当前位置: 仪器信息网 > 行业主题 > >

固定化蛋白质分子

仪器信息网固定化蛋白质分子专题为您整合固定化蛋白质分子相关的最新文章,在固定化蛋白质分子专题,您不仅可以免费浏览固定化蛋白质分子的资讯, 同时您还可以浏览固定化蛋白质分子的相关资料、解决方案,参与社区固定化蛋白质分子话题讨论。

固定化蛋白质分子相关的论坛

  • 【转帖】蛋白质纯化

    蛋白质纯化 蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。  是当代生物产业当中的核心技术。该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。常用技术有:  1、沉淀,  2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。  3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。  4、层析:  a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。   b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。  5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。

  • 深入解析蛋白质纯化系统的原理与应用

    [font=宋体]蛋白质纯化系统是一种用于从混合物中纯化目标蛋白的设备和方法。它结合了多种技术和步骤,可以有效地分离和纯化蛋白质,提供高纯度和高活性的目标蛋白。蛋白质纯化系统是实现蛋白质纯化的关键装置,它结合了各种分离、富集和纯化方法,帮助科研工作者实现蛋白质的高纯度提取。[/font][font=宋体] [/font][font=宋体][b]蛋白质纯化系统的基本原理[/b][/font][font=宋体]蛋白质纯化系统主要依据蛋白质的特性利用不同的物理化学方法进行分离和纯化。下面将介绍几种常见的蛋白质纯化系统的基本原理。[/font][font=宋体] [/font][font=宋体][font=宋体]①[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-ac][b]亲和层析[/b][/url][/font][/font][font=宋体]亲和层析是一种基于蛋白质的特异性与配体的亲和性相互作用来实现分离和纯化的方法。在亲和层析过程中,蛋白质溶液通过填充有配体的柱子,与配体结合形成复合物,而非特异性结合的其他组分被洗脱。最后,通过改变条件来破坏蛋白质与配体的结合,从而使得目标蛋白质得以纯化。[/font][font=宋体] [/font][font=宋体]②凝胶过滤层析[/font][font=宋体]凝胶过滤层析是一种基于蛋白质大小差异来进行分离的方法。在凝胶过滤层析中,待纯化的蛋白质溶液通过一系列的凝胶层析柱,大分子的蛋白质不能进入凝胶颗粒的内部,而小分子的蛋白质则可以进入凝胶颗粒内部。通过调整凝胶的孔径,可以实现对目标蛋白质的选择性分离和纯化。[/font][font=宋体] [/font][font=宋体][font=宋体]③[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-iec][b]离子交换层析[/b][/url][/font][/font][font=宋体][font=宋体]离子交换层析是一种基于蛋白质与固定在柱子上的离子交换基的电荷相互作用来实现分离和纯化的方法。在离子交换层析中,蛋白质溶液通过带有离子交换基的柱子,与柱子上的离子交换基之间发生相互作用。通过改变溶液的离子浓度和[/font][font=Calibri]pH[/font][font=宋体]值,可以实现对蛋白质的选择性吸附和洗脱。[/font][/font][font=宋体] [/font][font=宋体]④逆流层析[/font][font=宋体]逆流层析是一种基于分子质量和电荷差异来实现蛋白质分离和纯化的方法。在逆流层析中,蛋白质溶液通过填充有逆流层析介质的柱子,溶液在反向流动的情况下通过层析柱。由于不同蛋白质之间的分子质量和电荷差异,它们在逆流层析介质中的移动速度不同,从而实现对蛋白质的分离和纯化。[/font][font=宋体] [/font][font=宋体][b]蛋白质纯化系统的应用[/b][/font][font=宋体]蛋白质纯化系统在生物医药领域有着广泛的应用,下面将介绍几个常见的应用场景。[/font][font=宋体] [/font][font=宋体]①药物研发[/font][font=宋体]蛋白质纯化系统在药物研发中起到了非常重要的作用。通过蛋白质纯化系统,科研人员可以从复杂的生物样品中高效纯化出目标蛋白质,为药物研发提供了可靠的原料和工具。蛋白质纯化系统不仅可以提高药物研发的效率,还可以确保药物的纯度和质量,从而提高药物的疗效和安全性。[/font][font=宋体] [/font][font=宋体]②生物学研究[/font][font=宋体]在生物学研究中,蛋白质纯化系统被广泛应用于蛋白质相互作用研究、蛋白质结构解析和功能分析等方面。通过蛋白质纯化系统,科研人员可以从不同的细胞和组织中提取目标蛋白质,进一步研究它们之间的相互关系和作用机制。蛋白质纯化系统还可以用于蛋白质结构解析,帮助科学家揭示蛋白质的三维结构以及其功能。[/font][font=宋体] [/font][font=宋体]③临床诊断[/font][font=宋体]蛋白质纯化系统在临床诊断中也起到了重要的作用。通过蛋白质纯化系统,医生可以从患者的生物样本中纯化出特定的蛋白质标志物,用于疾病早期诊断、病情监测和治疗评估等方面。蛋白质纯化系统在临床诊断中的应用可以帮助医生及早发现疾病,提高诊断的准确性和效率。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]蛋白质纯化系统是实现蛋白质纯化的重要装置,它结合了多种分离、富集和纯化方法,帮助科研人员高效地提取目标蛋白质。蛋白质纯化系统的应用广泛,不仅在药物研发、生物学研究和临床诊断等领域发挥重要作用,还为科学家揭开蛋白质的结构和功能提供了有力的支持。通过不断的技术创新和优化,蛋白质纯化系统将更好地满足科研和临床的需求,推动生物医药领域的发展。[/font][font=Calibri] [/font]

  • 蛋白质与多肽蛋白质粉

    蛋白质与多肽蛋白质粉 人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。 蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄蛋白质RNL(g/d) 初生—6个月 1.5-3 1岁 35 3岁 45 5岁 55 7岁 60 9岁 65 10-16岁 75-85 成年女性 65 成年男性 75 妊娠 +15 乳母 +20 根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。 上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状 单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。 现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。三、优质蛋白质和劣质蛋白质的区别。 要弄清楚何为优质蛋白质?何为劣质蛋白质?我们要引入什么是必需氨基酸的概念。营养生理学家、生化学家发现构成人体蛋白质的氨基酸共有21种,而这些氨基酸中其中有4种是可以由体内含碳和含氮底物自己合成的,被称为非必需氨基酸,还有10个必需的氨基酸,是人类机体无法制造需要从饮食中摄取的,另有7个是介于这两者之间的被称为条件必需氨基酸。表2. 必需、条件必需和非必需氨基酸 必需氨基酸条件必需氨基酸 非必需氨基酸 亮氨酸牛黄酸 丙氨酸 异亮氨酸酪氨酸 谷氨酸 缬氨酸甘氨酸 天冬氨酸 赖氨酸丝氨酸 天冬酰胺 苯丙氨酸(酪氨酸)脯氨酸 蛋氨酸(半胱氨酸)谷氨酰酸 苏氨酸 胱氨酸 色氨酸 组氨酸 精氨酸 虽然蛋白质广泛存在于许多动物性和植物性食物中,但是必需氨基酸的构成异差很大,WHO把“蛋白质其组成恰好符合人体需要”的蛋白质称为理想蛋白质,在自然界这种理想的蛋白质普遍认为是鸡蛋蛋白,因此就把鸡蛋蛋白作为衡量蛋白质优劣的参照蛋白,科学家把它作为一把尺子来衡量各种蛋白质,并制定出标准,以4种必需氨基酸为最低限来决定其优劣,即色氨酸、苏氨酸、赖氨酸或者蛋氨酸(半胱氨酸)。 通过比较科学发现,肉、鱼、蛋、牛奶、乳酪含有优质蛋白,大豆、花生、豌豆也含有较多的高质量蛋白。进一步研究发现它们都不够完美,因而要求大家对优质的动物性蛋白和植物性蛋白进行了科学搭配才是最完美的全价蛋白质(complete protein)。表3. 部分高质量蛋白

  • 蛋白质纯化及复性

    蛋白质纯化及复性 重组蛋白在大肠杆菌(E. coli)高效表达时,往往以不溶的、无活性的蛋白聚集体,即包涵体(inclusion body)的形式存在于细胞内。必须从细胞内分离出包涵体,采用高浓度变性剂(如7.0mol/L盐酸胍、8.0mol/L脲)溶解包涵体,然后除去变性剂或降低变性剂的浓度,使包涵体蛋白得以复性,最后再用色谱法使目标蛋白质得到纯化。其中包涵体蛋白的复性和纯化是整个过程中的核心。 目前重组蛋白生产中普遍存在的问题是:(1)复性效率低。传统的复性方法稀释法和透析法。稀释复性法对样品几十倍,甚至上百倍的稀释会使样品的体积急剧增大,给后续的分离纯化带来很大的困难,而且复性过程中需要较大的复性容器。透析法耗时较长,而且要多次更换透析溶液。这两种方法的共同缺点是蛋白质在复性过程中会发生聚集而产生大量沉淀,复性效率低,通常蛋白质的活性回收率只有5~20%,而且复性后的蛋白质溶液中含有大量的杂蛋白,需要进行进一步的分离纯化。(2)工艺路线烦琐,生产周期长。在传统的重组蛋白质分离纯化工艺中,大多采用经典的软凝胶分离介质,由于这种介质的颗粒较大,分离效率较差,因此常常需要采用多种不同模式的色谱操作联用对目标蛋白质进行纯化,才能得到纯度符合一定标准的目标蛋白质。另外,这种色谱介质的耐压性很差,只能在流速较低的情况下进行操作,分离纯化时间较长。分离纯化步骤多和分离时间长使得蛋白质的质量回收率和活性回收率很低。而且在传统的重组蛋白质生产工艺中,蛋白质的复性和纯化是生产过程中两个独立的单元操作,也在很大程度上制约着生产效率。(3)生产成本高,设备投资大。由于复性和分离纯化分别单独进行,而且分离纯化步骤多,每一步都需要有与之配套的设备,致使设备投资大,生产成本高。随着生产规模的增加,这种弊端会愈来愈严重。 1991年耿信笃教授首先将高效疏水相互作用色谱(HPHIC)用于变性蛋白的复性,很好的解决了上述问题,现已成功用于重组人干扰素-g(rhIFN-g)、重组人干扰素-a(rhIFN-a)、人粒细胞集落刺激因子(rhG-CSF)、重组人胰岛素原(proinsulin)、重组牛朊病毒(prion)等重组蛋白以及溶菌酶和核搪核酸酶等标准模型蛋白的复性与同时纯化中。目前,排阻色谱法、离子交换色谱法和亲合色谱法也已用于蛋白质的复性和同时纯化中。与传统的稀释法及透析法比较,用色谱法进行蛋白复性的优点是:①在进样后可很快除去变性剂;②由于色谱固定相对变性蛋白质的吸附,可明显地减少、甚至完全消除复性过程中蛋白质聚集体和沉淀的产生,从而提高蛋白质复性的质量和活性回收率;③在蛋白质复性的同时可使目标蛋白质与杂蛋白分离以达到纯化的目的,使复性和纯化同时进行;④便于回收变性剂,以降低废水处理成本。简言之,色谱法复性可以提高蛋白质的活性和质量回收率,将蛋白复性和纯化集成在一步操作完成,缩短了操作步骤和生产时间,减少了设备投资,使生产成本大大降低,已经引起了全世界范围内许多生化研究者和重组蛋白药物生产厂家的关注。由于高效液相色谱(HPLC)分离效率高,往往在一步操作中便可得到纯度符合要求的蛋白质,而且分离速度快,在应用方面具有更大的优势。

  • 【转帖】生命所需——蛋白质和多肽蛋白质粉!

