当前位置: 仪器信息网 > 行业主题 > >

固形物

仪器信息网固形物专题为您整合固形物相关的最新文章,在固形物专题,您不仅可以免费浏览固形物的资讯, 同时您还可以浏览固形物的相关资料、解决方案,参与社区固形物话题讨论。

固形物相关的资讯

  • 中药浸膏制剂Brix值检测-固形物含量
    近日,ATAGO(爱拓)工作人员对上海的用户做客户回访并交流仪器使用心得,工程师对某药厂2002年购买的ATAGO(爱拓)PRM-85在线折光仪用于浓缩工艺管道Brix值检测进行售后维护工作。 从生药原料到制造浸膏制剂的工艺流程 根据提取工艺的升温、提取时问、加入溶剂比饲的探讨,浓缩工艺、干燥工艺及制剂化工艺的各 种试验数据,设定各工艺的制造设备和制造条件.然 而,如今现代化快速的社会,服用汤剂具有操作麻烦,药物长时间存放出现稳定性降低等不便或缺点。ATAGO(爱拓)的自动台式折光仪正好满足现今中药浸膏制剂制作过程中的各种数据的验证,中药浸膏制剂Brix值的检测更加充分肯定ATAGO(爱拓)产品的性能以及应用领域的发展。中药浸膏制剂的制造工艺流程: 生药&mdash 切裁-称重-调和-提取液-浓缩-干燥-浸膏粉 在提取液和浓缩工艺对药液中固形物含量及糖度的控制非常重要,也是品质监控必检项目,检测固形物含量和糖度国标规定可以用折光的方式来检测。客户实用举例:某药厂购买ATAGO(爱拓)PR-101a做取样测量某药厂购买ATAGO(爱拓)自动台式折光仪RX-5000a用于控温测样 RX-5000a特点:RX-5000&alpha 是能够内部设定测量温度的自动折射仪,能够快速地测量折射指数、糖度或各式液体的浓度,以下为本产品的特性:&bull 因为RX-5000&alpha 具有电热模块以控制温度,所以不需要恒温水箱。&bull 在样本达到目标温度之后,测量会自动开始。&bull 在目标温度下,折射指数与糖度会快速显示&bull 可取得高糖度 ± 0.03% 与折射指数 ± 0.00004 准确度。&bull RX-5000&alpha 会显示您所设的控制范围的高低界线。&bull 如果测量值与您的标准液体值或其它折射仪测量的不同,将能做部分调整。&bull 根据您的样本,能够输入60种使用者标度。&bull RX-5000&alpha 能够显示最少30个最近的测量值。某药厂2002年购买的ATAGO(爱拓)PRM-85在线折光仪用于浓缩工艺管道糖度检测ATAGO(爱拓)工程师身旁的PRM-85在线浓度计 2011年ATAGO(爱拓)将PRM-85升级为PRM-100a,高精度在线浓度计PRM-100&alpha 由检测部件(传感器)与显示部件构成,与其前身PRM-85相比,其测量范围更加广泛( Brix 0.00 至 100.00% ),精度更高( 折射率± 0.00010, Brix ± 0.05 ),可以选择最小标度来显示。在线折射仪能够提供给制造工厂、混和设备与清洗设备一起使用以持续测量各式液体的浓度。适用于混和、浓缩、发酵的控制与水性和碱性清洁剂等的浓度控制。PRM-100a特点:★大幅降低工人劳动强度、生产安全保证 ★显著提到产品质量 、无滞后监测 ★产品质量始终如一性 ★自动化程度高 ATAGO(爱拓)为您提供100种以上物质浓度检测方案,欢迎您的咨询。您可以通过以下方式联系我们:官方网站:http://www.atago-china.com企业QQ:800064900广州分公司电话:86-20-38108256/38106065/38106057上海办事处电话:86-21-61131991/61131992/61131993
  • Resonon | 基于深度学习和高光谱图像估算车厘茄可溶性固形物含量及硬度
    车厘子,相信大家都不陌生,毕竟“车厘子自由”曾经也是风靡一时的网络热词。但是车厘茄是什么呢?车厘子的变种?车厘子和茄子的结合?空想不如实干,看看度娘怎么说......嚯,原来车厘茄就是常见的小番茄!另外,小加还了解到车厘茄含有丰富的维他命和十分高的铁质含量,不仅有美容功效,还可以预防出现贫血,可谓是值得多次购买的营养好物。但是购买时,我们只能通过朴素的双眼判断其好坏,如果从专业性的角度出发,该如何评估车厘茄的质量呢?答案就在下面这篇论文里,快一起来看看吧!基于深度学习和高光谱图像估算车厘茄可溶性固形物含量及硬度车厘茄(Solanum lycopersicum)因其特殊的香味深受世界各地消费者喜爱。可溶性固形物(SSC)和硬度是评估产品质量的两个主要指标。现存的测量技术主要依赖于化学方法。然而,这种破坏性的方法不适用于大面积的测量。高光谱成像技术可以同时获取光谱信息和空间信息,已广泛应用于各个领域,如植物病害胁迫检测、工业食品包装、医学图像分类及水果质量分析。基于此,来自浙江工业大学和浙江省农业科学院的研究人员选择当地主流的车厘茄(Zheyingfen-1)为研究对象,测量其硬度和SSC,并基于高光谱图像(PIKA XC 高光谱相机,Resonon Inc.,Bozeman,MT,USA)和相应的深度学习回归模型开发了无损式测量技术。高光谱成像系统【结果】(A)校正的光谱反射率图。(B)MSC预处理。(C)二阶差分预处理。每个模型的SSC估算结果。(A)小样本数据的SVR估算结果。(B)大样本数据的SVR估算结果。(C)小样本数据的KNNR估算结果。(D)大样本数据的KNNR估算结果。(E)小样本数据的AdaBoostR估算结果。(F)大样本数据的AdaBoostR估算结果。(G)小样本数据的PLSR估算结果。(H)大样本数据的PLSR估算结果。(I)小样本数据的Con1dResNet估算结果。(J)大样本数据的Con1dResNet估算结果。大样本数据集每个模型的硬度估算结果。【结论】本研究中,作者利用高光谱图像提出了Con1dResNet深度学习模型来估算车厘茄的SSC和硬度。相比传统的机器学习方法,充足的样本数量可以实现更好的结果。就SSC估算而言,其R2值为0.901,比PLSR高26.4%,其MSE为0.018,比PLSR低0.046。就硬度估算而言,其R2值为0.532,优于PLSR33.7%。结果表明高光谱成像结合深度学习可以显著提高车厘茄SSC和硬度估算准确性
  • ASD | 利用新鲜葡萄浆果的反射光谱测量估算葡萄浆果中的可溶性固形物总含量
    在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到的:R2 = 0.72,RMSE = 0.55 °Brix,RPD = 1.87,因子数 n = 7。对于白葡萄,Godello取得了最佳结果:R2 = 0.75,RMSE = 0.98 °Brix,RPD = 1.97,因子数 n = 7。所使用的方法和得到的结果表明,可以使用漫反射光谱和将反射值用作预测变量的回归模型来估算葡萄中的TSS含量。结果 RESULT葡萄的反射率是使用ASD FieldSpec 4 地物光谱仪进行测量,该仪器可检测350–2500 nm光谱范围内的反射率。葡萄样品(每个葡萄品种60个样品,每个样品有100颗浆果)散布在黑色容器芯中(17 × 17 cm)。从4个不同的数据中获取了100颗浆果的反射数据(在每次测量之前将样品顺时针旋转90°)。然后对反射数据进行预处理,得到4次数据的平均值。图1. 利用ASD地物光谱仪获取光谱数据的流程图2展示了四种葡萄品种的平均反射值范围以及原始数据(图2a)和SNV转换数据(图2b)的TSS反射值。在图2a中,红葡萄品种(Mencía和Tempranillo)具有非常相似的光谱特征。虽然在可见光范围内的反射值相似,但从波长675 nm处可以看出一些差异,最大和最小反射值分别约为895 nm和1080 nm,以及675 nm和960 nm。白葡萄(Godello和Verdejo)的光谱特征与红葡萄不同,但彼此非常相似。Godello和Verdejo在可见光-近红外范围的570 nm、830 nm和890 nm处具有最高的反射值。在这个范围内,反射值呈现轻微差异,尽管它们具有相同的光谱特征。从波长1160 nm开始,四种葡萄品种的反射值是相同的。图2 四种葡萄品种(Mencía、Godello、Tempranillo和Verdejo)采样浆果的平均光谱范围图3 Godello、Mencía、Tempranillo和Verdejo葡萄品种在使用原始数据(实线)和SNV转换数据(虚线)进行PLS回归时加权回归系数在全光谱范围内的分布。对四个品种的酿酒特性进行了交叉验证。黑线表示零相关性,并为了清晰呈现而偏移了3.0单位图4 利用原始光谱反射数据进行每个波长的简单线性相关性葡萄糖度(TSS)相关图。图5 利用原始(a–d)和SNV转换(e–h)反射数据进行的偏最小二乘回归(PLS)的均方根误差(RMSE)值。所有图应用相同的颜色刻度(请参阅右侧图例)。结论 CONCLUSION采用漫反射光谱测量方法,利用偏最小二乘(PLS)回归模型估计了四种葡萄品种(Godello、Verdejo、Mencía和Tempranillo)的总可溶性固形物(TSS)含量。基于所获得的结果,红葡萄品种的TSS含量估算最佳,特别是Mencía。用于TSS预测的最适宜光谱范围是近红外(NIR)范围(701–1000 nm)。在此光谱范围内获得了最高的R2和RPD值,以及最低的RMSE和F值。在所有光谱范围内,对数据进行SNV转换进一步改善了模型的评估指标结果。用于估算TSS的最佳变量(图5)分别位于860 nm处,波长201 nm的Godello;883 nm处,波长232 nm的Mencía;916 nm处,波长230 nm的Tempranillo;以及1055 nm处,波长230 nm的Verdejo。这些最佳点呈现出最低的RMSE值。研究表明,通过光谱测量的反射值,可以迅速、非侵入性地进行现场测量,从而估算TSS含量。
  • 《中国持久性有机污染物评估报告》发布
    仪器信息网讯 2011年5月17日,“持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会”(简称“POPs论坛2011”) 在黑龙江省哈尔滨市隆重开幕。“POPs论坛2011”由清华大学持久性有机污染物研究中心、环境保护部斯德哥尔摩公约履约办公室、中国环境科学学会持久性有机污染物专业委员会和中国化学会环境化学专业委员会共同主办,哈尔滨工业大学城市水资源及水环境国家重点实验室承办。来自国际机构、国内相关科研院所、管理部门和行业企业的代表,以及美国、加拿大、日本、韩国、越南等国专家共三百余人出席本届论坛。“POPs论坛2011”现场  大会报告环节中,德哥尔摩公约新POPs审查委员会成员、北京大学胡建信教授发表了题为《中国持久性有机污染物评估报告》的精彩演讲。北京大学胡建信教授  胡建信教授首先简要介绍了《中国持久性有机污染物评估报告》(下简称《评估报告》)的一些基本情况,包括编写目的、评估地区、评估方法、评估过程、评估内容和目标POPs等。  《中国持久性有机污染物评估报告》的编写是以中国环境科学学会持久性有机污染物专业委员会为依托,组织多位专家对我国POPs现状进行了评估。  编写目的:为各级机构、研究单位、大学、企业以及公众提供一个报告——为未来我国开展关于持久性有机污染物领域的研究和开展防治持久性有机污染物污染保护环境和公众健康指出方向;向国际社会和公众进一步表明我国高度重视持久性有机污染物问题。  评估地区:主要包括中国大陆地区;评估以2010年为基线年;《斯德哥尔摩公约》管制的21种化学品(污染物)为评估对象。  评估内容:主要包括评估POPs来源、环境水平、人体暴露和风险分析;对POPs的监测和管理、减排和污染防治。评估立足于现状,预测未来,进行风险分析以及探讨存在的问题等。  评估目标POPs:主要包括杀虫剂类、工业合成化学品类。  杀虫剂类POPs评估结果 中国总体DDT排放和污染在控制水平,HCH没有发现新增排放源  2010年,中国已经停止生产各种杀虫剂类POPs。DDT/HCH作为历史上农业领域大量使用的杀虫剂类POPs在1980年代当时的主要用途停止使用。在环境介质和食品中:大气中,均处于数百pg/m3;土壤中,DDT基本低于100ng/gdw,HCH低于DDT水平;食品中如玉米、大米、茶叶均可以检测到DDT;中国总体DDT排放和污染水平在控制水平,HCH没有发现新增排放源。  目前杀虫剂类POPs相关的热点问题为三氯杀螨醇的残留DDT问题及废弃污染场地的治理问题。  工业合成化学品类POPs评估结果 PFOS已经被证实广泛存在于我国人群中  工业合成化学品类POPs评估以PFOS和PBDE为代表。中国生产和使用PFOS。环境介质来源分布:北京、大同、苏州、平顶山、天津和沈阳地区的污水处理厂进出水及污泥中均有检出,但平均浓度略低于国外水平;中国河流和湖泊主体中PFOS含量在1—10ng/l之间;自来水样品中,多数城市的自来水杨品中都含有低浓度的PFOS,个别城市的自来水样品中PFOS浓度超过10ng/l;国外大气样品多数低于50pg/m3;而在沉积物中PFOS多被检出。  PFOS是一种广泛且高浓度存在于生物体内的污染物,甚至在青藏高原的鱼类体内,也发现了PFOS的存在。PFOS已经被证实广泛存在于我国人群中,对于我国居民中PFOS的浓度报道,主要集中在成人的血液和母乳中,成人血液中PFOS的浓度含量平均为16.5ng/ml;非成人血液中PFOS浓度大致随着年龄的增加而升高。对于成人来说,鱼和海鲜为PFOS主要暴露途径,其次为肉和肉产品、饮用水。中国电镀行业、消防行业是当前PFOS最大的消费行业,也是潜在的排放来源,同时PFOS生产企业、废弃物、污染场地等也是热点问题。  中国多年没有PBDE(十溴代联苯醚除外)的生产和直接使用。大气中,其含量大多数在100pg/m3以内;水体中PBDE的污染处于较低水平,沉积物中PBDE的污染水平与美国相当,处于中等污染水平;土壤中PBDE的污染也处于较低水平;生物体中PBDE的浓度低于美国和巴西。  除了介绍环境、人体存在和人体暴露PBDE情况外,胡建信教授还指出中国没有使用低溴代PBDE的历史,但其环境浓度却并不低,其来源值得关注。  我国POPs监测能力已经大大提高 已建设20多个二噁英实验室  关于POPs监测,胡建信教授在报告中指出,我国POPs监测能力已经大大提高,目前,全国已经建设了20多个二噁英实验室;相关的POPs标准也相继出台,包括国家质量标准、控制标准、监测的标准方法等。我国也制定了多个针对POPs管理的法律规章。  “十二五”POPs污染防治专项规划启动编制  针对“十二五”,我国各省均制定了POPs污染防治规划;与此同时,启动编制中国“十二五”POPs污染防治专项规划,将其纳入中国十二五环境保护规划。这些行动将使POPs污染防治在中国国内全面展开,不仅将为履行国际公约提供充分的政策和组织保障,而且将极大提高中国国内的POPs环境污染及风险控制水平,保障环境安全和公众健康。  《评估报告》初步总结:杀虫剂类POPs,由于排放总量得到控制,环境介质预期将逐步下降;PFOS预期未来一段时间主要来源于电镀、消防领域,未来几年环境浓度预计变化不大;PBDE来源不够清晰,未来几年环境浓度较难判断;监测和管理能力得到发展,并正在完善之中。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
