当前位置: 仪器信息网 > 行业主题 > >

固化率研究

仪器信息网固化率研究专题为您整合固化率研究相关的最新文章,在固化率研究专题,您不仅可以免费浏览固化率研究的资讯, 同时您还可以浏览固化率研究的相关资料、解决方案,参与社区固化率研究话题讨论。

固化率研究相关的资讯

  • 投影式光固化打印压电材料的近期研究进展
    压电材料是受压力作用时会在相对表面两端界面之间产生电压的晶体材料,可适用于换能器,传感器、驱动器、声纳、手机和机器人等应用。相较于其他3D打印制备技术,投影式光固化3D打印技术,尤其是PµSL,在打印速度和分辨率方面都有明显的优势((26,000 mm2h-1, 10 μm),挤出式(0.2–113 mm2 h-1, 10–120 μm),气溶胶喷射(19–5,600mm2 h-1,100 μm),多工艺协作制备( multiprocesstechniques)(11 mm2 h-1,100 μm)。本文整理了近年间期刊上压电材料的相关研究进展,供大家参考,如对这个方向感兴趣,欢迎和我们联系,一起探讨光固化打印压电材料的技术和应用。Nature Electronics:PµSL制备价态可控的多材料压电器件一句话总结:采用PµSL的技术打印3D结构,然后选择性沉积一种或多种材料(金属、陶瓷、半导体材料等)在已打印的3D结构的任意指定位置,实现了价态可控的3D压电器件的制备。论文信息:Hensleigh R., Cui  H. C.  , Xu  Z. P.,   Massman J., Yao D. S.,,Berrigan J. and X. Y. Zheng . Charge-programmed three-dimensional printing formulti-material electronic devices. Nature Electronics (2020). https://doi.org/10.1038/s41928-020-0391-2。Nature Materials: 3D 打印制备智能压电材料一句话总结:采用3D打印技术,快速打印任意结构的压电三维材料,实现电压在任意方向可放大、缩小及反向的特性。论文信息:H.C. Cui, R. Hensleigh, D. S. Yao, D.Maurya, P.Kumar, M. G. Kang, S. Priya and X. Y. Zheng. Three-dimensional printing of piezoelectricmaterials with designed anisotropy and directional response.Nature Materials 18, (2019) 234–24. https://doi.org/10.1038/s41563-018-0268-1。Materials and Design: DLP 3D打印制备压电耳机一句话总结:采用DLP 3D打印技术制备压电声学传感器并封装在集成电路中。实验结果表明:该传感器薄膜厚度可减至35微米且具有可调节的共振频率。论文信息:Tiller B., Reid A., Zhu B. T., Guerreiro J.,Domingo-Roca R., Curt Jackson J. C. and Windmill J.F.C.. Piezoelectricmicrophone via a digital light processing3D printing process. Materials andDesign 165 (2019) 107593. https://doi.org/10.1016/j.matdes.2019.107593。Procedia CIRP: 聚合物基压电可光固化树脂制备压电材料一句话总结:采用PµSL制备高聚合物基压电材料,该材料是以PVDF(聚偏二氟乙烯)35%(体积分数)与光固化树脂混合制备而成,压电电压系数为105.12 × 10-3 V∙m/N。论文信息:Chen X. F., Ware H., Baker E., Chu W. S.,Hu J. M. and Sun C. The development of an all-polymer-based piezoelectricphotocurable resin for additive manufacturing. Procedia CIRP 65 (2017) 157 –162. https://doi.org/10.1016/j.procir.2017.04.025。 ACS Nano:3D打印制备复合纳米压电材料一句话总结:采用DLP-3D打印技术制备了复合纳米压电材料(BTO-PEGDA)。实验结果表明:优化的纳米BTO颗粒掺杂制备的压电材料介电系数是无优化掺杂的压电材料的十倍以上,且应变转换效率也远超于掺杂碳纳米管制备的压电复合材料。论文信息:Kim.K, Zhu W. Qu X., Aaronson C., McCall W. R.,Chen S.C. and Sirbuly D.J. 3D optical printing of piezoelectric nanoparticle-polymer compositematerials. ACS Nano, 2014. 8(10) 9799-806. https://doi.org/10.1021/nn503268f.官网:https://www.bmftec.cn/links/10
  • 福建物构所吴立新研究员课题组光固化3D打印研究获新进展
    p style="text-align: justify text-indent: 2em "面向人工智能和健康监控的柔性可穿戴传感器正在从基础研究向产业化方向发展,3D打印具有不受零件几何结构限制和快速制造的优势,在可穿戴传感器方面具有应用前景,但如何满足智能穿戴应用中的各种力学性能和传感性能要求仍具挑战。/pp style="text-align: justify text-indent: 2em "中国科学院功能纳米结构设计与组装/福建省纳米材料重点实验室研究员吴立新课题组基于可逆共价键,合成了可水解的交联剂,在3D打印光敏树脂中添加这种交联剂能够提高打印分辨率,打印的模具可在热水中溶解。将聚氨酯/碳纳米管复合材料浇注于模具中,在热水中除去模具,得到各种多孔结构的传感器,该传感器具有高拉伸、高回弹的特点。研究人员结合3D打印形状的可设计性,制备出多孔的手指套、鞋垫以用于检测人体运动。相关研究成果span style="color: rgb(0, 112, 192) "" Tailored and Highly Stretchable Sensor Prepared by Crosslinking an Enhanced 3D Printed UV‐Curable Sacrificial Mold" /span发表在Advanced Functional Materials上,博士研究生彭枢强为论文第一作者,高级工程师翁子骧和吴立新为论文的通讯作者。/pp style="text-align: justify text-indent: 2em "2020年,该课题组在光固化3D打印材料方面获得多项成果,包括基于核壳粒子的高强高韧3D打印树脂、生物可降解3D打印树脂、以及与福建物构所许莹课题组联合研发的高强高硬耐高温氰酸酯3D打印树脂。/pp style="text-align: justify text-indent: 2em "a href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202008729" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "strongspan style="color: rgb(0, 112, 192) "论文链接/span/strong/a/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3d522d17-c7d5-4af6-b8b5-72539ce3b014.jpg" title="3D打印.jpg" alt="3D打印.jpg"//p
  • 流变和拉曼光谱的再次碰撞——UV胶的固化
    流变和拉曼光谱的再次碰撞UV胶的固化流变学已成为UV固化动力学研究中较为常用的表征方法。流变学中的参数—动态弹性模量G'对形态结构极其敏感,能够很好的反映体系在辐射固化交联过程中双键密度和内部结构发生的变化,因此实时监测G'的变化可以从体系结构的角度反映固化程度。UV固化本质是一种化学反应,材料暴露在特定的UV辐射下会引发自由基反应,导致机械结构发生明显变化。因此UV固化还可以通过拉曼光谱进一步监测,这些化学变化将会通过特征峰的生成或降低(缓慢或快速变化)反映在拉曼光谱中。流变仪与拉曼光谱相结合,可以同时获得材料的化学结构和物理性质的信息,将这些信息关联起来以获得在材料加工、反应机理方面更加深入的洞悉。UV固化系统和拉曼光谱仪均可通过安东帕MCR系列流变仪软件进行触发,从而能够同步监测整个UV固化过程中的粘弹性力学行为和光谱数据。流变&拉曼联用Omnicure S1500紫外固化系统,配备5mm光纤。Cora5001拉曼光谱仪,配备特制的联用拉曼探头——HT fiber probe 785。MCR流变仪,使用帕尔贴罩(H-PTD)和25mm石英玻璃平板。UV固化系统和拉曼仪均连接至MCR流仪中,从而UV辐射源和拉曼光谱仪都可以通过流变仪进行自动触发,保障原位测量的同步性。独特接口设计UV源与特制的联用拉曼探头实验结果图1:UV胶固化反应过程中的损耗模量(红色)和储能模量(黑色)变化曲线流变测量的结果如图1所示。从测量结果可以看出,样品最初表现出粘弹性流体响应,其损耗模量(G')大于储能模量(G')。随后,在UV辐射下激发了固化反应,从而可以观察到模量的快速变化。两个模量的变化曲线的交叉点意味着样品从液体主导状态转变为固体主导状态。然而,在5s的UV辐射时间结束后,固化反应继续进行,这可以从模量的持续增加中观测到。图2:950cm-1和1150cm-1的峰强随固化时间的变化图2为两个拉曼特征峰(950 cm-1和1050 cm-1)的峰强变化曲线。所选的这两个特征峰具备一定代表性,因为大多数其他特征峰的行为与其中一个相似。在5s的UV辐射下,两个特征峰都出现了峰强的骤降。在UV辐射结束后,950 cm-1的峰强迅速达到稳定水平,标志着相应基团化学变化的结束;而1050 cm-1的峰强是逐渐下降的,这与之前图1所示的模量逐渐增大相呼应;其余特征峰强度的变化率都处于上述两个特征峰之间。拉曼光谱中的整体化学信号变化与流变性能变化趋势相吻合,两种技术可以相互印证。然而,拉曼光谱中展示的信息非常丰富,不同特征峰的强度变化曲线代表不同化学基团的反应特性,因此,可以获得每一个感兴趣的化学基团的变化信息。拉曼光谱的这一特性,不仅是样品整体流变特性的补充,还为深入了解不同反应基团的特性提供了可能性。实验结论安东帕的流变-拉曼联用设备已被证明对监测复杂的反应机理非常有益。MCR系列流变仪还可以与不同激发波长的Cora5001拉曼光谱仪,以及不同的UV固化系统(不同波长、汞灯、LED光源)相结合,且流变仪可使用多种型号(如珀耳帖或电加热),为各种应用提供最大的灵活性。想要了解完整的本次应用报告,请点击下载。
  • DEA测试聚酰亚胺的固化
    聚酰亚胺是一种高性能塑料,通常是热塑性的,有时也可以发生固化。聚酰亚胺具有非常高的力学性能、化学稳定性和热稳定性,常用在复杂的应用场合,比如替代金属和玻璃,作为耐高温材料、耐润滑油、汽油、耐化学腐蚀材料等。有些应用场合需要对聚酰亚胺树脂的固化温度和时间有着充分的了解。测试条件:温度范围:30...300°C传感器:IDEX,梳妆结构,电极间距115μm升降温速率:2、10、20K/min测试气氛:空气频率:10KHz结果讨论:图1 固化过程的离子粘度变化图2 固化动力学模型拟合在测试起始阶段,由于温度升高样品软化造成离子粘度略微降低,随后样品开始固化离子粘度开始升高。中途离子粘度有短暂的下降,之后又继续升高,这表明样品存在二步固化反应,最终固化后的离子粘度相比于初始阶段增加了4个数量级(图1)。使用Thermokinetics软件对三次不同升温速率下的测试数据计算得到动力学模型。此处树脂固化模型为三步连续反应:A→B→C→D,且每步反应都是自催化反应,模型拟合与测量数据之间的相关系数高达0.999(图2)。
  • 利用DSC方法评价热固性树脂—热固化粘合剂
    热固化粘合剂主要成分为热固性树脂,使用在材料之间的粘合上。根据粘合剂成分,粘合时的温度,时间不同,粘合强度与粘合性也不同。通过加热可促进固化,缩短粘合时间。此外还开发了即使在低温下也可进行固化反应的粘合剂,提高了通用性及便捷性。 热固化粘合剂的固化度和性能,通常使用DSC进行玻璃化转变的测试来评价。下面,就让我们用日立DSC7000X研究热固化粘合剂的玻璃化转变和固化反应。■ 实验条件 样品:双组分液体混合型粘合剂样品量:约1mg升温速率:10℃/min样品容器:Al开口容器 ■ 实验结果放置3—10min的样品,可在0—50℃之间观察到热固化反应的放热峰。随着时间增长放热峰减小,推测室温下发生固化反应放置3—10min的样品其玻璃化转变在0℃以下,放置15min以上的样品则在0℃—室温之间。3-15min样品玻璃化转变有大幅的变化,15min以后变化变缓。可以推测双组分混合型粘合剂混合开始大概经过15min以上才能充分粘合。 常见问题?测试中可能遇到的问题:在评价热固性树脂的过程中,未固化部分的反应峰(放热)与玻璃化转变的区域发生重叠时,玻璃化转变的判定就会变得困难。解决办法!使用调制DSC方法,进行热固性树脂成型品(含填料)和热固化胶粘剂的玻璃化转变测试,可以排除可逆反应(如固化反应,以及其他热历史),从而更容易判断玻璃化转变。测试案例如下图所示: 日立差示扫描量热仪DSC7000X,拥有新型传感器和炉体,实现世界顶级的灵敏度和重现性,配备的最新热分析软件EMA,一次购买就可包含所有高级功能,如调制DSC,比热容分析,动力学分析等。并可配备Real View TA样品观察系统,可将一些难以分辨的现象可视化,从而获得可靠度更高的数据。关于日立差示扫描量热仪 DSC7000系列热分析仪详情,请见:https://www.instrument.com.cn/netshow/SH102446/C313721.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • Pμ SL与TPP微纳光固化3D打印技术
