当前位置: 仪器信息网 > 行业主题 > >

固氮作用

仪器信息网固氮作用专题为您整合固氮作用相关的最新文章,在固氮作用专题,您不仅可以免费浏览固氮作用的资讯, 同时您还可以浏览固氮作用的相关资料、解决方案,参与社区固氮作用话题讨论。

固氮作用相关的论坛

  • 【已应助】求助关于铁对固氮作用影响的英文文献三篇!谢谢啦!

    【序号】:1【作者】:HUTCHINS DA, RUETER JG, FISH W【题名】:SIDEROPHORE PRODUCTION AND NITROGEN-FIXATION ARE MUTUALLY EXCLUSIVE STRATEGIES IN ANABAENA 7120【期刊】:LIMNOLOGY AND OCEANOGRAPHY 【年、卷、期、起止页码】:1991,36 ,1 , 1-12 【全文链接】: 【序号】:2【作者】:RUETER JG【题名】:IRON STIMULATION OF PHOTOSYNTHESIS AND NITROGEN-FIXATION IN ANABAENA-7120 AND TRICHODESMIUM (CYANOPHYCEAE)【期刊】:JOURNAL OF PHYCOLOGY【年、卷、期、起止页码】:1988,24 ,2, 249-254 【全文链接】: 【序号】:3【作者】:RUETER JG, OHKI K, FUJITA Y【题名】:THE EFFECT OF IRON NUTRITION ON PHOTOSYNTHESIS AND NITROGEN-FIXATION IN CULTURES OF TRICHODESMIUM (CYANOPHYCEAE)【期刊】:JOURNAL OF PHYCOLOGY 【年、卷、期、起止页码】:1990,26 , 1 ,30-35 【全文链接】:

  • 【已应助】乙炔还原法测定蓝藻固氮的文献。谢谢了!

    【序号】:1【作者】:严玉洲;黄有馨【题名】:乙炔还原法测定蓝藻固氮酶活性的技术条件 【期刊】:江苏农业科学【年、卷、期、起止页码】:1982年08期 【全文链接】:http://epub.cnki.net/grid2008/detail.aspx?filename=JSNY198208007&dbname=CJFD1982

  • 微生物肥料的作用效果及广阔前景

    关键词:微生物肥料;增产效果;绿色食品 摘要:为了农业的可持续发展,提高人民的生活品质,满足人们的需要,新方式,新研究成果应用到了农业生产中,微生物肥料从中起到的重要作用受到了人们的广泛肯定。本文通过介绍微生物肥料的个别种类与生产作用效果的分析,讨论了微生物肥料的发展前景。微生物肥料是指含有活性微生物的特定制品。微生物肥料的主要优点是能改良土壤,不污染环境,无毒副作用,是生产“绿色食品”的理想肥料。将微生物肥料应用在种子和土壤上,可增进土壤肥力,协助植物吸收营养,增强植物抗病及抗旱能力,节约能源,降低生产成本,减少环境污染。 一、 微生物肥料的分类与应用 按微生物肥料制品中特定的微生物种类分为细菌肥料(根瘤菌肥料,固氮菌肥料),放线菌肥料(如抗生菌类),真菌类肥料(如菌根真菌)等;按其作用机理分为根瘤菌肥料,固氮菌肥料,磷细菌肥料,硅酸盐细菌肥料;按其制品内含有的微生物种类分为单纯微生物肥料,复混微生物肥料。 (一)根瘤菌肥料   根瘤菌肥料是用于豆科作物接种,使豆科作物结瘤、固氮的接种剂。复合根瘤菌肥料以根瘤菌为主,加入少量能促进结瘤、固氮作用的芽胞杆菌、假单胞细菌或其他有益的促生微生物的根瘤菌肥料,称为复合根瘤菌肥料。加入的促生微生物必须是对人畜及植物无害的菌种。   (二)固氮菌肥料   固氮菌肥料是以能够自由生活的固氮的微生物为菌种生产出来的固氮菌肥料。按菌种及特性分为自生固氮菌肥料,根际联合固氮菌肥料,复合固氮菌肥料。固氮菌肥料适用于各种作物,特别是禾本科作物和蔬菜中的叶菜类作物,可作基肥,追肥,和种肥。   (三)磷细菌肥料   磷细菌肥料是能把土壤中难溶性的磷转化为作物能利用的有效磷素营养,又能分泌激素刺激作物生长的活体微生物制品。   解磷菌的种类很多,按菌种及肥料的作用特性分为,有机磷细菌肥料,无机磷细菌肥料。有机磷细菌肥料是指在土壤中能分解有机态磷化物(卵磷脂,核酸,植素等)的有益微生物发酵制成的微生物肥料。无机磷细菌肥料是指能把土壤中惰性的不能被作物直接吸收利用的无机态磷化物,溶解转化为作物可以吸收利用的有效态磷化物。   (四)硅酸盐细菌肥料   硅酸盐细菌肥料是指在土壤中通过硅酸盐细菌的生命活动,增加植物营养元素的供应量,刺激作物的生长,抑制有害微生物的活动,对作物有一定的增产效果的微生物制品。 二、微生物肥料的肥效   微生物肥料和化肥,有机肥等混合施用,比传统施肥增产的报道占98%,其中增产幅度超过5%的报道占87.4%,超过10%的占56.6%。微生物肥料种类以固氮菌类,解磷细菌类,解钾细菌类和复合微生物肥料为主。菌根菌类,复合微生物肥料,PGPR类,固氮菌类,光合细菌类和解钾菌微生物肥料的平均增产率依次为22.3%,21.2%,16.5%,14.7%,13.6%和12.2%。1989年以来非根瘤菌类微生物肥料的文献以应用效果试验的报道为主,其中增产的占绝大多数,约98%,所以微生物肥料的增产作用是应给予肯定。   (一)不同微生物肥料增产效果   据文献综合分析,各类微生物肥料的平均增产效果不同,范围在12.0%-22.3%,菌根菌类微生物肥料主要应用于林业生产,增产约22.3%;解钾菌肥料的增产效果最低,但在甘薯上用作基肥效果较好,增产率23.2%;复合微生物肥料的增产效果约为21.2%。   (二)微生物肥料在不同地区的应用与增产效果   目前,我国约20多个省(市,区)都有微生物肥料的应用,其中华中地区最多,报道的试验次数为44次;华北和西北次之,分别为43和34次,华南和东北较少,前者为9次,后者为8次。微生物肥料在我国应用于30多种作物上,其中,禾谷类作物应用最多,其次是油料和纤维类,应用较少的是烟草,糖,茶,药,牧草等,但不同作物因不同的生理特点,环境,接种物的种类和农业措施,应用效果不同,糖料作物的增产效果最好,其次为茶叶,蔬果增产25.4%,牧草类增产26.1%纤维,薯类,油料的增产效果分别为17.1%,17.8%和15.0%,微生物肥料对禾本科作物的增幅最低。   (三)近年微生物肥料田间试验应用效果   2003-2006年,在小麦,玉米,番茄,马铃薯四种作物上进行微生物肥料应用的田间试验,结果表明:可使小麦,玉米化学肥料基肥用量降低25%-30%,并使小麦,玉米的产量比常规施肥量高4.7%和18.1%;使番茄,马铃薯化学肥料基肥用量降低30%-45%,并使番茄,马铃薯的产量比常规施肥量提高11.5%和36.2%。 三、微生物肥料的良好作用   (一)提高土壤肥力,减少化肥用量,改善作物品质   这是微生物肥料的主要功效,各种自生、联合或共生的固氮微生物肥料,可以增加土壤中的氮素来源。多种分解磷、钾矿物的微生物,如一些芽孢杆菌、假单胞菌的应用,可以将土壤中难溶的磷、钾溶解出来,转变为作物能吸收利用的磷、钾离子,使作物生活环境中的营养充足。由于微生物肥料可以提高土壤的养分含量,因此在相同地力水平的土壤上可以减少化肥的用量,并且获得等效的增产效果。使用微生物肥料可以提高农产品品质,如蛋白质、糖、维生素等含量的提高。(二)分泌生长激素   许多微生物种类在生长繁殖过程中产生对植物有益的代谢产物,如生长素,吲哚乙酸,赤霉素,多种维生素,氨基酸等等,能够刺激和调节作物生长,使植物生长健壮,营养良好,进而达到增产的效果。   (三)增强植物抗病虫和抗旱能力   多种微生物可以诱导植物的过氧化物酶,多酚氧化酶,苯甲氨酸解氨酶,脂氧合酶,几丁质酶等参与植物防御放应,利于防病抗病,有的微生物种类还能产生抗菌素类物质,有的则是形成了优势种群,降低了作物病虫害的发生。菌根真菌由于在植物根部的大量生长,其菌丝除可为植物提供营养元素外,还可增加水分吸收,有利于提高植物的抗旱能力。 四、微生物肥料的应用前景   (一)适用品种多,市场需量大   适宜施用微生物肥料的作物种类繁多,各种豆科作物、粮食作物、经济作物、蔬菜瓜果等都可以应用微生物肥料提高产量、改善品质。据不完全统计,我国目前微生物肥料年产量在10万吨到40万吨,与同期化肥(约12000万吨)相比,微不足道,微生物肥料市场容量是相当大的。   (二)生产成本低,应用效果好   1997年4月,在意大利召开的“生物固氮、全球挑战和未来需求”会议指出,生物固氮比工业氮肥更能满足植物对氮肥的需要。因为生物固氮可以持续不断供应氮素营养,并且能够减少环境污染和温室效应,投资少,成本低。化肥生产成本的提高,价格上涨幅度过快,已令广大农民难以接受。   (三)生产无公害绿色食品,减少环境污染的需要   无公害的绿色食品对当今的农业提出了更高的要求。随着绿色农业(生态农业)的发展,生产安全、无公害的绿色食品已成为一个发展趋势;并且由于大量使用化肥,土壤物理性质恶化,土壤质量下降,地下水污染等问题日益突出;消纳城市、农村废弃物的压力愈来愈大,因此,无污染的微生物肥料的综合利用和开发显示出它的应用优势和良好发展前景。   (四)微生物肥料本身的发展为其扩大应用奠定了基础   通过筛选优良菌种、改进生产工艺和生产设备,为生产优质的微生物肥料创造了条件,而且基因工程新菌株的出现使微生物肥料的广泛应用成为可能。近年来兴起的植物根际促生细菌(PGPR)的研究和开发,更为微生物肥料的应用开辟了广阔前景。 参考文献: 葛诚主编。微生物肥料生产应用基础。北京:中国农业科技出版社,2000 李明。微生物肥料研究。生物学通报2001,36(7):5-7 郭春景。微生物肥料及其微生态效应研究东北林业大学,2004 沈德龙,曹凤明,李力。我国生物有机肥的发展现状及展望中国土壤与肥料,2007,(06) 张敏,王兆玉。微生物肥料的发展前景。北方艺园,2004,(05)