  • 青岛容广发布固定汚染源挥发性有机物采样器新品
    R G K - 3 0 0便携式大气采样器主要应用于大气中挥发性有机化合物(V O C s)的采样。采样器可以连续定时进行顺序采样,设置一次数据最多可采集1 2个样品;采集平行样品,设置一次数据最多可采集6组平行样品。仪器整体设计紧凑, 小型轻便, 方便实用,操作简单。H J / T 1 9 4《环境空气质量手工监测技术规范》H J 6 4 4 - 2 0 1 3《环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法》(1)体积小巧,便于携带,易于使用,适用于现场采样。(2)4 . 3寸触摸屏显示,分辨率4 8 0 * 2 7 2。(3)采样器选用吸附管采样,采样模式自由选择:平行采样,序列采样。(4)采样器每路安装有1个候补吸附管,用于检测所采集数据是否有效。(5)采用交直流两用供电电源。当现场不具备A C 2 2 0 V供电条件时,可以用内部电池供电。内部电池在满电状态下至少可供仪器使用2小时。(6)采样时,泵控制的采样流量为(1 0~2 0 0)m l / m i n之间,保持恒定采样。(7)流量采用质量流量计控制,精确度高,误差低于5 %。(8)吸附管连接采用四氟乙烯材料,防止材料挥发或吸附有机物。(9)可顺序采集1 2个样品,或平行采集6组样品。(1 0)符合国际E P A标准。(1)采样流量范围:( 1 0~2 0 0 ) m l / m i n(2)采样流量示值误差:≤±5 %(3)采样流量重复性:≤2 %(4)采样方式:吸附管(5)连续采样工作一小时,采样器流量稳定性:≤5 %(6)环境湿度:≤8 5 %(7)环境温度:( - 1 0~4 0 )℃(8)吸附管连接材质:四氟乙烯(9)显示方式:触摸显示屏(1 0)工作电源:( A C 2 2 0 V±1 0 % ) / 5 0 H z,内置锂电池,2 4 V / 6 A H创新点:吸附管法VOC采样器,可根据客户指定成多路VOC采样设备固定汚染源挥发性有机物采样器
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法—— HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程:l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性Ø 无水多晶型体i. 构建相图和解析相图ii. 如何寻找最佳晶型(稳定和亚稳态晶型)iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例iv. 亚稳态晶型在制药业中的应用条件v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物i. 识别和表征水合物及溶剂合物ii. 水合物和溶剂合物在原料药中的应用及如何保存iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程Ø 药物多晶型的稳定性及其热动力学研究Ø 怎样生产并保持你所需要的晶型Ø 实例分析i. 混合晶型系统ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺iv. 如何应对临床后期出现的晶型转化主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容:Ø 何时和为何要保护多晶型的知识产权Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准Ø 如何开发仿制药的多晶型主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物Ø 为什么要开发盐类药物Ø 如何形成盐类药物主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容:Ø 什么是共晶体Ø 共晶体药物在制药中的基本应用Ø 共晶体的稳定性Ø 如何筛选药物共晶体及其放大工艺Ø 在制药产业中形成共晶体的现象及其产生的影响主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD)Ø 拉曼光谱Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度Ø pKa值的确定Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六 题目: 手性药物的结晶拆分(1小时) 内容:Ø 手性药物结晶拆分的原理及工艺研发的流程和策略Ø 手性药物结晶拆分在原料药生长中的重要性Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况主讲人: 陈敏华博士 培训安排:时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋学员人数:20-50人日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会 3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执):电话:4008210778 传真:021-33678466邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233电话:4008210778 ;传真:021-33678466电子邮箱:helen.jiang@dksh.com
  • 关于金蓉园仪器在固体废物浸出毒性浸出试验的整体方案
    一、浸出方法的合理选用 环保标准规定的固体废物浸出毒性浸出方法主要涵盖醋酸缓冲溶液法HJ/T300-2007与硫酸硝酸法HJ/T299-2007与固体废物 浸出毒性浸出方法 水平振荡法 HJ 557—2010等三种方法。这三种方法各具特色,应用场合亦有所不同。醋酸缓冲溶液法,以其对填埋场工业废物的适用性而著称;而硫酸硝酸法则在露天一般废物的处理中表现出色;水平振荡法适用于评估在受到地表水或地下水浸沥时,固体废物及其他固态物质中无机污染物(氰化物、 硫化物等不稳定污染物除外)的浸出风险。因此,在选取浸出方法时,需综合考虑废物来源、性质以及处置方式等因素,遵循标准指引,选择最合适的浸出方法,本文重点讲解前两种方法。 二、实验设备的完备准备 为确保浸出试验的精准度和可靠性,实验设备的准备至关重要。实验所需设备包括:30±2r/min翻转式振荡器、零顶空提取器ZHE、2L广口瓶、高压或真空过滤器、滤膜(0.6-0.8um)、PH计、500ml不锈钢或玻璃注射移液器、天平(精度±0.01g)等。值得一提的是,湖南金蓉园仪器设备有限公司早在2007年就成功研制并销售了全国首台具有自主知识产权的翻转式振荡器,为浸出试验的精准进行提供了有力保障。三、样品的规范处理与妥善保存 对于粒径较大的颗粒状样品,需通过破碎、切割或研磨等方式,将其粒径降低至9.5mm以下。样品的保存环境应控制在4摄氏度冷藏,以防挥发性物质的损失。同时,挥发性有机物与非挥发性有机物的浸出步骤需严格遵循相关标准进行操作。在浸出试验前,样品的含水率测定是不可或缺的一环,其测定结果将作为后续浸提剂配方的依据之一。需要注意的是,含水率测定后的样品不应再用于后续的毒性浸出试验。四、浸出流程的科学实施 挥发性有机物的浸出步骤如下:准确称取20-25g样品,迅速转入ZHE零顶空提取器中,加压排除顶部空气,并收集初始液相,冷藏保存。若固体百分率小于5%,则直接分析初始液;否则,需进行后续的浸出步骤,并将浸出液与初始液混合后进行分析。对于其他形式物质的浸出,需先将样品通过过滤器进行过滤。若干固体百分率小于5%,则直接分析初始液;否则,同样需进行后续的浸出步骤,并将浸出液与初始液混合后进行分析。浸提剂的配方需根据样品的含水率进行调整,浸提过程中应保持转速为30±2r/min,并在23±2℃的温度下振荡18±2小时。完成浸提后,需对提取液进行过滤并妥善保存。五、浸出液的分析与处理 浸出液如需用于金属分析,则需按照相应的分析方法进行消解处理。浸出液的具体分析步骤应参照其他环保标准进行。通过科学的分析处理,可准确评估固体废物的浸出毒性,为环境保护和废物处理提供有力支持,如有疑问,欢迎咨询湖南金蓉园仪器设备有限公司的工程师。
  • 环保标准《固体废物浸出毒性浸出方法 水平振荡法》公布
    关于发布国家环境保护标准《固体废物浸出毒性浸出方法 水平振荡法》的公告  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《固体废物浸出毒性浸出方法 水平振荡法》为国家环境保护标准,并予发布。  标准名称、编号如下:  固体废物浸出毒性浸出方法 水平振荡法(HJ 557-2010)。  该标准自2010年5月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。  自标准发布之日起,由原国家环境保护局制定的下列标准废止,标准名称、编号如下:  固体废物浸出毒性浸出方法 水平振荡法(GB 5086.2-1997)。  特此公告。  二○一○年二月二日
  • 大昌华嘉亮相2012国际药物固态研发研讨会暨第三届药物晶型专题技术培训
    随着中国药品管理机构对药品质量和药物晶型日益严格的要求,药物晶型研究和药物结晶工艺开发作为药物研发中一个至关重要的环节,越来越引起制药界的重视。特别是通过开发药物分子的优势晶型和盐型来提高难溶性药物的溶解度和生物利用度,或者开发药物分子的新晶型来规避原研药专利,已经分别成为创新药和仿制药中一个必不可少的研究方向。 为此,苏州晶云药物和中国科学院上海药物研究所在11月7日-8日联合举办中国首届国际药物固态研发研讨会。大昌华嘉赞助了本次盛会,并现场展示了美国麦奇克公司激光粒度仪,英国Freeman Technology公司多功能粉末流动性测试仪以及美国鲁道夫公司的旋光仪、折光仪、密度仪等仪器。本次会议特别邀请了国内外在药物晶型研究和药物结晶工艺开发领域的著名专家们,以他们在业界多年的丰富经验,理论结合具体实例,为大家做深入浅出的讲解。通过两天的学习,您可以迅速掌握在药物晶型研究和药物结晶工艺开发领域的国际先进知识,了解国内外在该领域的最新发展方向,从而帮助您解决工作中遇到的实际问题。 大昌华嘉公司仪器部独家代理众多欧美先进仪器,其中美国麦奇克公司激光粒度仪,英国Freeman Technology公司多功能粉末流动性测试仪以及美国鲁道夫公司的旋光仪、折光仪、密度仪等仪器为众多药厂及药物研发单位提供优质的解决方案,得到了国内外著名药厂、药监所、研究院的推荐。 关于晶云药物(www.crystalpharmatech.com) 晶云药物科技有限公司是中国首家专注于药物晶型研究的公司,为全球各制药公司提供药物晶型研究和药物固态研发领域的专业技术服务。公司总部设立在苏州工业园区生物纳米园,在美国新泽西州设有分部。领导团队由中美科学家及管理人员共同组成,用国际化的先进理念领导和管理公司。核心团队成员过去在美国默克,美国百时美施贵宝以及罗氏等全球领先的制药公司直接负责和从事药物晶型研究和药物固态研发,共积累了在该领域40多年的研发和管理经验,曾共同负责和管理过超过200个药物分子的晶型研究,拥有40多项药物晶型专利,在各类国际学术期刊发表过100多篇论文。团队利用掌握的核心技术开发出中国在药物晶型研究及药物固态研发领域的首个高新技术平台,并通过该平台为全球各制药公司提供该领域的高级技术研发服务。公司拥有享有自主知识产权的高新技术和高新仪器,不仅保证技术平台填补了国内在该领域的空白,而且使其处于国际领先地位。 关于大昌华嘉(http://www.dksh-instrument.cn/index.asp) 大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪-美国麦奇克(MICROTRAC)公司视频光学接触角测量仪、表面/界面张力仪-德国克吕士(Kruss)公司比表面/孔隙度分析仪&mdash 日本拜尔BEL公司粉末流动性分析仪&mdash 英国Freeman公司堆密度&mdash 英国康普利COPLEY公司颗粒图像分析系统&mdash 挪威AnaTec公司LB膜分析系统&mdash 芬兰Kibron公司密度计/旋光仪/折光仪/糖度仪-美国鲁道夫(Rudolph)公司全自动氨基酸分析仪/超微量紫外分光光度计-英国Biochrom公司元素分析仪、TOC总有机碳含量分析仪、稳定同位素质谱仪-德国elementar公司薄层扫描仪、点样仪-德国迪赛克(DESAGA)公司离子色谱仪 &mdash 日本东曹公司水份活度仪-瑞士novasina公司凯氏定氮仪-德国贝尔(behr)公司高压反应釜-瑞士premex公司全自动反应量热仪-瑞士Systag公司
  • “药物晶型研究与药物固态表征专题技术培训会”前期客户邀请工作顺利完成
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。目前, 将于3月24-25日在苏州中国人民大学举办的第一期“药物晶型研究与药物固态表征专题培训”已经顺利完成了前期的准备工作,达到了预期目标,在业内引起广泛关注。为了使本次培训取得最佳效果,学员人数限定为50人,现已全部申请结束。对于本次未能申请成功的学员,或是因时间原因无法参与的学员,我司不日将举办2期培训,敬请期待。 如欲了解详细信息,或预申请参加第二期培训,请致电:4008210778
  • 2012 国际药物固态研发研讨会暨第三届药物晶型专题技术培训