    导读:增材制造被认为是“一项将要改变世界的技术”。光固化3D打印是其中的一个重要方向,以数字化模型为基础通过光与材料(多为树脂、陶瓷浆料、纳米金属颗粒浆料等)的反应实现结构的成型,并借由局部光聚合反应,可实现相对较高的光学分辨率及打印精度。目前,从光固化3D打印技术的发展来看,主要是从两个维度进行聚焦: 一个是宏观的维度,也就是实现大幅面、大尺寸、高速度的3D打印;另一个是微观的维度,即实现微米、纳米尺寸的精细3D打印。在微纳机电系统、生物医疗、新材料(超材料、复合材料、光子晶体、功能梯度材料等)、新能源(太阳能电池、微型燃料电池等)、微纳传感器、微纳光学器件、微电子、生物医疗、印刷电子等领域,复杂三维微纳结构有着巨大的产业需求【1】。微纳尺度光固化3D打印在复杂三维微纳结构、高深宽比微纳结构和复合(多材料)材料微纳结构制造方面具有很高的潜能和突出优势,而且还具有设备简单、成本低、效率高、可使用材料种类广、无需掩模或模具、直接成形等优点,因此,微纳米光固化3D打印技术在近几年正在受到越来越多的科研机构、企业以及终端用户的青睐。在全球范围内已经成熟商业化的微纳米光固化3D打印技术主要有:双光子子聚合TPP(Two-photon polymerization based direct laser writing)技术和PμSL面投影微立体光刻技术(Projection Micro Stereolithography) 。TPP是一种利用超快脉冲激光将光敏材料(树脂、凝胶等)在焦点区域固化成型的工艺。PμSL则是使用紫外光,通过动态掩模上的图形整面曝光固化树脂成型的工艺。这两种技术是目前常用的微纳米尺度3D打印的技术,其中TPP打印的精度可实现100 nm以下,目前德国和立陶宛等国家有商业化的设备产品。PμSL目前在实验室阶段可实现几百纳米精度,已经商业化的产品可达几个微米的打印精度,多见于深圳摩方材料公司的nanoArch系列微纳3D打印设备,为全球首款商业化的PμSL微尺度3D打印设备产品。本文将从几个方面对上述两种技术进行系统介绍。技术原理光固化(photocuring)是指单体、低聚体或聚合体基质在光诱导下的固化过程。光固化3D打印,是指通过控制光斑的图案或者振镜扫描路径,曝光区域的液态树脂聚合成固态物质,未曝光的区域树脂不参与聚合反应,通过精密控制Z轴移动,从而层层堆积快速成型样件。光固化3D打印,目前有单光子吸收聚合和双光子吸收聚合两种树脂聚合方法。单光子吸收 (SPA) 是指激发态电子吸收一个能级差的能量从低能级跃迁到高能级的过程,光吸收效率与入射光强是线性相关的。PμSL是利用单光子吸收聚合反应而成的打印技术,入射光进入液态树脂后,在吸收剂的作用下,光强逐渐减小,因此有效聚合反应只发生于树脂表面很薄的一层, 如图1所示。双光子吸收 (TPA) 则是受激电子同时吸收两个光子能量实现跃迁的过程,这是一种非线性效应,即随着光能量密度的增加,该效应会快速加强。因此入射光可穿过液态树脂,在其空间中的一个极小区域发生体像素固化成型。如图1所示,双光子吸收主要发生在某一点处,通常是光束焦点位置。这也是因为此处光强足够高,促使聚合物发生双光子吸收效应而发生聚合反应。 图1. 单光子吸收和双光子吸收【2】。其中,基于单光子吸收的3D打印设备可采用点光源或面光源(如PμSL),而TPP使用的是点光源。从图1中也可以看出,双光子吸收具有高局域性,这一点是单光无法实现的。借助这种高局域性质,目前小于一百纳米尺度的3D打印也成为了现实。将激光聚焦,使得激光焦点处光强超过双光子吸收阈值,控制反应区域在焦点附近极小的区域,改变激光焦点在样品中的相对位置,便可打印3D 微纳米结构,且具有极高的打印精度。而单光子吸收,具有曝光面积大,在达到较高打印精度的同时,且具有极高的打印速度。制备工艺和设备双光子聚合TPP微纳米3D打印过程以图2为例: 飞秒激光通过超高倍率的聚焦系统聚焦在光敏材料上,由光敏材料的双光子吸收发生聚合作用。其中,光敏材料一般是涂覆在载玻片或硅片上,载玻片是置于压电陶瓷平台上。通过移动精密压电陶瓷平台或振镜扫描,控制激光焦点位置的移动,即可实现微纳3D结构的成型,成型后使用有机溶剂冲洗(浸泡)样品,去除残余的未聚合材料,最终获得3D结构样品。其打印过程一般无需将打印件从树脂槽底部剥离,也无需安装刮刀进行光敏树脂液面的涂覆。图2 典型的TPP打印系统示意图【3】PμSL的操作过程(如图3)是将LED发射的紫外波段光反射在一个数字微镜装置(DMD)上,再让紫外线按照设定图形对液态树脂进行一个薄层的曝光。表层树脂固化后,下降打印平台,更多的液态树脂会流到已固化层之上,新的一层液态材料继续被紫外线照射曝光。完成的打印物品只用清理掉残留液态树脂就可被用作为装置、样品或者模具。通常的TPP打印采用的是红外飞秒脉冲激光作为光源,飞秒脉冲激光器的价格昂贵且随着使用时间积累存在衰减问题。PμSL则可选用工业级UV-LED 作为光源,光源寿命长(10000小时)、成本低(通常低于十万)、更换成本相对较低。设备使用环境要求方面,TPP打印的设备大多建议使用黄光无尘室,PμSL 3D打印系统只需要正常洁净的空间放置即可,无黄光无尘室的要求。图3 典型PμSL打印系统的设备示意图3D打印性能就打印分辨率来讲,PμSL技术通过DMD芯片的选择和投影物镜微缩,可实现的打印分辨率在几百纳米至几十微米的尺度范围。而TPP双光子聚合由于其聚合反应的高度局域,且突破了光学衍射极限,最高可以实现一百纳米左右的超高打印分辨率。就打印速度来讲,由于PμSL技术利用整面投影曝光,而TPP技术采用逐点扫描加工,因此打印速度上也存在较大差异。以整体大小2 mm (L) × 2 mm (W) × 70 μm (H),最小特征尺寸5μm的仿生槐叶萍模型举例,PμSL打印设备可在15分钟内打印完成,相对来说,TPP打印设备则需要16小时【4】。就打印幅面来讲,TPP技术因为激光焦点位置的精密移动通常由精密压电陶瓷平台或扫描振镜提供,移动范围有限,辅以扫描振镜技术或机械拼接,典型打印幅面约3mm×3 mm左右。PμSL技术由DMD芯片幅面和投影物镜倍率决定单投影曝光幅面,还可以通过机械拼接实现更大幅面,如图4为深圳摩方材料科技有限公司的设备制备的高精度大幅面跨尺度打印的样品,其样品整体尺寸为:88×44×11 mm3,杆径:160 μm。摩方材料公司的设备最大打印幅面可达100mm×100mm。图4 高精度跨尺度打印就打印材料来讲,双光子吸收的特殊性也使得TPP打印对材料的选择较为苛刻,如要求树脂必须对工作波长的激光是透明的以保证激光能量可以在树脂内聚焦,且具有较高的双光子吸收转化率,因此所用的材料种类相对受限(如SCR树脂、IP系列树脂、SU8树脂、PETA等)。而PμSL打印材料多为光敏树脂,可打印透明树脂材料和不透明的复合树脂材料,种类比较广泛且商业化(如硬性树脂、韧性树脂、耐高温树脂、生物兼容性树脂、柔性树脂、透明树脂、水凝胶、陶瓷树脂等)。应用层面TPP技术是目前纳米尺度三维加工较为普遍的加工技术,在诸多科研领域中有着广泛应用,包括纳米光学(如光子晶体、超材料等)、生命科学(细胞培养组织、血管支架等)、仿生学、微流控设备(阀门、泵、传感器等)、 生物芯片等,如图5所示。但另一方面,受其加工幅面及速度的限制,TPP打印的工业化应用较少,目前仍急需突破。图5 TPP微纳米3D打印的案例【5】PμSL在科研领域的应用包括仿生学(槐叶萍结构【4】)、生物医疗(支架结构、微针)、微流控管道、力学、3D微纳制造、微机械、声学等,如图6。图6 PμSL微纳米3D打印的案例【4】相较于TPP,PμSL 加工速度快、打印幅面大、加工成本低以及宽松的环境要求等特点,使其工业应用领域已实现了内窥镜、导流钉、连接器、封装测试材料等的批量加工和应用。例如眼科医院用于治疗青光眼的导流钉(如图7示),导流钉中微弹簧直径可达200微米、打印材料具有优异的生物相容性,该导流钉在治疗中可有效改善眼压和流速。此外,亦有通讯公司用于芯片测试的socket插座,如图8示,能实现半径可达100微米,间隔50微米的致密结构。在医疗领域比较知名的内窥镜制造企业也已经使用PμSL制造出高纵横比、薄孔径的内窥镜底座,最小薄壁厚度70微米,高至13.8毫米。另外,除了打印树脂材料,PμSL工艺也可以打印陶瓷(图9为陶瓷打印样件)。图7 眼科医院用于治疗青光眼的导流钉(引流管、 短突、 翼领)图8 内窥镜头端和socket插座图9 陶瓷打印样件总而言之,作为微尺度代表性的两种光固化3D打印技术,TPP和PμSL技术具有各自的打印特点及相关应用领域。TPP打印精度高达一百纳米左右,加工尺寸和材料相对受限,已经在光学、超材料、生物等科研领域,有着广泛的应用。在大幅面的微尺度3D打印技术方面,PμSL面投影立体光刻具有加工时长短、成本低、效率高的优点,也已广泛应用在科学研究、工程实验、工业化等多个领域。参考文献:【1】兰红波,李涤尘, 卢秉恒. 微纳尺度3D打印. 中国科学: 技术科学. 2015, 45(9): 919-940.【2】S. H. Wu , J. Serbin, M.Gu. Two-photon polymerisation for three-dimensional micro-fabrication Journal of Photochemistry and Photobiology A: Chemistry 181 (2006) 1–11【3】S. H. Park, D. Y. Yang and K. S. Lee. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser & Photon. Rev.3, No. 1–2, 1–11 (2009)【4】Xiang Y. L., Huang S. L.,Huang T. Y., Dong A.,Cao D.,Li H. Y.,Xue Y. H., Lv P.Y.and Duan H. L. Superrepellency of underwater hierarchical structures on Salvinia leaf. PNAS. 2020, 117(5):2282-2287.【5】M. Malinauskas, M. Farsari, Algis Piskarskas, S. Juodkazis. Ultrafast laser nanostructuring of photopolymers: A decade of advances. Physics Reports 533 (2013) 1–31
  • 赛默飞世尔科技扩展流变仪紫外固化测试单元的配件范围
    &mdash &mdash 满足行业对紫外线固化日益增长的需求中国,上海(2011年12月1日)- 作为全球科学服务领域领导者的赛默飞世尔科技公司今日宣布已扩大其流变仪配件范围,以满足紫外线固化单元的要求。这将满足日益增长的行业需求,即应用紫外线辅助热固化工艺取代热固化,以提高生产率,并进一步促进环境的持续发展。 采用常见的振荡剪切方法通常难以对涂覆过程中(如牙科中)短短几秒钟内可能发生的紫外线诱导反应进行监测。为应对这一挑战,赛默飞世尔科技为赛默科技哈克MARS高端流变仪研发出&ldquo 快速振荡模式&rdquo 。采用这种新的&ldquo 快速振荡方法&rdquo 可获得与振荡频率无关的 500Hz 更高数据采集率,从而满足极快固化材料的具体需要。 如今客户可在4 种紫外线测量配置中做出选择:► 标准型式的紫外线测量单元安装到温度控制装置(液体循环器控温、电加热或帕尔帖板),在环境温度下适于墨水等紫外线固化材料。 ► 在更高温度下适于热辅助固化工艺的紫外线单元可用于哈克MARS流变仪。该元件整合到流变仪的辐射对流炉 (CTC) 内,涵盖温度范围为 -150℃~600℃。► 光导管、聚光器和玻璃板等光学部件的可定制紫外线单元(照射距离可自由调整)模拟了生产工艺中光学部件的配置,比如:用于制造隐形眼镜的光学部件。► 对于在紫外线固化材料上进行的测量,已研发哈克MARS流变仪平台用新模块。当模块安装到测量头上时,该模块可与流变仪的Rheonaut 模块一并使用,后者允许同时测量流变性能和FT-IR光谱,从而研究样品范围内发生的结构变化。 可通过赛默科技哈克RheoWin 测量与评估软件选择并启用市场可买到的光源。粉末涂料、粘合剂、密封剂、焊接材料和墨水或隐形眼镜等应用可以配备这些测量元件。作为流变学领域的先锋之一,赛默飞世尔科技运用其全面的赛默科技材料特性方案成功地支持了大量行业。材料特性方案分析并测量了塑料、食物、化妆品、药品和涂料、化学品或石化产品以及各种液体或固体等的粘度、弹性、加工性和温度相关力学变化。详情请登录www.thermoscientific.com/mc。Thermo Scientific HAAKE MARS 流变仪 关于赛默飞世尔科技赛默飞世尔科技公司是全球科学服务领域的领导者。我公司的使命是帮助客户把世界变得更健康、更洁净、更安全。我公司收入接近 110 亿美元,拥有约 37000 名员工,服务对象包括医药和生物技术公司、医院、临床诊断实验室、大学、研究所和政府机构以及环境与工艺控制行业等范围内的客户。我公司通过赛默科技与飞世尔科技两个主打品牌为我公司的主要股东创造价值,赛默科技与飞世尔科技提供了一个持续技术开发的独特组合和最方便的购买任择权。我公司产品和服务有助于加快科学探索步伐,并解决从复杂研究到常规试验再到现场应用等各个环节中所遇到的分析方面的挑战。请登录www.thermofisher.com ,或中文网站www.thermofisher.cn
  • “502多久可以粘住?”——湿固化胶粘剂的热分析解决方案
    引言 大家应该对502胶这款生活中常见的胶粘剂并不陌生,如果不小心粘在手上,不到一分钟就会牢牢地跟人体皮肤形成一层胶层,十分难以清理,因为此时已经发生了交联固化,酒精不能溶解,需要加热到软化温度再慢慢清理下来。 图1:生活中的502胶水 那么502是怎么发生交联的呢?其实它主要组分为α-氰基丙烯酸乙酯,化学结构式如图2所示,它会与空气中的水发生反应,迅速由单体形成链式的体型结构以达到固化交联和粘接的作用,它属于胶粘剂中的湿固化胶粘剂。 图2:α-氰基丙烯酸乙酯及其固化机理 测试方案 我们在使用各种胶水时,最常问的一句话就是:我按多久可以粘住啊?,这个其实本质上就是胶粘剂在某个温度下的凝胶时间测定过程。凝胶时间(或贮存期)是指树脂中分子形成凝胶所需的时间。凝胶之后, 树脂就不再适合作其他用途。是可以通过TMA/SDTA2+进行测试的,下面展示的案例即是由图3中的梅特勒托利多TMA—Sorption 完成的湿固化胶粘剂测试方案。 图3:梅特勒托利多TMA—Sorption设备 该样品为某聚氨酯湿固化胶粘剂,因此在测试时就需要将样品放置在设定的相对湿度(RH)下,然后 使用DLTMA技术测量样品,DLTMA技术是TMA/SDTA2+所标配的调制技术,可以实现负力向上抬样品探头以测试凝胶时间(参考GB 12007.7-89),施力过程如图4所示。再通过湿度发生器设置相应的湿度程序以进行胶粘剂的湿固化凝胶时间测试。图4:调制力施加控制过程 在一定的温度下,空气中水蒸气的含量是有限的,就像某一物质溶解在水中时,一定温度的水中能溶解多少这种物质一样。气温越高,空气中能够容纳的水汽越多。气温越低,能容纳的水汽越少。测试方法及制样 探针:3毫米球点探针。力值:DLTMA测量期间的作用力在–0.010和0.010N之 间以正弦方式变化,周期为12 秒。样品制备过程:在30&ring C下将一小滴液体PUR胶粘剂直接滴到TMA的石英玻璃样品支架上。测量之后,通O2高温将固化物烧掉,冷却后擦去残留物。图5显示了在30&ring C和90%相对湿 度下执行DLTMA测量的结果, DLTMA曲线可以在最大值和最小值之间以正弦方式变化,此时探头压入样品或抬离样品。在液态下,测量探针在向上过程中完全抬离样品。大约20分钟之后,样品向上抬离样品变得困难。在70到100分钟之间,该位移振幅保持在较为稳定水平下;测量探针不再能完全抬离。这是液滴表面形成了粘膜或表皮,防止探针抬离样品。此粘膜在样品内部和实验气氛之间形成了一个“扩散屏障”,因此进一步固化速度非常慢。从100分钟开始,该位移幅度明显变小。大约170分钟之后,它逐渐变为零,材料变成粘性凝胶,探头无法再上下运动。因此对于前文提到的502类胶水,不慎粘在手上,在“粘膜”形成的时间前我们一定要迅速清洗掉!如图6上曲线所示,开始时间T1描述了表面粘膜的形成,开始温度T2的第二步则表示整个液滴开始固化,之后在最终时间T3几乎完全固化。因此T3与样品的凝胶时间相对应。 图5.样品在设定温/湿度下的固化曲线 此外,在30℃条件下也进行了 70%和80%的RH对样品固化过程影响的测试。图6显示了特征时间T1、T2和T3与相对湿度的关系。随着相对湿度的增加,反应速度也加快。样品表面粘膜的形成时间 (T1)和“内部湿化”的开始时间 (T2)对于相对湿度的依赖性比凝胶时间T3要小很多。 图6. T1、T2、T3与相对湿度的关系 结论 热固性树脂的湿固化可以通过进行DLTMA技术与湿度发生器联用的方式进行测量。可以通过调整相对湿度和温度来研究胶粘剂的凝胶时间影响因素。