    人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄 蛋白质RNL(g/d)初生—6个月 1.5-31岁 353岁 455岁 557岁 609岁 6510-16岁 75-85成年女性 65成年男性 75妊娠 +15乳母 +20根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。

  • 蛋白质泛素化:基本概念、蛋白大小与泛素化蛋白组学的应用

    [font=宋体][font=宋体]泛素化是一种细胞内的蛋白质标记系统,蛋白质泛素化是指将小的蛋白质泛素共价地连接到其他蛋白质分子上的过程。泛素([/font][font=Calibri]ubiquitin[/font][font=宋体])是一种高度保守的蛋白质,其结构由[/font][font=Calibri]76[/font][font=宋体]个氨基酸残基组成。泛素连接到目标蛋白质上的过程,经历了泛素激活、泛素转移和靶蛋白接受三个主要步骤。[/font][/font][font=宋体] [/font][font=宋体]蛋白质泛素化具有多种特点,例如它是高度选择性的,不同蛋白质泛素化的位置和数量可以影响其功能;它是可逆的,通过去泛素化反应可以调控蛋白质的泛素化状态;它还是动态调控的,受到多种因素的调控,如细胞信号通路和环境刺激。[/font][b][font=宋体]泛素化蛋白大小:[/font][/b][font=宋体] [/font][font=宋体][font=宋体]蛋白泛素化是指将小蛋白颗粒泛素([/font][font=Calibri]Ubiquitin[/font][font=宋体])与其他蛋白质共价结合的修饰过程。 泛素化修饰通常会导致泛素共价连接在蛋白质的赖氨酸残基上形成多重泛素链。 这种蛋白质泛素化增加了蛋白质的分子量,因为每个泛素分子的质量大约为[/font][b][font=Calibri]8.5[/font][font=宋体]千达尔顿([/font][font=Calibri]kDa[/font][/b][font=宋体][b])[/b]。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]泛素化蛋白质组学在许多领域有重要的应用,主要包括:[/font][/b][font=宋体] [/font][font=宋体]①疾病机制研究:泛素化是一种广泛存在于细胞中的蛋白质修饰方式,参与了细胞的生长、分化、修复和调控等多个生命活动。泛素化蛋白质组学的研究可以帮助我们了解泛素化修饰的生物学功能和调控机制,为疾病发生机制和治疗策略的研究提供重要线索。例如,在癌症、代谢综合征、神经退行性疾病等疾病中,则会出现异常泛素化。[/font][font=宋体]②药物研发:通过分析药物对泛素化蛋白质的影响,可以评估药物的效力和选择性,为药物研发提供指导。[/font][font=宋体]③临床诊断:泛素化蛋白质组学鉴定与定量分析技术可以揭示细胞调控的机制,通过分析泛素化蛋白质的组学数据,可以确定泛素化修饰在细胞信号转导、蛋白质降解和细胞周期调控等过程中的重要作用。此外,通过比较病态和正常样品中泛素化蛋白质的差异,可以鉴定与疾病发生发展相关的泛素化修饰靶点,并进一步理解疾病的分子机制。因此,这些技术也可用于临床诊断。[/font][font=宋体]④蛋白质降解调控:在癌症、神经退行性疾病和免疫相关疾病等病症中,蛋白质降解调控出现异常。而泛素化蛋白组在调控蛋白质降解中发挥重要作用。通过与泛素连接,目标蛋白质被送入蛋白酶体或蛋白酶体样体中进行降解。这个过程是细胞清除异常、老化或受损蛋白质的重要途径。[/font][font=宋体]⑤高通量技术应用:高通量泛素化蛋白质组学鉴定与定量分析技术的发展包括质谱鉴定和抗体鉴定两种方法。质谱鉴定技术利用质谱仪的高灵敏度和分辨率,能够鉴定泛素化修饰的蛋白质及其泛素化位点。抗体鉴定技术则通过特异性抗体的使用,可以富集和鉴定泛素化修饰的蛋白质。这些技术为全面了解泛素化在细胞中的作用机制和调控网络提供了可能。[/font][font=宋体]总的来说,泛素化蛋白质组学在多个领域都有重要的应用价值,推动了我们对生命过程的深入理解以及疾病治疗的创新发展。[/font][font=宋体] [/font][font=宋体]更多详情关于[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白资源[/b][/url]详情可以参看:[/font][url=https://cn.sinobiological.com/resource/protein-review][u][font=宋体][color=#0000ff][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/color][/font][/u][/url][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • [推荐]蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用zz

    褚福亮,王福生, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室 北京市 100039项目负责人 王福生, 100039 ,北京市丰台路26号, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室. fswang@public.bta.net.cn电话:010-66933332 传真:010-63831870收稿日期 2002-08-15 接受日期 2002-09-03摘要新近广泛应用蛋白质芯片(ProteinChipâ Array)系统成功鉴定出了一些重要疾病(如肿瘤和危害性较大的传染病)新的、特异性的生物标记(biomarkers),后者不仅在生物医学的基础方面具有重要的科学价值,而且在临床疾病的诊断、治疗和预防发挥重要的指导作用,显示了良好的发展前景.本文就表面增强的激光解析电离-飞行时间-质谱(SELDI-TOF-MS)相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.此外,我们就蛋白质谱分析技术在病毒性肝炎、肝硬化和肝癌等一系列肝病方面的应用策略和前景进行了分析.褚福亮,王福生. 蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用.世界华人消化杂志 2002 10(12):1431-14350 引言人类基因组计划已经进入后基因组时代-即功能基因组时代[1],作为基因功能的直接体现者-蛋白质,及其之间的相互作用越来越引起基础和临床科学家们的关注[2-6] .因为要彻底了解生命的本质,只把基因测出来还是不够的,还必须要了解其在生物生长、发育、衰老和整个生命过程中的功能、不同蛋白质之间的相互作用以及他们与疾病发生、发展和转化的规律[7-14] .正因为如此,有关上述问题的蛋白质组学研究成了今天生命科学最重要的焦点之一[15] .为了阐明蛋白质在上述生命现象中的作用和相关机制,人们设计了许多新的方法技术,如:二维电泳、质谱分析、微距阵列、酵母双杂交和噬菌体展示等,这些方法在一些特定的情况下,虽然显示出了他们各自不同的优点,但是同样也存在着较大的局限性,难以开展大规模、超微量、高通量、全自动筛选蛋白质等方面的分析,因而设计更全面、同时研究多种蛋白质相互作用的技术,在功能基因组和蛋白组学的研究中建立一个更有效的技术平台,成为本领域中优先关注的问题[16] .近来,美国Ciphergen(赛弗吉)公司研制的ProteinChipâ Array的仪器,并建立了一种新的蛋白质飞行质谱-表面增强的激光解析离子化-飞行时间-质谱(surface-enhanced laser desorption/inionation-time of flight-mass spectra, SELDI-TOF-MS),已取得可喜的进展,筛选出了许多与疾病相关的新型生物标志,不仅为临床疾病的诊断和治疗等提供了新的选择,而且在基础科学、新药研制和疾病预防等方面具有广泛的应用前景[16-18] .本文就SELDI-TOF-MS相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.1 ProteinChipâ Array系统和SELDI-TOF-MS的特点1.1 蛋白质芯片系统的组成和原理 蛋白质芯片系统由三部分组成:蛋白质芯片、芯片阅读器和芯片软件.供研究用芯片上有6-10芯池,不同的芯片表面上的化学物质不同,芯片表面分为两大类:一类为化学类表面,包括经典的色谱分析表面,如:结合普通蛋白质的正相表面,用于反相捕获的疏水表面,阴阳离子交换表面和捕获金属结合蛋白的静态金属亲合捕获表面;另一类称为生物类,特定的蛋白质共价结合于预先活化的表面阵列,可以用来研究传统的抗体一抗原反应,DNA和蛋白质作用,受体、配体作用和其他的一些分子之间的相互作用[19] . 根据检测目的不同,可以选用不同的芯片,或者自己设计芯片.将样本和对照点到芯池上以后,经过一段时间的结合反应,用缓冲液或水洗去一些不结合的非特异分子,再加上能量吸收分子(energy absorbing molelule,EAM)溶液,使样本固定在芯片表面.当溶液干燥后,一个含有分析物和大量能量吸收分子“晶体”就形成了.能量吸收分子对于电离来说非常重要.经过以上步骤,就可经把芯片放到芯片阅读器中进行质谱分析. 在阅读器的固定激光束下,芯片上、下移动,使样本上每一个特定点都被“读”到.激光束的每一次闪光释放的能量都聚集在该区一个非常小的点上(focused laser beam,聚焦激光束).这样,每个区都含有丰富的,可寻址(addressable)的位置.蛋白质芯片处理软件精确控制激光寻读过程.当样本受到激发,就开始电离和解除吸附.不同质量的带电离子在电场中飞行的时间长短不同,计算检测到的不同时间,就可以得出质量电荷比,把他输入电脑,形成图像[19].Ball et al [20]采用一种称为人工神经网络(artifical neural network,ANN)的算法处理出现的成千上万的峰,鉴定出三个分子量为13 454、13 457和14 278的生物标记分子,使疾病预测率达到97.1 %.1.2 ProteinChipâ Array芯片和SELDI-TOF-MS的特点 新型蛋白芯片与以往的蛋白芯片不同之处:SELDI-TOF-MS,他是在MALDI(matrix-assisted laser desorption/inionation)[21,22]基础上,改进后实行表面增强的飞行质谱.SELDI-TOF-MS优于MALDI-TOF表现为他不会破坏蛋白质,或使样本与可溶的基质共结晶来产生质谱信号.对SELDI-TOF来说,可以直接将血清、尿液、组织抽取物等不需处理直接点样检测[40] 由于一部分非特异结合的分析物被洗去,因而出现的质峰非常一致,有利于后期分析[23,24] . 与二维电泳相比:二维电泳分析蛋白质的分子量在30 KDa以上时电泳图谱较清楚,对在组织抽提物中占很大比例的低丰度的蛋白质不能被检出;其次,二维电泳胶上的蛋白质斑点很大一部分包含一种以上的蛋白质;而且,二维电泳耗时长,工作量大,对象染色转移等技术要求高,不能完全实现自动化.而SELDI-TOF在200 Da-500 KDa区间都可以给出很好的质谱,对一个样本的分析在几十分钟内就可以完成[19],处理的信息量远远大于二维电泳;对于低丰度物质,即使浓度仅attomole(10-18)的分子,只要与表面探针结合,就可以检测到,这也是二维电泳所不具备的[24,25] . 对于微距阵蛋白芯片来说,需要一种不破坏折叠的蛋白质构象的固定技术,再与另外的蛋白质反应,经检测莹光来观察蛋白质之间的作用[26] .而基于SELDI-TOF-MS的ProteinChip分析蛋白质不需溶解、不需染色、廉价、针对性强. 因而蛋白质芯片仪具有以下优势:(1)可直接使用粗样本,如:血清、尿液、细胞抽提物等[27] .(2)使大规模、超微量、高通量、全自动筛选蛋白质成为可能;(3)他不仅可发现一种蛋白质或生物标记分子,而且还可以发现不同的多种方式的组合蛋白质谱,可能与某种疾病有关[28] (4)推动基因组学发展,验证基因组学方面的变化,基于蛋白质特点发现新的基因.可以推测疾病状态下,基因启动何以与正常状态下不同,受到那些因素的影响,从而跟踪基因的变化[2,14,15] . 其存在的问题:对于不同的样本,根据检测的目标采取或者设计几种芯片,理论上可以把所有的相同性质蛋白质捕获,但是实际上仍有少量的分子没与表面探针结合.使用SELDI-TOF-MS,仅能给出蛋白质的分子量,不能给出C端、N端的序列,也没法知道蛋白质的构型,因此需要将蛋白质充分纯化后,用蛋白酶消化芯片上的蛋白质,分析肽段,再用生物信息学方法鉴定蛋白质序列[18,24] .另外,在国内,该芯片费用较高,分析质谱需要大量后续工作支持.