    近两年,药物晶型成为国内医药界的焦点,并随着政府部门、研究所、企业、高校的关注,得到了快速的发展。 作为先进高输出自动化结晶研究解决方案专家,为了推动国内结晶研究技术的进步,力扬企业与国内重要结晶研究单位苏州晶云药物科技有限公司和中科院上海药物研究保持着密切合作与联系,并参与由这两大机构联合举办的「2012 国际药物固态研发研讨会暨第三届药物晶型专题技术培训」。 这个国际盛会将于 2012 年 11 月 7 - 8 日在苏州拉开帷幕。研讨会隆重邀请了业内国际知名顶级专家作为主讲嘉宾,开展中国前所未有的药物固态研究领域的专业交流与分享。目前,本论坛已经吸引到来自国内 (包括台湾) 以及欧美 30 多家知名制药企业 50 多名药物研发高管及决策层前来参加,成为中国药物固态领域的顶级高端研讨会。研讨会上,力扬企业有限公司将展示在国际结晶研究领域享有盛誉的荷兰 Avantium Crystal16 与 Crystalline 平行结晶仪。轻巧的设计,内置了多通道反应及在线浊度测定、在线晶粒观测、在线拉曼等功能模块,为小剂量物质研究提供重要的实验信息,帮助客户开展快速溶解曲线测定、多晶型筛选、结晶工艺开发等研究,实现真正高输出自动化的结晶研发。有兴趣了解更多关于结晶技术及及自动化方案,不要错过这次交流机会,或可与我们的自动化专家联系。 想了解更多仪器信息,请登入:http://www.nikyang.com/product.php?autono=81http://www.nikyang.com/product.php?autono=82 活动及产品查询: event@nikyang.com活动信息:日期:2012 年 11 月 7 - 8 日地点:中国苏州,独墅湖会议酒店活动网站:www.crystalpharmatech.com/conference/chinese/
  • 关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知
    p  7月5日上海市环境保护局发布关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知,内容如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/45b659d1-949c-4eae-aeae-5e983777b457.jpg" title="上海市环境保护局_副本.jpg"//pp style="text-align: center " 关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知/pp style="text-align: center "沪环保总〔2018201820182018〕231 号/pp  各区环保局,各有关单位:/pp  根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,在完成试点工作的基础上,我局制定了《上海市固定污染源挥发性有机物在线监测体系建设方案》。现印发给你们,请遵照执行。/pp style="text-align: right "  上海市环境保护局/pp style="text-align: right "  2018年7月4日/pp  抄送:上海化工区管委会/pp  附件:/pp style="text-align: center "上海市固定污染源挥发性有机物在线监测体系建设方案/pp  根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,制定本方案。/pp  一、实施范围本市固定污染源挥发性有机物(VOCs)在线监测体系的实施范围,包括以下排污单位涉及VOCs排放的排口:/pp  (一)纳入排污许可证管理的排污单位 /pp  (二)大气环境重点排污单位 /pp  (三)国家和本市规定应当实施在线监测的排污单位。/pp  二、安装要求/pp  (一)安装范围。纳入排污许可证管理的排污单位的主要排口 重点排污单位处理设施设计风量大于10000立方米/小时的排口。受监测技术及设备限制,处理设施进口和火炬系统排口暂不纳入安装范围,待相关技术要求出台后另行规定。/pp  (二)安装位置。涉及VOCs排放的排口或烟道。/pp  (三)安装设备。采取非燃烧方式治理VOCs的,在排口直接安装非甲烷总烃在线监测设备,包含非甲烷总烃、烟气温度、烟气压力、烟气流速或流量、烟气含湿量等监控项目 采取燃烧方式治理VOCs的,除上述监控项目外,还需在排口同时加装氮氧化物在线监测设备。/pp  针对《石油化学工业污染物排放标准》(GB 31571-2015)、《石油炼制工业污染物排放标准》(GB 31570-2015)以及其他行业标准有明确排放限值的VOCs单项指标,排污单位还应选择重点排口试点开展重点指标的在线监测工作。/pp  三、工作要求/pp  (一)建设进度。已核发排污许可证的企业在2018年12月31日前完成设备的建设、联网和备案 其他排污单位应当于纳入挥发性有机物在线监测体系实施范围之日起的6个月内完成设备的建设、联网和备案。/pp  (二)运行维护。依据《上海市固定污染源非甲烷总烃在线监测系统安装及联网技术要求(试行)》和《上海市固定污染源非甲烷总烃在线监测系统验收及运行技术要求(试行)》,以及《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》(HJ 75-2017)开展运行维护。/pp  (三)其他监管要求。本市固定污染源挥发性有机物在线监测体系建设的其他监管要求,按照《上海市固定污染源自动监测建设、联网、运维和管理有关规定》(沪环规〔2017〕9号)执行。/p
  • 固定污染源单组分挥发性有机物(VOCs)分析方案(下)-北京博赛德
    在固定污染源单组分挥发性有机物(VOCs)分析方案(中)-中我们讨论了 固定污染源单组分挥发性有机物(VOCs)分析难点及常见问题以及造成的原因。今天我们继续分享一些解决办法和方案,希望给到广大环境监测机构和企业一些思路。4 方法依据和解决方案为了满足固定污染源的监测需求,结合多个已经颁布的相关标准,北京博赛德科技有限公司针对该方法面临的难点,提供了多方面的解决思路,使方法更稳定,适用性更强。《固定污染源废气VOC的采样 气袋法》 HJ732-2014《固定源废气监测技术规范》 HJ/T 397-2007《固定污染源废气 VOCs 的测定气相色谱-质谱法》DB 50/T 679—20164.1 采样真实性方法用玻璃真空瓶采样,废气中所有组分都被采集,样品更真实,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。4.2 高沸点物质进样时的残留尽管玻璃材质本身惰性无吸附,但高沸点组分在常温下会产生凝结现象,因此本方法可选自动加热进样功能,提高高沸点物质的进样效率,大大降低了吸附。4.3 高沸点物质在整体系统内的残留4.3.1小体积定量环进样满足污染源的定量范围,又避免了污染物过量对系统造成的污染。4.3.2空阱聚焦空阱聚焦,可保证高沸点物质快速释放。4.4 自动添加内标方法可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。4.5 内标添加方式 方法采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致。4.6 扩展功能方法可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。5 结果展示 由谱图可见,高沸点物质灵敏度高。经方法验证数据可知,所有可测组分精密度高、准确度合格。烷烃、烯烃、芳香烃、卤代烃类组分响应稳定,检出限低;醛、酮、酯类物质检出限虽高于烃类物质,但响应稳定,可准确检测中低浓度以上的该类化合物。6 结论空气中挥发性有机物检测。本方法用玻璃真空瓶采样,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。可自动加热进样,大大降低了高沸点物质的吸附。小体积定量环进样,空阱聚焦,可保证高沸点物质快速释放,提高灵敏度。可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致,内标可准确反映样品在系统内的状态,增加检测的准确性。可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。 希望这篇纷享方案为全国的环境监测机构、各企业自查自检提供一些的支持,早日实现低碳环保的生态环境。
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 《固定污染源挥发性有机物综合排放标准》强制性地方标准9月1日实施
    广东省市场监督管理局、广东省生态环境厅联合发布省级地方标准《固定污染源挥发性有机物综合排放标准》(DB44/ 2367-2022)(以下简称《标准》)(点击下载原文),《标准》规定了固定污染源挥发性有机物有组织排放、无组织排放、企业厂区内及边界污染的控制要求、监测和实施与监督要求。适用于现有工业固定污染源挥发性有机物排放管理,以及新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后的挥发性有机物排放管理。在国家和我省现有的大气污染物排放标准体系中,凡是无行业性大气污染物排放标准或者挥发性有机物排放标 准控制的污染源,应当执行本《标准》。国家或我省发布的行业污染物排放标准中对VOCs无组织排放控制未做规定的,应执行本《标准》中无组织排放控制要求。《标准》重点内容如下:
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(下)-北京博赛德
    在固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)我们介绍样品的采集与稀释、空白测试以及样品分析工作过程,今天我们来介绍结果计算、设备附件以及该方案的优势。5、结果计算标准状态下目标化合物浓度按照公式(2)计算: ρ=ρx×M/22.4×f/1000 公式(2)式中:ρ——标准状态下样品中目标化合物的浓度,mg/m3;ρx——经校准曲线计算得到的目标化合物的浓度,nmol/mol;M——目标化合物的摩尔质量,g/mol;22.4——标准状态下(273.15 K,101.325 kPa)下气体的摩尔体积,L/mol;f——稀释倍数,无量纲。6.附件针对污染源VOCs采样、分析的种种难题,博赛德推出一套污染源采样稀释系统。采样杆自带加热功能,可以避免污染源废气样品冷凝而导致样品组分丢失;管路采用熔融硅涂覆,系统不易污染或残留,也大大增加了分析数据的真实性;高精度的数字稀释系统,稀释比例易于控制,稀释范围大,单次BCT大稀释倍数100倍,BCT大可稀释BCT500倍。 7.方案优势7.1 样品预调查和预检测时,样品直接进入质谱系统,不经过色谱柱,避免了色谱柱的污染,耐污染能力强。7.2 对于预调查浓度高的样品,采用样品稀释的方式,稀释方式相对于小体积进样,样品的代表性更强,可更有效的评估固定源的排放浓度。7.3 样品稀释过程可任意控制稀释比例,扩大了检测样品浓度范围。7.4结果定性采用国际标准和技术研究所(NIST)与(AMDIS)的质谱库,不采用自定义的其它普库,提高定性结果的准确性和可靠性。7.5 采样袋采样和真空瓶采样两种方式可选择,真空瓶采样方式,整个采样过程无工具连接,真空瓶材质惰性比采样袋更好,耐污染程度高。7.6 真空瓶可重复利用,使用成本低。7.7 真空瓶可提高样品的存储时间,可用于样品备份。BCT此,固定污染源废气中的挥发性有机物现场测试方案介绍完毕,更多精彩,请持续关注我们吧。
  • 《放射性固体废物近地表处置场辐射环境监测要求(征求意见稿)》印发
    p  为了适应相关法规标准的变化,进一步规范放射性固体废物近地表处置场辐射环境监测工作,生态环境部决定修订《低、中水平放射性废物近地表处置场环境辐射监测的一般要求》(GB/T15950-1995),目前已经完成了该标准修订的征求意见稿,即《放射性固体废物近地表处置场辐射环境监测要求(征求意见稿)》。/pp  本次为第1次修订。本次修订的主要内容:/pp  ——标准名称改为《放射性固体废物近地表处置场辐射环境监测要求》 /pp  ——增加了“前言、 监测范围、监测大纲制定原则、被动监护期的监测” 等内容 /pp  ——在术语中给出“近地表处置场”、“调查水平”和“记录水平”的定义 /pp  ——将放射性固体废物近地表处置场的辐射环境监测分为“运行前阶段”、“运行阶段”和“关闭后阶段”三个阶段。/pp  自本标准实施之日起,GB/T 15950—1995废止。/pp  按照《国家环境保护标准制修订工作管理规定》(国环规科技〔2017〕1号)要求,现向相关单位征求意见。相关意见可于2020年6月20日前通过信函或电子邮件的方式将意见反馈生态环境部,逾期未反馈的按无意见处理。/pp  联系人:生态环境部辐射源安全监管司 李颖骁/pp  电话:(010)66556388/pp  传真:(010)66556375/pp  邮箱:hssffc@mee.gov.cn/pp  地址:北京市西城区西直门南小街115号/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202005/attachment/9d178291-899f-4c38-a2fc-54e23b408145.pdf" target="_self" title="征求意见单位名单.pdf" textvalue="1.征求意见单位名单.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "1.征求意见单位名单.pdf/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/950479.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "2.放射性固体废物近地表处置场辐射环境监测要求(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/950480.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "3.《放射性固体废物近地表处置场辐射环境监测要求(征求意见稿)》编制说明/span/a/p