  • 赛默飞世尔科技再度拓展流变仪UV固化元件的功能
    德国卡尔斯鲁厄(2008年8月19日)-服务科学世界领先的赛默飞世尔科技公司再度拓展了流变仪用UV固化元件的产品种类,以借此重点开发此类附件的功能。此举与行业中用支持UV的热固化工艺取代热固化的趋势不谋而合,可有效地改善产品特性,提高生产力。现在,客户在选购UV测量装置时有以下三种选择: - 标准版UV测量元件:可安装在温控单元(液体温控、电子温控或Peltier板)上,适用于在室温情况下对油墨等材料进行UV固化。 - 高温热固化工艺用UV元件:适用于Thermo Scientific HAAKE MARS。它可集成到流变仪的控制试验炉(CTC)中,温度范围在-150° C到600° C。 - 可定制的UV元件:可自由配置光导、聚光镜、玻璃片等光学部件的距离,以模拟生产工艺(如隐形眼镜)中光学部件的布局。市面上有售的光源均可通过Thermo Scientific HAAKE RheoWin测量和评估软件来连接并触发。上述测量元件支持粉末涂料、胶粘剂、密封剂、焊接材料、油墨或隐形眼镜等多种应用。赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc. Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。-----------------------------------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific像客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。 欲获取更多信息,请访问公司网站: www.thermo.com (英文) 或 www.thermo.com.cn (中文)
  • 耐驰公司成功举行2007年固化监测仪(DEA)用户会
    介电法树脂固化监控(DEA)是一项通过实时监测热固性材料在固化过程中的介电性质的变化来研究其固化进程的技术。广泛应用于热固性树脂、油漆、涂料、粘合剂、复合材料与电子材料等领域,用来进行固化行为研究与固化工艺优化。不仅能用于实验室的研究开发,也能用于生产车间的在线监控。德国耐驰公司是世界领先的热分析仪器生产厂家,它向国际市场提供最完备的热分析、热物性测量产品。作为一种固化检测的有效手段,DEA在中国已经拥有众多的用户。2007年1月15-19日,耐驰公司分别在南京、济南和西安进行了DEA的用户交流会。在会议上,由资深专家Mr. David Shepard和曾智强博士分别介绍了树脂固化检测仪(DEA)的基本原理和应用。同时,对DEA的操作、维护和疑难问题和用户进行了热烈的交流,并积极回答用户提出的各种问题。用户们表示通过此次交流会对DEA有了更深入的认识,并希望继续举办类似的活动。对于用户的建议,耐驰公司会积极采纳,在新的一年里,为广大用户提供更多、更有价值的交流活动。详情请登录:www.netzsch.cn
  • 明星产品—— 贺利氏Amba® ,紫外固化理想的替代光源
    用于固化应用紫外汞灯贺利氏Amba® 产品系列可提供弧长从12毫米到3.9米的光源。无论是单支光源,或是批量生产,我们都能灵活应对。Amba® 额定功率范围从80W/cm到400W/cm。对于特殊长度、特殊输出特性和MH添加剂,我们定制Amba® 光源能完美匹配您的需求。对于特殊的OEM设计,我们的研发部门和应用中心提供深度技术咨询。 优点: 卓越的品质和可靠性 200%性能保证 超过10000种光源类型(还可提供特殊长度,特殊输出特性和MH添加剂) 在整个光源寿命期间提供稳定的高效的紫外固化辐射 高密封性、高纯度石英玻璃、高品质电极和连接器确保更佳性能 定制光源:满足您的个性化需求Amba® 紫外固化灯是为优质可靠的固化效果而打造的。我们致力于生产始终如一的高品质灯管,不止使用最佳的原材料,还有最新技术和引以为豪的工艺水平。所有Amba® 紫外灯都拥有“200%经测试”性能保证。每根灯管在出厂前都不止经过一次测试,而是两次测试。Amba® 光源始终保证其高品质和高稳定性。 需要灯吗?贺利氏的专业人员就能帮您选择合适的光源! 贺利氏的紫外固化业务部门,拥有从有极灯、无极灯到LED的不同紫外光源,满足您的多种固化需求。 紫外(UV)固化是一种光化学过程,是利用高强度的紫外线进行照射,将工业中广泛使用的油墨,油漆,黏合剂加以瞬间固化。与传统的干燥方法相比,紫外线固化具有诸多优点: 提高生产速度 降低废品率 提高抗划伤性和耐溶剂性 并且易于实现超强粘结 ★ 广泛的应用领域★贺利氏特种光源的紫外固化光源广泛用于多种工业紫外线固化应用,从胶粘固化、汽车零部件、汽车头灯、CD制造、柔版印刷、玻璃雕刻、地板、图画艺术、喷墨打印、大幅面打印、标签打印、金属雕刻、窄幅和宽幅、胶版印刷、光学镜头涂层、包装、PCB制造、电子元器件、医疗仪器、导线标记、紫外清漆、紫外精饰̷̷ 我们拥有专业的研发部门和应用中心,可以提供深度技术咨询,定制光源,满足您的个性化需求,同时,完善的售后服务技术部门,为您的工业生产提供质量保障。
  • 贺利氏特种光源集团全球副总致辞第十七届中国辐射固化年会开幕式
    9月8日,在素有“文化之邦”的禅宗圣地安庆,迎来了第十七届中国辐射固化年会,暨首届安庆市化工新材料产业高峰论坛。作为开幕式唯一的国外嘉宾-Mr.David Harbourne先生,是德国贺利氏特种光源集团全球副总裁,北美辐射固化协会前主席。他针对目前和未来的UV/EB固化技术的市场进行了综合阐述。全球市场:根据BCC research的研究,全球UV树脂的市场增长会达到8.7%的复合年均增长率,到2020年达到46亿美金的市场规模,其中工业涂料作为最大的占比应用,会以8.8%的复合年均增长率,至2020年达到20亿美金。其中主要的驱动因素是各国法律对排放的严格要求,快速的生产速度及新的应用领域的推进。电子、工业涂料及粘合剂占整个市场需求的65%,亚太地区作为最大和发展最快的市场,中国和日本成为主要市场,而紧随其后的是韩国和台湾。根据Allied Market research报告,UV墨市场在2015-2020年,年均复合增长率预计达到15.7%,其快速增长来源于食品饮料行业,并且UV-LED墨逐渐在新的应用领域,呈现取代传统UV墨的趋势。而亚太市场的UV应用主要集中于医药和消费品的标签。预计到2020年,中国、印度和东南亚国家将会占全球市场的五分之二。北美市场:北美印刷行业目前是全球最大的印刷市场,但中国有望在今年或明年赶超,成为全球第一,包装占北美52%的市场份额,并且增长动力依然强劲,用户的个性化及环保要求,推动者市场的变化。UV-LED技术:UV-LED市场增长迅速,其驱动主要依赖于特殊的UV-LED的固化配方,以及LED系统的性能提升,节能和运行低成本将是其渗透率扩大的主要因素。美国的法规政策ROHSLL,也将推动更加节能环保的固化方式。潜在机会:UV固化市场的机会,源于用户的行为变化和习惯变化,这都会造就新的市场机会,包括数码印刷、电子、显示屏及触摸屏等等。这些创新行业的应用带动了更多更好的UV固化的应用,也成为未来增长的重要引擎。关于贺利氏:贺利氏特种光源总部设在德国哈瑙,同时在美国、英国、法国、中国和澳大利亚等地设有分部,是全球特种光源领域技术与市场的领导者之一,研发、生产、推广的红外和紫外辐射器、系统和解决方案广泛地应用于工业制造、工艺流程、环境保护、医药化工、分析测试技术等领域。无论您希望优化现有应用还是赢得新的市场,贺利氏特种光源有限公司都能提供高效、周密和长寿命的解决方案,赋予您持续的竞争力。我们提供精心打造的、可靠的和为客户优化的光源系统,使工业、科学和医疗应用受益于极高的生产效率、产品强化和能耗优化,满足您的工艺挑战要求是我们的首要任务!请信赖得到公认的贺利氏质量。
  • 先临三维重磅推出高精度光固化3D打印机,助力原型设计和柔性生产
    5月26日,TCT亚洲展现场,先临三维正式发布AccuFab-L4K 高精度光固化3D打印机。AccuFab-L4K 高精度光固化3D打印机是先临三维自主研发的高品质3D打印机,拥有4K高分辨率、192*120*180mm的成型尺寸,具备稳定、准确的打印精度,并支持连续稳定打印,能够实现设计原型的快速迭代以及小批量快速生产,可应用于工业设计、零配件/手办/医疗辅具打印等众多专业领域。AccuFab-L4K 的发布,进一步推进了先临三维“3D扫描-设计-3D打印”系统解决方案的普及化应用。 AccuFab-L4K 高精度光固化3D打印机主要优势: l 高精度打印,准确呈现设计原型l 4K分辨率,还原细节,实现终端打印l 大幅面,快速成型,高效率打印l 连续打印,稳定性强,实现小批量快速生产l 适配多种工程树脂,满足不同品质要求l 软硬件人性化设计,使用高效便捷 合作巴斯夫,进一步提升高精度打印品质 高质量的3D打印设备+高质量的3D打印材料,可以为应用者提供稳定、高质量的打印服务,得到优质的打印产品。为进一步提升AccuFab-L4K的打印性能,先临三维在进行良好硬件设计的同时,也在材料上投入大量研发精力,部分自主研发的树脂材料,已通过医疗器械认证备案,可应用于医疗专业场景。 同时,先临三维也与巴斯夫3D打印解决方案品牌Forward AM取得合作,将巴斯夫Ultracur3D光固化树脂纳入AccuFab-L4K打印材料库。基于巴斯夫在聚氨酯研究和生产方面数十年的经验,Ultracur3D光固化树脂拥有以下优势: l 使3D打印零件具有长期的紫外稳定性l 使3D打印零件具有良好的力学性能l 打印精度高l 表面质量优良l 抗变形能力强l 环保,对环境影响小“我们非常荣幸此次和化工巨头巴斯夫进行合作。L4K打印机研发之初,我们便十分注重设备稳定性,作为高稳定性的3D打印机,对于设备的各项性能要求均比较高。巴斯夫的材料种类众多且性能稳定,使用巴斯夫的材料,为我们L4K打印机的性能又增加一项加持。” ——先临三维3D打印研发部经理 庞博 “我们很高兴与先临三维达成此次合作,实现‘AccuFab-L4K 高精度光固化3D打印机+ Ultracur3D系列光固化树脂’的解决方案,该方案能帮助客户更高效,更稳定的实现高性能功能性原型和小批量零件的制造。” ——巴斯夫3D打印解决方案(Forward AM)亚太区业务及运营总监 陈立博士 在3D打印领域,先临三维拥有多年的行业经验,所研发的打印机在齿科领域已得到良好应用。此次,先临三维发布AccuFab-L4K 高精度光固化3D打印机,是将3D打印技术在工业领域扩展的又一项实践——使用3D打印技术助力工业设计以及小批量柔性生产,推进智能制造的发展。先临三维也将持续努力,不断致力于高精度3D数字化技术的普及化应用。 关于先临三维 先临三维成立于2004年,公司专注高精度3D数字化及3D打印技术十余年,主营3D数字化与3D打印设备及相关智能软件的研发、生产、销售。公司是全球为数不多的拥有自主研发的“从3D数字化到智能设计到3D打印直接制造”的软硬件一体化产品解决方案的科技创新企业,致力于成为具有全球影响力的3D数字技术企业,持续推动高精度3D数字技术的普及化应用。 关于巴斯夫3D打印解决方案有限公司 巴斯夫3D打印解决方案有限公司总部位于德国海德堡,是巴斯夫新业责任有限公司的全资子公司。通过Forward AM品牌,专注于3D打印领域先进材料、系统解决方案、组件和服务的开发和业务拓展。公司凭借灵活、充满初创活力的内部结构,满足多变的3D打印市场中的客户需求。该公司与巴斯夫全球研究平台和应用技术部门紧密合作,以及科研机构、高校、创业公司以及行业合作伙伴开展密切合作。其潜在客户主要是致力于将3D打印用于工业制造的企业,所服务的典型行业包括汽车、航空航天和消费品。
  • 摩方精密复合精度光固化3D打印技术正式发布,全球首创Dual Series强势来袭