  • 【原创大赛】谷朊粉之蛋白质含量测定

    【原创大赛】谷朊粉之蛋白质含量测定

    【生活中的仪器分析】食品安全——“菜”米油盐酱醋茶大检测谷朊粉又称活性面筋粉、小麦面筋蛋白,是从小麦(面粉)中提取出来的天然蛋白质,是营养丰富的植物蛋白资源·具有粘性、弹性、延伸性、成膜性和吸脂性。谷朊粉是一种优良的面团改良剂,广泛用于面包、面条、方便面的生产中,也可用与肉类制品中作为保水剂,同时也是高档水产饲料的基础原料。目前国内还把谷朊粉作为一种高效的绿色面粉增筋剂,将其用于高筋粉、面包专用粉的生产,添加量不受限制·谷朊粉还是增加食品中植物蛋白质含量的有效方法。 蛋白质是谷朊粉质量的一个重要的检测指标,在生产中需要抽样检测判定产品的质量是否合格,本文主要是用凯氏定氮仪测定样品的粗蛋白含量,方法简便,测定结果重复性符合要求。 1 实验部分1.1 仪器和试剂K1100F凯氏定氮仪;SH420石墨消解仪;万分之一电子天平;浓硫酸(98%);催化剂片(硫酸铜和硫酸钾);40%氢氧化钠;2%硼酸;0.0500mol/l硫酸标准滴定溶液;甲基红-溴甲酚绿混合指示剂;1.2 方法1.2.1 原理: GB21924-2008 谷朊粉http://ng1.17img.cn/bbsfiles/images/2013/12/201312201644_483440_1873342_3.jpg1.2.2 称样http://ng1.17img.cn/bbsfiles/images/2013/12/201312201646_483441_1873342_3.jpg四个样品,分别称取0.2g,连同无灰滤纸一起放于消化管中。每个消化管中再分别加入1片催化剂片,8ml浓硫酸。同时做空白。http://ng1.17img.cn/bbsfiles/images/2013/12/201312201649_483443_1873342_3.jpg1.2.3消解:将样品放于消解仪上,盖好排废罩,打开冷凝水。曲线升温设置参数如下:http://ng1.17img.cn/bbsfiles/images/2013/12/201312201653_483446_1873342_3.jpg1.2.4蒸馏 滴定:消解冷却好的样品,放于定氮仪,设置相应参数,加硼酸20ml,碱液35ml,蒸馏5min,直接测试,仪器自动计算结果并打印数据。http://ng1.17img.cn/bbsfiles/images/2013/12/201312210945_483660_1873342_3.jpg2数据与分析样品空白测试http://ng1.17img.cn/bbsfiles/images/2013/12/201312201657_483452_1873342_3.jpg样品测定结果http://ng1.17img.cn/bbsfiles/images/2013/12/201312201701_483458_1873342_3.jpg从测定结果看样品的重复性较好,符合测定标准要求。3结论鉴于上述结果,用凯氏定氮仪测定谷朊粉比较简便,重复性也好。[/si

  • 【转帖】蛋白质提取与纯化技术

    [size=3]选择材料及预处理   以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。   微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。 蛋白质的分离纯化 一,蛋白质(包括酶)的提取   大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。 (一)水溶液提取法   稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。下面着重讨论提取液的pH值和盐浓度的选择。[/size]

  • 【原创】【第三届原创参赛】原子力显微镜在蛋白质研究中的应用

    蛋白质是荷兰科学家格里特在1838年发现的,它是生物体内一种极重要的高分子有机物。没有蛋白质就没有生命,它是与生命及与各种形式的生命活动紧密联系在一起的物质。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质,因此对于蛋白质的研究显得极其重要与急迫。AFM 对于蛋白质的研究是一个极好的工具,它可以测量蛋白质空间结构,表征蛋白质的结构与功能、了解分子间的相互作用等等。样品制备当用AFM对蛋白质进行观察时,样品制备很重要。蛋白质样品的制备原则与粉体材料基本相同,也需要固定到基片上,只是要研究一些活体蛋白时,必须为之提供一定的生理环境,如生理缓冲液,所以大多需要在溶液中进行研究,如成像,测定力曲线以研究其构形,构像转变等特性.所以应该选择合适的方法在固定蛋白质样品的同时仍能保持其生物特性。具体要求和方法如下:样品制备要求样品表面平整, 高度起伏≤10一20μm;表面有一定的硬度;基底面平滑;样品在基底表面要求相对均匀、分散等。样品制备过程蛋白质样品制备过程有两种方法蛋白质吸附固定法: 使用在中性条件下带负电云母片、玻璃及氧化硅为基底,将一定浓度的带正电的蛋白质溶液滴加于云母表面,蛋白便可很容易通过吸附固定吸附于云母表面蛋白质共价固定法: 在某些特定的条件下,蛋白分子需要通过共价吸附才能检测到。利用蛋白质分子上的氨基与疏基丙酸的羧基形成肽键连接的原理,进行蛋白质的固定。

  • 蛋白质纯化方法及注意事项有哪些?

    [font=宋体][font=宋体]蛋白质的分离纯化在生物化学研究应用中使用广泛,是一项重要的操作技术。[/font] [font=宋体]一个典型的真核细胞可以包含数以千计的不同蛋白质,一些含量十分丰富,一些仅含有几个拷贝。为了研究某一个蛋白质,必须首先将该蛋白质从其他蛋白质和非蛋白质分子中纯化出来。[/font][/font][font=宋体] [/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-purification][b]蛋白纯化[/b][/url]要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。[/font][font=宋体] [/font][font=宋体][font=宋体]蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。一般蛋白纯化采用的方法为树脂法。粗分离阶段主要将目的蛋白和其他细胞成分如[/font][font=Calibri]DNA[/font][font=宋体]、[/font][font=Calibri]RNA[/font][font=宋体]等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速、颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,必要时可加入相应的保护剂(例如蛋白酶抑制剂),防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些分子量大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性指树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。[/font][/font][font=宋体] [/font][font=宋体]蛋白纯化主要的方法:[/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体]) 根据分子大小不同的分离方法:透析和超过滤(利用蛋白质分子不能通过半透膜的性质);密度梯度离心(蛋白质在介质中离心时质量和密度较大的颗粒沉降较快);凝胶过滤(一种柱层析)[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体]) 利用溶解度差别分离:等电点沉淀法(由于蛋白质分子在等电点时净电荷为零,减少了分子间静电斥力,因而容易聚集沉淀,此时溶解度最小);盐溶与盐析(利用一定浓度盐溶液增大或减小蛋白质的溶解度)[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体]) 根据电荷不同的分离方法,主要包括电泳和离子交换层析分离;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]4[/font][font=宋体]) 蛋白质的选择吸附分离(利用颗粒吸附力的强弱不同达到分离目的)[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]5[/font][font=宋体]) 根据配体特性的分离——亲和层析(利用蛋白质分子与另一种称为配体的分子能够特异而非共价地结合这一生物性质)[/font][/font][font=宋体][font=Calibri](6)[/font][font=宋体] 低温有机溶剂沉淀法[/font][font=Calibri]: [/font][font=宋体]用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。[/font][/font][font=宋体] [/font][font=宋体]蛋白纯化注意事项:[/font][font=宋体]在进行任何一种蛋白质纯化的时候,都要时刻注意维护它的稳定性,保护它的活性,有一些通用的注意事项需要牢记,它们包括:[/font][font=宋体][font=Calibri]1[/font][font=宋体]、操作尽可能置于冰上或者在冷库内进行。[/font][/font][font=宋体][font=Calibri]2[/font][font=宋体]、不要太稀,蛋白浓度维持在μ[/font][font=Calibri]g/mL[/font][font=宋体]~[/font][font=Calibri]mg/mL[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]3[/font][font=宋体]、合适的[/font][font=Calibri]pH[/font][font=宋体],除非是进行聚焦层析,所使用的缓冲溶液[/font][font=Calibri]pH[/font][font=宋体]避免与[/font][font=Calibri]pI[/font][font=宋体]相同,防止蛋白质的沉淀。[/font][/font][font=宋体][font=Calibri]4[/font][font=宋体]、使用蛋白酶抑制剂,防止蛋白酶对目标蛋白的降解;在纯化细胞中的蛋白质时,加入[/font][font=Calibri]DNA[/font][font=宋体]酶,降解[/font][font=Calibri]DNA[/font][font=宋体],防止[/font][font=Calibri]DNA[/font][font=宋体]对蛋白的污染。[/font][/font][font=宋体][font=Calibri]5[/font][font=宋体]、避免样品反复冻融和剧烈搅动,以防蛋白质的变性。[/font][/font][font=宋体][font=Calibri]6[/font][font=宋体]、缓冲溶液成分尽量模拟细胞内环境。[/font][/font][font=宋体][font=Calibri]7[/font][font=宋体]、在缓冲溶液中加入[/font][font=Calibri]0.1~1mmol/LDTT[/font][font=宋体](二硫苏糖醇)[/font][font=Calibri]([/font][font=宋体]或β[/font][font=Calibri]-[/font][font=宋体]巯基乙醇),防止蛋白质的氧化。[/font][/font][font=宋体][font=Calibri]8[/font][font=宋体]、加[/font][font=Calibri]1~10mmol/LEDTA[/font][font=宋体]金属螯合剂,防止重金属对目标蛋白的破坏。[/font][/font][font=宋体][font=Calibri]9[/font][font=宋体]、使用灭菌溶液,防止微生物生长。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以关注义翘神州重组蛋白纯化详情:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification[/font][/font]