  • 内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案
    p  内蒙古自治区环境保护厅近日印发了 《内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案》,方案中不仅规定了内蒙古自治区固定污染源VOCs检查监测工作安排,还对不同行业不同点位监测项目、监测标准、监测技术等进行了详细规定。/pp style="text-align: center "内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案/pp  为贯彻落实《“十三五”生态环境保护规划》、《“十三五”节能减排综合工作方案》、《“十三五”挥发性有机物污染防治工作方案》和环保部办公厅《关于加强固定污染源废气挥发性有机物监测工作的通知》(环办监测函〔2018〕123号)相关工作要求,全面推动我区固定污染源废气挥发性有机物检查监测工作,特制定本工作方案。/pp  一、总体要求/pp  以改善环境空气质量为核心,以重点行业和重点污染物为主要控制对象,全面加强固定污染源废气挥发性有机物监测,进一步掌握VOCs排放及治理情况,切实加强VOCs排污单位监督管理,为实现2020年建立健全以改善环境空气质量为核心的VOCs污染防治管理体系夯实基础。/pp  二、工作原则/pp  ----属地管理原则。各级环境保护部门要落实环境质量属地管理的要求,对VOCs排污单位履行监管职责,统筹规划,稳步推进。/pp  ----“谁污染、谁监测、谁治理”原则。VOCs排污单位严格履行主体责任,认真按照要求开展VOCs自行监测并对相关信息进行公开。/pp  ----双随机原则。各级环境保护部门按照抽查时间随机、抽查对象随机的原则,对VOCs排污单位污染物排放情况开 展日常抽查,对照已出台的污染物排放标准开展检查监测。/pp  三、主要工作内容/pp  (一)强化排污单位自行监测/pp  排污单位要按照环境保护法的要求,严格落实主体责任,将VOCs指标纳入自行监测方案,对污染物排放口及周边环境质量状况开展自行监测,并主动公开污染物排放、治污设施建设及运行情况等环境信息。没有监测能力的要委托有资质的第三方开展监测。/pp  (二)加强工业园区监测监控/pp  园区管理部门要对园区周界及内部VOCs开展监测,具备条件的园区要建设VOCs环境风险预警体系,及时了解园区周边的VOCs污染情况,建立环境风险预警和应急响应机制,建成“早发现、早报告、早预警”的预警体系。/pp  (三)建立VOCs排污单位名录库/pp  各盟市环保部门要根据本行政区域内VOCs排放源的种类、分布、产排污特点,筛查确定VOCs排污单位,作为日常监管和监测的重要依据。VOCs排污单位应覆盖石化、化工、工业涂装、包装印刷、电子信息、合成材料、纺织印染等行业。/pp  (四)开展VOCs专项检查监测/pp  各盟市环境保护部门要按照抽查时间随机、抽查对象随机的原则,对VOCs排污单位污染物排放情况开展日常抽查,对照已出台的污染物排放标准开展检查监测。/pp  1.检查要求/pp  重点检查排污单位自行监测开展情况、监测信息公开情况及VOCs达标排放情况,详见附件1。/pp  2. 监测要求/pp  (1)监测范围:火电及锅炉、氮肥、电池、纺织印染、钢铁、工业炉窑、合成革与人造革、焦化、铝工业、农药、排放恶臭气体单位及垃圾堆场、石化、水泥、橡胶制品、制糖、制药行业及其他产生VOCs的排污单位。/pp  (2)监测内容:废气挥发性有机物有组织排放浓度,一般有固定的排气系统。废气的无组织排放浓度,一般为厂界,储油罐及法兰、阀门、泵压缩机等连接装置的无组织排放源。/pp  (3)监测时间和频次/pp  各盟市环境保护部门按照时间随机、抽查对象随机的“双随机原则”对所有VOCs排污单位进行随机抽测,重点行业不得少于2家。/pp  (4)任务分工/pp  盟市环境监测站负责承担本地区内挥发性有机物排污单位的抽测工作。确不具备监测能力的可以委托有资质的第三方监测机构开展抽测工作。自治区环境监测中心站组织开展对盟市、旗县级VOCs监测人员的培训工作,承担重点行业、重点排污单位挥发性有机物排污单位的检查性抽测工作。/pp  具体监测要求详见附件2。/pp  四、工作进度/pp  2018年3月31日前,各盟市环境保护部门完成VOCs排污单位筛查工作,形成VOCs排污单位名录,报自治区环境监测中心站。/pp  2018年5月1日前,石化、化工行业VOCs排污单位完成自行监测工作。/pp  2018年5月15日前,完成石化、化工行业VOCs排污单位检查监测工作,并将检查监测结果报自治区环保厅。/pp  2018年11月1日前,所有行业VOCs排污单位完成自行监测工作。/pp  2018年11月15日前,完成所有行业VOCs检查监测工作,并将检查监测结果报自治区环保厅。/pp  自治区环保厅将于2018年11月30日前,完成对VOCs排污单位的检查性抽测工作,并将检查结果上报环保部。/pp  2019年起,将VOCs排污单位污染物排放检查监测工作纳入监测计划,按照抽查时间随机、抽查对象随机的原则开展检查监测,并于每季度第1个月15前将检查监测报告报自治区监测中心站。/pp  五、保障措施/pp  (一)提高认识,切实加强组织领导/pp  VOCs是导致臭氧污染的重要前体物,对二次PM2.5生成具有重要影响。各级环境保护部门要充分认识加强VOCs排放监测的重要意义,切实加强组织领导,督促企业严格落实主体责任,按要求开展自行监测并对环境信息进行公开 组织开展本地区检查监测工作 指导园区管理部门对园区周界及内部开展VOCs检查监测 建立本地区VOCs排污单位名录库,并通过全面加强VOCs检查监测,为VOCs污染防治工作打下坚实基础。/pp  (二)落实责任,扎实推进各项工作/pp  排污单位是污染治理的责任主体,要切实履行责任,按照要求,按时开展VOCs污染物自行监测并及时公开相关信息 各盟市环保部门要按照属地管理要求,履行监管职责,通过排查筛选、建立名录库、日常检查、随机抽测深入推进VOCs检查监测工作,全面了解掌握本地区VOCs排污单位分布、排放和治理情况,切实加强环境监管。/pp  (三)加强能力建设,强化VOCs监测管理能力水平/pp  我区各盟市VOCs监测能力较薄弱。各盟市环境保护部门要切实保障VOCs监测所需人员、工作经费和工作条件。加强监测人员的培训,强化人才队伍培养,切实提高VOCs监测能力水平。/pp  (四)强化质控,保证VOCs监测工作质量/pp  自治区环境监测中心站负责对承担抽测工作的监测(检测)机构开展技术指导、技术监督和质控检查。质控检查包括被检查单位的污染源监测质控管理、有关技术人员上岗资质、实验室质量管理、监测原始记录和监测报告等内容。根据需要开展实验室内比对监测。/pp  承担抽测工作的各级监测(检测)机构要对本单位出具的所有监测数据和报告质量负责,严格按照环境监测相关质量控制的要求进行监测,不得弄虚作假。/pp  各级监测(检测)机构发现监测结果超标时,要及时向同级环保主管部门和监察机构汇报。/pp  (五)落实信息公开制度,引导公众参与/pp  排污单位应主动通过各种便于公众知晓的方式公开污染物排放、治污设施建设及运行情况的环境信息,加大宣传力度,鼓励、引导公众主动参与VOCs减排。/pp  附件1/pp  固定污染源废气挥发性有机物检查监测要点/pp  为掌握固定污染源废气挥发性有机物排放情况,指导地方做好对挥发性有机物重点排污单位的VOCs专项监测工作制定本要点。企业开展自行监测和自查可参照本要点。/pp  一、检查要点/pp  (一)企业自行监测开展情况/pp  检查监测人员可通过查阅企业自行监测方案,污染防治设施运行台账,自行监测数据结果报告,实验室质控管理制度等,检查企业自行监测执行情况。重点检查企业自行监测方案是否完整,自行监测指标是否与方案一致。/pp  (二)企业监测信息公开情况/pp  检查监测人员可询问企业信息公开途径,并通过现场检查证实。重点检查公开信息是否完整,公开监测数据是否与实际数据一致。/pp  (三)VOCs污染因子达标情况/pp  检查监测人员可在企业现场,选取多个主要VOCs污染源开展现场监测,监测因子主要包括非甲烷总烃、苯、甲苯、二甲苯、臭气浓度等VOCs特征污染物。重点检查企业主要VOCs污染源的达标排放情况。/pp  二、监测要点/pp  环保部门开展的VOCs专项检查监测,按照“双随机”原则,可随机抽取企业监测点位和监测项目开展监测。各行业不同点位的监测项目和监测依据等见附表。/pp style="line-height: 16px "  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201803/ueattachment/e5e28fb0-6759-4fc9-94c6-0c393c051bb3.docx"内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案.docx/a/ppbr//p
  • 上海市环保局印发《上海市固定污染源废气挥发性有机物监测工作方案》
    p  为落实《“十三五”生态环境保护规划》《“十三五”节能减排工作方案》《“十三五”挥发性有机物污染防治工作方案》相关要求,全面加强固定污染源废气挥发性有机物(VOCs)污染防治,强化VOCs排放控制与治理,促进环境空气质量持续改善。2018年1月生态环境部办公厅印发了《关于加强固定污染源废气挥发性有机物监测工作的通知》(环办监测函〔2018〕123号,以下简称《通知》),明确要求各地生态环境部门加强组织领导,全面推进VOCs的监管与监测工作。/pp  上海市环境保护局高度重视,认真贯彻落实《通知》要求,充分认识VOCs监测工作的重要性,一是结合当地排污许可证发放情况和VOCs排放源的种类、分布及产排污特点,对VOCs排污单位进行排查筛选,确定了上海市VOCs排污单位名录 二是加强组织实施,在落实排污单位环境保护主体责任的前提下,根据市、区两级监管职责分工,明确了市环境保护局总量处、办公室、监测中心、监察总队共同参与、分工负责的工作机制和区环境保护局属地监管的工作原则 三是明确工作时间节点,建立按季度定期调度机制 四是建立保障机制,在保障VOCs监测所需人员、工作经费和工作条件基础上,同时将各区VOCs监测人员培训一并纳入年度监测工作计划 五是探索建立园区VOCs监控体系,建立健全环境风险预警和应急响应机制。/pp  《上海市固定污染源废气挥发性有机物监测工作方案》全文见附件:/pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201805/ueattachment/cd432abd-3997-4c0c-9af7-1fea7da6dbae.pdf" style="color: rgb(0, 112, 192) text-decoration: underline "strongspan style="color: rgb(0, 112, 192) "《上海市固定污染源废气挥发性有机物监测工作方案》.pdf/span/strong/a/p
  • 果汁检测用试剂——钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸,抵制 “烂果门”
    果汁检测用试剂&mdash &mdash 钾、总磷、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸&ldquo 烂果门&rdquo 事件,怎可坐以待毙! 近期有媒体暗访指多家内地果汁生产商涉嫌使用腐烂果汁。国产果汁巨头卷入&ldquo 烂果门&rdquo ,你是否忧心忡忡?大多果汁含量无据可依,你该如何选择?国家统计局的数据显示,2012年全国饮料行业总产量为13024.01万吨,比上年增长10.73%,其中,国内果汁和蔬菜汁饮料产量为2229.17万吨(最主要为果汁饮料),占到饮料总产量的17.16%,较2011年增长16.09%。这些果汁真的如消费者理解的哪样健康自然高品质吗?上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。上海甄准生物提供果汁检测的钾、总磷、氨基酸态氮、总黄酮、可溶性固形物(折光率)、L-脯氨酸、总D-异柠檬酸检测标准品和试剂。产品信息:货号描述规格可溶性固形物检测ZZSRIBS07S折光率标准液1.343253 (± 0.00004)@20C15mlZZSRIBS10S折光率标准液1.347824 (± 0.00004)@20C15mlZZSRIBS112S折光率标准液1.349682 (± 0.00004)@20C15mlZZSRIBS115S折光率标准液1.350149 (± 0.00004)@20C15mlZZSRIBS12S折光率标准液1.35093 (± 0.00004)@20C15mlZZSRIBS125S折光率标准液1.35093 (± 0.00004)@20C15mlZZSRIBS15S折光率标准液1.355679 (± 0.00004)@20C15mlZZSRIBS20S折光率标准液1.363842 (± 0.00004)@20C15mlZZSRIBS25S折光率标准液1.372328 (± 0.00004)@20C15mlZZSRIBS30S折光率标准液1.381149 (± 0.00004)@20C15mlZZSRIBS35S折光率标准液1.390322 (± 0.00004)@20C15mlZZSRIBS40S折光率标准液1.39986 (± 0.00004)@20C15mlZZSRIBS45S折光率标准液1.409777 (± 0.00004)@20C15mlZZSRIBS50S折光率标准液1.420087 (± 0.00004)@20C15mlZZSRIBS55S折光率标准液1.4308 (± 0.00004)@20C15mlZZSRIBS60S折光率标准液1.441928 (± 0.00004)@20C15ml总D-异柠檬酸检测ZZK-ISOCD-异柠檬酸检测试剂盒100 testL-脯氨酸检测ZZS1568506L-脯氨酸标准品200MGZZR70501茚三酮显色液2L钾检测ICCS03 钾离子 K+ 1mg/ml 1000ppm100mlICCT03 钾离子 K+ 0.2mg/ml 200ppm100ml 甄准,甄心倾听您每一个标准!