    重庆摩方精密科技股份有限公司(以下简称:摩方精密)在TCT Asia 2024正式发布复合精度光固化3D打印技术,面向全球市场推出首创Dual Series(以下简称D系列)设备:microArch D0210和microArch D1025,在速度、质量和便捷性上进行大幅提升,将有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。大而非凡的打印尺寸、纤微毕现的打印精度、智能便捷地打印操作,共同造就了摩方精密新技术和新设备的超高品质。01|硬核创新,驾驭复合式跨尺度技术难题在光固化领域,存在几组固有矛盾。一是打印精度越高,支持打印的幅面尺寸越小;二是模型结构越复杂,切片及后续成型的难度就越大。不管哪种矛盾,都会直接影响打印的整体质量和效率。此次发布的复合精度光固化3D打印技术,核心是组合并自由切换多精度的3D打印光学系统,其中,低精度镜头适用于快速打印大幅面样件,高精度镜头专注于打印极其微小的特征,有效解决精度固定对打印效率的限制。其超高精度复合式跨尺度的加工能力,使同层(XY轴方向)和不同层(Z轴方向)均能实现不同精度的切换打印,平衡了打印精度与幅面大小的矛盾问题,为各行业用户提供更加灵活且高效的打印方式。02|全球首创,灵稳兼顾的研发搭档作为全球首款搭载了复合精度光固化3D打印技术D系列设备,共推出两款新型号设备:microArch D0210和microArch D1025,可智能识别捕捉复杂模型的精细结构特征,实现同层与跨层平面的双精度自动切换打印,完成更高效、更自由的精准打印作业,重新定义工业级微纳3D打印设备。两款设备,均配置新一代双精度面投影光固化3D打印系统,D0210能够在2μm/10μm两种精度中自由切换,而D1025能够在10μm/25μm两种精度中自由切换。两种精度的自由切换能力,不仅支持应对各种复杂的生产任务,还能在多种材质和复杂结构的产品制造上发挥出色,赋予用户更多的研发和设计空间。D系列采用先进的图像识别算法,能够智能定位并切换图像的精确区域,无论是层内还是层间,都能实现不同精度的自由调节。其中,D0210配置的双精度倍率横跨5倍,在2μm超高精度模式下,可打印100mm*100mm*50mm超大尺寸,实现5万倍的跨尺度加工技术飞跃。这意味着D0210在处理大尺寸、复杂结构的极小特征细节时,既能确保超高精度打印,又能轻松跨越尺度局限,从技术源头打消工程师对幅面和精度的平衡顾虑,满足更多复杂应用场景,为工业制造革新赋能。03|自动化加持,效率质量全面提升工业级的3D打印设备,特别是高精密仪器,在操作前需要经过严格的培训。D系列设备为简化用户操作,全新升级为自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。三大自动调节功能相辅相成协同工作,针对新手,能在5-8分钟完成全系统的精准调平,告别工业级3D打印设备传统手动操作下的复杂流程,极大简化打印前期准备工作并进一步保障了打印成功率,从而节省人力、物力成本。经数千次打样验证,较单精度打印,综合平台调平、切片、打印、后处理等全过程,或将效率综合提升50倍,同时满足高精度和高效率的双重需求。让用户能够更加专注于打印创意,释放研发新活力。平台自动调平快速实现高精度自动调平,追求零误差绷膜自动调平颠覆传统模式,加快打印前处理滚刀自动调节瞬间清除,气泡无处躲藏04|耗材多元化创新制造不受限为进一步赋能研发进程,提高用户体验,D系列设备搭配了液槽加热系统,兼容硬性树脂、韧性树脂、Tough树脂等工程应用类材料,耐高温树脂、耐候性工程树脂等功能类材料,适用于POM注塑、PDMS翻模的BIO生物兼容性树脂,氧化铝、氧化锆等陶瓷材料等多种自研和新型材料打印,更多元的耗材适配性,满足不同应用场景的需求。05|深耕增材制造革新,迈向技术赋能性在当前的工业制造领域,复杂结构件的精细加工是一项核心挑战。D系列独特的设计理念,成功打破了大尺寸与高精度之间的传统束缚,通过灵活组合不同的打印精度技术,实现了大幅面与极小特征尺寸的完美结合,为传统制造技术中难以克服的难题提供了创新的解决方案。在精密电子产业,D系列支持高效打印出芯片接插件、连接器、传感器等精密结构件,适用于小批量、规模化的精密仪器生产,相较于单精度打印,可以更加高效地生产出符合高精度的复杂连接器等关键零部件,极大地提升了生产效率。以AI芯片为例,在其封装的背板或连接器上,虽仅有固定的背板面积,却密布着上千个小孔,对精度的要求极高,须以2μm的精度进行打印。而对于其他部分,精度要求相对较低,10μm或25μm的精度便能满足。此外,在精密医疗领域的应用中,D系列展现了其制造复杂结构、个性化定制、材料多样化、快速原型与迭代等显著优势。这些优势为高端医疗器械与生物制造技术领域的发展提供了坚实的技术支撑和广阔的新可能性,推动了整个行业的进步。最后,在科研领域如力学、仿生学、微机械、微流控、超材料、新材料、生物医疗以及太赫兹等,能够制造复杂微观结构,对材料科学研究和新型器件开发具有重要意义,助力高校及科研机构加紧科技成果转化,进一步赋能行业、产学联动,为社会经济发展提供更强大的科技支撑,促进我国制造业迈向全球价值链中高端。截至2024年4月,摩方精密已与全球35个国家,2000多家科研机构及工业企业建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。当下,工业4.0时代,全球制造业的发展趋势呈现自动化、智能化、个性化的特点,需要更精准、更稳定、更高效的解决方案。摩方精密也将坚持自主研发,协同“产、学、研”力量,进一步强化创新科技突破和多元应用研究,以技术赋能产业转型升级,促进我国产业迈向中高端制造业。06|携手并进,智造未来摩方精密是我最敬佩的具有独特魅力和世界前沿技术的公司,是精密三维打印的引领者,相信摩方精密前景非常辉煌!—— 杨守峰教授哈尔滨工程大学烟台研究(生)院摩方最新的D系列打印设备是一个里程碑式的技术突破,它解决了复合精度打印这一概念中的核心工程问题,让这个概念真正走向了一个商业化的产品,为解决增材制造中加工精度和加工速率之间的矛盾提供了一个新的方案。—— 何寅峰教授宁波诺丁汉大学作为摩方忠实用户和3D打印行业科研工作者,非常看好摩方推出的全球首发的复合精度光固化3D打印技术和设备,这项技术突破了高精密微纳尺度和大幅面加工以及加工速度三者难以兼顾的固有矛盾,同时引入智能化技术进行赋能,大大降低了设备操作使用的门槛和提升加工稳定性,将助力科研和工业领域广泛使用微纳3D打印带来可能。—— 葛锜教授南方科技大学摩方精密自成立之初,每一台新设备的推出,都是在诠释什么是微纳制造的先行者:对标全球制造业隐形冠军,在微纳3D打印领域,做工业进步的赋能者。microArch Dual Series的一键式智能化设计理念,将3D打印引领进了高效率设备的赛道。—— 王大伟深圳微纳制造产业促进会会长复合精度光固化技术和D系列设备,填补了光固化技术的空白,满足了市场对超高精度和高效率生产的需求。摩方精密后续也将继续推进装备销售,加紧创新技术研发,进一步拓展终端应用,致力于建立一个更加完善的全球市场网络,在终端、产品端去和上下游客户相互合作,把摩方的材料和设备更好地推向终端产品,成为一个技术赋能性的平台公司。—— 周建林摩方精密副总裁
  • SLA / DLP / LCD三种光固化树脂3D打印机该如何选择?来听听业内专家的建议!
    随着3D打印技术的成熟发展,各种类型的3D打印机已深入人们的生产生活之中。其中,光固化树脂3D打印机已成为大多数想要制作高精度模型的热门选择,用途也多种多样,如公司用,工厂用,创客用,家用等等。现如今市面上光固化3D打印机种类多而杂,如何挑选成为一个难题。本期,小编请到一位光固化3D打印技术行业专家来给大家讲讲该如何选择一台适合自己的树脂3D打印机。Q可以简单介绍一下自己吗?A: 大家好,我是庞博,目前是先临三维的3D打印产品经理。我是从2015年进入3D打印行业的,主要的工作内容集中在光固化3D打印机的技术研发和产品管理。QSLA, DLP, LCD之间的主要区别是什么?庞博: SLA / DLP / LCD都属于光固化的范畴,使用光敏树脂进行打印,但技术之间各有优劣。SLA 采用激光来固化树脂,是最传统、应用也最广泛的3D打印技术,对打印尺寸的限制很少,但打印速度、精度和细节,一般不如DLP / LCD 3D打印机好。SLA 3D打印机通常尺寸比较大,比较适合打印大尺寸的样件,或大规模生产的场景。SLA 3D打印技术原理示意图DLP 3D打印技术最早出现在2000年,DLP 3D打印技术主要是利用UV投影器将产品截面图形投影到液体光敏树脂表面,使被照射的树脂逐层感光固化。区别于SLA 3D打印技术的单点曝光,DLP 3D打印技术采用面曝光,可以极大地提高打印速度,同时DLP 3D打印技术在精度、表面质量上,一般也会优于SLA 3D打印机。DLP 3D打印技术原理示意图大多数DLP 3D打印机都采用下照式技术方案,光源在树脂槽的下方。这种方案的优势是只需要很少的树脂就可以开始打印,但由于离型的限制,打印尺寸也受到了制约。DLP 3D打印机通常机型尺寸较小,可以轻松部署在办公室环境内,在齿科、产品开发验证、科研和教育领域都得到了比较广泛的应用。LCD (mSLA)类似于DLP 3D打印技术,但其不使用投影仪来产生图像,而是通过LCD液晶的偏转产生特定的图像。LCD 3D打印技术原理示意图得益于LCD 3D打印技术成熟的上游产业链,LCD 3D打印机通常可以达到比DLP 3D打印机更高的分辨率和更小的像素点尺寸。但由于技术局限性,LCD 3D打印机的光功率一般低于DLP 3D打印机,从而导致打印速度较慢。然而,LCD 3D打印机的价格更低于DLP 3D打印机,因此在市场上非常受欢迎。Q当我们在选择树脂3D打印机时,需要考虑哪些问题?庞博: 打印尺寸(拥有大幅面打印尺寸的设备,能够实现设计原型的快速迭代以及小批量快速生产。)打印精度(分辨率越高、像素点尺寸越小,打印物体表面细节和纹理更清晰;光学设计越先进,打印物体精度就越高,能够准确呈现设计原型。)打印速度(在评估打印速度时,一般我们需要限定材料和层厚。即使在同一台机器上,不同的层厚、不同的材料也会导致打印速度的巨大差异。)材料开放(有些3D打印机只允许用户使用专用树脂材料,这是一个非常大的限制,而拥有开放系统的3D打印机可以兼容使用更多第三方材料。)排版/切片软件(排版和切片是3D打印的第一步,一个好的软件可以使预处理快速而简单。大多数3D打印机公司都提供免费的软件试用,用户可以在购买前先进行简单试用。)后处理 (树脂3D打印样件需要清洗和后固化。经过后固化的样件强度更高、变形更小。因此配备完整的清洗机、固化箱可以有效地提高效率、降低人力成本。)QDLP和LCD技术特别适用于哪种类型应用?庞博: 第一种是齿科应用,几乎所有的齿科应用都可以从树脂3D打印中受益,如正畸、修复和种植,一些顶级正畸牙套制造商每天打印制作模型超过700,000个。第二种是应用在产品原型开发验证中,受益于3D打印材料的进步,越来越多的工程师开始在办公室使用高精度3D打印机进行产品原型开发。树脂3D打印机是快速验证产品原型的理想选择,目前有许多高性能的树脂材料,其性能可与ABS、PC或硅橡胶相媲美。传统外包制作原型有可能要等待数周时间,而使用树脂3D打印机则可以在数小时内完成原型制作。第三种是教育方向的应用,LCD和DLP 3D打印机通常结构紧凑,使用方便,越来越多的学校开始使用树脂3D打印机进行教育或研究。珠宝首饰也是树脂3D打印的一个重要应用,DLP和LCD 3D打印技术可以打印出非常丰富的细节特征,甚至比头发还小。目前已有很多珠宝设计工作室在使用3D打印机和蜡质树脂进行产品开发。Q除了打印设备之外,在选择树脂材料时需要关注那些方面?庞博: 首先关注的总是安全问题,尽管光敏树脂本身是十分安全的,但在购买树脂前应向制造商索取MSDS(材料安全数据表),以应对在使用过程中可能出现的意外情况。此外树脂材料的种类非常多,我们应该根据用途来选择材料。例如,牙科模型的应用应选择具有低变形的刚性材料,而手术指南的应用应选择具有良好的生物相容性和韧性的材料。权威认证 安全放心Q最后,您能给想投资树脂3D打印机的人提供一些其他建议么?庞博: 目前3D打印行业正处于快速发展期,产品也逐渐成熟,但因为不同的厂家在产品的研发、测试和品控等方面投入的差异,导致用户在使用的过程中可能会遇到各种各样的问题。因此我们应该尽量选择质量有保障,且能够提供良好培训、售后服务的公司,来选购3D打印机。基于以上选机技巧,小编在这里要特别推荐一款兼具高精度和稳定性的易用型3D打印机——AccuFab-L4K 高精度光固化3D打印机。这款由先临三维自主研发的高品质3D打印机,拥有4K高分辨率、192×120×180mm的成型尺寸,具备稳定、准确的打印精度,并支持连续稳定打印,能够实现设计原型的快速迭代以及小批量快速生产,可应用于工业设计、零配件/手办/医疗辅具打印等众多专业领域。
  • 发布R2P紫外固化纳米压印机新品
    HoloPrinter UNI A6 DT是一款易于使用的桌面设备,适用于实验室的NIL工作。典型应用包括:压印功能结构,如芯片实验室,衍射光学元件和其他类型的纳米压印结构。. HoloPrinter还允许用户对光固化树脂和压印材料进行测试和表征。它配备了光学固化模块和简易安装的压印模板。您可使用热压印聚合物,PDMS,HPDMS制作模板,或从我司的易用消耗品和树脂库中进行选择材料。 产品规格:支持压印尺寸: 105 x 148 mm(宽x长),基材厚度可达8mm典型复制速度: 每小时60次重复,包括手动模式(平板移动速度可达8米/分钟)两个 输出: Roll to Plate(R2P)和 Roll to Foil(R2F)树脂耗材/材料: 工业上认可的Workhorse 3D压印树脂“X29”适用于A6型号光固化发动机: 耐用 395nm LED(被动冷却),速度高达200mJ / cm2,速度为6m / min电 源 : 220V / 110V尺寸 和 重量: 670 x 380 x 320 mm(长x宽x高),26千克/ 57磅创新点:实验室级别纳米压印机,采用R2P工艺,降低结构缺陷。R2P紫外固化纳米压印机
  • 塑料固化剂双酚危害巨大 食品饮料容器中禁用
    近日消息,鉴于具有争议性的塑料固化剂双酚A的不断出现和对健康造成的负面影响,食品行业以及其他大型商业团体,包括美国商会,表示呼吁支持改善食品安全的法案。双酚A是一种主要用于生产聚碳酸酯(PC)的高分子材料,常在食品级饮料罐衬、纸收据、塑料制品等中发现。  这些组织对拟议修订的禁止对食品和饮料容器使用BPA的禁令表示关注。值得注意的是,行业仍然坚持其两项研究表明现有的BPA含量是安全的。然而,最新的统计过程中,超过900个的同行评议,发现BPA与负面的健康影响有关联。  存有疑问的法案是2009年通过的参议院版本的法案,该法案旨在帮助FDA扩大食品生产方面的权威,同时保障制造商和农民在生产过程中不受污染。  数以百计的研究证明了无处不在的化学物质导致的疾病和相关病症越来越多,同时也证明了双酚A对干扰人体内分泌系统造成的重大危害。双酚A被认为与心血管疾病、肠道疾病、免疫系统等疾病有密切关系。在尿液测试中,93%的美国人都被发现体内有一定含量的双酚A,在新生婴幼儿中占90%。  美国部分参议员及健康、教育、劳工、退休委员会、商业团体表示反对由参议员范士丹Dianne Feinstein(加州民主党)提出对食品和饮料容器中双酚A的禁令。  目前,已有部分国家、州或团体发出双酚A禁令,作为对荷尔蒙雌激素和抗雄激素的抗议行为。这意味这即使再小数额的双酚A也会影响生长发育进程,尤其是对发育中的胎儿、婴儿及儿童。
  • 光固化、热变色形状记忆聚合物助力可变色4D打印
    3D打印结构在特定的环境和激励下,其特性及功能随着时间的改变而发生变化,被称之为4D打印技术。形状记忆聚合物作为实现4D打印的关键性材料之一,可在一定条件下变形固定后,通过热、光、电、磁等外部条件的刺激,主动恢复其初始形状。近年来,形状记忆聚合物的4D打印在软体机器人、生物医疗、航空航天、柔性电子等领域的广泛应用,受到了国内外学者的广泛研究和关注。近日,湖南大学王兆龙、段辉高教授与南方科技大学葛锜教授合作,基于摩方精密(BMF)超高精度光固化3D打印机nanoArchS140,开发了一种能够同时实现变形变色的形状记忆聚合物体系,设计制造了精度高达20μm的特征结构,该材料体系用于二维码和多级防伪图案的高精度制造,实现了多重加密和特定温度区间的信息显示,并有望用于数据加密、智能防伪等领域。这项工作为构建功能化的4D打印提供了新的材料体系,还激发了数据加密和防伪的新方法,有利于拓宽4D打印技术的应用范围。相关成果以“Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers”为题发表在ACS Applied Materials & Interfaces期刊上。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c02656该工作得到了国家自然科学基金、湖南省优秀青年基金、广东省重点研发计划,长沙市科技局等资金支持。图1 面投影微立体光刻技术(摩方精密,nanoArchS140)原理和材料设计图2 基于面投影微立体光刻技术制造高精度(20μm)和复杂3D结构,3D打印结构具有快速颜色响应和变色循环稳定性图3 基于面投影微立体光刻技术制造的3D结构的形状记忆行为,具有优异的变形变色能力图4 基于面投影微立体光刻技术加工QR码和多级防伪图案,在室温下隐藏可见信息,并通过加、解密、再加密等步骤和形状颜色恢复过程实现信息的可视化,实现多重加密和特定温度区间的信息显示。
