活性强、容易反应产热,使得电池内化学反应发生的条件阈值降低,即电池安全性降低。 锂电池正、负极表面 02隔膜及粘合剂 隔膜瑕疵是过去被常常忽略的问题。隔膜微孔的均匀性是很难通过产品质量确认的,大部分均通过电池企业的电池成品率来确认。例如:一个微孔被堵是很难被检测出来的,但是局部隔膜孔被“堵”(也可以是局部阻抗增大)可能导致局部锂金属析出,引发安全事故。 锂电池粘合剂及隔膜 目前锂电池技术尚有不足之处,相信希望随着科学和技术的进步,未来的生活中一定会更加和谐、幸福与安宁。
  • 中科大突破全固态锂电池电解质在性能和成本上的双重瓶颈
    全固态锂电池可以克服目前商业化锂离子电池在安全性上的严重缺陷,同时进一步提升能量密度,对新能源车和储能产业是一项颠覆性技术。但是,由于全固态锂电池的核心材料—固态电解质—难以兼顾性能和成本,目前该技术的产业化仍面临巨大阻碍。6月27日,中国科学技术大学的马骋教授报道了一种新型固态电解质,它的综合性能和目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,很适合产业化应用。该成果以“A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries”为题发表在国际著名学术期刊《Nature Communications》上。为了满足实际应用的需求,全固态锂电池的固态电解质至少需要同时具备三个条件:高离子电导率(室温下超过1毫西门子每厘米),良好的可变形性(250-350兆帕下实现90%以上致密),以及足够低廉的成本(低于50美元每公斤)。但是,目前被广泛研究的氧化物、硫化物、氯化物固态电解质都无法同时满足这些条件。氧化物作为脆性陶瓷,普遍不具备可变形性。硫化物和大部分氯化物则成本高昂,至少在200美元每公斤的量级。这些材料中唯一的例外是氯化锆锂,但是它的离子电导率却远低于1毫西门子每厘米。   此次研究中,马骋教授不再聚焦于上述氧化物、硫化物、氯化物中的任何一种,而是转向氧氯化物,设计并合成了一种新型固态电解质—氧氯化锆锂。这种材料具有很强的成本优势。如果以水合氢氧化锂、氯化锂、氯化锆进行合成,它的原材料成本仅为11.6美元每公斤,很好的满足了上述50美元每公斤的要求。而如果以水合氧氯化锆、氯化锂、氯化锆进行合成,氧氯化锆锂的成本可以进一步降低到约7美元每公斤,远低于目前最具成本优势的固态电解质氯化锆锂(10.78美元每公斤),并且不到硫化物和稀土基、铟基氯化物固态电解质的4%。在具备极强成本优势的同时,氧氯化锆锂的综合性能和目前最先进的硫化物、氯化物固态电解质相当。它的室温离子电导率高达2.42毫西门子每厘米,超过了应用所需要的1毫西门子每厘米。与此同时,它良好的可变形性使材料在300兆帕压力下能达到94.2%致密,也超过应用所需要的水平(250-350兆帕下90%以上致密)。由氧氯化锆锂和高镍三元正极组成的全固态电池展示了极为优异的性能:在12分钟快速充电的条件下,该电池仍然成功的在室温稳定循环2000圈以上。   氧氯化锆锂的发现,使固态电解质在性能、成本两方面同时实现了突破,对全固态锂电池的产业化具有重大意义。审稿人认为这一发现“很有新意和原创性”,并且认为氧氯化锆锂材料“很有前景”,“有益于固态电池技术的商业化”。
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制