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)-北京博赛德
    在 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)我们介绍了气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的前期准备:配件和预制校准曲线工作事项。今天我们继续介绍样品的采集与稀释、空白测试以及样品分析工作过程。2.样品采集和稀释2.1样品采集使用气袋法采样系统进行样品采集,参考HJ732。图1 气袋采样系统 2.2样品稀释样品稀释步骤如下:(1)使用气袋采样系统进行样品采集;(2)使用玻璃注射器取体积为 Vn的氮气,注入干净的气袋中;(3)使用玻璃注射器取体积为 Vs 的样品气,注入同一气袋中;(4)使样品气与氮气充分混合均匀,并尽快分析。稀释倍数按公式(1)计算: f=Vs+Vn/Vs 公式(1)式中:f ——稀释倍数;Vs——样品气体积,ml;Vn ——氮气或洁净空气体积,ml。注:若条件允许,使用气体稀释装置进行稀释。3.空白测试将高纯氮气冲入气袋并连接BCT仪器,做空白测试。4.样品分析4.1预调查和预检测预调查:在测试前,应事先调查污染源情况,如行业排放标准所列的常见挥发性有机污染物等。预检测:开启SURVEY速查方法,运行20~30s空白作基线;将装有样品的气袋连接BCT仪器,响应值上升,并稳定下来(约持续10~20s即可)后,移走样品;再运行10~20s使响应值回归到基线。通过TIC响应值来预估样品浓度,并衡量稀释倍数。 图2 Survey实时谱图 4.2样品测试根据预调查和预检测,按照2中的方法进行样品采集和稀释后选合适的方法进行测试。按以下两种情况进行:速查结果谱图的TIC_MAX≥500万,选择高浓度系列方法;TIC_MAX<500万,选择低浓度系列方法。 未完待续
  • 固定污染源单组分挥发性有机物(VOCs)分析方案(中)-北京博赛德
    在固定污染源单组分挥发性有机物(VOCs)分析方案(上)-中我们讨论了 固定污染源单组分挥发性有机物(VOCs)分析在国家环境保护中的地位以及实际的检测现状,今天我们继续分析一下污染源样品分析难点及常见问题以及造成的原因。2 污染源样品分析难点及常见问题2.1 采样真实性污染源废气成分复杂,干扰因素多。待测组分之间可能存在化学反应,生成新的组分或者某一组分快速分解。因此,采样过程需要尽量保持样品在当时环境条件下的真实状态,以反映出待测组分对生态环境的影响。2.2 高沸点物质进样时的残留高沸点物质难以解析和释放,易残留在采样系统内,无法测得真实值。2.3 高沸点物质在整个系统内的残留高沸点物质易残留在进样系统内,对整个系统造成污染。2.4 仪器聚焦和检测过程中信号的波动样品在传输、聚焦过程中,会产生一定的损失。质谱检测器随着样品含氧量或含水量的变化,导致真空度变化,会对样品的电离效率产生影响,导致检测稳定性差。2.5 内标添加方式内标添加方式,直接影响内标是否能真实地反映样品在处理和检测过程中的损失。3 污染源样品分析难点原因分析3.1 采样真实性市面上有多种采样方式,需详细比较和选择。吸附管:特定填料采样,选择性强,存在组分代表性差、样品易损失、易穿透的弊端。采样袋:成本不高,但不易运输和保存,采样过程复杂苏玛罐:采样代表性强,组分稳定易保存,但成本高,容易污染玻璃真空罐:采样代表性强,组分稳定易保存,成本低。3.2 高沸点物质进样时的残留吸附管:填料的吸附,释放不完全。采样袋:有一定程度的残留,可手动加热。苏玛罐:可手动或自动加热,可添加一定比例的水分来降低高沸点物质在罐内的残留。玻璃真空罐:本身无吸附,需解决高沸点物质本身的凝结现象。3.3 高沸点物质在整体系统内的残留为了减小高沸点物质的残留污染,需要样品在进入系统后,能快速聚焦、快速解析,这样可以改善高沸点物质的响应强度,减小峰宽,提高灵敏度。3.4 仪器聚焦和检测过程中信号的波动方法采用内标法,可降低样品处理过程和仪器状态对检测的影响。3.5 内标添加方式方式一:定量环进样、手动稀释内标;方式二:质量流量计进样、定量环进内标。上述两种方式,都存在内标和样品路径不一致的现象,将导致内标无法准确地表征样品的损失和波动,二者标准曲线无法共用,定量方式不合理。在添加内标时,要保证内标和样品在整个系统中路径一致,才能使内标表征样品在进样、传输和检测过程中的损失。未完待续~
  • 助力“双碳” 推出碳排放监测预警系统——视频采访碧兴物联科技(深圳)股份有限公司总监邬志斌
    仪器信息网讯 2021年7月13日,为期三天的第十九届中国国际环保展览会(CIEPEC 2021)在北京中国国际展览中心(静安庄馆)盛大开幕,吸引了全球20多个国家和地区800余家环保精英企业参展。展会期间,仪器信息网特别采访了碧兴物联科技(深圳)股份有限公司总监邬志斌,听他介绍碧兴物联本次展会所展出的重要产品以及围绕碳监测所推出的重要解决方案。据介绍,本次展会,碧兴物联以万物感知、万物互联为主题,系统性地展示了全系列环境水质监测、碳排放监测、挥发性有机物监测、智慧水务、智慧气象等方面的新技术和新产品。这些产品都基于公司多年以来的自主研发,产品范围几乎覆盖环监所有领域,产品形态也非常多样化,除了常规的固定式监测之外,还包括新型的船载、车载、无人机等。而围绕碳监测这一热点应用领域,碧兴物联推出了碳排放监测预警系统,从重点行业污染源、企业厂界无组织排放、城市/区域环境质量、工业过程控制等方面,结合碳排放监测监管平台,为实现碳监测管理精细化、数字化和标准化,以为最终实现“碳达峰“和”碳中和”目标提供数据支撑。更多详细访谈内容,请观看以下视频… …
  • 老河口市环洁固体废弃物处理有限公司110.00万元采购固体废弃物
    详细信息 老河口环洁固体废弃物处理有限公司特种作业车辆采购项目竞争性磋商公告 湖北省-襄阳市-老河口市 状态:公告 更新时间: 2022-08-23 老河口环洁固体废弃物处理有限公司特种作业车辆采购项目竞争性磋商公告 发布时间:2022-08-23 湖北汉鑫拓项目管理有限公司受老河口市环洁固体废弃物处理有限公司的委托,对其老河口环洁固体废弃物处理有限公司特种作业车辆采购项目(项目编号:HBHXT2022010)进行竞争性磋商采购,欢迎符合资格条件的供应商参与磋商。一、项目基本情况 1.项目编号:HBHXT2022010 2.项目名称:老河口环洁固体废弃物处理有限公司特种作业车辆采购项目 3.采购方式:竞争性磋商 4.采购预算/最高限价:110万元 5.采购需求:特种作业车辆采购清单和技术参数详见招标文件“第三章 采购需求”。 6.交货时间:合同签订后3日历天内交付并正常使用(含安装、调试); 7.质量要求:合格,符合国家和行业相关验收备案标准。 8.本项目(是/否)接受联合体:否 二、供应商的资格要求 1.供应商须具有独立企业法人资格,并具有有效的营业执照; 2.资质要求 2.1.供应商若为厂家,须具有相应的生产能力,经营范围涉及环卫机械设备的生产和销售并提供相应证明材料。供应商为代理商的需要提供生产厂家针对本项目出具的唯一授权。所投车辆须是进入《国家工信部(车辆产品公告)》中产品,且具有国家强制性产品认证证书。 2.2.供应商能提供长期、稳定的售后服务,配备专业技术人员,保证24小时全程服务,出具由供应商加盖公章的承诺书。 3.财务要求:近两年财务状况良好,无亏损。需提供2020年度和2021年度经会计师事务所或审计机构审计的财务审计报告; 4.信誉要求: 4.1.没有被依法暂停或取消投标资格; 4.2.没有被责令停产停业、暂扣或者吊销许可证、暂扣或者吊销执照; 4.3.没有进入清算程序,或被宣告破产,或其他丧失履约能力的情形; 4.4.在最近三年内所实施的项目没有发生重大质量问题并负有责任的; 4.5.在“国家企业信用信息公示系统”(www.gsxt.gov.cn)没有被列入严重违法失信企业名单; 4.6.在“信用中国”网站(www.creditchina.gov.cn)没有被列入失信被执行人名单; 4.7.在近三年内供应商或其法定代表人没有行贿犯罪行为; 4.8.不存在法律法规规定的不得存在的其他情形。 5.供应商不得存在的其他情形 5.1.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加本项目同一合同项下的采购活动; 5.2.参与本项目采购活动前,已为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商。三、获取采购文件 1.时间:2022年 8月 23 日至2022年 8 月 29 日,每天上午09:00至12:00,下午14:00至17:00(北京时间,法定节假日除外) 2.地点:老河口市秋丰路67号(商业联合会家属院)2楼招标部。 3.方式:符合资格的供应商应当在获取时间内,携带以下材料领取磋商文件。 3.1法定代表人自己领取的,凭法定代表人身份证明书原件及法定代表人身份证原件领取;法定代表人委托他人领取的,凭法定代表人授权书原件及受托人身份证原件领取(格式见附件一); 3.2加盖单位章的磋商文件领取表原件(格式见附件二); 3.3文件领取人应自觉做好个人防护,全程佩戴口罩,并配合工作人员做好健康码查验、体温检测、实名登记等防控工作;文件领取人有发热、咳嗽、呼吸困难等新型冠状病毒感染可疑症状的,采购人或采购代理机构有权拒绝其领取文件。 4.售价:300(元)四、响应文件提交 1.截止时间:2022年 9 月 8 日9点30分(北京时间) 2.地点:老河口市秋丰路67号(商业联合会家属院)2楼五、开启 1.时间:2022年 9 月 8 日9点30分(北京时间) 2.地点:老河口市秋丰路67号(商业联合会家属院)2楼六、公告期限 自本公告发布之日起5个工作日。七、联系方式 1.采购人信息 名 称:老河口市环洁固体废弃物处理有限公司 地 址:老河口市军工路1号 联 系 人:高勇 电 话:15871058867 2.采购代理机构信息 名 称:湖北汉鑫拓项目管理有限公司 地 址:老河口市秋丰路67号(商业联合会家属院) 联 系 人:余娅菲 电 话:13476310781八、信息发布媒体及发布时间 发布媒体:老河口市人民政府网 发布时间:2022年 8 月23 日 附件一:法定代表人身份证明或其授权委托书 法定代表人身份证明 供应商名称: 单位性质: 地址: 成立时间:年月日 经营期限: 姓名:性别:年龄:职务:_ 系(供应商名称)的法定代表人。 特此证明。 法定代表人身份证复印件(正反、清晰可见) 供应商:(盖单位章) 年月日 授权委托书 湖北汉鑫拓项目管理有限公司: 本人(姓名)系(供应商名称)的法定代表人,现委托(姓名)为我方代理人。代理人根据授权,代表本公司从贵司领取(项目名称)的竞争性磋商文件,并以本授权书及磋商文件领取表作为领取凭证。 本文载明的磋商文件领取人将作为本公司参与本次磋商活动的合法代表,贵司就本次磋商活动的任何文件或信息一旦按磋商文件领取表载明的电话或电子邮箱予以传递或发送或经领取人签收,则视为有效送达本公司;本公司就该磋商文件领取人电话或电子邮箱的任何变更将书面通知贵司并在收到贵司的书面回复后生效。 委托期限至本项目响应文件送达截止时间结束。 代理人无转委托权。 特此授权。 法定代表人身份证复印件(正反、清晰可见) 供应商:(盖单位章) 法定代表人: (签字或盖章) 身份证件号码: 委托代理人: (签字) 身份证件号码: 年月日 附件二:磋商文件领取表 磋商文件领取表 项目名称 项目编号 供应商名称(盖单位章) (填写完整的单位全称,必须与响应文件上的供应商名称一致) 授权代表 (填写联系人姓名)请填写一个固定联系人并与授权委托书一致。 授权代表手机 (填写联系人手机)有关信息我们会短信发送至手机,请关注并收到后回复。 授权代表电子邮箱 (填写联系人邮箱)有关文件我们会邮件发至您邮箱,请收到后注意回执。 领取纸质版文件时间 年月日时(供应商不填写,由代理机构填写)授权代表签字确认: × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:固体废弃物 开标时间:null 预算金额:110.00万元 采购单位:老河口市环洁固体废弃物处理有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:湖北汉鑫拓项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 老河口环洁固体废弃物处理有限公司特种作业车辆采购项目竞争性磋商公告 湖北省-襄阳市-老河口市 状态:公告 更新时间: 2022-08-23 老河口环洁固体废弃物处理有限公司特种作业车辆采购项目竞争性磋商公告 发布时间:2022-08-23 湖北汉鑫拓项目管理有限公司受老河口市环洁固体废弃物处理有限公司的委托,对其老河口环洁固体废弃物处理有限公司特种作业车辆采购项目(项目编号:HBHXT2022010)进行竞争性磋商采购,欢迎符合资格条件的供应商参与磋商。