  • 治理土壤污染的主要方式?

    [font=Penrose, &][size=16px][color=#333333]通过植物修复技术治理农田土壤重金属污染  一、生物修复  1、选择金属耐性物,既能够耐受金属毒性,也能够适应干旱和极端贫瘠的基质条件,特别适用于稳定和改良矿业废弃地。在一定管理条件和水肥条件下,耐性植物能在废弃地上很好地生长,随着耐性植物对基质的逐渐改善,其他野生植物也逐渐侵入,最终可形成一个稳定的生态系统。 金属富积植物能够在含不同重金属的基质上正常生长,在植物体内往往积累大量的重金属(1 000Ⅱlg/kg以上,干重),因此,可以通过反复的种植和刈割的方法,即可除去土壤中的大部分重金属,它特别适用于解除轻度重金属污染的矿业废弃地土壤。   2、引入固氮生物。利用生物固氮作用在重金属含量较低的废弃地进行土壤改植被重建显出很大的作用和潜力。 。对于具较高重金属毒性的废弃地,必须用相应的工程措施(如掺入一定比例的污水污泥等)以解除其毒性,保证植物结瘤固氮。 菌根能够有效地利用基质中的磷,而且不受尾矿中富含金属的毒害,所以将其接种于相应的共生树种,可以较好地适应废弃地的生境,这对尾矿上植物定居起着重要作用,达到一定的改良目的。   二、利用物理的方法进行污染土壤的修复,主要包括换土法、翻耕混匀法、去表土法、表层洁净土壤覆盖法等。 换土法指重污染土壤则多采用客土或换土的方式,但换出的土壤应进行妥善处理;稀释法(翻耕混匀)指在污染土壤中加入大量未被污染的土壤来降低重金属含量;去表土法指将受到重金属污染的表层土壤清除,然后进行翻耕;深耕翻土法(旋耕法)指污染程度轻、土层厚、面积小的污染场地可采用深耕翻土的方法。[/color][/size][/font]

  • 【原创】同位素质谱的学科应用与发展

    [size=4][font=[color=#DC143C]黑体]同位素质谱的学科应用与发展[/color][/font][/size]同位素质谱在我国农业、医学、环境 学、海洋学、石油、化工、冶金等方面的应用也日益广泛。近年来,同位素质谱学在高分辨率、高准确度、高灵敏度研究方面上了新的台阶,而且在同位素精确质量测定、化学溯源与世界水平接近。学科应用与发展包括:  (1)同位素地质学方面  同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。  (2)核科学与核工业方面  同位素质谱最初是伴随着核科学与核工业的发展而发展起来的。主要研究领域:  1)超低丰度同位素杂质的分析:核工业的迅速发展和我国核产品不断进入国际市场,对超低丰度同位素杂质分析提出了很高的要求;  2)燃耗及核燃料纯度分析:采用同位素稀释质谱法(IDMS)分析核燃料UO2、 UO3、U3O8中的B、Pb、Sm、Y、Eu、Th等;  3)U、Li等同位素标准参考物质的研制。  (3)核物理研究方面  包括原子质量的精确测测定;测定原子核的结合能和敛集曲线;测定放射性同位素的半衰期;同位素丰度和原子量的精确测量;发现天然反应堆;在高能核物理研究中的应用同位素质谱测量在高能核物理研究工作中主要有以下几项应用:   研究能量在100兆电子伏以上的个子与靶子作用所发生的核反应机理;   研究发生在星球表面和大陆空间及陨石上的宇宙线照射形成的核反应机理;   探讨核反生成的短寿命粒子与质量关系;   测定高能粒子与靶子作用的核反应截面和碎片粒子产额;   高能质谱测定常集中在对稀有氧化和碱金属的分析工作上。  (4)标准参考物质的研制发明方面  标准参考物质的研制是衡量一个国家分析工作水平的重要标志。同位素稀释质谱(IDMS)是唯一微量、痕量和超痕量元素权威测量法。因为IDMS可以通过天平称重和同位素丰度比的质谱测量,将化学成分分析转化为同位素丰度的质谱测量。IDMS具有绝对测量性质;灵敏度高;方法准确;测量的动态范围宽;样品制备不需要严格定量分离;测量值能够直接溯源到国际基本单位制的物质量基本单位——摩尔。  (5)在临床医学方面  进行营养学、药理学和临床医学方面的研究;利用IDMS法测定人体血、尿、发中的微量元素,进行病情诊断和病理研究工作。如医用同位素质谱分析方法主要有CO2呼气检查、4He和重水示踪原子等方法。利用He示踪原子方法,检验肺功能障碍性病变患者,已获得明显效果。应用重水作示踪剂,检测人体肺水肿患者,给出与正常人不同变化曲线。  (6)在生物学和化学研究工作中的应用  稳定性同素示踪原子方法,正在越来越多的领域里代替了放射性示踪原子方法,从而扩大了示踪原子的应用范畴。如应用稳定性同位素示踪原子方法,采用含有18O的重氧水H218O作示踪原子,进行质谱分析,最后证明绿色植物放出的氧气,主要来源于根部吸入的水分,而不是光合作用放出的氧气。  用18C方法证明了光合作用不仅能在光照条件下进行,耐用也能在黑暗条件下以缓慢的速度进行。   用征水和重氧水浇灌植物,然后定时采集植物各部位的水进行分析,发现些树木运送水分的速度高达每小时14 m。   用重水作标记,探测人体水的循环,发现吸入少量重水以后,经两个小时即在人体所有各器官达到平衡,即重水成分已均匀分布。两个星期以后完全排出体外。为此,在某些从事放射性物质研究的机构里,给工作人员发放茶叶,以加速体内水分流通,有利于排出少量放射性物质。   在化学领域中,早在30年以前,就已经应用D 、18O和18N等同位素作示踪原子,研究有机化合物的结构和成分变化情况。  (7)环境科学中的应用  近年来同位素质谱在环境科学的应用日益受到重视,尤其在大气、土壤、水质及生态环境研究均发挥重要作用。 应用稳定性同位素丰度变化,研究和指示环境污染源和污染程度,在环保工作中的重要意义。如利用测定铅同位素比的方法,很容易判明汽油生产厂家及其对大气的污染程度;在环保工作中,还使用同位素稀释方法测定各种水抽中有害的微量元素含量,用以监测水质质量。  (8)在农业增产方面的应用  现在,有许多农业研究机构和大学,购买高精度同位素质谱计,以从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响等多方面的研究工作。而且随着世界人口的增加,提高粮食单产的问题越发显得重要,所以农业研究工作有着极为广阔的前途。  ⑴合理使用肥料;  ⑵农药毒性的研究;  ⑶用轻水灌溉;  ⑷研究气候对作物的影响。如用18O作示踪原子,研究温度和农作物生长和成分的影响表明,灌溉水只供给植物组织中15%的氧,其余85%的氧只能从空气中的CO2取得;  (5)固氮酶的研究。如用15N作示踪原子研究固氮作用,发现各种固氮酶能够将土壤中的氮固定下来,有效地克服了氮的蒸发和流失作用,然后再把它固定下来的氮当中的20%排给水稻利用。还发现了水稻根际粪产碱菌和阴沟肠细菌的固氮作用,并能将氮转移给水稻。这些均为我国农业研究工作者发现的廉价固氮酶,有一定的经济价值。质谱分析为固氮研究提供了可靠的数据。  与原子能和地质研究工作相比较,农业上应用同位素方法从事科研工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产和改善果实质量的工作前途无限广阔。  (9)其他应用  如石油、冶金、电子等方面。