  • 中山大学王山峰教授团队《Addit. Manuf.》:一种可超快打印组织工程支架的光固化树脂
    近日,中山大学材料科学与工程学院王山峰教授团队创新地使用超支化反应型稀释剂去优化聚富马酸丙二醇酯(PPF)树脂,充分利用了面投影微立体光刻技术(nanoArch P140,摩方精密)的快速制备优势,实现了可降解、无细胞毒性组织工程用多孔支架的超快、高精度打印,同时显著提高支架结构的模量、韧性、和形变回复率。相关成果以“Projection printing of scaffolds with shape recovery capacity and simultaneously improved stiffness and toughness using an ultra-fast-curing poly(propylene fumarate)/hyperbranched additive resin”为题发表在国际著名期刊《Additive Manufacturing》上(Doi:10.1016/j.addma.2021.102446)。该期刊的影响因子为10.998,在工程-制造领域中排名第一。PPF是一种可注射、可光固化、可降解不饱和聚酯,在骨组织工程上具有优异应用前景。在以往使用PPF树脂和立体光刻技术打印组织工程支架的报道中,富马酸二乙酯(DEF)是作为反应型稀释剂来调节树脂粘度以获得流动性和可打印性,然而在固化速度和所制备支架结构的力学性能上需要提高。在此论文中,经筛选后超支化聚酯丙烯酸酯(HPA)作为反应型稀释剂与PPF形成新型光固化树脂,并与PPF/DEF树脂在流变性质、热性能、固化速度、固化深度、临界固化能量、打印速度、打印精度,以及打印出的多孔支架结构的力学性质上进行全面的对比研究。实验结果表明HPA可有效降低PPF的玻璃化转变温度和粘度,以获得打印时的流动性,同时,HPA极大加速了PPF的光交联过程。PPF/HPA树脂固化需要的临界能量极低,仅为2.1 mJ/cm2,低于PPF/DEF树脂的六分之一。在保证高精度的前提下,使用面投影微立体光刻3D打印技术快速成型的特性最为亮眼。对于PPF/HPA树脂,每打印一层曝光时间仅为0.1-2 s,比目前已公开报道的使用紫外光交联方法的3D打印技术至少缩短了一半。在50微米的分辨率下,PPF/HPA树脂的打印速度可达18 cm/h,而PPF/DEF树脂的打印速度仅为其五分之一。得益于更完善的交联网络,使用PPF/HPA树脂打印的支架结构比PPF/DEF树脂支架具有更低的收缩率、更高的刚度和韧性,以及更好的形变回复能力,具有4D打印的特性。初步体外细胞实验也证明这些支架的细胞相容性好,为在支持骨组织修复上使用奠定了基础。图1 面投影微立体光刻技术(nanoArch P140,摩方精密)快速制备PPF/HPA支架图2 PPF/HPA、PPF/DEF两种树脂的打印速度对打印分辨率和光强的依赖关系图3 PPF/HPA支架结构的优异力学性能论文为中山大学材料科学与工程学院独立完成,第一作者为硕士研究生利文杰,第二作者为博士研究生成肖鹏,其导师王山峰教授、王苑讲师为共同通讯作者。该研究得到中国国家自然科学基金(51973242)、中山大学“百人计划”启动经费、广州市科技计划重点项目(201704020145)、和广东省基础与应用基础区域性联合研究计划(2020A1515110674)的支持。原文链接:https://doi.org/10.1016/j.addma.2021.102446
  • 耐驰才会告诉您:是“它“让树脂固化工艺更优化!
    耐驰才会告诉您:是“它“让树脂固化工艺更优化!在交通工具行业,无论是汽车、火车,还是航空航天领域,我们常常听到一个词“轻量化”。也就是说人们希望以碳纤维增强复合材料部件替代传统的金属部件,以减轻载具的重量,提高能源利用效率,并可以减少排放。由于此应用涉及的大多数是大型复杂形状的部件,固化成型就成为一个重要的课题,目的是要兼顾成型质量(固化度)和生产效率。传统的固化研究方法DSC、DMA都属于实验室方法,其结果数据并不能直接应用于生产。因此在生产现场,往往还是要靠多次尝试。耐驰则提供了完全不同的方案:实时固化监测 DEA。碳纤复合材料部件的实时固化监测实时固化监测方法,通过介电传感器测量相应部位的电阻抗随时间或温度的变化过程,由此即得到固化度曲线。由于DEA可以同时安装最多16个传感器,也就是说可以同时监测16个部位的固化情况,这对大型复杂部件的固化过程监测极为有利。图示为飞机垂直尾翼的固化曲线。同时展示了三个部位的固化过程。可见此部件不同部位的固化是有轻微差异的。由此,可以通过改变制件位置等方法,使之得到一致的固化过程。德国耐驰的这个活动太腻害,我们不敢轻易取标题! 2019Chinaplas期间,德国耐驰将现场使出大招:最幸福的事情莫过于边拿奖品边涨姿势。- 有奖竞答,惊喜不断,您就是下一个锦鲤本尊- 耐驰专家团队现场面对面演示教学,带您玩出新高度,只为让您零距离感受真正的德国品质展位号:5.1馆C14号展位
  • 滨松开发出5款激光加热系列新品 非常适用于焊接、树脂焊接和粘合剂的热固化
    我司基于多年来在半导体激光器(LD)照射光源的开发、生产和销售方面积累的经验,就各种用途优化激光输出和光斑直径等,开发出共5种的激光加热系列产品,以满足不同激光加工用途。用户可根据激光在树脂焊接和粘合剂热固化等应用场景,选择最佳的产品组合。此外,由于激光热加工相比传统工艺的加工效率更高,对环境影响更小,该产品系列将有助于减少碳排放和社会的可持续发展。关于产品本产品将于12月1日(星期三)面向国内外电子设备制造商和汽车零部件制造商销售。 该产品将于12月8日(星期三)至10日(星期五)在千叶市美滨区 Makuhari Messe 举行的日本最大的光与激光技术综合展览“第21届光与激光技术展览”上展出,包括加工样品。本产品由LD照射光源、激光传输光纤和照射单元组成,可根据激光热加工的不同用途进行优化配置,全系列共5种激光加热系统。 我司开发、生产和销售的LD照明光源广发应用在热加工,如激光焊接、树脂焊接、粘合剂热固化、干燥和淬火等领域。其中LD照明光源采用滨松独有的光学设计技术,激光输出均匀分布并照射在目标物表面,使加热均匀,加工质量提高。产品通过用1根光纤进行加工和测量,获取激光照射各处的温度信息,以实现对加工品质的精密控制。LD照射光源和可选配置示例激光热加工根据不同用途,其最佳加工条件也是不一样的。 我们从以往300多个模式组合中选择了光源、可选的光纤和照射单元,此次还凭借在开发、生产和销售LD辐照光源十多年来积累的经验,针对激光焊接、树脂焊接和粘合剂热固化等不同应用场景,以优化配置后的5种激光加热系统系列予以销售。因此,针对精细智能手机部件的焊接、汽车部件的树脂焊接、以及用于不同材料的粘合剂热固化等,客户可以根据激光热加工的不同用途,轻松选择适用于自己的产品组合。同时,组合产品系列比单一的设备购买成本要低,能达到降低成本的目的。此外,与传统的烙铁、超声波焊接机和加热炉相比,激光热加工的加工效率更高,对环境的影响更小,使用本产品将有助于实现减少碳排放和社会的可持续发展。本产品也可满足激光光斑直径等各种条件的定制要求。未来,针对金属纳米油墨的烧结等应用,我们将继续致力于推进更高功率的激光加热系统的产品化,敬请期待。本产品应用场景开发背景近年来,由于LD的高功率和低成本,人们对激光热加工的期望越来越高,但由于激光加工是一种相对比较新的技术,大家对加工的可靠性和质量控制有所担忧,因此该项技术并没有得到很好的推广。在这种情况下,我们一直在开发、生产和销售照射均匀,并可以精密控制加工质量的LD照射光源,但我们面临的难题是,如何选择匹配应用的最佳光源和其选项。主要规格
  • IVD四巨头2018年Q3最新财报:差距拉大,“阶层”固化?
    p  截至今日,随着丹纳赫2018年Q3财报的出炉,IVD Top4在2018年Q3财报全部公布。/pp  2018年Q3,/pp  诊断业务罗氏第一,雅培第二,丹纳赫第三,西门子医疗第四。/pp  相比2017年巨头们对于IVD第二的你争我夺,目前诊断四巨头的营收差距开始拉开。/pp  罗氏:行业第一,且仍保持着较高的业务增速,诊断营收是排名第二的span style="color: rgb(227, 108, 9) "1.7倍/span。/pp  雅培:收购Alere让雅培仍保持着高达span style="color: rgb(227, 108, 9) "42.6%的增速/span,预计Alere整年贡献营收将超过20亿美元,让雅培牢牢占据IVD第二。但截至9月底,距离罗氏诊断的营收差额为38亿美元。/pp  丹纳赫:span style="color: rgb(227, 108, 9) "诊断业务增速放缓/span,上半年11%的增长到了Q3,仅保持在4%。或许需要一场新并购来拉动?/pp  西门子医疗:西门子医疗的诊断业务在排除汇率影响后,Q3增长1%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/cd3e0c3f-5f45-4395-a69f-57f141233423.jpg" title="11.jpg" alt="11.jpg"//pp style="text-align: center "▲IVD Top4 企业2018年Q3数据总览/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/4a8065b6-cccd-4a7f-8bf3-31adb3f03e20.jpg" title="22.jpg" alt="22.jpg"//pp style="text-align: center "▲IVD Top4 企业2018年前9月数据总览/pp  注:/pp  ①Abbott总营收增长率一栏,7.8%为同比增长率,排除了并购和外汇带来的影响 12.1%包含了并购和外汇带来的增长 诊断业务增长率数据同上。/pp  ②按照实时汇率,1瑞郎=1.0032美元。/pp  Q3,Roche总营收约14014百万美元,诊断业务营收约 3124百万美元 /pp  前9个月累计,Roche 总营收约42215百万美元,诊断业务营收约9408百万美元。/pp  ③按照实时汇率,1欧元=1.1459美元。/pp  Q3,SiemensHealthineeers的总营收约3781百万美元,诊断业务营收约1154百万美元。/pp  前9个月累计, Siemens Healthineeers总营收约11144百万美元,诊断业务营收约 3330百万美元。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/b03034d1-bad8-44e5-b459-00b68e3ba02e.jpg" title="33.jpg" alt="33.jpg" width="174" height="104" style="width: 174px height: 104px "//pp  span style="color: rgb(0, 112, 192) "strong整体营收/strong/span/pp  罗氏集团2018年Q3营收139.69亿瑞郎,同比+7%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/ad3c2d80-9967-45e7-a76b-c50aeaf8be56.jpg" title="44.jpg" alt="44.jpg"//pp style="text-align: center "▲罗氏 2018年Q3财务数据/pp  span style="color: rgb(0, 112, 192) "strong诊断业务营收分析/strong/span/pp  2018年Q3,诊断部门贡献了31.14亿瑞郎的营收,占总营收的22.3%,同比+6%。/pp  由于罗氏未提供2018年Q3诊断业务细分领域的营收详情,因此,span style="color: rgb(227, 108, 9) "下列罗氏诊断细分业务营收分析针对的是2018年1月-9月。/span/pp  截至9月底,罗氏诊断业务营收93.78亿瑞郎,同比+9%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/e3a15045-9f85-458b-ab01-278d562e8e04.jpg" title="55.jpg" alt="55.jpg"//pp style="text-align: center "▲罗氏诊断四大业务2018年9M数据/pp  2018年前9个月里,/pp  strong中心实验室和POC诊断事业部:/strong营收56.25亿瑞郎,同比+7%。主要由免疫诊断(+10%)、临床化学(+5%)驱动。/pp  strong糖尿病管理业务:/strong营收14.84亿瑞郎,同比+1%。其中,血糖监测(BGM)同比+1%,侵入性检测系统(IDS)继续下滑(-4%)。/pp  strong分子诊断业务:/strong营收14.68亿瑞郎,同比+5%。其中,cobas® Liat® 流感诊断增长高达250% 人乳头状瘤病毒诊断(HPV)同比+17% HIV诊断+6% 病毒学领域+4%。/pp  strong组织诊断业务:/strong营收8.01亿瑞郎,同比+9%。/pp  strongspan style="color: rgb(0, 112, 192) "诊断业务区域营收/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/f02d339a-a510-40e8-8820-6b25d5b1b7ed.jpg" title="66.jpg" alt="66.jpg" width="536" height="263" style="width: 536px height: 263px "//ppstrongspan style="color: rgb(0, 112, 192) "/span/strongbr//pp style="text-align: center "▲罗氏诊断 2018年9M区域营收数据/pp  截至9月底,罗氏诊断在区域上span style="color: rgb(227, 108, 9) "主要由亚太地区(+13%)、拉丁美洲(+8%)、北美(+8%)驱动。/span/pp  span style="color: rgb(0, 112, 192) "strong未来发展/strong/span/pp  未来,罗氏诊断将继续强化在span style="color: rgb(227, 108, 9) "集成的核心实验室(Integrated Core Lab)、综合解决方案、新学科的拓展/span等方面的发展。/pp  同时,罗氏诊断也在加大对于中国市场的投入。2018年在中国新开设研发生产中心开业,到2021年将拥有400名员工,以确保亚太地区临床化学和免疫检测的持续供应。