  • 【分享】蛋白质的分离纯化操作使用

    一,蛋白质(包括酶)的提取  大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。(一)水溶液提取法  稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。下面着重讨论提取液的pH值和盐浓度的选择。1、pH值  蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。2、盐浓度  稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。(二)有机溶剂提取法  一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。

  • 蛋白质的提取和纯化--选择材料及预处理

    纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)(四)根据配体特异性的分离方法-亲和色谱法亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。浓缩、干燥及保存一、样品的浓缩生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:1. 减压加温蒸发浓缩通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。2. 空气流动蒸发浓缩 空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。3. 冰冻法 生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。4. 吸收法 通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。5. 超滤法 超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。二、干燥生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥。真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素。在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体。操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去。此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存。三、贮存生物大分子的稳定性与保存方法的很大关系。干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点。1. 样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性。2. 一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等。蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性。此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用。核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中。3. 贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定。

  • 【原创大赛】蛋白粉中蛋白质测定

    蛋白质是蛋白粉质量的一个重要的检测指标,目前蛋白质检测化学方法主要有凯氏定氮法、杜马斯燃烧法、双缩脲法、福林(Folin)——酚试剂法等。其中在食品领域以凯氏定氮法最为常用,本文主要是使用凯氏定氮仪测定样品含量。1 实验部分1.1仪器和试剂K1100F凯氏定氮仪;SH420石墨消解仪;万分之一电子天平;浓硫酸(98%);催化剂片(硫酸铜和硫酸钾);40%氢氧化钠;2%硼酸;0.0500mol/l硫酸标准滴定溶液;甲基红-溴甲酚绿混合指示剂;1.2方法1.2.1称样:三个样品,分别称取浓缩蛋白粉0.3000g,分离蛋白粉0.2000g,乳品蛋白粉0.2000g(区别在于三者工艺不同),连同无灰滤纸一起放于消化管中。每个消化管中再分别加入1片催化剂片,8ml浓硫酸。同时做空白。 http://ng1.17img.cn/bbsfiles/images/2013/07/201307301053_454682_1873342_3.bmp1.2.2消解 :将样品放于消解仪上,盖好排废罩,打开冷凝水。蛋白粉样品消解过程不易上冲,所以采用直线升温,直接设定消解温度420,消解时间90min。http://ng1.17img.cn/bbsfiles/images/2013/07/201307301106_454684_1873342_3.bmp1.2.3 蒸馏 滴定:消解冷却好的样品,放于定氮仪,设置好相应参数,直接测试,仪器自动蒸馏滴定,打印计算结果。 http://ng1.17img.cn/bbsfiles/images/2013/07/201307301110_454686_1873342_3.bmp 2 数据与分析乳品蛋白编号质量蛋白质(%)RSD(%)10.193388.51390.2420.194488.462330.198988.264040.191688.085950.195588.144260.192887.9907分离蛋白7

  • 蛋白质质谱分析

    PS1利用基质辅助激光解吸电离-飞行时间(MALDI-TOF)技术来表征生物分子。样品溶于固定的底物中形成晶体,用激光脉冲使其离子化,离子被加速后通过飞行管时分离,所有离子均可被检测。系统包括三个组成部件:样品点样制备工作站(SymBiot 1)、生物质谱工作站(Voyager-DE PRO)和自动化分析软件(AutoMS-Fit)。SymBiot1 是一个自动样品处理系统,支持亚微升级微量点样,具有快速省时、重现性好的特点;Voyager-DE PRO是为蛋白质组研究专门设计的自动飞行时间质谱分析系统,配有AB公司之专利—延迟检测技术,具有高分辨率、质荷比宽等特点;AutoMS软件可以批处理方式或实时动态方式检索Protein Prospector蛋白数据库或您指定的蛋白数据库,查询参数可以任意设定,检索结果以Microsoft Access格式分类编号及储存。 PS 1技术平台建立伊始便受到了许多蛋白质课题研究组的关注。中国科学院上海生物化学研究所戚正武院士课题组从猪肝中提取某一活性蛋白组分,该组分理化性质不清楚,天然含量十分低,并无相关文献报道。用HPLC分离以后对活性组分的成分不能确定。上海基康生物技术有限公司运用PS 1系统对HPLC分离后的活性组分作了质谱分析,仅在一个工作日内就精确确定该组分由分子量极为相近的几种蛋白质构成,分子量精确度达到10 ppm。后经HPLC再次细分(洗脱梯度增加了2.5倍),证实了质谱的结论。此活性组分曾滤过1kD分子筛,基康的质谱数据纠正了研究人员过去对该活性组分分子量的误判,为研究人员明确实验方向、优化实验步骤提供了强有力的依据。 PS1除了可以进行生物大分子的精确分子量测定,还可用于蛋白的肽指纹图谱分析(peptide mass fingerprint,PMF),提供相关生物信息学服务,并且还可以利用源后衰变(Post Source Decay,PSD)技术来获得样品的MS/MS数据,以得到一级结构信息。PSD方法通常增加了激发激光的功率,使其超过产生一般肽指纹谱图所需功率的阈值,过剩的能量使前体离子在源内离子化之后发生裂解,产生一系列碎片离子,在反射器的作用下,最终可以得到一张连续的碎片离子图谱。经特定的软件分析后,即可在数据库中检索到肽段的氨基酸序列。利用PSD分析技术,还可以对磷酸化,糖基化等翻译后修饰进行定位分析,同样也可以鉴定产生翻译后修饰肽段的蛋白质。Neville et al.(1997)将这一方法成功的用于磷酸肽的序列分析。作为重要的蛋白质鉴定手段之一,PS1的精确度可以达到10 ppm,灵敏度为fmol,分子量检测范围可达到500 kDa,每天可自动分析40-100个样品,适用于大规模“蛋白质组学”研究。

  • 离子交换层析分离纯化蛋白质原理、介质及具体步骤

    [font=宋体][b]离子交换层析基本原理:[/b][/font][font=宋体] [/font][font=宋体]离子交换层析法是蛋白纯化的一种方式,通过带电的溶质分子与离子交换层析介质中可交换离子进行交换,从而达到分离纯化的目的。[/font][font=宋体] [/font][font=宋体]离子交换层析法主要依据电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法的应用很广泛。[/font][font=宋体] [/font][font=宋体][b]离子交换层析的介质:[/b][/font][font=宋体] [/font][font=宋体]有许多离子交换介质都已经商品化,但不存在一种神奇的介质其最适合各种蛋白质的纯化。选择离子交换介质的标准包括应用的特异性需要、样品成分的等电点和分子大小(即目的蛋白和污染物),以及可得到的装备(如泵和柱子)。[/font][font=宋体] [/font][font=宋体][font=宋体]首先需要选择阴离子或阳离子介质,如果目的蛋白的等电点已知,选择阴离子介质且操作的[/font][font=Calibri]pH[/font][font=宋体]高于目的蛋白的[/font][font=Calibri]pI[/font][font=宋体],或选择阳离子介质且操作[/font][font=Calibri]pH[/font][font=宋体]低于目的蛋白的[/font][font=Calibri]pI[/font][font=宋体]。如果靶蛋白的[/font][font=Calibri]pI[/font][font=宋体]未知,开始之前最好先测定它。最佳操作[/font][font=Calibri]pH[/font][font=宋体]可根据经验确定。因为大多数蛋白质的[/font][font=Calibri]pI[/font][font=宋体]低于[/font][font=Calibri]7[/font][font=宋体],选择阴离子交换和操作[/font][font=Calibri]pH[/font][font=宋体]为[/font][font=Calibri]8.5[/font][font=宋体]开始是合理的,然后根据估计结果和优化条件。知道蛋白质溶液中污染物[/font][font=Calibri]pI[/font][font=宋体]和结合特征也是有用的。[/font][/font][font=宋体] [/font][font=宋体][b]离子交换层析应用:[/b][/font][font=宋体][font=宋体]离子交换层析法是生物纯化中应用最广泛的色谱模式,应用于大多数下游处理平台。在[/font][font=Calibri]IEX[/font][font=宋体]中结合目标蛋白、洗脱柱子和洗脱目标蛋白的典型方案被称为“结合[/font][font=Calibri]/[/font][font=宋体]洗脱模式”,经常应用于中间纯化步骤如抗体的下游处理。阴离子交换层析是大多数血浆蛋白纯化平台的组成部分如凝血因子[/font][font=Calibri]VIII[/font][font=宋体]的纯化。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b][font=宋体]离子交换层析([/font][font=Calibri]IEX[/font][font=宋体])具体操作步骤:[/font][/b][/font][font=宋体]平衡[/font][font=宋体] [/font][font=宋体][font=宋体]第一步是固定相的平衡。当达到平衡时,所有的固定相带电基团都与可交换的平衡离子结合,如氯或钠。选择起始缓冲液的[/font][font=Calibri]pH[/font][font=宋体]和离子强度,以确保目标蛋白与介质的结合。[/font][/font][font=宋体] [/font][font=宋体]上样和清洗[/font][font=宋体] [/font][font=宋体]第二步的目标是结合目标分子,并清洗出所有未结合的物质。[/font][font=宋体] [/font][font=宋体]洗脱[/font][font=宋体] [/font][font=宋体][font=宋体]随着离子强度的增加,在选定的[/font][font=Calibri]pH[/font][font=宋体]值下净电荷最低的蛋白将最先从柱子上洗脱。同样地,在一定[/font][font=Calibri]pH[/font][font=宋体]值下电荷最高的蛋白被保留得最牢固,并且在最后被洗脱。[/font][/font][font=宋体] [/font][font=宋体]再生[/font][font=宋体] [/font][font=宋体]最后用高离子强度的缓冲液进行最后一次清洗,使色谱柱再生,并去除任何仍结合的分子。然后在开始下一次运行之前,色谱柱需要在起始缓冲液中重新平衡。[/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-iec][b]离子交换层析蛋白纯化[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-by-iec[/font][/font]