一、项目基本情况 1.项目编号:HBHXT2022010 2.项目名称:老河口环洁固体废弃物处理有限公司特种作业车辆采购项目 3.采购方式:竞争性磋商 4.采购预算/最高限价:110万元 5.采购需求:特种作业车辆采购清单和技术参数详见招标文件“第三章 采购需求”。 6.交货时间:合同签订后3日历天内交付并正常使用(含安装、调试); 7.质量要求:合格,符合国家和行业相关验收备案标准。 8.本项目(是/否)接受联合体:否 二、供应商的资格要求 1.供应商须具有独立企业法人资格,并具有有效的营业执照; 2.资质要求 2.1.供应商若为厂家,须具有相应的生产能力,经营范围涉及环卫机械设备的生产和销售并提供相应证明材料。供应商为代理商的需要提供生产厂家针对本项目出具的唯一授权。所投车辆须是进入《国家工信部(车辆产品公告)》中产品,且具有国家强制性产品认证证书。 2.2.供应商能提供长期、稳定的售后服务,配备专业技术人员,保证24小时全程服务,出具由供应商加盖公章的承诺书。 3.财务要求:近两年财务状况良好,无亏损。需提供2020年度和2021年度经会计师事务所或审计机构审计的财务审计报告; 4.信誉要求: 4.1.没有被依法暂停或取消投标资格; 4.2.没有被责令停产停业、暂扣或者吊销许可证、暂扣或者吊销执照; 4.3.没有进入清算程序,或被宣告破产,或其他丧失履约能力的情形; 4.4.在最近三年内所实施的项目没有发生重大质量问题并负有责任的; 4.5.在“国家企业信用信息公示系统”(www.gsxt.gov.cn)没有被列入严重违法失信企业名单; 4.6.在“信用中国”网站(www.creditchina.gov.cn)没有被列入失信被执行人名单; 4.7.在近三年内供应商或其法定代表人没有行贿犯罪行为; 4.8.不存在法律法规规定的不得存在的其他情形。 5.供应商不得存在的其他情形 5.1.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加本项目同一合同项下的采购活动; 5.2.参与本项目采购活动前,已为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商。三、获取采购文件 1.时间:2022年 8月 23 日至2022年 8 月 29 日,每天上午09:00至12:00,下午14:00至17:00(北京时间,法定节假日除外) 2.地点:老河口市秋丰路67号(商业联合会家属院)2楼招标部。 3.方式:符合资格的供应商应当在获取时间内,携带以下材料领取磋商文件。 3.1法定代表人自己领取的,凭法定代表人身份证明书原件及法定代表人身份证原件领取;法定代表人委托他人领取的,凭法定代表人授权书原件及受托人身份证原件领取(格式见附件一); 3.2加盖单位章的磋商文件领取表原件(格式见附件二); 3.3文件领取人应自觉做好个人防护,全程佩戴口罩,并配合工作人员做好健康码查验、体温检测、实名登记等防控工作;文件领取人有发热、咳嗽、呼吸困难等新型冠状病毒感染可疑症状的,采购人或采购代理机构有权拒绝其领取文件。 4.售价:300(元)四、响应文件提交 1.截止时间:2022年 9 月 8 日9点30分(北京时间) 2.地点:老河口市秋丰路67号(商业联合会家属院)2楼五、开启 1.时间:2022年 9 月 8 日9点30分(北京时间) 2.地点:老河口市秋丰路67号(商业联合会家属院)2楼六、公告期限 自本公告发布之日起5个工作日。七、联系方式 1.采购人信息 名 称:老河口市环洁固体废弃物处理有限公司 地 址:老河口市军工路1号 联 系 人:高勇 电 话:15871058867 2.采购代理机构信息 名 称:湖北汉鑫拓项目管理有限公司 地 址:老河口市秋丰路67号(商业联合会家属院) 联 系 人:余娅菲 电 话:13476310781八、信息发布媒体及发布时间 发布媒体:老河口市人民政府网 发布时间:2022年 8 月23 日 附件一:法定代表人身份证明或其授权委托书 法定代表人身份证明 供应商名称: 单位性质: 地址: 成立时间:年月日 经营期限: 姓名:性别:年龄:职务:_ 系(供应商名称)的法定代表人。 特此证明。 法定代表人身份证复印件(正反、清晰可见) 供应商:(盖单位章) 年月日 授权委托书 湖北汉鑫拓项目管理有限公司: 本人(姓名)系(供应商名称)的法定代表人,现委托(姓名)为我方代理人。代理人根据授权,代表本公司从贵司领取(项目名称)的竞争性磋商文件,并以本授权书及磋商文件领取表作为领取凭证。 本文载明的磋商文件领取人将作为本公司参与本次磋商活动的合法代表,贵司就本次磋商活动的任何文件或信息一旦按磋商文件领取表载明的电话或电子邮箱予以传递或发送或经领取人签收,则视为有效送达本公司;本公司就该磋商文件领取人电话或电子邮箱的任何变更将书面通知贵司并在收到贵司的书面回复后生效。 委托期限至本项目响应文件送达截止时间结束。 代理人无转委托权。 特此授权。 法定代表人身份证复印件(正反、清晰可见) 供应商:(盖单位章) 法定代表人: (签字或盖章) 身份证件号码: 委托代理人: (签字) 身份证件号码: 年月日 附件二:磋商文件领取表 磋商文件领取表 项目名称 项目编号 供应商名称(盖单位章) (填写完整的单位全称,必须与响应文件上的供应商名称一致) 授权代表 (填写联系人姓名)请填写一个固定联系人并与授权委托书一致。 授权代表手机 (填写联系人手机)有关信息我们会短信发送至手机,请关注并收到后回复。 授权代表电子邮箱 (填写联系人邮箱)有关文件我们会邮件发至您邮箱,请收到后注意回执。 领取纸质版文件时间 年月日时(供应商不填写,由代理机构填写)授权代表签字确认:
  • 长春市固体废弃物管理中心332.00万元采购固体废弃物
    基本信息 关键内容: 固体废弃物 开标时间: 2021-08-26 09:00 采购金额: 332.00万元 采购单位: 长春市固体废弃物管理中心 采购联系人: 刘利 采购联系方式: 立即查看 招标代理机构: 吉林省伟邦公路技术有限公司 代理联系人: 李金波 代理联系方式: 立即查看 详细信息 [社会代理]长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目招标公告 吉林省-长春市-朝阳区 状态:公告 更新时间: 2021-08-05 [社会代理]长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目招标公告 【信息时间:2021-08-06】 根据《中华人民共和国政府采购法》及相关法律法规, 吉林省伟邦公路技术有限公司受长春市固体废弃物管理中心的委托, 对其所需装载机、环卫型推土机进行公开招标采购。欢迎符合条件的投标人参加投标。 一、项目概况 1.项目名称:长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目。 2.招标编号:JM-2021-07-14763 3.采购内容、数量、预算、供货期及付款方式: 序号 合同包 采购内容 采购预算 (元) 供货期 付款 方式 1 01合同包 2台环卫型推土机 2,540,000 签订合同后15日内安装调试完毕 验收合格后付款95%,余5%为质保金。 2 02合同包 1台装载机 780,000 签订合同后15日内安装调试完毕 验收合格后付款95%,余5%为质保金。 详细技术要求见招标文件采购需求。 二、合格投标人资格要求 1.符合《中华人民共和国政府采购法》第二十二条规定, 在中华人民共和国境内注册,能够独立承担民事责任具有良好的商业信誉和健全的财务会计制度;具有履行合同所必须的设备和专业技术能力;有依法缴纳税收和社会保障资金的良好记录;参加采购活动前三年内,在经营活动中没有重大违法记录;法律、行政法规规定的其他条件;符合《中华人民共和国政府采购法实施条例》第十七条规定。 2.投标人具有国家颁发的有效营业执照。 3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。 4.为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。 5.本项目不接受联合体投标。 6.同一品牌的产品多家参加按一家计算。 7.对在“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信名单;对在中国政府采购网(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定,不得参加政府采购活动。 8.上述两个合同包可兼投兼中。 三、报名时间、地点及需要提供的材料 潜在合格的投标人可于2021年8月6日—2021年8月12日,每日9:00—11:30时至13:00—16:00时(北京时间,节假日除外)到吉林省伟邦公路技术有限公司购买招标文件。购买招标文件须提交下列相关资料: 1.企业法人营业执照副本(原件及加盖公章的复印件) 2.税务登记副本(原件及加盖公章的复印件) 3.法定代表人授权委托书(原件及加盖公章的法定代表人身份证复印件) 4.法定代表人授权委托人的身份证(原件及加盖公章的复印件) 5.提供招标公告期内的“信用中国”网站( www.creditchina.gov.cn)未列入①失信被执行人②重大税收违法案件当事人名单③政府采购严重违法失信名单的官网截图并加盖公章; 提供招标公告期内中国政府采购网( www.ccgp.gov.cn)未列入政府采购严重违法失信行为记录名单的官网截图并加盖公章(以上截图须包括单位名称、查询内容及查询时间)。 四、招标文件发售 1.发售时间:2021年8月6日—2021年8月12日, 每日9:00—11:30时至13:00—16:00时(北京时间,节假日除外)。 2.发售地点:吉林省伟邦公路技术有限公司(长春净月高新技术产业开发区福祉大路2766号 中公诚科(吉林)工程咨询有限公司B座203室)。 3.发售方式:领取,不办理邮寄业务。 4.售价:800元/套,售后不退。 五、投标截止时间及开标时间:2021年8月26日9时00分。 六、开标地点:长春市二道区凯利中心13楼开标4室。 七、发布公告的媒介:本次招标公告同时在《中国政府采购网》、《长春市公共资源交易网》、《长春市政府采购网》上发布。 八、联系方式 采购人:长春市固体废弃物管理中心 地址:长春市朝阳区信义路197号 联系人:刘利 电话:85960774 采购代理机构:吉林省伟邦公路技术有限公司 地址:长春净月高新技术产业开发区福祉大路2766号 联系人:李金波 赵鑫 电 话:0431-84552020 2021年8月6日 采购人名称 长春市固体废弃物管理中心 采购人联系方法 0431-85960774 采购人地址 长春市朝阳区信义路197号 采购代理机构名称 吉林省伟邦公路技术有限公司 代理机构联系方法 0431-84552020 采购代理机构地址 长春净月高新技术产业开发区福祉大路2766号 采购项目名称 长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目 预算金额(万元) 332.000000 最高限价(万元) 332 采购人的采购需求 详见招标文件 投标人的资格要求 详见招标公告正文 获取招标文件的时间 2021-08-06 09:00 获取招标文件的地点 长春市二道区凯利中心13楼开标4室 获取招标文件的方式 潜在合格的投标人可于2021年8月6日—2021年8月12日,每日9:00—11:30时至13:00—16:00时(北京时间,节假日除外)到吉林省伟邦公路技术有限公司购买招标文件 招标文件售价(元) 800 公告期限 5 投标截止时间 2021-08-26 09:00 开标时间 2021-08-26 09:00 开标地点 长春市二道区凯利中心13楼开标4室 采购项目联系人姓名 李金波 采购项目联系人电话 0431-84552020 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:固体废弃物 开标时间:2021-08-26 09:00 预算金额:332.00万元 采购单位:长春市固体废弃物管理中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:吉林省伟邦公路技术有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [社会代理]长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目招标公告 吉林省-长春市-朝阳区 状态:公告 更新时间: 2021-08-05 [社会代理]长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目招标公告 【信息时间:2021-08-06】 根据《中华人民共和国政府采购法》及相关法律法规, 吉林省伟邦公路技术有限公司受长春市固体废弃物管理中心的委托, 对其所需装载机、环卫型推土机进行公开招标采购。