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/b3a71116-2074-4892-a1e0-80e9bf431a36.jpg" title="77.jpg" alt="77.jpg"//pp style="text-align: center "▲罗氏中国新工厂/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/e4152107-81af-4e13-862a-7f61aef40dd6.jpg" title="88.jpg" alt="88.jpg" width="165" height="145" style="width: 165px height: 145px "//pp  span style="color: rgb(0, 112, 192) "strong整体营收/strong/span/pp  雅培2018年Q3整体营收76.56亿美元,增长+12.1% 排除并购及汇率影响,同比+7.8%。/pp  而2018年前9个月里,雅培集团营收228.13亿美元,增长15.2% 排除并购及汇率影响,同比+7.6%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/ed24d11c-50c0-4911-b501-2b832f6a52d9.jpg" title="99.jpg" alt="99.jpg"//pp style="text-align: center "▲雅培2018年Q3及9M整体营收数据/pp  strongspan style="color: rgb(0, 112, 192) "诊断业务营收分析/span/strong/pp  2018年Q3,雅培全球诊断营收18.24亿美元。2017年10月收购美艾利尔所带来的协同效应加持下,诊断业务增长高达span style="color: rgb(227, 108, 9) "42.6%/span。排除收购和汇率带来的影响,同比span style="color: rgb(227, 108, 9) "+7.5%/span。/pp  全球诊断业务营收占集团的23.8%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/e1af41e9-ffdf-4b76-96eb-10e63fc9c2a1.jpg" title="1010.jpg" alt="1010.jpg"//pp style="text-align: center "▲雅培诊断2018年Q3及9M整体营收数据/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/aeeb5b68-2a98-49b7-b1f6-edd0b23e1132.jpg" title="1111.png" alt="1111.png"//pp style="text-align: center "▲雅培诊断细分业务在诊断营收中的占比/pp  传统诊断:营收10.86亿美元,在诊断营收中占比高达60%,span style="color: rgb(227, 108, 9) "排除收购和外汇影响后,同比+8.1%,涨幅最大。/span/pp  分子诊断:营收1.21亿美元,在诊断营收中占比7%,同比+6.1%。雅培在分子诊断市场的核心领域——span style="color: rgb(227, 108, 9) "传染病检测领域/span——的增长引领了全球销售。/pp  Q3,分子诊断业务在美国市场span style="color: rgb(227, 108, 9) "止跌回升(+2.3%)/span,但由于2018年上半年美国市场大跌10.7%,所以截至9月底,美国市场整体同比-6.8%。/pp  床旁诊断(雅培传统POC业务):营收1.36亿美元,在诊断营收中占比7%,增长加速,同比+4.0%。增长主要由span style="color: rgb(227, 108, 9) "i-STAT® 手持系统驱动。/span/pp  美国市场与分子诊断业务境遇相同,不过,如果Q4能继续保持增长,美国市场全年业绩有望呈正增长。/pp  快速诊断(Alere的POC业务):营收4.81亿美元,在诊断营收中占比26%。span style="color: rgb(227, 108, 9) "心脏代谢测试产品的销售增长尤为出色。/span/pp  截至9月底,快速诊断业务营收达span style="color: rgb(227, 108, 9) "15.24亿美元。/span/pp  span style="color: rgb(0, 112, 192) "strong诊断业务区域营收/strong/span/pp  美国市场:营收6.66亿美元,占诊断营收37%,受收购Alere的影响,增长高达80.2% 排除并购和外汇影响后,同比+6.1%。/pp  国际市场:营收11.58亿美元,增长27.3%,排除并购和外汇影响后,同比+8.1%。/pp  strongspan style="color: rgb(0, 112, 192) "未来发展/span/strong/pp  span style="color: rgb(227, 108, 9) "雅培对于其Alinity家族系列诊断产品寄予厚望。/span在财报会议上指出,“Alinity 的全球推出,将使该业务在未来数年内保持高于市场的增速。”/pp  距离完成收购Alere已经过去整整一年,而到span style="color: rgb(227, 108, 9) "2018年年底,这场大型收购有望给雅培带来超过20亿美元的营收,并让雅培牢牢占据IVD第二的位置。/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/a005b79f-d18c-47ba-a5b9-be1aa54821e3.jpg" title="1212.jpg" alt="1212.jpg" width="202" height="121" style="width: 202px height: 121px "//ppspan style="color: rgb(227, 108, 9) "/spanbr//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/3058251c-b22c-4e89-a9ff-dc4e975b19f7.jpg" title="1313.jpg" alt="1313.jpg"//pp style="text-align: center "▲丹纳赫2018年Q3数据br//pp  span style="color: rgb(0, 112, 192) "strong整体营收/strong/span/pp style="text-indent: 2em "2018年Q3,丹纳赫营收48.53亿美元,span style="color: rgb(227, 108, 9) "同比+7%/span。生命科学业务贡献最高增长+15%、strongspan style="color: rgb(227, 108, 9) "诊断+4%/span/strong、环境应用+8%,但即将在2019年上半年剥离的牙科业务下滑2%。/pp  丹纳赫Q3净利润为6.637亿美元,同比span style="color: rgb(227, 108, 9) "strong+15.0%span style="color: rgb(0, 0, 0) "。/span/strong/span/pp  span style="color: rgb(0, 112, 192) "strong诊断业务营收/strong/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/8e81e421-cfe3-43fe-b0f7-161bb6fdac19.jpg" title="1414.jpg" alt="1414.jpg"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/5d7647d0-dcb1-4e59-96d5-36bb2dc20e11.jpg" title="1515.jpg" alt="1515.jpg"//pp style="text-align: center "▲丹纳赫2018年Q3诊断业务数据/pp  2018年Q3,丹纳赫诊断业务营收15.025亿美元,占总营收的31.0%,span style="color: rgb(227, 108, 9) "同比+4%。受发达市场和高增长市场的强劲增长推动,分子诊断业务、临床实验室业务、急诊护理诊断业务、病理诊断业务/span四大细分诊断业务均出现增长。/pp  临床实验室业务:增长主要由以span style="color: rgb(227, 108, 9) "中国为首/span的高增长市场所驱动。市场需求来自免疫分析和自动化生产线。/pp  急诊护理诊断业务:血气和免疫分析产品线销售持续强劲,尤其是高增长市场。/pp  病理诊断业务:受高级染色和核心组织学产品线新产品需求所推动,以北美、西欧和中国为首。/pp  span style="color: rgb(0, 112, 192) "strong区域营收/strong/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/0fb1179d-82cb-413e-8616-1e9ac43472c3.jpg" title="1616.jpg" alt="1616.jpg"//pp  ▲丹纳赫2018年Q3区域营收/pp  北美:span style="color: rgb(227, 108, 9) "丹纳赫诊断业务第一大市场/span,贡献5.740亿美元营收,占诊断业务的38.2% /pp  西欧:营收2.623亿美元,占比17.5% /pp  其他发展市场:营收0.918亿美元,占比6.1% /pp  高增长市场(东欧、中东、非洲、拉丁美洲、亚洲,不含日本):营收5.744亿美元,占比38.2%。span style="color: rgb(227, 108, 9) "中国市场持续走强。/span/pp  span style="color: rgb(0, 112, 192) "strong未来发展/strong/span/pp  丹纳赫财报中显示,“公司的增长战略考虑了未来的并购。”/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/408a491c-009b-4c47-be45-b7d360a255ac.jpg" title="1717.jpg" alt="1717.jpg" width="397" height="102" style="width: 397px height: 102px "//pp  西门子医疗2018年Q3财年区间为2018年4月1日至2018年6月30日。/pp  span style="color: rgb(0, 112, 192) "strong整体营收/strong/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/ffedcd7e-73b8-41b4-9b55-ed6193bfab2c.jpg" title="1818.jpg" alt="1818.jpg"//pp style="text-align: center "▲西门子医疗2018Q3营收数据/pp  西门子医疗在 2018年Q3营收33.00亿欧元,排除外汇影响,同比+5%,span style="color: rgb(227, 108, 9) "增长主要由影像业务(+8%)驱动/span。/pp  strongspan style="color: rgb(0, 112, 192) "诊断业务营收/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/46e52ddd-6796-408c-95b4-e7697245efd9.jpg" title="1919.jpg" alt="1919.jpg"//pp  ▲西门子医疗2018年Q3诊断业务营收数据/pp  2018年Q3,西门子医疗诊断业务持续低迷,营收10.07亿欧元,同比+1%。/pp  受EMEA、亚洲、澳大利亚等地区增长推动,尤其是中国。/pp  下一代免疫和生化解决方案Atellica™ Solution商业化落地正在有序进行中,span style="color: rgb(227, 108, 9) "6月底前交付560+分析仪后步入正轨。但整体的利润仍受到Atellica过渡成本的影响/span。/pp  最近的两起并购带来的积极的影响——span style="color: rgb(227, 108, 9) "Epocal 双位数增长 Fast-Track Diagnostic 高个位数增长。/span/pp  strongspan style="color: rgb(0, 112, 192) "区域营收/span/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/785137df-41ca-48e0-bda1-40ca1fa2c5d9.jpg" title="2020.jpg" alt="2020.jpg"//pp  ▲西门子医疗2018年Q3区域诊断业务营收数据/pp  整体上,排除外汇影响后,西门子医疗在/pp  EMEA市场:营收10.50亿欧元,同比+4% /pp  美洲市场:营收13.48亿欧元,同比+6% /pp  亚洲& 澳洲市场:营收9.03亿欧元,同比+4%。但是,span style="color: rgb(227, 108, 9) "中国市场一反常态,在上半年增长16%后,在Q3竟然出现了下滑(-4%)。/span/pp  *EMEA:Europe, C.I.S.,Middle East and Africa,欧洲、独立国家联合体、中东和非洲/pp  span style="color: rgb(0, 112, 192) "strong未来发展/strong/span/pp  “我们也对我们的实验室诊断系统Atellica解决方案的积极进展感到满意。尽管对实验室诊断业务的未来产生了越来越多的负面影响,但我们确认了本财年的指导方针。”西门子医疗 全球CEO Bernd Montag如是说。/pp  西门子医疗预计其span style="color: rgb(227, 108, 9) "2018年全年整体营收同比增长3%-4%/span。/pp  今日,西门子医疗投资span style="color: rgb(227, 108, 9) "30亿元/span的上海实验室诊断新工厂举行奠基典礼,IPO上市后的西门子医疗开始发力诊断业务。这是否能带动起诊断业务的新一波增长?/pp  span style="color: rgb(127, 127, 127) font-size: 14px "备注:以上数据来自各公司的季报和年报等资料。/span/p
  • 这也行?完美复原破损古画?拉曼光谱竟然如此神奇!