  • 【转帖】同位素质谱

    同位素质谱(资料来源:http://www.cmss.org.cn/xshd/isotope.htm)专业简介: 中国质谱学会成立以来,我们同位素质谱获得了重大发展。一大批从事同位素质谱工作的专家在同位素地质学、核科学和基础科学中取得了不少重要的研究成果。同位素质谱在我国农业、医学、环境 学、海洋学、石油、化工、冶金等方面的应用也日益广泛。近年来,同位素质谱学在高分辨率、高准确度、高灵敏度研究方面上了新的台阶,而且在同位素精确质量测定、化学溯源与世界水平接近。学科应用与发展: (1)同位素地质学方面同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。 (2)核科学与核工业方面同位素质谱最初是伴随着核科学与核工业的发展而发展起来的。主要研究领域:1)超低丰度同位素杂质的分析:核工业的迅速发展和我国核产品不断进入国际市场,对超低丰度同位素杂质分析提出了很高的要求;2)燃耗及核燃料纯度分析:采用同位素稀释质谱法(IDMS)分析核燃料UO2、 UO3、U3O8中的B、Pb、Sm、Y、Eu、Th等;3)U、Li等同位素标准参考物质的研制。 (3)核物理研究方面包括原子质量的精确测测定;测定原子核的结合能和敛集曲线;测定放射性同位素的半衰期;同位素丰度和原子量的精确测量;发现天然反应堆;在高能核物理研究中的应用同位素质谱测量在高能核物理研究工作中主要有以下几项应用: 研究能量在100兆电子伏以上的个子与靶子作用所发生的核反应机理;   研究发生在星球表面和大陆空间及陨石上的宇宙线照射形成的核反应机理;   探讨核反生成的短寿命粒子与质量关系;   测定高能粒子与靶子作用的核反应截面和碎片粒子产额; 高能质谱测定常集中在对稀有氧化和碱金属的分析工作上。(4)标准参考物质的研制发明方面标准参考物质的研制是衡量一个国家分析工作水平的重要标志。同位素稀释质谱(IDMS)是唯一微量、痕量和超痕量元素权威测量法。因为IDMS可以通过天平称重和同位素丰度比的质谱测量,将化学成分分析转化为同位素丰度的质谱测量。IDMS具有绝对测量性质;灵敏度高;方法准确;测量的动态范围宽;样品制备不需要严格定量分离;测量值能够直接溯源到国际基本单位制的物质量基本单位——摩尔。(5)在临床医学方面进行营养学、药理学和临床医学方面的研究;利用IDMS法测定人体血、尿、发中的微量元素,进行病情诊断和病理研究工作。如医用同位素质谱分析方法主要有CO2呼气检查、4He和重水示踪原子等方法。利用He示踪原子方法,检验肺功能障碍性病变患者,已获得明显效果。应用重水作示踪剂,检测人体肺水肿患者,给出与正常人不同变化曲线。(6)在生物学和化学研究工作中的应用稳定性同素示踪原子方法,正在越来越多的领域里代替了放射性示踪原子方法,从而扩大了示踪原子的应用范畴。如应用稳定性同位素示踪原子方法,采用含有18O的重氧水H218O作示踪原子,进行质谱分析,最后证明绿色植物放出的氧气,主要来源于根部吸入的水分,而不是光合作用放出的氧气。用18C方法证明了光合作用不仅能在光照条件下进行,耐用也能在黑暗条件下以缓慢的速度进行。 用征水和重氧水浇灌植物,然后定时采集植物各部位的水进行分析,发现些树木运送水分的速度高达每小时14 m。 用重水作标记,探测人体水的循环,发现吸入少量重水以后,经两个小时即在人体所有各器官达到平衡,即重水成分已均匀分布。两个星期以后完全排出体外。为此,在某些从事放射性物质研究的机构里,给工作人员发放茶叶,以加速体内水分流通,有利于排出少量放射性物质。 在化学领域中,早在30年以前,就已经应用D 、18O和18N等同位素作示踪原子,研究有机化合物的结构和成分变化情况。(7)环境科学中的应用近年来同位素质谱在环境科学的应用日益受到重视,尤其在大气、土壤、水质及生态环境研究均发挥重要作用。 应用稳定性同位素丰度变化,研究和指示环境污染源和污染程度,在环保工作中的重要意义。如利用测定铅同位素比的方法,很容易判明汽油生产厂家及其对大气的污染程度;在环保工作中,还使用同位素稀释方法测定各种水抽中有害的微量元素含量,用以监测水质质量。(8)在农业增产方面的应用现在,有许多农业研究机构和大学,购买高精度同位素质谱计,以从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响等多方面的研究工作。而且随着世界人口的增加,提高粮食单产的问题越发显得重要,所以农业研究工作有着极为广阔的前途。⑴合理使用肥料;⑵农药毒性的研究;⑶用轻水灌溉;⑷研究气候对作物的影响。如用18O作示踪原子,研究温度和农作物生长和成分的影响表明,灌溉水只供给植物组织中15%的氧,其余85%的氧只能从空气中的CO2取得;(5)固氮酶的研究。如用15N作示踪原子研究固氮作用,发现各种固氮酶能够将土壤中的氮固定下来,有效地克服了氮的蒸发和流失作用,然后再把它固定下来的氮当中的20%排给水稻利用。还发现了水稻根际粪产碱菌和阴沟肠细菌的固氮作用,并能将氮转移给水稻。这些均为我国农业研究工作者发现的廉价固氮酶,有一定的经济价值。质谱分析为固氮研究提供了可靠的数据。与原子能和地质研究工作相比较,农业上应用同位素方法从事科研工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产和改善果实质量的工作前途无限广阔。(9)其他应用如石油、冶金、电子等方面。