  • 【转帖】蛋白质的分离纯化

    蛋白质分离纯化鉴定包括蛋白质样品的基本处理注意事项,蛋白质分离纯化方法的基本原理和选择,纯化后蛋白质浓度及蛋白质基本性质的研究方法。 [URL=http://www.instrument.com.cn/bbs/shtml/20081009/1522386/]http://www.instrument.com.cn/bbs/shtml/20081009/1522386/[/URL]

  • 【分享】紫外吸收法测蛋白质含量

    蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。1.280nm的光吸收法因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值A280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,A280约为1.0左右。由此可立即计算出蛋白质的大致浓度。许多蛋白质在一定浓度和一定波长下的光吸收值(A1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(A1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值A1%1cm,λ称为百分吸收系数或比吸收系数。蛋白质浓度= (A280´10 )/ A1%1cm,280nm (mg/ml)(Q 1%浓度»10mg/ml)

  • 蛋白质组,蛋白质组学及研究技术路线

    基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。蛋白质组学的研究内容包括:1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。实际上像人类的血浆,尿液,脑脊液,乳腺,心脏,膀胱癌和磷状细胞癌及多种病原微生物的蛋白质样品的二维电泳数据库已经建立起来,研究者可以登录www.expasy.ch/www/tools.html等网站进行查询,并和自己的同类研究进行对比分析。Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。Science,Vol.293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据。