    中国传统绘画颜料迄今已有7000多年的历史,矿物颜料由于其色彩鲜艳、洁净、经久耐用的特点,在我国古代绘画作品中被广泛应用。作为一种不易变色的天然石色颜料,矿物颜料在绘画颜料中的应用范围越来越广泛。在外界环境因素及内部绘画材料发生性态变化情况下,古画的长期保存工作难度较大,往往需要不断对其进行定期修复。而作为古画的主要载体的颜料,在进行古画修复时一般都需要事先对颜料成分、特征等进行鉴别,制定针对性强的修复计划,保证修复工作顺利进行。图1 古画拉曼光谱分析利用拉曼光谱定量分析法对石绿矿物颜料在各种无机颜料样品的占比和面积比进行测量,最终得到某绘画作品中的无机颜料组成配比。拉曼效应是一种非常弱的散射效应,是分子散射光相对入射光频率发生较大变化,在非均匀介质或存在悬浮状颗粒的待检测物质或介质中发生的光的散射作用。当频率为ν的单色光照射到物质表面时,入射光会在样品表面发生散射。拉曼光谱分析主要是利用散射效应对待检测物质的性质、成分等进行测量的综合方法。图2 奥谱天成ATR8800科研级显微拉曼光谱成像仪采用显微拉曼光谱仪对几种颜料矿物和相对应的市售矿物颜料进行了拉曼光谱的采集。在对拉曼光谱的分析中,分辨了主要指纹信号及伴生矿物可能在颜料中产生的干扰信号,对矿物及颜料的主要指纹信号给出了分子结构及振动模式的指认。在所有矿物颜料中,石绿是使用极其普遍的。通过对古代绘画颜料的解读,并重点对石绿的两种异构体进行优化,探究其稳定结构、紫外吸收等性质,并进一步分析了不同光谱波段的归属。采用软件特殊算法得出两类石绿分子的紫外可见吸收光谱,如图3所示。图3 两种稳定石绿分子的紫外可见吸收光谱对比图3对两种伴生矿物可能存在的颜料中的共存问题通过拉曼特征光谱的指认给出了分辨。分析了敦煌研究院赠予的青金石矿物及青金石末矿物颜料,通过分析天然矿物、矿物颜料及人工合成颜料之间拉曼光谱1100cm -1 以上光谱特性的差别,对青金石颜料的应用及来源给出鉴别。本文为快速确定石绿颜料在阳光作用情况下的的特性给予数据支持,同时可以促进颜料质量的提高,为更好地保护古代文物做贡献。
  • 网络研讨会 | 3个铝型材粉末涂层测厚案例研究
    3个铝型材粉末涂层测厚案例研究网络研讨会对早期的喷涂工艺涂层厚度测量可以节省高达30%的涂层材料,避免废品,同时还可以提供一个详细的粉末涂层厚度测量记录文件,方便后续管理。涂魔师Coatmaster提供了完美的涂层厚度测量技术,一方面支持在固化前和固化后进行非接触无损涂层测厚,另一方面易于集成,并可以根据不断变化的环境条件进行及时调整。在此次网络研讨会上,涂魔师Coatmaster总经理Nils A. Reinke教授博士将介绍涂魔师粉末喷涂厚度检测系统技术在垂直方向和水平方向喷涂中的最创新应用。案例研究的范围是从手动非接触无损涂层厚度测量到自动整体成像涂层厚度测量以及闭环涂层厚度控制。此次网络研讨会非常适合铝型材喷涂作业,粉末涂料喷涂作业,垂直方面喷涂作业和水平方向喷涂作业的公司和技术人员参加,欢迎报名参加!通过此次研讨会,你将了解如何通过对早期喷涂工艺进行涂层测厚控制,为喷涂生产线争取更大的效益!网络研讨会时间:2021年7月14日马上发邮件到【marketing@hjunkel.com】报名参加,邮件标题【7月14日涂魔师网络研讨会】进行登记,我们将在研讨会结束后给您发送资料和视频。涂魔师非接触无损测厚系统FLEX介绍涂魔师非接触无损涂层测厚系统FLEX在产线上监控喷粉膜厚后,调节出粉量后节省30%的粉末。特别是对于小批量,产品未出炉已喷完,所以无法根据干膜调整膜厚,而涂魔师在开始喷涂的几分钟内就调整好出粉量,减少返工,降低成本。
  • 中国科大在提升3D打印水凝胶结构分辨率研究方面取得重要进展
    墨水直写3D打印是一种应用广泛的增材制造技术,该方法依赖的墨水成分选择空间大并且制造成本相对低廉。然而,墨水直写方法受制于低打印分辨率,在打印高分辨率的三维结构方面十分困难。水凝胶是一个高度溶胀的高分子网络,失水时可以产生巨大的体积变化,利用三维水凝胶结构的体积收缩来制造微型结构是一个可选的方案。此外,墨水直写方法在打印具有复杂悬空结构时同样面临着挑战,常用的策略是后期将目标材料灌入打印的牺牲模板中来间接制造复杂三维结构。最近的研究工作集中在光固化牺牲模板上,但是去除这些模板一般需要高温处理或有毒溶剂,极大地限制了可灌注的目标材料种类。   近日,中国科大俞书宏院士团队报道了一种提升墨水直写3D打印技术分辨率的方法,该方法是基于一种可打印水凝胶(卡波姆凝胶)的可控收缩特性。研究人员通过引入分子链间的共价键交联赋予了水凝胶干燥后均匀收缩的特性,3D打印水凝胶结构的体积可收缩至原先的0.5%,提升了墨水直写3D打印技术的制造分辨率。此外,研究人员利用该水凝胶体系预先打印牺牲模板,而非将目标材料墨水直接纳入打印墨水体系,无需对目标墨水的流变性能进行重新设计,拓展了可制造材料的种类。该研究成果以“Controlled desiccationof preprinted hydrogel scaffolds toward complex 3D microarchitectures”为题发表在Advanced Materials上。我校博士生崔晨为论文的第一作者,俞书宏院士和高怀岭教授为通讯作者。   为了提高墨水直写3D打印技术的打印复杂度和打印分辨率,研究人员利用具有可控收缩特性的水凝胶微粒作为牺牲模板的墨水,打印的水凝胶牺牲模板在受控干燥后体积收缩了99.5%(图1g),成功制造了具有亚毫米分辨率的复杂三维结构(以双螺旋结构为例)。研究表明,水凝胶中的分子间共价交联是实现水凝胶均匀收缩的关键因素之一。研究人员测试了多种交联方式的水凝胶,验证了该策略的普适性。图1 可控收缩水凝胶通过墨水直写3D打印制备牺牲模板,打印结构经过自然干燥,在保持原先结构的前提下体 积大大减小,由此提升了制造分辨率   为了进一步研究牺牲模板中孔道的几何各向异性对收缩均匀性的影响,研究人员分别打印了具有水平和竖直圆柱形孔道的支架。水平和竖直孔道截面的重叠系数分别为0.94和0.95,表明了孔道结构收缩前后的高形状保持率和水凝胶支架在三维空间的均匀收缩(图2a)。为了探索水凝胶的最大收缩倍数,使用氢氧化钠中和的卡波姆凝胶分别实现了在水平方向上5.95倍、在竖直方向上5.32倍的均匀收缩(图2b)。   研究人员进一步设计了一个具有三维导电通路的逻辑电路和磁性微型机器人作为概念验证。可控收缩的3D打印水凝胶在干燥后构成了微电路支架,注入的液态金属EGaIn构成了内部的导电通路。Micro LED被固定在立方体电路的五个表面上,通过连接底部不同的触点对,Micro LED会被依次点亮(图2g)。利用可控收缩的3D打印水凝胶作为牺牲模板还制造了特征尺寸为90微米的磁性微型机器人。在可控磁场的作用下,该微型机器人具有良好的旋转和运动功能。 图2 水凝胶牺牲支架中孔道的几何各向异性对均匀收缩的影响及制造的三维电路器件   研究人员利用可打印水凝胶的可控收缩特性提升了墨水直写3D打印技术的制造分辨率和结构复杂度。未来,水凝胶辅助3D打印方法将为解决三维微纳制造的经济性和灵活性问题提供新的思路。   该工作受到国家重点研发计划、国家自然科学基金、安徽省高校协同创新项目、中央高校基本科研专项资金等资助。
  • 上海光机所在研究铝磷酸盐玻璃的结构和性质方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究员团队采用了一种将实验、分子动力学模拟和定量结构性质关系分析(QSPR)相结合的方法研究磷酸铝玻璃,相关研究成果发表于《美国陶瓷》(Journal of the American Ceramic Society)。目前,磷酸铝玻璃在许多领域都有广泛的应用,包括生物医学材料、光学元件、密封材料和核废料固化等。通过实验技术手段对磷酸铝玻璃的短程结构已有较多的研究,但其性质与中程结构之间的关系尚不清楚。而分子动力学模拟已成为了研究的有效工具,在揭示玻璃性质的结构起源方面发挥着越来越重要的作用。   在本项研究中,研究人员结合了实验、分子动力学模拟方法研究Al2O3对磷酸铝玻璃的短程及中程结构的影响,并通过QSPR方法建立其结构性质模型。通过拉曼、同步辐射等实验结果验证了模拟的准确性。模拟结果表明,玻璃网络中存在的P-O-P键随Al2O3含量变化逐渐被P-O-Al键替代,对玻璃的性能变化起着重要的作用。同时,磷酸铝玻璃中的长链易形成环状结构,并集中在4~20元环。此外,利用三个不同的结构描述符来建立QSPR模型,并成功地将实验数据与模拟结果相关联,表现出良好的模型预测性。这一方法为预测玻璃性质及设计玻璃组分提供新思路。图1以磷酸铝玻璃的(a)配位数(CN)、(b) Qn、(c)环尺寸作为结构输入所建立的定量结构-性能关系模型。从左到右列为结构描述符Fnet分别与实验密度、硬度、玻璃化转变温度和热膨胀系数的关系。
  • ​【热点研究】微囊悬浮剂的连续化制备
    研究背景农药微囊化技术是将农药活性成分(芯或内相)用各种天然的或合成的高分子化合物连续薄膜(壁或外相)完全包覆起来,而农药活性成分的原有化学性质不发生改变,然后通过某些外部刺激或缓释作用使农药活性成分缓慢释放出来。农药微囊作为一种环保剂型,具有持效期长、安全、环保等优点,可降低用药量,减少用药次数,是农药减量增效最为有效的手段之一,是近几年的研究热点,也是厂商争相竞逐的下一个上量新高地。近期,南通江山农药化工股份有限公司的研究人员,利用康宁G1微通道反应器成功实现高效氯氟氰菊酯(lambda-cyhalothrin)微囊悬浮剂连续化制备。康宁G1多功能平台该工艺优势:密封制备,一次投料,避免刺激;精准合成、游离含量低(5%以内);精准控制壁材交联度、孔隙率,达到速释效果;储存稳定。微囊悬浮剂试验方法:氯氟氰菊酯原药完全溶解在溶剂中,再加入油性单体充分搅拌均匀为A体系;乳化剂与水混合为均相为B体系;B体系剪切状态下缓慢投入A体系,使其粒径D50达到2~3μm左右成为C体系;水性单体溶于水成为D体系;C体系和D体系分别通过不同的泵以一定量的流速进入混合器,再进入微反应器;充分反应固化成囊后再加入分散剂、防冻剂、防腐剂、稳定剂等组分形成产品。图1.微通道反应器制备微囊悬浮剂流程图微囊悬浮剂成囊机理以异氰酸酯与二乙烯三胺为原材料,界面聚合合成囊材,包裹住高效氯氟氰菊酯水乳剂组分,并结合分散剂、防冻剂、防腐剂等组分,使囊球均匀悬浮于分散介质中,反应机理见图2。图2. 界面聚合成囊反应机理研究过程一、制备工艺的影响因素作者通过对囊芯溶剂用量、乳化剂种类及用量、剪切速度和时间、水性囊材添加速度等各反应条件探索,研究对微囊悬浮剂制备的影响。1. 囊芯溶剂用量的影响150#、200#溶剂油、环己酮均对高效氯氟氰菊酯原药有溶解和稀释作用。现采用不同组成和比例的溶剂溶解氯氟氰菊酯原药,观察其成囊、包覆率等情况。表1.不同溶剂用量对微囊的影响 150#溶剂油较200#溶剂油组分集中且较轻,溶解氯氟氰菊酯原药更好,成囊更稳定和均相,其中释放速率见图3。图3. 不同溶剂制剂微囊悬浮剂释放速率 2. 乳化剂种类及用量的影响分别采用乳化剂乳化剂A(烷基酚聚氧乙烯醚),B(EO-PO嵌段聚醚),C(蓖麻油聚氧乙烯醚),D(多元醇酯类)进行高效氯氟氰菊酯乳状液筛选。实验结果表明乳化剂C具有较强的分散乳化作用,有利于成囊。3. 剪切速度、时间的影响微囊制备过程中,粒径大小及其分布,在相当程度上取决于初始乳状液的粒径大小、分布和囊芯的乳化效果。表2. 剪切速度对微囊的影响 剪切速度过慢,油溶性囊材异氰酸酯与水无法充分接触转化为其羧酸形态;剪切时间延长,异氰酸酯易自聚,无法与多元胺聚合形成稳定均相的囊材,对有效成分进行包裹。4. 水性囊材添加速度的影响脲醛树脂预聚体在油珠表面与多元胺发生缩聚反应,多元胺滴加速度对微囊粒径大小及分布也有较明显的影响。表3. 水性囊材添加速度对微囊粒径大小及分布影响 多元胺与异氰酸酯反应剧烈且易触发副反应,如果滴加速度过慢,异氰酸酯自聚,无法与多元胺聚合成囊;滴加速度过快,导致油珠碰撞聚并、缩聚反应速率加快,急剧沉积致微囊粒径分布变宽,所得微囊也常有凹陷。二、微囊悬浮剂质量采用优化后配方组成,分别应用常规反应器和微通道反应器各配制4批23%高效氯氟氰菊酯微囊悬浮剂,相关指标结果如下。表4. 不同反应设备产品质控指标对照 三、工艺比对作者对微通道技术与传统工艺参数进行了比较。表5. 加工工艺对比情况 由上表可以看出,连续流微通道反应器可以精准控制反应物料配比、反应温度和反应时间,且设备体积小、持液量少、节能环保,无放大效应,制备无批次差异,产品质量稳定。四、田间药效实验对比通过田间药效试验对比分析,康宁连续流微通道反应器制备的23%高效氯氟氰菊酯微囊悬浮剂在防治甘蓝菜青虫田间药效试验中表现良好。 表6. 23%高效氯氟氰菊酯微囊悬浮剂防治甘蓝菜青虫田间药效试验 总结通过采用界面聚合法进行23%高效氯氟氰菊酯微囊悬浮剂的制备;优选囊芯溶剂用量、芯壁比、剪切速度和时间、水性囊材添加速度等各反应条件,并结合微通道反应器,很好地解决了对反应物料无法精确瞬间配比、无法避免副反应、耗能大、刺激强等问题;可以实现连续化生产,是农药加工领域重要的发展方向。参考文献:《农药.》2022,61(08)
  • 超百亿半导体封测设备市场的国产化率亟需提升