欢迎符合条件的投标人参加投标。 一、项目概况 1.项目名称:长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目。 2.招标编号:JM-2021-07-14763 3.采购内容、数量、预算、供货期及付款方式: 序号 合同包 采购内容 采购预算 (元) 供货期 付款 方式 1 01合同包 2台环卫型推土机 2,540,000 签订合同后15日内安装调试完毕 验收合格后付款95%,余5%为质保金。 2 02合同包 1台装载机 780,000 签订合同后15日内安装调试完毕 验收合格后付款95%,余5%为质保金。 详细技术要求见招标文件采购需求。 二、合格投标人资格要求 1.符合《中华人民共和国政府采购法》第二十二条规定, 在中华人民共和国境内注册,能够独立承担民事责任具有良好的商业信誉和健全的财务会计制度;具有履行合同所必须的设备和专业技术能力;有依法缴纳税收和社会保障资金的良好记录;参加采购活动前三年内,在经营活动中没有重大违法记录;法律、行政法规规定的其他条件;符合《中华人民共和国政府采购法实施条例》第十七条规定。 2.投标人具有国家颁发的有效营业执照。 3.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。 4.为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。 5.本项目不接受联合体投标。 6.同一品牌的产品多家参加按一家计算。 7.对在“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信名单;对在中国政府采购网(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定,不得参加政府采购活动。 8.上述两个合同包可兼投兼中。 三、报名时间、地点及需要提供的材料 潜在合格的投标人可于2021年8月6日—2021年8月12日,每日9:00—11:30时至13:00—16:00时(北京时间,节假日除外)到吉林省伟邦公路技术有限公司购买招标文件。购买招标文件须提交下列相关资料: 1.企业法人营业执照副本(原件及加盖公章的复印件) 2.税务登记副本(原件及加盖公章的复印件) 3.法定代表人授权委托书(原件及加盖公章的法定代表人身份证复印件) 4.法定代表人授权委托人的身份证(原件及加盖公章的复印件) 5.提供招标公告期内的“信用中国”网站( www.creditchina.gov.cn)未列入①失信被执行人②重大税收违法案件当事人名单③政府采购严重违法失信名单的官网截图并加盖公章; 提供招标公告期内中国政府采购网( www.ccgp.gov.cn)未列入政府采购严重违法失信行为记录名单的官网截图并加盖公章(以上截图须包括单位名称、查询内容及查询时间)。 四、招标文件发售 1.发售时间:2021年8月6日—2021年8月12日, 每日9:00—11:30时至13:00—16:00时(北京时间,节假日除外)。 2.发售地点:吉林省伟邦公路技术有限公司(长春净月高新技术产业开发区福祉大路2766号 中公诚科(吉林)工程咨询有限公司B座203室)。 3.发售方式:领取,不办理邮寄业务。 4.售价:800元/套,售后不退。 五、投标截止时间及开标时间:2021年8月26日9时00分。 六、开标地点:长春市二道区凯利中心13楼开标4室。 七、发布公告的媒介:本次招标公告同时在《中国政府采购网》、《长春市公共资源交易网》、《长春市政府采购网》上发布。 八、联系方式 采购人:长春市固体废弃物管理中心 地址:长春市朝阳区信义路197号 联系人:刘利 电话:85960774 采购代理机构:吉林省伟邦公路技术有限公司 地址:长春净月高新技术产业开发区福祉大路2766号 联系人:李金波 赵鑫 电 话:0431-84552020 2021年8月6日 采购人名称 长春市固体废弃物管理中心 采购人联系方法 0431-85960774 采购人地址 长春市朝阳区信义路197号 采购代理机构名称 吉林省伟邦公路技术有限公司 代理机构联系方法 0431-84552020 采购代理机构地址 长春净月高新技术产业开发区福祉大路2766号 采购项目名称 长春市城市生活垃圾处理中心装载机、环卫型推土机采购项目 预算金额(万元) 332.000000 最高限价(万元) 332 采购人的采购需求 详见招标文件 投标人的资格要求 详见招标公告正文 获取招标文件的时间 2021-08-06 09:00 获取招标文件的地点 长春市二道区凯利中心13楼开标4室 获取招标文件的方式 潜在合格的投标人可于2021年8月6日—2021年8月12日,每日9:00—11:30时至13:00—16:00时(北京时间,节假日除外)到吉林省伟邦公路技术有限公司购买招标文件 招标文件售价(元) 800 公告期限 5 投标截止时间 2021-08-26 09:00 开标时间 2021-08-26 09:00 开标地点 长春市二道区凯利中心13楼开标4室 采购项目联系人姓名 李金波 采购项目联系人电话 0431-84552020
  • 金华市固体废物管理中心220.00万元采购固体废弃物
    详细信息 关于固体废物全过程管理平台运行及维护项目的公开招标公告[金华市固体废物管理中心] 浙江省-金华市-婺城区 状态:公告 更新时间: 2022-11-17 招标文件: 附件1 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目的公开招标公告 项目概况 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目招标项目的潜在投标人应在浙江省“政采云”平台获取招标文件获取(下载)招标文件,并于2022年12月08日 09:30(北京时间)前递交(上传)投标文件。 一、项目基本情况 项目编号:TY2022-FW342-ZFCG342 项目名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 预算金额(元):2200000 最高限价(元):2200000 采购需求: 标项名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 数量:1 预算金额(元):2200000 简要规格描述或项目基本概况介绍、用途:根据《浙江省人民政府办公厅关于印发浙江省强化危险废物监管和利用处置能力改革实施方案的通知》、《省生态环境厅省公安厅关于做好工业固体废物精密智控闭环监管数字化改革试点工作的通知》等文件要求,我市需开展危险废物持证经营单位、小微收集点、重点产废企业智能监控措施,建立一个有序的固体废物全过程信息化管理平台,实时有效的监控固体废弃物从产生到处置的整个生命周期,联网企业实现危险废物产生、贮存、运输、处置等环节全过程监管。具体要求详见“第二章招标需求”。 备注:公益一类事业单位不属于政府购买服务的承接主体,不得参与本项目投标。具体内容详见文件 合同履约期限:标项 1,详见文件 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:/至2022年12月08日,每天上午00:00至12:00,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):浙江省“政采云”平台获取招标文件 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月08日 09:30(北京时间) 投标地点(网址):通过浙江政府采购网政府采购云平台实行在线投标响应。 开标时间:2022年12月08日 09:30 开标地点(网址):浙江省金华市婺城区金华市双龙南街858号财富大厦4楼开标3室政府采购开标3室 五、采购意向公开链接 https://zfcg.czt.zj.gov.cn/innerUsed_noticeDetails/index.html?noticeId=8885270 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1.《浙江省财政厅关于进一步发挥政府采购政策功能全力推动经济稳进提质的通知》 (浙财采监(2022)3号)、《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号))、《浙江省财政厅关于进一步加大政府采购支持中小企业力度助力扎实稳住经济的通知》 (浙财采监(2022)8号)已分别于2022年1月29日、2022年2月1日和2022年7月1日开始实施,此前有关规定与上述文件内容不一致的,按上述文件要求执行。 2.根据《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号)文件关于“健全行政裁决机制”要求,鼓励供应商在线提起询问,路径为:政采云-项目采购-询问质疑投诉-询问列表:鼓励供应商在线提起质疑,路径为:政采云-项目采购-询问质疑投诉-质疑列表。质疑供应商对在线质疑答复不满意的,可在线提起投诉,路径为:浙江政府服务网-政府采购投诉处理-在线办理。 3.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。质疑函范本、投诉书范本请到浙江政府采购网下载专区下载。 4.其他事项:本项目通过浙江政府采购网政府采购云平台在线开标,投标人无须到开标现场,但须准时在线参加,直至评审结束。开标截止时间后30分钟以内投标人登录“政采云”平台,用“项目采购-开标评标”功能进行解密投标文件。若投标人在规定时间内投标文件无法解密或解密失败(含未提交),则投标无效。 八、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:金华市固体废物管理中心 地 址:金华市环保大楼 传 真: 项目联系人(询问):王先生 项目联系方式(询问):0579-82181572 质疑联系人:王先生 质疑联系方式:0579-82181572 2.采购代理机构信息 名 称:金华市天盈财务咨询有限公司 地 址:金华市创新街18号南楼四楼,金华市农科教大楼西侧对面 传 真:0579-82460882 项目联系人(询问):卢丽云 项目联系方式(询问):0579-81338925、82162067 质疑联系人:夏翰宇。 质疑联系方式:0579-82474058 3.同级政府采购监督管理部门 名 称:金华市财政局政府采购监管处 地 址:金华市双龙南街801号财政局510办公室 传 真:/ 联系人 :徐老师 监督投诉电话:0579-82468735 若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。 附件信息: 342定稿(公开-电子12月8日9点半开标)金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目2.docx194.7K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:固体废弃物 开标时间:2022-12-08 09:30 预算金额:220.00万元 采购单位:金华市固体废物管理中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:金华市天盈财务咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 关于固体废物全过程管理平台运行及维护项目的公开招标公告[金华市固体废物管理中心] 浙江省-金华市-婺城区 状态:公告 更新时间: 2022-11-17 招标文件: 附件1 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目的公开招标公告 项目概况 金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目招标项目的潜在投标人应在浙江省“政采云”平台获取招标文件获取(下载)招标文件,并于2022年12月08日 09:30(北京时间)前递交(上传)投标文件。 一、项目基本情况 项目编号:TY2022-FW342-ZFCG342 项目名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 预算金额(元):2200000 最高限价(元):2200000 采购需求: 标项名称:金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目 数量:1 预算金额(元):2200000 简要规格描述或项目基本概况介绍、用途:根据《浙江省人民政府办公厅关于印发浙江省强化危险废物监管和利用处置能力改革实施方案的通知》、《省生态环境厅省公安厅关于做好工业固体废物精密智控闭环监管数字化改革试点工作的通知》等文件要求,我市需开展危险废物持证经营单位、小微收集点、重点产废企业智能监控措施,建立一个有序的固体废物全过程信息化管理平台,实时有效的监控固体废弃物从产生到处置的整个生命周期,联网企业实现危险废物产生、贮存、运输、处置等环节全过程监管。