  • 【原创大赛】蛋白质热稳定性的研究机理

    [align=center]蛋白质热稳定性的研究机理[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]食品事业部:魏娜[/align] 疏水作用被认为是决定蛋白质结构的主要作用力。蛋白质的天然结构是由以下类型的共同作用力维持其结构的热稳定性(例如,H键,离子键和范德华力)。德国专家Dil回顾了支持这一理论的证据:(一)非极性溶剂使蛋白质变性 (二)疏水残基可以很典型的把核心部位分开,在其核心部位他们在很大程度上避免了与接触水 (三)在蛋白质核心部位的残基和疏水基团比任何其他一种残基具有更坚固的保守区和结构(核心部位疏水残基的取代物一般比任何一种代替物更具有破坏性)。(四)蛋白质展开涉及大量增加的热容量。给定的疏水作用的中心对在蛋白质折叠也有一定的影响,很容易以为疏水作用还是负责蛋白稳定性的主要动力。在过去20年里,序列、结构和诱变等信息的积累证实了疏水作用,事实上,更是蛋白质稳定性的主要动力。两个观察报告指出常温的和极端嗜热的微生物的同源体具有相同的最基本的稳定性,这种稳定性由保守的蛋白质核心提供:(1)疏水相互作用以及中心残基所影响的二级结构比特征区域表面更保守。(2)在有溶解能力的被暴露的区域发现了大量稳定的代替物(可以在常温及极端嗜热蛋白质结构的比较以及在蛋白质定向突变的实验中观察到)。常温以及嗜热蛋白质同源体的核心具有高度的相似性,这些性质表明常温蛋白质尽可能高效的与那些在核心外部的没有太多空间稳定性的蛋白质进行折叠。极端嗜热蛋白质稳定的相互作用经常在蛋白质的不保守区被发现。如下所示,如表面离子对减少了溶剂暴露疏水面,和与之稳定结合(即N和C末端以及氨基酸循环)的蛋白质表面似乎有助于极端嗜热蛋白质的热稳定性。 在近年来足够的实验证据(如序列,诱变,结构,和热力学)被积累,但没有一个单一的机理可以解释极端嗜热蛋白质的显著的稳定性。增加的热稳定性可以在数量很少的精确突变中找到,这样的突变常常不遵循任何一种固定的法则。[b] 氨基酸组成和内在倾向[/b]蛋白质的氨基酸组成长期以来被认为与其热稳定性有关。第一个数据分析对比了常温和极端嗜热蛋白质的氨基酸组成,发现趋向于Gly→Ala,Lys→Arg的替换,嗜温蛋白质的组成中含有大量Ala,主要是由于Ala最易于螺旋结构的形成。随着更多实验数据的积累(尤其是,全基因组序列的测序 ),通常的嗜热适应规则不能依据显著性差异来定义蛋白质中氨基酸的组成已经变得越来越明显了。通过对8个常温和7个极端嗜热微生物的基因组序列的对比得出常温和极端嗜热蛋白质的残基存在这种趋势的差异(如表4所示)。另外发现,极端嗜热蛋白质比常温蛋白质带有更多的带电残基(多3.24%),以及较少的极性未荷电残基(-4.98% 特别是谷氨酰胺,-2.21%)。嗜热蛋白质比常温蛋白质还含有更多的疏水残基和芳香残基。从基因组测序中获得的这些数据不能普遍化,在极端嗜热的微生物基因组中自身存在着很多的突变。敏捷气热菌实际上比在表4中列出的嗜温菌含有有更少的带电残基(23.64%),更少的大体积的疏水残基(27.29%),以及更少的芳香性残基(7.42%)。相反,敏捷气热菌含有较多的Ala,Gly,Pro,Ser,和Thr残基。因此,极端嗜热蛋白质的氨基酸组成可能经常和突变性有关,而不是与其适应高温的指标有关。蛋白质中氨基酸残基的分布与其相互作用比氨基酸残基的组成对蛋白质的热稳定性更相关。这两种同源蛋白酶解淀粉芽孢杆菌枯草杆菌蛋白酶BPN9和普通高温放线菌嗜热蛋白酶包含数量相同的带电残基,但嗜常温酶的嗜热蛋白酶包含比八个更多的离子对。有关的想法,蛋白质的稳定性取决于稳定的紧密包裹的疏水内核,个别残基的固有倾向是参与螺旋或链结构,这作为一个潜在的稳定机制被研究。比较嗜温和嗜热蛋白结构,Facchiano等人观察到嗜热蛋白质的螺旋结构通常比的嗜温蛋白质更稳定。他们检测到的唯一的趋势是在嗜热蛋白质的螺旋(二支链残基没有得到很好的耐受性螺旋线性残留有)中C[sub]β[/sub]分支残基的减少(Val,Ile,和Thr)。许多实例存在于未遵循这一趋势。该P.球菌和T. litoralisGDHs包含更多数量的Ile。如果将Leu和Ile残基进行比较,这两个残基具有最高的(和等同的)部分特定卷。在蛋白质中,Leu侧链最常发现两种旋转异构体的构象(180°和300°×1),但不是在一个与X1 =60°。在Ile侧链频繁采用四种不同的旋转异构体的构象,以及三个X1值被发现。随着这种构象的柔性,Ile可能能够更好地填补在蛋白质内核折叠时出现的空缺。Dil还指出,环境的影响(例如,盐桥的形成,芳烃相互作用,疏水表面的包埋,以及填充膜腔)可以作为重要内在的螺旋倾向。在许多情况下,二级结构在蛋白质结构不对应于所找到的二级结构预测的内在倾向,表明该固有倾向不足以解释蛋白质中α-螺旋的稳定性。Arg残基的几个特性表明,他们将比Lys残基更好地适应高温:该Argδ-胍基部分由于其高的pKa和共振稳定而降低的化学反应活性。δ-胍基部分比Lys氨基为带电的相互作用提供了更多的表面积。Arg参与多种非共价相互作用的能力。因为在Arg侧链比Lys少一个亚甲基,它具有开发较少不利触点的电位与溶剂。最后,因为它的pKa值(约12)是Lys的1倍以上(11.1),在温度升高的时候,精氨酸更容易保持离子对和净正电荷(因为温度的增加,pKa值下降)(252,354)。在嗜温菌的蛋白质池和在表中列出超嗜4(0.73+ - 0.37和0.87+ - 0.60,分别)平均精氨酸/赖氨酸的比率与大标准偏差相关。(其中超嗜热,精氨酸/赖氨酸的比率范围从Aquifex0.52超嗜热菌蛋白到2.19敏捷气热菌。)这些结果表明,如果增加精氨酸确实会变得稳定,这种机制是不能够普遍使用于极端嗜热菌中。[b] 二硫键 [/b]二硫键被认为主要是通过降低蛋白质裂解状态的熵维持蛋白质的稳定。当两个半胱氨酸键断裂时,二硫键的熵效应成比例地以对数方式增加残基的数量。 因为在高温下,半胱氨酸和二硫键的敏感性遭到破坏,,100℃被认为是蛋白质维持二硫键稳定性的上限。这一概念是基于这样一个事实,早期的研究描述蛋白质活性的研究机理,在那个时期仅形成了一种可利用的酶:常温酶。这些研究确定了所有蛋白质研究,研究包括的二硫键在100℃时β-消除有相同的速率。这个速率不依赖于蛋白质的结构并且在pH=8.0(半衰为1小时)比在pH =6.0(半衰期为12.4小时)时速度快。这些研究的限制是在100℃时所有蛋白质是在展开状态时进行研究的。在最近包括二硫键的蛋白质的描述中,在100℃时这些蛋白质具有最大的活性和稳定性,表明在100℃时二硫键维持了这些蛋白质的稳定性并且构象环境和溶剂可被决定因素保护,防止破坏二硫键。当描述大肠杆菌时,S.solfataricus 5’-甲硫腺苷磷酸化酶形成了不正确,不稳定的二硫键。这一观察间接反映了,二硫键在天然酶中表现出的稳定性。嗜火液丝氨酸蛋白酶被描述为包含8半胱氨酸(无存在于枯草杆菌蛋白酶BPN')。处理二硫苏糖醇从半衰期为90 小时 85℃,减少到少于2小时。在高温下二硫苏糖醇不稳定进一步表明这种酶的确含有二硫键并且它们是高度不稳定的。这种酶在半衰期为6小时 温度为105℃ pH=9.0时,要比它在蛋白质展开中pH=8.0 半衰期为1小时二硫键计算的长,表明这种酶的二硫键通过蛋白质中二硫键的无法靠近以保护二硫键不被破坏。因此,不是所有的二硫键对热稳定破坏具有相同的易感性。[align=center][b]疏水作用[/b][/align] 在极端嗜热蛋白质中,疏水作用是蛋白质热稳定性的一个机理。平均增加1.3千卡/摩尔(±0.5)的稳定性对于增加甲基埋在蛋白质折叠(取决于腔产生突变,这种突变中,大的脂族残基被替换为一个较小的脂族残基)。当突变产生了往往需要局部重排的不利的范德华力作用时,突变试图填充凹处往往是更不稳定的。疏水性相互作用在蛋白质结晶中的热稳定作用的,实验证据是可用于确认所述极端嗜热蛋白质中疏水作用的区域。存在于沃氏甲烷球菌和M.jannaschiladenylate激酶中的这种酶嵌合体的结构的稳定部分表明,更大和更具极端嗜热酶疏水酶核心(这是由于增加的脂肪族残基含量和脂族侧链体积)可能是负责分枝詹氏甲烷球菌的腺苷酸激酶的热稳定性。该从嗜热栖热菌3-异丙基苹果酸脱氢酶热包含亚基间的疏水相互作用的没有在大肠杆菌中酶存在。嗜三异丙基脱氢酶Leu246Glu/ Val249Met和大肠杆菌Glu256Leu/Met259Val突变衍生物构建了动摇并稳定在栖热和大肠杆菌酶,分别的突变体和野生型的聚丙烯酰胺凝胶电泳在尿素的存在下酶表明,疏水性相互作用使二聚体解离更有抵抗力。[b]氢键[/b]由于氢键的作用使得核糖核酸酶T1趋于稳定。核糖核酸酶T1平均长度86 H键。他们的核糖核酸酶T1稳定(约贡献110千卡/摩尔,如通过诱变和展开实验确定),H键贡献(307)1.3千卡/摩尔能力。因为识别H键的高度依赖于距离截止和因为一批超嗜热蛋白质结构没有被细化到足够高的分辨率,通过结构研究的热稳定性H键的作用分析没有提供明确的答案。一项研究由唐纳等人完成的。H键使得蛋白质的热力学稳定:(i)关联的去溶剂化罚与掩埋诸如H键小于去溶剂化罚掩埋离子对的(即包括两个电荷的残基),和(ii)一个充电中立H键的焓奖励是大于由于中性中性H键的电荷 - 偶极相互作用。chargedneutral之间的这种相关性H键和GAPDH稳定性表明的作用在稳定蛋白质电荷的残基可以不限于形成离子对。带电中性h的人数增加债券还发现了T. maritima的铁氧还蛋白(表5)。这些H键或者稳定转弯或锚的结构变为另一个。[b]离子对[/b]因为离子对通常存在于在少量蛋白质和因为它们不是高度保守的,它们是不驱动在蛋白质折叠的力。去溶剂化作用8筒体螺旋A8和A1)还通过测试SDM。在85.5°C,突变Arg241Ala增加酶变性率几乎3.酶的EA的一个因素展开在85℃下降3.2千焦耳/摩尔,这表明Arg241-Glu73对参与的动力学稳定这种酶。在P.球菌确定的离子对网络,P. kodakaraensis,和T. litoralis的GDH的结构进行了研究由SDM。这三种酶是83至87%相同,但它们的thermostabilities减小的方向P.球菌GDH。P. kodakaraensis GDH。T. litoralis的GDH。它们都含有相同的18离子对网络在它们的六聚体界面。突变Glu158Gln,其中去掉2离子对的该网络的中心,显著不稳定P. kodakaraensisGDH的。一个离子,包括六对网络被控残留物只存在于P.球菌GDH。相同的离子对网络在P.kodakaraensis GDH和T. litoralis的创建GDH由SDM。这两种酶是由新稳定的介绍离子对网络(280,348)。这些研究证实离子对网络在巴斯德球菌,P的作用kodakaraensis和T. litoralis的GDH thermostabilities。 Lebbink等。 (203)介绍了16个残基的离子对网络的在T. maritima的GDH亚基界面来创建一个界面类似于在体育球菌的GDH在18离子对网络。该三不稳定的突变组合产生了三重突变酶(Ser128Arg-Thr158Glu-Asn117Arg),这是稍微更稳定和嗜热比野生型酶。这个结果示出合作的高级别存在这种离子对网络的不同成员之间。该结果还支持18个残基的离子对的作用网络中的P.球菌GDH稳定。在早先的研究中,Tomschy等。(337)已拆除2位于两个α-螺旋在T. maritima的表面上的离子对GAPDH。由于这些突变不影响所述酶稳定性,作者得出结论认为,表面离子对不能被认为是热适应的总体战略。选择在本研究Bothion对分别螺旋内的离子对。这些2双可能已经位于蛋白质领域的人过约束,而不是蛋白质的地区之一最容易展开。与此相反,在其它实施例上述说明的热稳定效果非本地离子对和离子对网络,连接不相邻的残基(和二级结构)的序列中。离子配对中的作用的附加的,间接的证据热稳定性是来自基因组测序。与嗜热蛋白质带电残基相比,常温蛋白,主要是在不带电荷的极性为代价残留物。[b]脯氨酸及脯氨酸展开过程中的熵的减少[/b]Matthews等人提出已知的蛋白质三维结构可以通过展开时他们的熵的减少维持稳定。在展开状态下,甘氨酸是带有最高构象熵的残基,没有C[sub]β[/sub]。脯氨酸,可以采用只有几个配置并限制允许前述残余物的配置(313),具有最低的构象熵。因此,该突变Gly3Xaa或Xaa3Pro应该减少熵及的蛋白质的展开状态稳定的蛋白质,只要作为改造的残留不引入不利菌株中的蛋白质的结构。这一技术已被用来工程师酶是热力学更稳定。例如,杆状stearothermophilus中性蛋白酶失活通过自溶,其中针对特定柔性表面环(残基63到69)(93)。脯氨酸在循环中引入使其不易展开。只有定位65至69是适合脯氨酸替换。在其他位置,一脯氨酸将消除非共价相互作用,产生构象株,或有不恰当的扭转角度。许多嗜热和嗜热蛋白也利用这个稳定机构(255)。Pro177和Pro316在两个N个末端螺旋和Pro24中的B-转弯位置2被证明是稳定(215)。(脯氨酸分别在相应的引入地点在拜氏梭菌的酶。)至少有其中仅发生在嗜热芽孢杆菌脯氨酸22位置寡聚1,6-葡糖苷酶。其中大多数脯氨酸是在位置2的溶剂暴露B-圈(七个脯氨酸的),在循环内的线圈(9人),或在N帽一个螺旋在桶结构(其中四个)。脯氨酸是在嗜温的相应位置引入蜡状芽孢杆菌寡-1,6-葡糖苷酶。热稳定性一般随着引入脯氨酸的数量。稳定性增长最为显著时添加的脯氨酸位置两个B-转弯或在一个螺旋瓶盖ñ 。