    传统半导体封装主要实现对芯片的保护和电信号的对外连接,其工艺流程为:划片、装片、键合、打线、塑封、电镀、上球、打标、切筋成型等工序 先进封装则进入到晶圆级领域,将多颗晶圆通过堆叠、硅通孔乃至异质键合等微纳加工技术将芯片提升至系统级水平,同时实现更小的体积,更低的功耗和更高的速度。在晶圆制程技术提升放缓的大背景下,先进封装成为延伸摩尔定律的一大支柱。封装设备技术和加工制造能力是封装行业发展的要害与瓶颈。全球封装设备呈现寡头垄断格局,ASM Pacific、K&S、Besi、Disco、Towa、Yamada等公司占据了绝大部分的封装设备市场,行业高度集中。据统计,全球封装设备市场总体规模约40亿美元,其市场规模近年来不断扩大,2018年全球封装设备市场规模占全球半导体设备市场比例为6.2%,仅为制程设备市场规模的1/13,也略低于测试设备市场规模。在先进封装应用的推动下,封装设备市场规模预计2021年将增长56%,达到60亿美元。中国大陆半导体产业起步较晚,整体上落后于以美国、日本为代表的国际半导体强国,但凭借政府重大科技“02专项”以及持续出台的多项半导体行业相关政策的支持,其半导体产业发展迅速。目前,中国大陆集成电路封测环节发展成熟度好于晶圆制造环节,近十年来集成电路封装测试行业销售总额保持连续增长,由2011年的976亿元增长至2020年的2,510亿元,复合增长率高达11.07%,但封装设备与测试设备中国国产化率均远低于晶圆制程设备的国产化率。据中国国际招标网数据统计,封测设备国产化率整体上不超过5%,低于制程设备整体上10%-15%的国产化率,且缺乏具有国际知名度的大型封装设备制造厂商,封装设备的国产化亟需产业自强和产业链及政策重点培育。目前中国大陆各类封装设备绝大部分被进口品牌主导,装片机主要品牌为ASM Pacific、Besi、日本FASFORD和富士机械,倒片机主要品牌为ASM Pacific、Besi;打线设备主要品牌为美国K&S、ASM Pacific、日本新川等;划片切割及研磨设备主要品牌为DISCO、东京精密等;塑封系统主要品牌为Besi、日本Towa、ASM Pacific和日本Yamada。经过多年的技术积累及市场培养,部分国内半导体封装设备厂商的设计制造能力日渐成熟,全自动塑封系统和全自动切筋成型系统实现了中国国产设备从无到有的突破,并逐渐发展壮大。中国大陆半导体塑封设备市场主要包含手动塑封压机、传统封装领域的全自动封装系统以及先进塑封设备。手动塑封压机目前能满足TO类、SOP、DIP等不同产品的塑封需求,已替代进口实现国产化。全自动封装系统国产设备代表公司为文一三佳科技股份有限公司及安徽耐科装备科技股份有限公司,现有机型能满足SOD、SOT、SOP、DIP、QFP、DFN等大多数产品的塑封要求。经过多年的发展,虽然与国外一流品牌尚有差距,但差距在不断缩小,正在逐步替代进口实现国产化。封装企业转变观念,大力扶持国产设备的技术进步和生产应用,使得国产设备在很多性能方面取得明显进步。全自动封装系统和全自动切筋成型系统在良率、稳定性、UPH及MTBA等性能指标方面已经达到国际先进水平,配合自主研发的移动预热台系统、树脂称重系统和自润滑系统等创新功能,市场认可度不断提高。以长电科技、通富微电及华天科技为代表的大型知名封测厂商均已逐年加大了国产设备的采购比例,国产设备与日本Towa、Yamada等国际知名品牌设备在同一封装生产车间里齐头并进生产运行已经屡见不鲜。先进封装在提升芯片性能方面展现的巨大优势吸引了全球各大主流IC封测厂商乃至台积电、Intel等晶圆制造厂商在该领域的持续投资布局。以板级和晶圆级封装为代表的先进封装对塑封设备提出更高的技术,需要采取将半导体芯片浸入事先液化的流动性树脂内进行树脂固化的加工方式。国际设备公司已相继开发了先进塑封设备,而中国产先进塑封设备目前还处于初级开发阶段,更需要在新跑道上努力前行,提升产品竞争力和附加值。据相关机构统计,2020年中国大陆半导体全自动塑封系统目前市场规模约为20亿元,其中Towa每年销售量约为200台、Yamada约为50台、Besi约50台、ASM约50台、文一三佳科技股份有限公司及安徽耐科装备科技股份有限公司每年各20台左右。中国大陆现有手动塑封压机存量超过10,000台,每年新增约500台,根据劳动力和成本限制情况,手动塑封压机新增数量将呈递减趋势,存量市场也将在未来5至10年内逐步被全自动塑封系统替代。可以预见中国大陆手动塑封压机各种形式的自动化升级改造潜在市场规模约500亿元。此外,在全自动切筋成型系统方面,中国大陆部分国产设备厂商技术已趋于成熟,市场需求每年约65亿元。随着中国大陆承接第三次半导体产业转移的行业机遇,且随着AI、物联网、新能源汽车、5G通信、可穿戴设备等行业的飞速发展,半导体封测行业市场规模也将迅猛增长。以长电科技、通富微电、华天科技为代表的中国半导体封装企业已进入全球封测行业前十,在全球封测市场占据重要的地位。受中美经济摩擦的影响及中国国家产业政策的支持,中国大陆产生大量半导体封测新兴企业,催生了对封装设备的巨大购买力,其半导体封测行业市场规模占全球市场规模比例有较大的提升。中国大陆国产半导体封测设备企业应当抓住时代机遇,加大研发投入和自有知识产权建设,主动寻求与下游封测厂商的合作机会,持续开发新产品及配套的系统升级,对标国际先进技术,不断提高设备综合性能,尽快提升封装行业的设备国产化率并在先进封装设备领域实现良好开端,逐步完善设备产品链,用中国制造的设备促进国际半导体封装行业的进步与繁荣。
  • 清华大学环境学院李淼副教授团队开发磷掺杂单原子钴催化剂实现水中硝酸盐污染高效还原去除与能源利用
    全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常,在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+h−1cm−2。图1 单原子催化剂结构形貌分析结果研究团队采用自然界极少的15NO3−作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+和15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。图2 电极性能结果研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。图3 反应机理示意图该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上。论文第一作者为清华大学环境学院博士后李佳澄,论文通讯作者为清华大学环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、操作简单和样品消耗少以及可与多种检测手段联用等优点,在酶分析研究中越来越受到关注[39-41]。近年来,固定化酶微反应器与生物活性靶向技术相结合已应用于中药酶抑制剂的筛选[42]。该方法将酶固定在经过修饰的石英毛细管内,捕获抑制剂后,洗涤未结合组分,进而通过蛋白质变性洗脱活性结合配体,允许直接并可重复注射生物样品到高效液相色谱上进行检测,筛选和分离一步完成,大大缩短了操作时间。但该方法制备过程中是比较复杂繁琐的[43-44],而且载体的孔隙率[45]、孔径[46]和表面化学[47-48]等因素也很容易影响固定化酶的性能。Wu等[49-50]用PDA对石英毛细管进行表面改性,并与氧化石墨烯共聚形成聚多巴胺/氧化石墨烯涂层,增加了固定化酶的结合率,并将该方法成功用于凝血酶和凝血因子Xa以及黄嘌呤氧化酶抑制剂的筛选。有研究者用3-氨基丙基三乙氧基硅烷对石英毛细管进行表面改性,采用戊二醛交联法进行酶的固定,并成功用于酶制剂的筛选。Rodrigues等[51]将此修饰方法用于黄嘌呤氧化酶(xanthine oxidase,XOD)抑制剂的筛选,成功地从不同天然产物中筛选出30个潜在的XOD抑制剂。Zhang等[52]将此修饰方法用于组织蛋白酶B抑制剂筛选,并从中药中发现了17个具有抑菌潜力的活性成分,发现山柰酚等5种天然产物有潜在的抑制作用,并以分子对接进行验证。Tang等[53]将此修饰方法用于脂肪酶抑制剂的在线筛选,结果发现6种天然产物对脂肪酶活性均有抑制作用。Zhao等[54]将此修饰方法用于神经氨酸酶抑制剂的筛选,发现了6种天然产物为潜在抑制剂。进一步测定了这6种化合物对神经氨酸酶潜在的抑制活性,由大到小分别为:甲基补骨脂黄酮A>补骨脂甲素>黄芩素>黄芩苷>白杨素和牡荆素。此外,还有研究者采用单片毛细管固定化酶反应器与液相色谱-串联质谱联用技术,成功用于酶抑制剂的筛选[55-56]。毛细管的高表面体积比有利于足够高浓度的酶用于酶促反应[57-58]。此外,由于注入的底物溶液直接与固定化酶分子接触,使传统的采样、反应、分离和检测多步操作简化为一步操作,因此该分析变得更简单,不需要额外的混合程序。与磁性载体相比,该技术将筛选和分离集成为一步,大大缩短了操作时间。该技术适用于复杂混合物中酶抑制剂的快速筛选,而且样品消耗量少,节省了试剂成本,可以实现酶抑制剂的快速分离。2.1.2 硅酸铝纳米管 硅酸铝纳米管(halloysite nanotubes,HNTs)是一种天然存在的硅酸盐纳米管,由于其优异的物理特性,引起了人们越来越多的兴趣。HNTs的内径为20~30 nm,外径为30~50 nm,长度为1~2 µm,为药物、酶和杀菌剂的储存提供了理想的纳米级包埋系统。更重要的是,HNTs的外表面主要由O-Si-O基团组成,内表面由Al2O3组成,为酶提供了更多的选择性结合位点,从而减少了配体在HNTs上的非特异性吸附[59]。因此,有研究者将HNTs作为一种新的酶固定载体材料用于酶抑制剂的筛选。Wang等[59]通过静电吸附作用将脂肪酶固定到羟基纳米管上用于厚朴中脂肪酶抑制剂的筛选,发现厚朴三酚和厚朴醛B 2种化合物对脂肪酶抑制活性较好。HNTs的内外表面为酶提供了更多的选择性结合位点,降低了非特异性吸附,但其合成较为复杂,收率较低,因此应用有限。2.1.3 多孔二氧化硅 多孔二氧化硅材料具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,同时还具有耐高温和低温、电气绝缘、耐氧化稳定性、耐候性、难燃、耐腐蚀、无毒无味以及生理惰性等特性[60]。Hou等[61]首先将α-Glu结合到脂质体囊泡中,然后采用反蒸发法将其负载到多孔二氧化硅表面,制备成受体脂质体生物膜色谱柱,用于五味子提取物的α-Glu抑制剂筛选,并通过体外实验进一步证实了五味子苷的降糖作用。2.2 有机载体材料2.2.1 中空纤维 中空纤维是一种具有孔径和内腔的有机聚合物,具有比表面积大、生物材料和有机溶剂消耗低,且设备便宜、用于中空纤维制备的材料来源丰富,是酶、细胞、脂质体等生物材料的理想载体,已被应用于酶固定化中。首先,对中空纤维进行活化。然后,将酶与已活化的中空纤维孵育使酶被吸附在中空纤维上。最后,将待测物与中空纤维固定化酶孵育,筛选待测物中潜在酶抑制剂。Zhao等[62]提出了一种基于吸附中空纤维固定化酪氨酸酶(tyrosinase,TYR)的方法,从葛根提取物中筛选潜在的TYR抑制剂。通过液相色谱-质谱分析,成功地检测出了7种潜在活性化合物,并进一步结合体外实验,发现葛根素、葛根素-6-O-木糖苷、葛根素和阿片苷具有良好的TYR抑制活性。中空纤维因其具有孔径、内腔及比表面积大等优点,为酶提供了充分的附着空间,但由于其清洗较为困难,导致重复利用率低。2.2.2 生物传感器 生物传感器是一种对生物物质敏感并可将其浓度转换为电信号进行检测的仪器。丝网印刷电极因其具有批量生产、低成本、高重现性、小尺寸等特点而被广泛应用于分析领域。所谓酶生物传感器法,是将酶固定在经过修饰的丝网印刷电极上,当与抑制剂接触时会发生电信号变化,通过检测电信号的变化,达到分析检测的目的。Elharrad等[63]为筛选药用植物中潜在的XOD抑制剂,研制了一种简便、灵敏的安培生物传感器,并用于测定多种药用植物对黄嘌呤氧化酶的抑制率,发现留兰香和马齿苋2种植物对黄嘌呤氧化酶抑制活性较高。以普鲁士蓝修饰丝网印刷电极表面,极大降低了生物传感器的检测电位,使该装置具有较高的选择性。该传感器具有结构简单、选择性好、成本低、稳定性好、结果快速等优点。2.2.3 纸 自2007年Whiteside研究小组首次提出微流体装置概念以来,纸作为一种新的载体材料,以其良好的生物相容性、大的比表面积、易于修饰、价格低廉等优点,在环境监测、化学检测、生物医学诊断等领域具有广阔的应用前景[64]。(1)滤纸:三维打印技术是利用一种纸分析仪器将纸张制作成为一种特殊的微流体装置,该装置成本低,具有较高的比表面积,易于结合分子吸附蛋白质。使用过的纸张设备可以很容易地通过燃烧来处理,可减少实验消耗品造成的污染。Guo等[65]将三维打印技术用于酶抑制剂的筛选,首先,用3D印刷的聚己内酯对滤纸进行改性,形成疏水区。然后,对滤纸进行准确切割,得到既具有亲水性又具有疏水性的改性纸。接下来,用壳聚糖对亲水区进行改性。最后,将α-Glu固定在亲水区,制备出具有独特微流体结构的三维打印技术微装置,并成功地将该方法用于筛选植物提取物中具有α-Glu抑制活性的物质,发现绿原酸、槲皮素-3-O-葡萄糖醛酸、异槲皮素和槲皮素4种化合物对α-Glu的抑制活性较好。该方法结合一些便携式探测器,如手机和照相机,可以获得定性和定量的结果。因此,很容易判断酶在纸上的固定化效果。(2)纤维素滤纸:纤维素滤纸(cellulose filter paper,CFP)具有成本低、来源广、表面积大、生物相容性好、表面羟基含量高等优点,被选为新型酶固定化载体,而且CFP可以快速从酶反应混合物中分离并终止反应,从而缩短了操作时间,简化了其他载体(如纳米材料和磁性纳米颗粒)所需的分离过程。Li等[66]以纤维素滤纸为载体,对α-Glu进行固定化。利用多巴胺的自聚-粘附行为,通过希夫碱反应和迈克尔加成反应,将聚多巴胺复合层包覆α-Glu与改性后的CFP共价结合形成固定化酶(CFP/DOPA/α-Glu)。用CFP/DOPA/α-Glu筛选11种中药中的α-Glu抑制剂,发现诃子对α-Glu的抑制作用最强。Zhao等[67]以CFP为载体,以壳聚糖为物理包覆剂引入氨基基团,然后以戊二醛为交联剂,通过希夫碱反应,将AchE与氨基功能化的CFP共价键合进行固定化酶。最后,将CFP固定化AchE应用于17种中药的抑制剂筛选。2.2.4 金属-有机骨架 金属-有机骨架(metal- organic framework,MOFs)为一种杂化多孔材料,由有机连接体和金属节点通过强的化学键组装而成。MOFs具有可调节孔径、大比表面积和热稳定性等优点。有研究表明,酶被固定在MOFs上后,其在可重用性、催化活性和稳定性方面的性能都有了很大的提高。Chen等[68]首先将ZrCl4和氨基对苯二甲酸溶于N,N-二甲基甲酰胺溶液中进行超声,然后分别加入HCl和HAc,得到混合物。随后,将混合物转移到不锈钢聚四氟乙烯内衬的高压釜中密封加热,反应混合物在空气中冷却至室温,然后离心。沉淀物用新鲜N,N-二甲基甲酰胺和无水乙醇洗净,后减压干燥,合成了金属有机骨架UiO-66-NH2。UiO-66-NH2通过沉淀交联固定化猪胰脂肪酶(porcine pancreatic lipase,PPL),得到的PPL@MOF具有较高的PPL载量和相对活力恢复率,并将PPL@MOF复合物用于筛选夏枯草脂肪酶抑制剂,发现了13种潜在的脂肪酶抑制剂。与磁珠、纳米粒子相比,MOFs材料酶固定量大、相对活力恢复率高。2.2.5 酶微柱 有研究者采用酶微柱法用于酶抑制剂的筛选,该方法属于固相萃取技术,操作简单,可与高效液相色谱耦合,实现了在线筛选,提高了酶抑制剂的筛选和分析效率。首先将硅胶分散在乙醇中,加入3-氨基丙基三乙氧基硅烷形成氨基功能化硅胶,然后将氨基功能化的硅胶与酶液混合,使酶固定在硅胶表面,洗去未结合酶,最后将酶固定化硅胶填入不锈钢微柱中形成酶微柱。Peng等[69]运用该方法成功的从金银花中筛选和鉴定XOD抑制剂。该方法与高效液相色谱的在线耦合提高了筛选和分析效率。与传统的与二维色谱耦合相比,该方法为直接与HPLC耦合,缩短了分析检测时间。3 总结与展望中药含有的化学成分复杂、种类繁多、作用机制比较复杂,一直是获取活性成分或者先导化合物的重要来源。以酶为靶标进行药物筛选是发现和寻找新药的重要环节之一。随着固定化酶技术的发展,研究者将固定化酶技术与中药酶抑制剂的筛选相结合,并通过高效液相色谱-质谱联用技术进行鉴定,筛选得到很多具有酶抑制活性的化合物,在一定程度上明确了中药发挥作用的活性成分及其作用机制。本文以不同载体材料为分类,综述了固定化酶技术在中药酶抑制剂筛选中的应用。磁珠是最常用的磁性载体材料,该类材料利用磁力吸引可使固定化酶配体配合物快速从体系中分离,且固定化方法简单,而且使用后的磁珠可以回收利用,能有效减少人力物力的投入。非磁性载体材料主要以石英毛细管应用最为广泛。此外,还有中空纤维、纳米管、生物传感器等材料用于筛选中药中的酶抑制剂,丰富了固定酶的载体材料。固定化酶技术在酶抑制剂筛选上的应用前景十分广泛,不仅节省了人力物力而且提高了新药研发的效率。目前,固定化酶技术仍然存在一些问题,如酶与载体材料的结合率较低、固定化酶的活力也会有所下降等。但相信随着科学技术的不断发展及酶抑制剂研究的不断深入,固定化酶技术会成为酶抑制剂筛选最有前景的方法之一。利益冲突 所有作者均声明不存在利益冲突
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制