  • 【分享】土壤基础知识--土壤的组成

    土壤的组成 土壤是由固液气三相组成的,固体包括土壤有机质(包括腐殖质)和土壤矿物质,液相主要是土壤水分,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]当然是土壤空气了 土壤是由固体、液体和气体三类物质组成的。固体物质包括土壤矿物质、有机质和微生物等。液体物质主要指土壤水分。气体是存在于土壤孔隙中的空气。土壤中这三类物质构成了一个矛盾的统一体。它们互相联系,互相制约,为作物提供必需的生活条件,是土壤肥力的物质基础。 一、矿物质 土壤矿物质是岩石经过风化作用形成的不同大小的矿物颗粒(砂粒、土粒和胶粒)。土壤矿物质种类很多,化学组成复杂,它直接影响土壤的物理、化学性质,是作物养分的重要来源。 二、有机质 有机质含量的多少是衡量土壤肥力高低的一个重要标志,它和矿物质紧密地结合在一起。在一般耕地耕层中有机质含量只占土壤干重的0.5-2.5%,耕层以下更少,但它的作用却很大,群众常把含有机质较多的土壤称为“油土”。 土壤有机质按其分解程度分为新鲜有机质、半分解有机质和腐殖质。腐殖质是指新鲜有机质经过微生物分解转化所形成的黑色胶体物质,一般占土壤有机质总量的85—90%以上。腐殖质的作用主要有以下几点: (一) 作物养分的主要来源 腐殖质既含有氮、磷、 钾、疏、钙等大量元素,还有微量元素,经微生物分解可以释放出来供作物吸收利用。 (二)增强土壤的吸水、保肥能力 腐殖质是一种有机胶体,吸水保肥能力很强,一般粘粒的吸水率为50—60%, 而腐殖质的吸水率高达400-600%;保肥能力是粘粒的6一10倍, (三)改良土壤物理性质 腐殖质是形成团粒结构的良好胶结剂,可以提高粘重土壤的疏松度和通气性,改变砂土的松散状态。同时,由于它的颜色较深,有利吸收阳光,提高土壤温度, (四)促进土壤微生物的活动 腐殖质为微生物活动提供了丰富的养分和能量,又能调节土壤酸碱反应,因而有利微生物活动,促进土壤养分的转化。 (五)刺激作物生长发育 有机质在分解过程中产生的腐殖酸、有机酸、维生素及一些激素,对作物生育有良好的促进作用,可以增强呼吸和对养分的吸收,促进细胞分裂, 从而加速根系和地上部分的生长。 土壤有机质主要来源于施用的有机肥料和残留的根茬。 许多社队采用柴草垫圈、秸秆还田、割青沤肥、草田轮作、粮肥间套、扩种绿肥等措施,提高土壤有机质含量,使土壤越种越肥,产量越来越高,应当因地制宜加以推广。 三、微生物 土壤微生物的种类很多,有细菌、真菌、放线菌、藻类 和原生动物等。土壤微生物的数量也很大,l克土壤中就有几亿到几百亿个。l亩地耕层土壤中,微生物的重量有几百斤到上千斤。土壤越肥沃,微生物越多。微生物在土壤中的主要作用如下: (一)分解有机质 作物的残根败叶和施入土壤中的有机肥料,只有经过土壤微生物的作用,才能腐烂分解,释放出营养元素,供作物利用;并且形成腐殖质,改善土壤的理化性质。 (二)分解矿物质 例如磷细菌能分解出磷矿石中的磷,钾细菌能分解出钾矿石中的钾,以利作物吸收利用。 (三)固定氮素 氮气在空气的组成中占4/5,数量很大,但植物不能直接利用。土壤中有一类叫做固氮菌的微生物,能利用空气中的氮素作食物,在它们死亡和分解后,这些氮素就能被作物吸收利用。固氮菌分两种,一种是生长在豆科植物根瘤内的,叫根瘤菌,种豆能够肥田,就是因为根瘤菌的固氮作用增加了土壤里的氮素;另一类单独生活在土壤里就能固定氮气,叫自生固氮菌。 另外,有些微生物在土壤中会产生有害的作用。例如反硝化细菌,能把硝酸盐还原成氮气,放到空气里去,使土壤中的氮素受到损失。 实行深耕、增施有机肥料、给过酸的土壤施石灰、合理灌溉和排水等措施,可促进土壤中有益微生物的繁殖,发挥微生物提高土壤肥力的作用。 四、土壤水分 土壤是一个疏松多孔体,其中布满着大大小小蜂窝状的孔隙。直径0.001-0.1毫米的土壤孔隙叫毛管孔隙。存在于土壤毛管孔隙中的水分能被作物直接吸收利用,同时,还能溶解和输送土壤养分。 毛管水可以上下左右移动,但移动的快慢决定于土壤的松紧程度。松紧适宜,移动速度最快,过松过紧,移动速度都较慢。 降水或灌溉后,随着地面蒸发,下层水分沿着毛管迅速向地表上升,应在分墒后及时采取中耕、耙、耱等措施,使地表形成一个疏松的隔离层,切断上下层毛管的联系,防止跑墒。“锄头有水”的科学道理就在这里。 土壤含水量降至黄墒以下时,毛管水运行基本停止,土 壤水分主要以气化方式向大气扩散丢失。这时进行镇压(碾地),使地表形成略为紧实的土层,一方面可以接通已断的毛细管,使底墒借毛管作用上升;另一方面可减少大孔隙,防止水汽扩散损失,所以群众说“碾子提墒,碾子藏墒”。镇压后耱地,使耕层上再形成一个平整而略松的薄 层,保墒效果更好。 五、土壤空气 土壤空气对作物种子发芽、根系发育、微生物活动及养分转化都有极大的影响。生产上应采用深耕松土、破除扳结、排水、晒田(指稻田)等措施,以改善土壤通气状况, 促进作物生长发育。

  • 乙炔还原法测定固氮

    【序号】: 1【作者】: R.W.F. Hardy, R.C. Burns, R.D. Holsten【题名】: Applications of the acetylene-ethylene assay for measurement of nitrogen fixation【期刊】:Soil Biology and Biochemistry 【年、卷、期、起止页码】: 1973,5,1,47–81【全文链接】:http://www.sciencedirect.com/science/article/pii/003807177390093X

  • 求助6篇关于固氮的英文文献,主要是关于钼和铁等元素对固氮的影响

    【序号】: 1【作者】: WOLFE, M 【题名】: THE EFFECT OF MOLYBDENUM UPON THE NITROGEN METABOLISM OF ANABAENA-CYLINDRICA .1. A STUDY OF THE MOLYBDENUM REQUIREMENT FOR NITROGEN FIXATION AND FOR NITRATE AND AMMONIA ASSIMILATION【期刊】: ANNALS OF BOTANY【年、卷、期、起止页码】:1954, 18 , 71, 299-308 【全文链接】: 【序号】: 2【作者】: : FUJITA, Y,OHAMA, H,HATTORI, A【题名】:HYDROGENASE ACTIVITY OF CELL-FREE PREPARATION OBTAINED FROM THE BLUE-GREEN ALGA, ANABAENA-CYLINDRICA【期刊】: PLANT AND CELL PHYSIOLOGY【年、卷、期、起止页码】: 1964,5,3,305-314 【全文链接】: 【序号】: 3【作者】: RUETER, JG 【题名】:IRON STIMULATION OF PHOTOSYNTHESIS AND NITROGEN-FIXATION IN ANABAENA-7120 AND TRICHODESMIUM (CYANOPHYCEAE) 【期刊】: JOURNAL OF PHYCOLOGY【年、卷、期、起止页码】:[font=Times

  • 香菇的功效与作用

    菌类是现在好多家庭喜闻乐见的食物,开发出油菜香菇,小鸡炖蘑菇等等好多菜名,那么香菇有什么样的功能,让人们这么推宠呢?下面让我们总结一下:1.提高机体免疫功能香菇多糖可提高小鼠腹腔巨噬细胞的吞噬功能,还可促进T淋巴细胞的产生,并提高T淋巴细胞的杀伤活性。2.延缓衰老香菇的水提取物对过氧化氢有清除作用,对体内的过氧化氢有一定的消除作用。3.防癌抗癌香菇中含有的另外一种化合物——香菇嘌呤(也称赤酮嘌呤)可以降低胆固醇的水平。香菇含有的抗氧化剂含量是麦芽的12倍,是鸡肝的4倍。4.降血压、降血脂、降胆固醇香菇中含有嘌呤、胆碱、酪氨酸、氧化酶以及某些核酸物质,能起到降血压、降胆固醇、降血脂的作用,又可预防动脉硬化、肝硬化等疾病。5.治疗疾病香菇还对糖尿病、肺结核、传染性肝炎、神经炎等起治疗作用,又可用于消化不良、便秘等。