少稳定的突变可能引入不利范德范德华相互作用或删除稳定H键(361)。在那不勒斯栖热袍木糖异构酶包含两个脯氨酸在参与亚基间的相互作用是一个循环。这些脯氨酸缺席在不太稳定的Thermoanaerobacteriumthermosulfurigenes酶。动力学稳定性两个T的性能thermosulfurigenes木糖异构酶突变体Gln58Pro和Ala62Pro说明如何重要突变位置为SDM(313)的结果。两Gln58和Ala62有骨干二面角这使得为脯氨酸,既不参与非共价稳定相互作用,以及Asp57和Lys61不得不二面角那允许前面的脯氨酸残留。的构象在Gln58侧链非常接近的脯氨酸吡咯烷酮环,并且因此没有构象菌株由临介绍 突变Gln58Pro稳定的蛋白质主要是通过降低展开的熵。相反,突变Ala62Pro之间创建一个卷的干扰脯氨酸吡咯烷酮环(镉原子)和Ly61侧链(CB原子),这可能导致不稳定的构象变化。突变Ala62Pro降低了酶的T1 /2为85℃下的10倍。[b] 构象应变作用力的作用[/b]左手螺旋构象的残基(Φ=40至60°,Ψ=20〜 80°)有着末端构象稳定性除非它们通过分子内的非共价相互作用来稳定。(左旋螺旋构象非甘氨酸残基被认为比右旋结构少0.52.0千卡/摩尔而不太稳定)。在左手螺旋构象的残基中,β- 碳和羰基氧的紧密相连在蛋白质结构中产生了一个局部的构象张力。左手螺旋构象的两个残基,谷氨酸15在枯草芽胞杆菌的DNA结合蛋白HU和赖氨酸95大肠杆菌核糖核酸酶H1,在旋转区域,是通过在嗜热酶的相应部分甘氨酸残基取代。突变体谷氨酸15甘氨酸和赖氨酸95甘氨酸分别在枯草杆菌DNA结合蛋白HU和大肠杆菌RNA酶H1,消除在左旋螺旋构象中由残基产生的构象张力,以及两种蛋白质的热力学稳定性的显著增加。在这两个例子中,由于构象张力的释放增加的蛋白质的稳定,通过它的稳定性影响二级结构的相互作用被加强。大肠杆菌核糖核酸酶H1包含两个额外左旋螺旋构象的非甘氨酸残基。残基色氨酸90和天冬酰胺100,而相比之下,赖氨酸95,酶内部的点,并且它们弥补了极性或疏水的相互作用。左旋螺旋构象中,常温的铁氧还蛋白含有三个残基在他们簇结合区域。在海栖热袍菌和T. litoralis的同系物中,簇结合区域的空间位阻通过具有三个甘氨酸残基的左旋螺旋构象的残基取代物被释放。这三个甘氨酸残基都涉及了拥有硫原子簇的H键。其他类型的构象张力释放作为稳定机制已经被提及。例如在α-螺旋中,具有低螺旋倾向的残基可以通过具有高螺旋倾向的残基被替换。这样的替代物通常发生在残基的侧链没有得到很好的安置的α-螺旋时。位于α-螺旋的一个特殊取代物是C末端(或C帽)。因为它缺乏了的支链以允许它采用没有张力的左手螺旋构象,并且由于主链羰基氧可以与溶剂分子形成氢键,所以在C帽甘氨酸是最有利的残基。该P.furiosus柠檬酸合成酶至少包含了7个具有C-帽的甘氨酸螺旋。他们的对稳定性的影响仍是未知的。虽然,在一般情况下,这些构象张力释放的类型不被期望提供显著的稳定性,并且它们在极端嗜热蛋白结构中没有扮演细致的角色。他们还与其他稳定机制相竞争(如倾向疏水相互作用,H键,或离子对)。[b] 螺旋偶极作用力对结构稳定的作用[/b]螺旋偶极可以通过邻近N-末端带负电荷的残基,以及邻近C-末端带正电荷的残基维持稳定。在S.solfataricus吲哚-3-甘油磷酸合成酶中,螺旋的偶极。也被稳定在杆状stearothermophilus和海栖热袍菌PGKs中:常温酶只有9 N帽和12 C帽(猪PGK)和10 N帽9 C帽(酵母PGK)通过相反的电荷被稳定。嗜热脂肪芽孢PGK数量稳定的N和C帽提高到16 N帽和13 C和在海栖热袍菌的PGK的提高到17 N帽和14C帽。尼克尔森等人展示N帽可通过约0.8千卡/摩尔增加酶的△Gstab。虽然,在一般情况下,N和C帽子和其他稳定的以及不稳定机制相竞争(例如,倾向H键或离子对)。[b]金属键对稳定性的影响[/b]长久以来,金属键以稳定和激活酶而众所周知。木糖异构酶连接两个金属离子(选自Co[sup]2+[/sup],Mg[sup]2+[/sup]和Mn[sup]2[/sup][sup]+[/sup])。一种阳离子是直接参与催化 第二种主要是结构。两种金属结合位点具有不同的特异性,并且一种阳离子与另一种阳离子的替换经常显著的改变酶的活性,底物特异性,热稳定性。存在和不存在于地衣芽孢杆菌木糖异构酶的金属键其酶稳定性的研究稳定结果表明的演变动力学稳定性遵循的热力学稳定性以及这两种类型的稳定性是金属呈现出的固有的功能。这些观察表明,主要稳定力与呈现在全酶中的金属相连。 对于金属在极端嗜热蛋白质中的稳定性起的作用的间接证据是在酶中除去金属遇到困难。α-淀粉酶特殊结合Ca[sup]2[/sup][sup]+[/sup]。α-淀粉酶催化位点位于两个领域的分裂结构之间(具有8管和一个回路)。属于这两个领域的配体相调整,Ca[sup]2[/sup][sup]+[/sup]配体对酶的催化活性和热稳定性是必不可少。巴斯德球菌胞外α-淀粉酶最初描述为Ca[sup]2[/sup][sup]+[/sup]无关的酶,因为室温下EDTA处理对其活性没有任何影响。进一步鉴定表明,这种酶包含至少两个Ca[sup]2[/sup][sup]+[/sup]阳离子,这种阳离子在70℃以下不能被EDTA去除。在90℃下处理EDTA30分钟除去大约60%至70%的结合的Ca[sup]2[/sup][sup]+[/sup]。Thermococcus profundusα-淀粉酶做出类似的观察结果(约80%相同的P.furiosua,胞外α-淀粉酶)。这种酶被激活并通过Ca[sup]2[/sup][sup]+[/sup]使其稳定,但室温处理EDTA对活性没有任何影响。 一些嗜热和极端嗜热酶曾被描述为含有金属原子,这些原子不出现在它们同源的常温酶中。来自于Sulfolobus sp.de 铁氧化还原蛋白张力7包含一个额外的40残基的N-末端延伸,这个延伸通过Zn结合位点被连接到核心蛋白上。锌原子通过N-末端结构域的三个组氨酸残基与核心结构域的1个天冬氨酸残基相连接。这种结构(N-末端延伸加锌结合位点)是不存在于真细菌同源微生物中的但是被保存在所有其他的嗜热嗜酸菌中 。逐行N末端缺失和两三个定向突变的配体表明,N端延伸和这两个锌原子对热力学稳定性很重要。虽然,它们的存在或缺失没有任何影响,但是影响着铁氧还蛋白功能。锌原子是负责9°C增加Tm值。它是如此的紧密结合在蛋白质内,在没有移除这两个FeS时锌原子不能被移除。普通嗜热放线菌枯草杆菌蛋白酶型丝氨酸蛋白酶的嗜热蛋白酶包含了三个Ca[sup]2[/sup][sup]+[/sup]结合位点 它们中的一个不出现在其常温酶同系物中(331)。嗜热酶的嗜热同系物,芽孢杆菌AK1蛋白酶比嗜热酶包含更多的Ca[sup]2[/sup][sup]+[/sup],并且它比在嗜热酶中出现的Ca[sup]2[/sup][sup]+[/sup]具有更显著的动力学稳定(半衰期为15小时80℃下与19分钟为嗜热酶)。因为Ca[sup]2[/sup][sup]+[/sup]优先与羧酸盐以及其他含氧等配体结合(它是最有可能被位于蛋白质表面上的金属配位体),这种金属比其他金属在蛋白质稳定性可能扮演更显著的稳定作用。[b] 蛋白质翻译后的修饰作用[/b] 蛋白质糖基化广泛存在于真核生物的酶上,以及一些细菌的胞外酶被糖基化。只有几个例子是公知的被糖基化的极端嗜热蛋白,并且它们的碳水化合物部分还没有被广泛表征。虽然,大多数的酶被糖基化(细菌,古细菌和真核微生物),但在细菌中仍然保留了其催化作用和稳定性。一些研究使用天然糖基化的真核生物蛋白质表明,糖基化可能在不影响蛋白质折叠的方式或它们的构象下造成显著地热稳定作用。较高倾向去糖基化的酶在热失活下聚集,表明糖基化也可以防止部分折叠或来自于聚合蛋白质的展开。牛科胰核糖核酸酶A和核糖核酸酶B区别仅在于连接核糖核酸酶B的Asn34部分的碳水化合物不同。这碳水化合物解释说明了核糖核酸酶B更高的动力学以及热力学稳定性。先进的碳水化合物部分的假说表明,稳定性的不同是由于在第一个糖单元连接到Asn34。 糖基化对热稳定性的影响两个杆菌β-葡聚糖酶在大肠杆菌和酿酒酵母的表达。这两个之一酶在70℃时,通过糖基化有强烈的动力学稳定性,其最佳动力学稳定活性温度更高。对热稳定水平比对糖基化的程度更依赖于碳水化合物部分在蛋白质中的位置。虽然在自然界中糖基化可能不是大众的热稳定方法,上述被引用的几个例子表明,对于酶的热稳定或是溶解,糖基化可能代表了一种替代方法。 翻译后赖氨酸甲基化(形成于 N-ε-单甲基赖氨酸)已经描述为许多硫化的蛋白。天然的小的来自的 S.嗜酸热的DNA结合蛋白Sac7d(单甲基化赖氨酸 Lys5和Lys7)在100℃下发生可逆地变性(pH为7.0)。该重组Sac7d在92.7℃下变性。天然和重组的Sac7d之间的Tm 7°C的区别已被归因于赖氨酸的甲基化,赖氨酸的甲基化不存在于重组蛋白之中。由于Sso7d的稳定性(在S.Sulfolobus中是Sac7d的同系物)是不依赖于甲基化的,赖氨酸的甲基化在Sulfolobales是否是一般的热稳定机制。[b]盐离子的稳定性[/b]无机盐稳定蛋白有两种方式:(ⅰ)通过特定的影响,其中,金属离子于一个构象方式的蛋白质相互作用(参见“金属键”),(ii)通过一般盐的影响,主要影响水活性。 Thauer以及他的同事研究了盐对热稳定性的影响以及5种如甲烷噬热菌产甲烷的酶的活性(36,37,181,224,225)。然而这5种酶通过盐被激活以及机械的被稳定,盐影响的程度是酶的依赖性。 K[sup]+[/sup]和NH[sup]4[/sup][sup]+[/sup]通常比其他阳离子更有效地稳定酶。所有的阴离子,SO4[sup]2[/sup][sup]-[/sup]和HPO4[sup]2[/sup][sup]-[/sup]有最强的激活效应。酶盐的要求并不总是由细胞内盐浓度满足。分枝如甲烷噬热菌细胞内的盐浓度(大于1M钾加1M的环状2,3-二磷酸甘油酸)似乎对MkCH活性有利(最大浓度为1.5M盐)在其稳定(最佳浓度低于0.1M盐)。盐对来自于如甲烷噬热菌,M.thermoautotrophicum, Archaeoglobus fulgidus以及Methanosarcinabarkeri的CHOtetrahydrormethanopterin(H4MPT)甲酰基转移酶的影响进行比较。通过盐在甲酰基转移酶活性的不同是与在不同的生物体细胞内cDPG浓度直接相关。通过盐按照MkFT的活性分析了MkFT的结构。两种功能被提出相关的性质:(一)在疏水性表面MkFT呈现出下降的趋势,以及亚基间的界面在很大程度上是疏水的 和(ii)四聚体表面呈现与24个基本过量的负电荷残基(48个残基)。酸性残基可以形成较强的氢键和多H键的水分子,确保这些残基与无机阳离子或水竞争。所有的残基中,谷氨酸具有结合水分子的最高容量。48个表面带负电荷的,33个是谷氨酸和15是天冬氨酸。高易溶的盐浓度被认为由于在负电荷残基表面增加的无机阳离子增加了表面离子作用,并且间由于盐析的影响提高了亚基疏水相互作用效果。MkFT寡聚物构象显示出了需要比磷酸钾更高的NaCl浓度(更强易溶的盐),表明在MkFT热稳定中盐析的影响起主导作用。这种蛋白质可能有演变为最佳地稳定性表现在高的胞内盐浓度中。 当在98℃时,如甲烷噬热菌细胞中含有约的1M cDPG。cDPG中的钾盐,2,3-DPG以及磷酸盐在激活如甲烷嗜热酶环化酶中同样有效。然而,在同等离子浓度cDPG比在稳定的MkFT中更有效。在如甲烷噬热菌中,cDPG浓度对MkCH和MkFT的活性以及稳定性是最佳的。合成CDPG需要4 分子ATP。在这个合成的最后反应是唯一一个能够放出足够的能量来驱使合成cDPG而非其前体2,3-DPG。此外,在pH=7.0,cDPG是三阴离子,而2,3-DPG是五阴离子 因此cDPG比2,3-DPG在离子强度方面有更小的影响。[color=#ff0000] [/color]M. fervidus[color=#ff0000] [/color]磷酸甘油醛脱氢酶(GAPDH)本质上动力学稳定仅达到75℃。通过盐来研究这种酶的热稳定性表明,相对于盐的效果—K[sub] 3[/sub] PO[sub] 4[/sub]Na[sub]3[/sub]PO[sub]4[/sub][sub] [/sub]K[sub]2[/sub]SO[sub]4[/sub]Na[sub]2[/sub]SO[sub]4[/sub]KCLNaCL—都与他们保持一致各自的能力以减少酶在水溶液中的溶解度。它们的盐析影响了他们活性的分布。 M. fervidus GAPDH可能由cDPG被稳定在体内,它以约为0.2〜 0.3M出现在生物体中。有趣的是,其他的M.fervidus酶是唯一依赖于低于生物体的最佳生长温度的以维持稳定,这表明在该生物体中通过盐的稳定性是共同的机制。 [b]压力的影响[/b] 因为许多高温环境同样也是高压环境并且因为微生物无法逃避压力和温度,所有的大分子细胞成分必须能适应高的压力。因此,并不奇怪的是找到极端嗜生物体也是嗜压微生物(如嗜热barophilus),并发现通过高压使这种酶被稳定以及被激活(例如,M。詹氏甲烷球菌的蛋白酶和氢化酶)。通过压力这种稳定性背后的理论说明压力有利于体积最小的结构。蛋白质主要通过疏水被稳定因此,预计在高呀下被稳定,而通过离子相互作用被稳定的蛋白质应该是不稳定的。例如,P.furiosus 红素氧还蛋白主要是由静电相互作用稳定。这种酶在高压力不稳定。由于许多化学反应在高温高压进行的,在高压下酶的稳定性可能很大程度上对生物催化作用有利。