  • 【转帖】科学家提出21世纪的四大化学难题

    到了21世纪,数学界、物理学界和生物学界都相继提出了各自领域的重大难题或奋斗目标。但在化学界,一直没有人明确提出哪些是化学要解决的世纪难题。      近年来,在世界范围内出现了淡化化学的思潮。那么化学界果真提不出重大难题吗?有人对这一问题,提出21世纪的四大化学难题供大家一起探讨。      如何建立精确有效而又普遍适用的化学反应的含时多体量子理论和统计理论?      化学是研究化学变化的科学,所以化学反应理论和定律是化学的第一根本规律。应该说,目前的一些理论方法对描述复杂化学体系还有困难。      因此,建立严格彻底的微观化学反应理论,既要从初始原理出发,又要巧妙地采取近似方法,使之能解决实际问题,包括决定某两个或几个分子之间能否发生化学反应?能否生成预期的分子?需要什么催化剂才能在温和条件下进行反应?如何在理论指导下控制化学反应?如何计算化学反应的速率?如何确定化学反应的途径等,是21世纪化学应该解决的第一个难题。      对于这一世纪难题,应予首先研究的课题有:(1)充分了解若干个重要的典型的化学反应的机理,以便设计最好的催化剂,实现在最温和的条件进行反应,控制反应的方向和手性,发现新的反应类型,新的反应试剂。(2)在搞清楚光合作用和生物固氮机理的基础上,设计催化剂和反应途径,以便打断CO2, N2等稳定分子中的惰性化学键。(3)研究其它各种酶催化反应的机理。酶对化学反应的加速可达100亿倍,专一性达100%。如何模拟天然酶,制造人工催化剂,是化学家面临的重大难题。(4)充分了解分子的电子、振动、转动能级,用特定频率的光脉冲来打断选定的化学键——选键化学的理论和实验技术。      如何确立结构和性能的定量关系?      这里“结构”和“性能”是广义的,前者包含构型、构象、手性、粒度、形状和形貌等,后者包含物理、化学和功能性质以及生物和生理活性等。这是21世纪化学的第二个重大理论难题。      要优先研究的课题有:(1)分子和分子间的非共价键的相互作用的本质和规律。(2)超分子结构的类型,生成和调控的规律。(3)给体-受体作用原理。(4)进一步完善原子价和化学键理论,特别是无机化学中的共价问题。(5)生物大分子的一级结构如何决定高级结构?高级结构又如何决定生物和生理活性?(6)分子自由基的稳定性和结构的关系。(7)掺杂晶体的结构和性能的关系。(8)各种维数的空腔结构和复杂分子体系的构筑原理和规律。(9)如何设计合成具有人们期望的某种性能的材料?(10)如何使宏观材料达到微观化学键的强度?例如“金属胡须”的抗拉强度比通常的金属丝大一个量级,但还远未达到金属-金属键的强度,所以增加金属材料强度的潜力是很大的。以上各方面是化学的第二根本问题,其迫切性可能比第一问题更大,因为它是解决分子设计和实用问题的关键。      如何揭示生命现象的化学机理?      充分认识和彻底了解人类和生物的生命运动的化学机理,无疑是21世纪化学亟待解决的重大难题之一。      例如:(1)研究配体小分子和受体生物大分子相互作用的机理,这是药物设计的基础。(2)化学遗传学为哈佛大学化学教授Schreiber所创建。他的小组合成某些小分子,使之与蛋白质结合,并改变蛋白质的功能,例如使某些蛋白酶的功能关闭。这些方法使得研究者们不通过改变产生某一蛋白质的基因密码就可以研究它们的功能,为开创化学蛋白质组学,化学基因组学(与生物学家以改变基因密码来研究的方法不同)奠定基础。(3)搞清楚光合作用、生物固氮作用,以及牛、羊等食草动物胃内酶分子如何把植物纤维分解为小分子的反应机理,为充分利用自然界丰富的植物纤维资源打下基础。(4)人类的大脑是用“泛分子”组装成的最精巧的计算机。如何彻底了解大脑的结构和功能将是21世纪的脑科学、生物学、化学、物理学、信息和认知科学等交叉学科共同来解决的难题。(5)了解活体内信息分子的运动规律和生理调控的化学机理。(6)了解从化学进化到手性和生命起源的飞跃过程。(7)如何实现从生物分子(biomolecules)到分子生命(molecular life)的飞跃?如何制造活的分子(Make life),跨越从化学进化到生物进化的鸿沟。(8)研究复杂、开放、非平衡的生命系统的热力学,耗散和混沌状态,分形现象等非线形科学问题。      如何揭示纳米尺度的基本规律      纳米分子和材料的结构与性能关系的基本规律是21世纪的化学和物理需要解决的重大难题之一。      现在中美日等国都把纳米科学技术定为优先发展的国家目标。钱学森先生说,继信息科学之后,纳米科学技术可能引起新一轮的产业革命。在复杂性科学和物质多样性研究中,尺度效应至关重要。尺度的不同,常常引起主要相互作用力的不同,导致物质性能及其运动规律和原理的质的区别。      纳米尺度体系的热力学性质,包括相变和“集体现象”如铁磁性,铁电性,超导性和熔点等与粒子尺度有重要的关系。当尺度在十分之几到10纳米的量级,正处于量子尺度和经典尺度的模糊边界中,此时热运动的涨落和布朗运动将起重要的作用。例如金的熔点为1063℃,纳米金(5-10nm)的融化温度却降至330℃。银的熔点为960.3℃,而纳米银(5-10nm)为100℃。      四大难题破解后的美好前景      经过50-100年的努力,如果解决了我这里提出的化学四大难题,不难设想我们美好的远景:      (1)在解决第一和第三难题,充分了解光合作用、固氮作用机理和催化理论的基础上,我们可以期望实现农业的工业化,在工厂中生产粮食和蛋白质,大大缩减宝贵的耕地面积,使地球能养活人口的数目成倍增加。      (2)在解决第二和第四难题的基础上,我们可以期望得到比现在性能最好的合金钢材强度大十倍,但重量轻几倍的合成材料,使城市建筑和桥梁建设的面貌完全更新。      (3)在充分了解结构与性能关系的基础上,我们能合成出高效、稳定、廉价的太阳能光电转化材料,组装成器件。太阳投射到地球上的能量,是当前全世界能耗的一万倍。如果光电转化效率为10%,我们只要利用0.1%的太阳能,就能满足当前全世界能源的需要。      (4)未来的化工企业将是绿色的,零排放的,原子经济的,物质在内部循环的企业。      (5)在合成了廉价的可再生的储氢材料和能转换材料的基础上,街上行走的汽车将全部是零排放的电动汽车。我们穿的将是空调衣服。   (6)海水淡化将成为重要工业,从而解决人类生存最严重的挑战----淡水资源紧缺问题。

  • 发酵培养基的配制

    首先需了解微生物需要的营养物质。 (1)微生物需要的营养物质营养物质应满足微生物的生长、繁殖和完成各种生理活动的需要。它们的作用可概括为形成结构(参与细胞组成)、提供能量和调节作用(构成酶的活性和物质运输系统)。微生物的营养物质有六大类要素,即水、碳源、氮源、无机盐、生长因子和能源。① 水水是微生物的重要组成部分,在代谢中占有重要地位。水在细胞中有两种存在形式:结合水和游离水。结合水与溶质或其他分子结合在一起,很难加以利用。游离水(或称为非结合水)则可以被微生物利用。② 碳源碳在细胞的干物质中约占50%,所以微生物对碳的需求最大。凡是作为微生物细胞结构或代谢产物中碳架来源的营养物质,称为碳源。作为微生物营养的碳源物质种类很多,从简单的无机物(CO2、碳酸盐)到复杂的有机含碳化合物(糖、糖的衍生物、脂类、醇类、有机酸、芳香化合物及各种含碳化合物等)。但不同微生物利用碳源的能力不同,假单孢菌属可利用90种以上的碳源,甲烷氧化菌仅利用两种有机物:甲烷和甲醇,某些纤维素分解菌只能利用纤维素。大多数微生物是异养型,以有机化合物为碳源。能够利用的碳源种类很多,其中糖类是最好的碳源。异养微生物将碳源在体内经一系列复杂的化学反应,最终用于构成细胞物质,或为机体提供生理活动所需的能量。所以,碳源往往也是能源物质。自养菌以CO2、碳酸盐为唯一或主要的碳源。CO2是被彻底氧化的物质,其转化成细胞成分是一个还原过程。因此,这类微生物同时需要从光或其他无机物氧化获得能量。这类微生物的碳源和能源分别属于不同物质。③ 氮源凡是构成微生物细胞的物质或代谢产物中氮元素来源的营养物质,称为氮源。细胞干物质中氮的含量仅次于碳和氧。氮是组成核酸和蛋白质的重要元素,氮对微生物的生长发育有着重要作用。从分子态的N2到复杂的含氮化合物都能够被不同微生物所利用,而不同类型的微生物能够利用的氮源差异较大。固氮微生物能利用分子态N2合成自己需要的氨基酸和蛋白质,也能利用无机氮和有机氮化物,但在这种情况下,它们便失去了固氮能力。此外,有些光合细菌、蓝藻和真菌也有固氮作用。许多腐生细菌和动植物的病原菌不能固氮,一般利用铵盐或其他含氮盐作氮源。硝酸盐必须先还原为NH+4后,才能用于生物合成。以无机氮化物为唯一氮源的微生物都能利用铵盐,但它们并不都能利用硝酸盐。有机氮源有蛋白胨、牛肉膏、酵母膏、玉米浆等,工业上能够用黄豆饼粉、花生饼粉和鱼粉等作为氮源。有机氮源中的氮往往是蛋白质或其降解产物。氮源一般只提供合成细胞质和细胞中其他结构的原料,不作为能源。只有少数细菌,如硝化细菌利用铵盐、硝酸盐作氮源和能源。④ 无机盐无机盐也是微生物生长所不可缺少的营养物质。其主要功能是:① 构成细胞的组成成分;② 作为酶的组成成分;③ 维持酶的活性;④ 调节细胞的渗透压、氢离子浓度和氧化还原电位;⑤ 作为某些自氧菌的能源。磷、硫、钾、钠、钙、镁等盐参与细胞结构组成,并与能量转移、细胞透性调节功能有关。微生物对它们的需求量较大(10-4~10-3 mol/L),称为“宏量元素”。没有它们,微生物就无法生长。铁、锰、铜、钴、锌、钼等盐一般是酶的辅因子,需求量不大(10-8~10-6 mol/L),所以,称为“微量元素”。不同微生物对以上各种元素的需求量各不相同。铁元素介于宏量和微量元素之间。在配制培养基时,可通过添加有关化学试剂来补充宏量元素,其中首选是K2HPO4和MgSO4,它们可提供需要量很大的元素:K、P、S和Mg。微量元素在一些化学试剂、天然水和天然培养基组分中都以杂质等状态存在,在玻璃器皿等实验用品上也有少量存在,所以,不必另行加入。⑤ 生长因子一些异养型微生物在一般碳源、氮源和无机盐的培养基中培养不能生长或生长较差。当在培养基中加入某些组织(或细胞)提取液时,这些微生物就生长良好,说明这些组织或细胞中含有这些微生物生长所必须的营养因子,这些因子称为生长因子。生长因子可定义为:某些微生物本身不能从普通的碳源、氮源合成,需要额外少量加入才能满足需要的有机物质,包括氨基酸、维生素、嘌呤、嘧啶及其衍生物,有时也包括一些脂肪酸及其他膜成分。各种微生物所需的生长因子不同,有的需要多种,有的仅需要一种,有的则不需要。一种微生物所需的生长因子也会随培养条件的变化而变化,如在培养基中是否有前体物质、通气条件、pH和温度等条件,都会影响微生物对生长因子的需求。从自然界直接分离的任何微生物,在其发生营养缺陷突变前的菌株,均称为该微生物的野生型。绝大多数野生型菌株只需简单的碳源和氮源等就能生长,不需要添加生长因子;经人工诱变后,常会丧失合成某种营养物质的能力,在这些菌株生长的培养基中,必须添加某种氨基酸、嘌呤、嘧啶或维生素等生长因子。⑥ 能源能源是指为微生物的生命活动提供最初能量来源的营养物或辐射能。化能异养型微生物的能源即碳源;化能自养型微生物的能源都是还原态的无机物,如NH4+、NO2-、S、H2S、H2、Fe2+等,它们分别属于硝化细菌、亚硝酸细菌、硫化细菌、硫细菌、氢细菌和铁细菌等。一种营养物常有一种以上营养要素的功能,即除单功能营养物外,还有双功能,甚至三功能营养物。辐射能是单功能;还原态无机养分常是双功能的(NH4+既是硝化细菌的能源,又是它的氮源)甚至是三功能的(能源、氮源和碳源);有机物常有双功能或三功能作用。(2)配制培养基必须遵循的原则微生物的培养基通常指人工配制的适合微生物生长繁殖,或积累代谢产物的营养基质。广义上说,凡是支持微生物生长繁殖的介质或材料,均可作为微生物的培养基。一个适当的培养基配方,对发酵产品的产量和质量有着极大的影响。针对不同微生物,不同的营养要求,可以有不同的培养基。但它们的配制必须遵循一定原则。① 营养物质应满足微生物的需要。不同营养类型的微生物对营养的需求差异很大,应根据菌种对各营养要素的不同要求进行配制。② 营养物的浓度及配比应恰当。营养物浓度太低,不能满足微生物生长的需要;浓度太高,又会抑制微生物生长。糖和盐浓度高有抑菌作用。碳氮比(C∶N,以还原糖含量与粗蛋白含量的比值表示):一般培养基为C∶N=100∶0.5~2。在设计培养基配比时,还应考虑避免培养基中各成分之间的相互作用,如蛋白胨、酵母膏中含有磷酸盐时,会与培养基中钙或镁离子在加热时发生沉淀作用;在高温下,还原糖也会与蛋白质或氨基酸相互作用而产生褐色物质。③ 物理、化学条件适宜。pH:各种微生物均有其生长繁殖的最适pH,细菌为7.0~8.0,放线菌为7.5~8.5,酵母为3.8~6.0,霉菌为4.0~5.8。对于具体的微生物菌种,都有各自的特定的最适pH范围,有时会大大突破上述界限。在微生物生长繁殖过程中,会产生能够引起培养基的pH改变的代谢产物,尤其是不少微生物有很强的产酸能力,如不适当地加以调节,就会抑制甚至于杀死其自身。在设计培养基时,要考虑培养基的pH调节能力。一般应加入缓冲液或CaCO3,使培养基的pH稳定。其他:培养基的其他理化指标,如水活度、渗透压也会影响微生物的培养。在配制培养基时,通常不必测定这些指标,因为培养基中各种成分及其浓度等指标的优化,已间接地确定了培养基的水活度和渗透压。此外,各种微生物培养基的氧化还原电位等也有不同的要求。④ 培养目的:培养基的成分直接影响培养目标。在设计培养基时,必须考虑是要培养菌体,还是要积累菌体代谢产物;是实验室培养,还是大规模发酵等问题。用于培养菌体的种子培养基营养成分应丰富,氮源含量宜高,即碳氮比值应低;相反,用于大量积累代谢产物的发酵培养基,氮源应比种子培养基稍低;当然,若目的产物是含氮化合物时,有时还应该提高培养基的氮源含量。在设计培养基时,还应该特别考虑到代谢产物是初级代谢产物,还是次级代谢产物。如果是次级代谢产物,还要考虑是否需加入特殊元素(如维生素B12中Co)或特殊的前体物质(如生产青霉素G时,应加入苯乙酸)。在设计培养基,尤其是大规模发酵生产用的培养基时,还应该重视培养基组分的来源和价格,应该优先选择来源广、价格低廉的培养基。(3)几种培养基的配制原则① 种子培养基:适用于微生物菌体生长的培养基,目的是为下一步发酵提供数量较多,强壮而整齐的种子细胞。一般要求氮源、维生素丰富,原料要精。② 发酵培养基:用于生产预定发酵产物的培养基,一般的发酵产物以碳源为主要元素。发酵培养基中的碳源含量往往高于种子培养基。如果产物的含氮量高,应增加氮源。在