  • 【金秋计划】常见的蛋白质修饰总结

    [font=system-ui, -apple-system, &][size=16px][color=#333333](1)磷酸化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化是由蛋白激酶催化的磷酸基转移反应,是最常见、最重要的蛋白质修饰方式之一。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质磷酸化修饰的具体生物效应包括:改变被修饰蛋白质的活性、改变蛋白的亚细胞内定位、改变蛋白与其他蛋白或其他生物分子的相互作用。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①催化蛋白质磷酸化的蛋白激酶,根据底物的磷酸化位点可分为三大类,蛋白质丝氨酸/苏氨酸激酶、蛋白质酪氨酸激酶、双专一性蛋白激酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质去磷酸化的蛋白磷酸酶,根据磷酸化的氨基酸残基不同可分为两类,蛋白质丝氨酸/苏氨酸磷酸酶和蛋白质酪氨酸磷酸酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](2)甲基化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化是指在甲基转移酶催化下,甲基基团由S-腺苷甲硫氨酸转移至相应蛋白质的过程。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质甲基化修饰可产生多种不同的生物效应,包括影响蛋白质间的相互作用、蛋白质和RNA间的相互作用、蛋白质的定位、RNA加工、细胞信号转导等。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质甲基化的酶:甲基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](3)乙酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质乙酰化是指在乙酰基转移酶的催化下,在蛋白质特定的位置添加乙酰基的过程。蛋白质乙酰化修饰所产生的生物效应,主要包括促进基因转录、诱导细胞自噬、调节代谢酶的活性及代谢通路。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]催化蛋白质乙酰化的酶:组蛋白乙酰基转移酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](4)类泛素化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]小泛素相关修饰物(SUMO)是类泛素蛋白家族的重要成员之一,可与多种蛋白结合发挥相应的功能。SUMO化修饰可参与转录调节、核转运、维持基因组完整性及信号转导等多种细胞内活动。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①SUMO的分类:SUMO蛋白分布广泛,人类基因组编码了4种不同SUMO蛋白,分别为:SUMO1、SUMO2、SUMO3和SUMO4。其中,SUMO1-3在各种组织中均有表达,而SUMO4则主要在肾脏、淋巴结和脾脏中表达。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②催化蛋白质SUMO化修饰的酶。SUMO化修饰需要一系列酶的参与,包括E1活化酶,E2结合酶以及E3连接酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](5)巴豆酰化修饰。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]作为一种新型组蛋白翻译后修饰方式,蛋白质巴豆酰化是一种进化上高度保守,且在细胞生物学功能上完全不同于组蛋白赖氨酸乙酰化的蛋白质修饰方式。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]蛋白质巴豆酰化是指在巴豆酰基转移酶的催化下,在蛋白质特定的位置添加巴豆酰基的过程。组蛋白赖氨酸巴豆酰化修饰与基因的活化密切相关。此外,催化蛋白质巴豆酰化的酶是巴豆酰基转移酶。[/color][/size][/font]

  • 污泥中蛋白质的测定

    关于固体蛋白质的测定,本人是参考GB 5009.5-2010食品安全国家标准:食品中蛋白质的测定,该标准介绍了三种方法用于检测食品中的蛋白质,分别是凯氏定氮、分光光度和燃烧法。 简单分析了三种方法,主要是依据现有设备和操作繁简程度,决定采用分光光度法(为防止他人误会,简单说一下该方法的原理:食品中的蛋白质在催化加热条件下被分解,分解产生的氨与硫酸结合生成硫酸铵,在pH 4.8 的乙酸钠-乙酸缓冲溶液中与乙酰丙酮和甲醛反应生成黄色的3,5-二乙酰-2,6-二甲基-1,4-二氢化吡啶化合物。在波长400 nm 下测定吸光度值,与标准系列比较定量,结果乘以换算系数,即为蛋白质含量。) 我困惑于国标方法其后提供的公式:详细见附件 求助如下:1)公式中的C和C0测定的氮是氨氮还是总氮?2)V1,V2,V3和V4描述的很啰嗦,可否指点一下对应标准中的何处? 再此谢谢各位!

  • 【热点】蛋白质组学研究

    人类基因组计划的顺利实施,使生命科学研究的重心正逐渐转到生物功能的整体研究。基因组学由于自身的局限性,它不能回答诸如:蛋白质的表达水平和表达时间,翻译后修饰以及蛋白质与蛋白质或与其他生物分子的相互作用等问题。作为基因研究的重要补充,蛋白质组学在蛋白质的水平上定量的、动态的、整体的研究生物体。蛋白质组(Proteome)概念是最早是由澳大利亚学者Wilkins和Williams于1994年提出的,即基因所能表达的全部蛋白质,更为清楚的表达是细胞或组织或机体在特定时间和空间上表达的所有蛋白质。具体说它是对不同时间和空间上发挥功能的特定的蛋白质组群进行研究,进而在蛋白质的水平上探索其作模式、功能机理、调节调控以及蛋白质组群内的相互作用,从而为临床诊断、病理研究、药物筛选、新药开发、新陈代谢途径研究等提供理论依据和基础。 详情请见:[url=http://www.instrument.com.cn/hot/HA_56.htm]热点应用:蛋白质组学研究[/url]

  • 【热点】蛋白质组学研究

    人类基因组计划的顺利实施,使生命科学研究的重心正逐渐转到生物功能的整体研究。基因组学由于自身的局限性,它不能回答诸如:蛋白质的表达水平和表达时间,翻译后修饰以及蛋白质与蛋白质或与其他生物分子的相互作用等问题。作为基因研究的重要补充,蛋白质组学在蛋白质的水平上定量的、动态的、整体的研究生物体。蛋白质组(Proteome)概念是最早是由澳大利亚学者Wilkins和Williams于1994年提出的,即基因所能表达的全部蛋白质,更为清楚的表达是细胞或组织或机体在特定时间和空间上表达的所有蛋白质。具体说它是对不同时间和空间上发挥功能的特定的蛋白质组群进行研究,进而在蛋白质的水平上探索其作模式、功能机理、调节调控以及蛋白质组群内的相互作用,从而为临床诊断、病理研究、药物筛选、新药开发、新陈代谢途径研究等提供理论依据和基础。 详情请见:[url=http://www.instrument.com.cn/hot/HA_56.htm]热点应用:蛋白质组学研究[/url]

  • 【原创】蛋白质提取与纯化技术

    纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)(四)根据配体特异性的分离方法-亲和色谱法   亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。细胞的破碎1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS

  • 国家蛋白质科学上海设施/国家蛋白质科学中心(上海)(筹)公开招聘自动化控制系统工程师

    国家蛋白质科学上海设施/国家蛋白质科学中心(上海)(筹)公开招聘自动化控制系统工程师国家蛋白质科学研究上海设施是国家重大科技基础设施,是国家级蛋白质科学研究平台;在设施建设基础上,依托中国科学院上海生命科学研究院,委托生物化学与细胞生物学研究所(简称SIBCB)负责筹建成立并管理国家蛋白质科学中心(上海)(筹), 负责设施的运行管理。中心在筹建期间,办公地点设于生化与细胞所(上海市岳阳路320号);中心在建成运行期间,办公地点设于浦东新区张江高科技园区中区西部(上海市海科路333号)。中心定位于:支撑国家蛋白质上海设施建设的建设,衔接该设施的运行;聚集培养生命科学与生物技术特别 是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。中心将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。国家蛋白质科学中心(上海)(筹)现因工作扩展的需要,公开招聘自动化控制系统工程师一名。一、岗位职责:参与国家蛋白质科学中心(上海)(筹)在上海同步辐射光源5线6站的建设、运行和管理,充分理解同步辐射光束线站的工作内容和线站用户的实际需求,完成线站自动化控制程序的设计、开发和维护。二、任职条件:1、本科以上学历,有丰富的 Unix/Linux 平台下的工作经验,熟悉 Unix/Linux 工作环境,习惯于在 Unix/Linux 平台下工作。有大量的源代码的阅读经验。2、有丰富的 C/C++ 开发经验。熟悉 Socket 编程和多线程编程。3、良好的英文表达能力。能独立完成项目调研,设计和开发工作。4、有以下背景或经验者优先考虑:有大型系统开发经验者和硬件开发经验者;有软件界面开发经验者;有网络程序开发经验者;熟悉 Tcl/Tk 语言者;有 Unix/Linux 系统管理经验者。5、具有良好的人际关系和团队协作精神,工作努力,作风踏实,责任心强。6、身体健康,能长期稳定工作。 三、招聘方式及程序 1、应聘材料:([back=whi

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制