  • 求助两篇英文固氮文献!谢谢

    【序号】:1【作者】:Taha, E E; el Monem, A; el Refai, H【题名】:On the nitrogen fixation by Egyptian blue green algae【期刊】:Z Allg Mikrobiol 【年、卷、期、起止页码】:1963,3,4 ,282-8【全文链接】:http://onlinelibrary.wiley.com/doi/10.1002/jobm.19630030406/abstract【序号】:2【作者】:De PK【题名】:The role of blue-green algae in nitrogen fixation in rice-fields【期刊】:PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES 【年、卷、期、起止页码】:1939 ,127 ,846,121-139【全文链接】:【序号】:3【作者】:WIEBE WJ, JOHANNES RE, WEBB KL【题名】:NITROGEN-FIXATION IN A CORAL-REEF COMMUNITY【期刊】:SCIENCE 【年、卷、期、起止页码】:1975,188 ,4185,257-259【全文链接】:http://www.sciencemag.org/content/188/4185/257.abstract

  • 【已应助】求助三篇固氮文献,谢谢!

    【序号】: 1【作者】: Phillips da 【题名】: Extending Symbiotic Nitrogen Fixation to Increase Man's Food Supply【期刊】: science 【年、卷、期、起止页码】:1971, 174 , 4005, 169-& 【全文链接】:http://www.sciencemag.org/content/174/4005/169【序号】: 2【作者】: Hwang JC【题名】:INHIBITION OF NITROGENASE-CATALYZED REDUCTIONS【期刊】:BIOCHIMICA ET BIOPHYSICA ACTA 【年、卷、期、起止页码】:1973,292 ,1 ,256-270 【全文链接】:http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T1S-47RSB2M-SS&_user=1002903&_coverDate=01%2F18%2F1973&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050165&_version=1&_urlVersion=0&_userid=1002903&md5=b819fd39f383d82248a09838f8979e63&searchtype=a【序号】: 3【作者】: Wilson PW【题名】:FIRST STEPS IN BIOLOGICAL NITROGEN FIXATION【期刊】: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES【年、卷、期、起止页码】:1969,172 ,1029 ,319-& 【全文链接】:http://apps.isiknowledge.com/full_record.do?product=UA&qid=22&SID=Y1A7jd2gJHpEkcGka91&search_mode=GeneralSearch&colname=WOS&viewType=fullRecord&doc=7&page=1&log_event=no

  • 土壤健康全景之土壤营养

    [size=16px]首先,固氮是自然界中氮循环的关键环节。固氮微生物,如根瘤菌[i][/i]和蓝藻,通过氮酶将大气中的氮气转化为植物可利用的氮源。这种转化过程在豆科植物与根瘤菌的共生关系中尤为显著,它们相互依赖,共同促进生长。在农业实践中,固氮技术的应用有助于减少化肥的使用,降低成本,同时减轻环境压力。科学家们正通过基因工程和生物技术研究,如改造根瘤菌以在非豆科植物上形成固氮根瘤,以拓宽固氮技术的应用范围。[/size][size=16px]其次,溶磷技术通过生物或化学过程将土壤中的不溶性磷酸盐转化为植物可吸收的形式。溶磷微生物如细菌和真菌,通过分解有机物质产生有机酸,促进磷酸盐的溶解。农业实践中,合理施用磷肥、种植绿肥作物、使用有机肥料和微生物制剂等策略,可以提高土壤磷的有效性。Ostara公司的CrystalGreen技术就是一个例子,它将废水中的磷转化为植物肥料,既促进植物生长又减少环境污染。[/size][size=16px]解钾技术则关注提高土壤中钾的可利用性。钾是植物生长必需的营养元素,对光合作用和抗逆性至关重要。微生物解钾通过分泌有机酸降低土壤pH值,溶解钾矿物;化学解钾使用化学试剂与钾矿物反应;物理解钾则通过物理手段破坏矿物结构。在实际应用中,解钾方法的选择需结合土壤条件和作物需求。[/size]

  • 【已应助】求固氮英文文献3篇。谢谢!

    【序号】: 1【作者】: RL Robson【题名】:Oxygen and Hydrogen in Biological Nitrogen Fixation 【期刊】: annualreviews.org【年、卷、期、起止页码】:1980, Vol. 34: 183-207【全文链接】:http://www.annualreviews.org/action/showCitFormats?doi=10.1146%2Fannurev.mi.34.100180.001151 【序号】: 2【作者】: JR Gallon【题名】: The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms【期刊】: TRENDS IN BIOCHEMICAL SCIENCES 【年、卷、期、起止页码】:1981, 6 , 1 ,19-23 【全文链接】:http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TCV-4864DSM-N3&_user=10008193&_coverDate=12%2F31%2F1981&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000068787&_version=1&_urlVersion=0&_userid=10008193&md5=806ae4dce8e60c611a16ecb18630d7a7&searchtype=a 【序号】: 3【作者】: J LaRoche【题名】: Importance of the diazotrophs as a source of new nitrogen in the ocean【期刊】: Journal of Sea Research【年、卷、期、起止页码】:2005, 53, 1-2, 67-91【全文链接】:http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=Refine&qid=7&SID=N1JfH@f3l5894nK3ija&page=1&doc=4&colname=WOS

  • 【已应助】求助固氮文献4篇,谢谢啦

    【序号】:1【作者】:DRS Lean, CFH Liao【题名】:The importance of nitrogen fixation in lakes【期刊】:Ecological Bulletins【年、卷、期、起止页码】:1978【全文链接】:【序号】:2【作者】:MA Keirn【题名】:Nitrogen fixation by bacteria in Lake Mize, Florida, and in some lacustrine sediments【期刊】:Limnology and oceanography【年、卷、期、起止页码】:1971【全文链接】:This article is not included in your organization's subscription. However, you may be able to access this article under your organization's agreement with Elsevier. 【序号】:3【作者】:Gary J. Whiting and James T. Morris【题名】:Nitrogen fixation (C2H2 reduction) in a salt marsh: Its relationship to temperature and an evaluation of an in situ chamber technique【期刊】:Soil Biology and Biochemistry【年、卷、期、起止页码】:1986, 18, 5, 515-521【全文链接】:http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TC7-47DKPNX-PY&_user=5894678&_coverDate=12%2F31%2F1986&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1697826970&_rerunOrigin=scholar.google&_acct=C000068787&_version=1&_urlVersion=0&_userid=5894678&md5=8532019fd281225c94b5538aecc983db&searchtype=a【序号】:4【作者】:HERBERT RA【题名】:HETEROTROPHIC NITROGEN-FIXATION IN SHALLOW ESTUARINE SEDIMENTS【期刊】:JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY【年、卷、期、起止页码】:1975 ,18 ,3,215-225【全文链接】:

  • 慈姑的功效与作用

    慈姑的功效与作用

    慈姑是低脂肪、高碳水化合物的食品,其碳水化合物的含量高于莲藕和荸荠,仅次于芡实。慈姑每年处暑开始种植,元旦春节期间收获上市,为冬 春补缺蔬菜种类之一,其营养价值较高。那么慈姑的功效与作用是什么呢?[align=center][img=,473,385]https://ng1.17img.cn/bbsfiles/images/2018/12/201812261551348141_7906_676_3.png!w473x385.jpg[/img][/align]1. 慈姑滋阴润肺,去除肺燥肺热。使人呼吸畅通舒适。慈姑保护心脏,保护心肌细胞,预防或是缓解心悸、心率失常等。3.慈姑增加免疫细胞的活性,消除体内的有害物质。4.慈姑能清除体内毒素和多余的水分,促进血液和水分新陈代谢,有利尿、 消水肿作用。5.慈姑含有秋水仙碱等多种生物碱,有防癌抗癌肿、解毒消痈作用,常用来防治肿瘤。[color=#666666][/color]

  • 【已应助】求助沉积物固氮英文文献一篇!谢谢

    【序号】:1【作者】:KEIRN MA, BREZONIK PL 【题名】:NITROGEN FIXATION BY BACTERIA IN LAKE MIZE, FLORIDA, AND IN SOME LACUSTRINE SEDIMENTS【期刊】:LIMNOLOGY AND OCEANOGRAPHY 【年、卷、期、起止页码】:1971 , 16 , 5 ,720-& 【全文链接】:http://apps.isiknowledge.com/full_record.do?product=UA&qid=1&SID=Q2HgancjbBmppeLcAi6&search_mode=GeneralSearch&colname=WOS&viewType=fullRecord&doc=1&page=1&log_event=no

  • 蛋白质检测仪有什么作用

    云唐蛋白质检测仪是一种用于测定食品、生物样品等中蛋白质含量的仪器设备。它在食品科学、生物学、医学和生化等领域具有重要作用,以下是其主要作用:  食品质量控制: 在食品工业中,蛋白质是食品的主要组分之一,其含量影响着食品的口感、质地、营养价值等。蛋白质检测仪可以用于监测食品样品中的蛋白质含量,确保产品的质量稳定性和一致性。  生物学研究: 在生物学研究中,蛋白质是细胞功能和结构的重要组成部分。蛋白质检测仪可以帮助研究人员测定生物样品(如细胞提取物、血清等)中蛋白质含量,从而深入了解细胞的生物学特性和疾病机制。  医学诊断: 在临床医学中,某些疾病的发展可能会导致血清蛋白质含量的改变。蛋白质检测仪可以用于测定血液和尿液中的蛋白质含量,帮助医生进行疾病诊断和监测。  药物研发: 药物研发过程中,蛋白质的定量分析是评估药物效果的重要环节。蛋白质检测仪可以用于分析药物与蛋白质的相互作用,评估药物对蛋白质的影响。  生化实验: 在生化实验室中,蛋白质检测仪常用于定量测定蛋白质样品,用于分析实验数据和评估实验结果的可靠性。  环境监测: 在环境科学领域,蛋白质检测仪可以用于监测水体、土壤等环境中蛋白质的含量,从而评估环境质量。

  • 酪蛋白在奶粉中的作用

    大多数婴儿都是吃奶粉长大的,因为奶粉里面的营养物质是非常多的,能够针对孩子的成长阶段,有不同的奶粉搭配,不同阶段的奶粉里面的营养成分不一样,酪蛋白是婴儿比较需要的一种物质,这种物质能够帮助婴儿分解身体内的蛋白质,促进蛋白质的吸收,那么酪蛋白在奶粉中都有什么作用呢? 一些婴儿的蛋白质分解能力很差,仅为成人的五分之一,因此牛奶中的大分子很难被儿童肠道吸收,这可能会导致蛋白质过敏。蛋白质奶粉的水解意味着首先处理奶粉中的蛋白质,并且通过水解来减少原来的蛋白质分子,这使得对蛋白质过敏的人更容易吸收,因为蛋白质分子减少了,所以身体中的免疫系统不会对它们起作用,也不会出现过敏症状。 酪蛋白具有防止矿物质流失、预防龋齿、预防骨质疏松和佝偻病、治疗缺铁性贫血和镁缺乏性神经炎等多种功能,特别是其促进主要元素(钙、镁)和微量元素(铁、锌、铜、铬、镍、钴、锰、硒)有效吸收的功能特性。一方面,它能有效防止钙在小肠的中性或微碱性环境中沉淀,另一方面,它能让钙在没有VD参与的情况下被肠壁细胞吸收,因此它是最有效的钙吸收促进剂之一。低蛋白膳食(植物蛋白)能抑制黄曲霉毒素诱发癌症,而且,即使癌症已经发生,低蛋白膳食也能显著地遏制癌症病情的恶化。而高蛋白膳食(动物蛋白)则能对黄曲霉毒素诱发癌症起到“推波助澜”的作用。事实上,膳食蛋白质对癌症的影响是非常显著的,只需要调整蛋白质的摄入量,就可以激活或者抑制癌症的发生和发展。

  • 蛋白质相互作用组学分析技术

    为探究生物进程的分子机制,需要确定介导这个过程的蛋白质-蛋白质间的相互作用。研究蛋白质间相互作用的主要技术总结如下:一、酵母双杂交系统酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。二、噬茵体展示技术在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。三、等离子共振技术表面等离子共振技术(SurfacePlasmonResonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。四、荧光能量转移技术荧光共振能量转移(FRET)广泛用于研究分子间的距离及其相互作用;与荧光显微镜结合,可定量获取有关生物活体内蛋白质、脂类、DNA和RNA的时空信息。随着绿色荧光蛋白(GFP)的发展,FRET荧光显微镜有可能实时测量活体细胞内分子的动态性质。提出了一种定量测量FRET效率以及供体与受体间距离的简单方法,仅需使用一组滤光片和测量一个比值,利用供体和受体的发射谱消除光谱间的串扰。该方法简单快速,可实时定量测量FRET的效率和供体与受体间的距离,尤其适用于基于GFP的供体受体对。五、抗体与蛋白质阵列技术蛋白芯片技术的出现给蛋白质组学研究带来新的思路。蛋白质组学研究中一个主要的内容就是研究在不同生理状态下蛋白水平的量变,微型化,集成化,高通量化的抗体芯片就是一个非常好的研究工具,他也是芯片中发展最快的芯片,而且在技术上已经日益成熟。这些抗体芯片有的已经在向临床应用上发展,比如肿瘤标志物抗体芯片等,还有很多已经应用再眼就的各个领域里。六、免疫共沉淀技术免疫共沉淀主要是用来研究蛋白质与蛋白质相互作用的一种技术,其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于Pansobin珠上的金黄色葡萄球菌蛋白A(SPA),若细胞中有正与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:“目的蛋白—兴趣蛋白—抗兴趣蛋白抗体—SPA\|Pansobin”,因为SPA\|Pansobin比较大,这样复合物在离心时就被分离出来。经变性聚丙烯酰胺凝胶电泳,复合物四组分又被分开。然后经Westernblotting法,用抗体检测目的蛋白是什么,是否为预测蛋白。这种方法得到的目的蛋白是在细胞内天然与兴趣蛋白结合的,符合体内实际情况,得到的蛋白可信度高。但这种方法有两个缺陷:一是两种蛋白质的结合可能不是直接结合,而可能有第三者在中间起桥梁作用;二是必须在实验前预测目的蛋白是什么,以选择最后检测的抗体,所以,若预测不正确,实验就得不到结果,方法本身具有冒险性。七、pull-down技术蛋白质相互作用的类型有牢固型相互作用和暂时型相互作用两种。牢固型相互作用以多亚基蛋白复合体常见,最好通过免疫共沉淀(Co-IP)、Pull-down技术或Far-western法研究。Pull-down技术用固相化的、已标记的饵蛋白或标签蛋白(生物素-、PolyHis-或GST-),从细胞裂解液中钓出与之相互作用的蛋白。通过Pull-down技术可以确定已知的蛋白与钓出蛋白或已纯化的相关蛋白间的相互作用关系,从体外传路或翻译体系中检测出蛋白相互作用关系。

  • 【分享】食品添加剂对罗非鱼蛋白自溶作用的影响

    以水解液中氨基态氮、可溶性蛋白及可溶性固形物含量为指标,研究13 种常用食品添加剂对罗非鱼蛋白自溶作用的影响。结果表明:在葡萄糖≤ 2.00%、苯甲酸钠≤ 0.02%、亚硫酸钠≤ 0.03%、氯化钠≤ 10%、柠檬酸≤ 0.10% 的添加量范围内,对罗非鱼蛋白自溶有一定的促进作用,超过该范围则显示抑制作用;氯化钙、抗坏血酸则对蛋白自溶具有较好的促进作用;乳酸≥ 1.00%、酒石酸≥ 0.10% 、乙二胺四乙酸二钠(EDTA-2Na)≥ 0.02%的添加量对罗非鱼蛋白自溶有一定的抑制作用;氯化钾、硫酸镁、氯化镁对罗非鱼蛋白自溶无明显作用。添加苯甲酸钠、柠檬酸、乳酸及酒石酸可使罗非鱼蛋白水解液腥味减少,并减缓其腐败变质。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制