具体要求详见“第二章招标需求”。 备注:公益一类事业单位不属于政府购买服务的承接主体,不得参与本项目投标。具体内容详见文件 合同履约期限:标项 1,详见文件 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定;未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单。 2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:无 三、获取招标文件 时间:/至2022年12月08日,每天上午00:00至12:00,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):浙江省“政采云”平台获取招标文件 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年12月08日 09:30(北京时间) 投标地点(网址):通过浙江政府采购网政府采购云平台实行在线投标响应。 开标时间:2022年12月08日 09:30 开标地点(网址):浙江省金华市婺城区金华市双龙南街858号财富大厦4楼开标3室政府采购开标3室 五、采购意向公开链接 https://zfcg.czt.zj.gov.cn/innerUsed_noticeDetails/index.html?noticeId=8885270 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1.《浙江省财政厅关于进一步发挥政府采购政策功能全力推动经济稳进提质的通知》 (浙财采监(2022)3号)、《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号))、《浙江省财政厅关于进一步加大政府采购支持中小企业力度助力扎实稳住经济的通知》 (浙财采监(2022)8号)已分别于2022年1月29日、2022年2月1日和2022年7月1日开始实施,此前有关规定与上述文件内容不一致的,按上述文件要求执行。 2.根据《浙江省财政厅关于进一步促进政府采购公平竞争打造最优营商环境的通知》(浙财采监(2021)22号)文件关于“健全行政裁决机制”要求,鼓励供应商在线提起询问,路径为:政采云-项目采购-询问质疑投诉-询问列表:鼓励供应商在线提起质疑,路径为:政采云-项目采购-询问质疑投诉-质疑列表。质疑供应商对在线质疑答复不满意的,可在线提起投诉,路径为:浙江政府服务网-政府采购投诉处理-在线办理。 3.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内,对采购文件需求的以书面形式向采购人提出质疑,对其他内容的以书面形式向采购人和采购代理机构提出质疑。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。质疑函范本、投诉书范本请到浙江政府采购网下载专区下载。 4.其他事项:本项目通过浙江政府采购网政府采购云平台在线开标,投标人无须到开标现场,但须准时在线参加,直至评审结束。开标截止时间后30分钟以内投标人登录“政采云”平台,用“项目采购-开标评标”功能进行解密投标文件。若投标人在规定时间内投标文件无法解密或解密失败(含未提交),则投标无效。 八、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:金华市固体废物管理中心 地 址:金华市环保大楼 传 真: 项目联系人(询问):王先生 项目联系方式(询问):0579-82181572 质疑联系人:王先生 质疑联系方式:0579-82181572 2.采购代理机构信息 名 称:金华市天盈财务咨询有限公司 地 址:金华市创新街18号南楼四楼,金华市农科教大楼西侧对面 传 真:0579-82460882 项目联系人(询问):卢丽云 项目联系方式(询问):0579-81338925、82162067 质疑联系人:夏翰宇。 质疑联系方式:0579-82474058 3.同级政府采购监督管理部门 名 称:金华市财政局政府采购监管处 地 址:金华市双龙南街801号财政局510办公室 传 真:/ 联系人 :徐老师 监督投诉电话:0579-82468735 若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。 CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。 附件信息: 342定稿(公开-电子12月8日9点半开标)金华市固体废物管理中心关于固体废物全过程管理平台运行及维护项目2.docx194.7K
  • 青岛市固体废弃物处置有限责任公司294.63万元采购固体废弃物
    详细信息 小涧西污泥干化焚烧处置项目监理招标公告 山东省-青岛市-城阳区 状态:公告 更新时间: 2023-11-24 招标文件: 附件1 附件2 小涧西污泥干化焚烧处置项目监理招标公告 公告发布日期: 2023/11/24 15:51:32 项目名称: 小涧西污泥干化焚烧处置项目监理 工程地点: 项目位于青岛市城阳区河套街道小涧西社区以北青岛固体废弃物处置有限责任公司小涧西固体废物综合处置园区内,无新增用地。 资金来源: 国有(非财政)投资 出资比例: 自筹30%,银行贷款70% 招标工程类型: 市政工程-城市供、排水及污水处理设施建筑工程-监理 建筑物级别: 本项目总投资额: 379780000元 工程造价: 284700000元 工程规模: 600 项目批复文号: 投资计划单位及文号: 青发改投资核【2023】12号 建设单位: 青岛市固体废弃物处置有限责任公司 建设单位联系人: 万宏锐 建设单位联系电话: 0532-84679019 代建单位: 代建单位联系人: 代建单位联系电话: 招标单位: 青岛市固体废弃物处置有限责任公司 招标单位联系人: 万宏锐 招标单位联系电话: 0532-84679019 招标代理单位: 山东正岳项目管理有限公司 招标代理单位联系人: 华文君 招标代理单位联系电话: 0532-67762678 项目统一代码(编码): 2306-370200-04-01-566495 房地产产权人: 房地产产权证证号: 招标代理资格: 一、项目基本情况 1、工程概况:项目主要拆除场地现状附着物(树木、建筑等),原地新建污泥干化焚烧车间、污水收集和输送单元消防及冷却水池、变配电站、灰渣单元、称重单元、给排水、厂区绿化等配套公用工程。包含初步设计、施工图设计(含外电接入、高压电部分)及施工期间设计变更、现场服务等全部工作。工程范围内的厂房、设备拆除,三通一平等,工程范围内的污泥干化焚烧处理设施及配套的生产、生活辅助设施建设。主要工程建设范围包括主体生产设施:污泥接收系统、污泥干化系统、污泥焚烧系统、污水收集输送系统以及配套的作业设备(污水外输管线接至本次工程所在地西面围墙外1米,围墙内设阀门井)、应急池等环保设施、供排水、电气、监控监管(包括接入监管单位指定的系统和区域)、自控、智慧化系统、在线监测、场内绿化等设施工程施工、设备采购安装、蒸汽、沼气等管线(蒸汽、沼气等外部管线接至本次工程所在地西面围墙外1米,围墙内设阀门井)接入、调试、试运行及相关缺陷责任期保修等工程。本工程采用“污泥干化+鼓泡流化床焚烧”处理工艺,主要包括污泥接收系统、污泥干化系统、污泥焚烧系统、烟气处理系统、臭气处理系统等工艺系统;污泥设计处理能力 600 吨/日(折算80%含水率)。2、招标内容:项目土建工程、安装工程、设备工程施工阶段及缺陷维修、质保期维修等全过程监理。 招标范围: 项目土建工程、安装工程、设备工程施工阶段及缺陷维修、质保期维修等全过程监理。 标段名称 规模 标段内容 招标控制价(元) 1标段 600 小涧西污泥干化焚烧处置项目监理 2946292.64 二、投标企业应具有的条件 1、具有工程监理综合资质或市政公用工程专业乙级及以上监理资质; 2、与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标。单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段投标或者未划分标段的同一招标项目投标。 三、项目负责人应具有的条件 具有市政公用工程专业国家注册监理工程师执业资格。 四、联合体投标要求 本工程 不接受 联合体投标。 五、投标标段要求 本工程不分标段。 六 、资格审查办法和方式 经符合性审查,合格投标人应全部参加投标。 七 、评标办法 综合评估法 八 、同类工程经验要求 1.投标人参加投标无须具备同类工程经验。2.潜在投标人或投标人参加资格预审会或开标会时,应提供同类工程经验证明材料,否则将导致潜在投标人或投标人在资格审查打分或商务标书评审打分时相应评分项不得分。3.同类工程界定:二等及以上市政公用工程监理。 九 、招标文件获取 开标时间前在全国公共资源交易平台(山东省青岛市)青岛市公共资源交易电子服务系统(http://ggzy.qingdao.gov.cn)本项目招标公告页面免费下载招标文件。 十 、投标文件递交时间以及地点 递交地点: 青岛市民中心位于市南区福州南路17,27号公共资源交易中心【三楼13号开标室 】 投标文件递交截止时间: 2023-12-15 09:30 十一 、投标截止时间、开标时间及地点 开标地点: 青岛市民中心位于市南区福州南路17,27号公共资源交易中心【三楼13号开标室 】 投标截止时间、开标时间: 2023-12-15 09:30 十二 、其他 1.本工程无保密内容。 2、异议受理联系人:万宏锐,联系电话:0532-84679019,邮箱:gtwzbb@126.com,传真:/,地址:青岛市李沧区滨海路36号 3.投诉举报电话:0532-85916158,邮箱:qdswgljgcs@qd.shangdong.cn 传真/,地址:青岛市市南区香港中路17号。4.网上技术支持电话:0532-858715055.上一年是指从工程招标公告发布之日至前一年的1月1日,上两年是指从工程招标公告发布之日至前两年的1月1日,以此类推。 下载PDF版招标文件 小涧西污泥干化焚烧处置项目监理1标段.pdf 下载电子招标文件 下载投标文件制作工具 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:固体废弃物 开标时间:2023-12-15 09:30 预算金额:294.63万元 采购单位:青岛市固体废弃物处置有限责任公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山东正岳项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 小涧西污泥干化焚烧处置项目监理招标公告 山东省-青岛市-城阳区 状态:公告 更新时间: 2023-11-24 招标文件: 附件1 附件2 小涧西污泥干化焚烧处置项目监理招标公告 公告发布日期: 2023/11/24 15:51:32 项目名称: 小涧西污泥干化焚烧处置项目监理 工程地点: 项目位于青岛市城阳区河套街道小涧西社区以北青岛固体废弃物处置有限责任公司小涧西固体废物综合处置园区内,无新增用地。 资金来源: 国有(非财政)投资 出资比例: 自筹30%,银行贷款70% 招标工程类型: 市政工程-城市供、排水及污水处理设施建筑工程-监理 建筑物级别: 本项目总投资额: 379780000元 工程造价: 284700000元 工程规模: 600 项目批复文号: 投资计划单位及文号: 青发改投资核【2023】12号 建设单位: 青岛市固体废弃物处置有限责任公司 建设单位联系人: 万宏锐 建设单位联系电话: 0532-84679019 代建单位: 代建单位联系人: 代建单位联系电话: 招标单位: 青岛市固体废弃物处置有限责任公司 招标单位联系人: 万宏锐 招标单位联系电话: 0532-84679019 招标代理单位: 山东正岳项目管理有限公司 招标代理单位联系人: 华文君 招标代理单位联系电话: 0532-67762678 项目统一代码(编码): 2306-370200-04-01-566495 房地产产权人: 房地产产权证证号: 招标代理资格: 一、项目基本情况 1、工程概况:项目主要拆除场地现状附着物(树木、建筑等),原地新建污泥干化焚烧车间、污水收集和输送单元消防及冷却水池、变配电站、灰渣单元、称重单元、给排水、厂区绿化等配套公用工程。包含初步设计、施工图设计(含外电接入、高压电部分)及施工期间设计变更、现场服务等全部工作。工程范围内的厂房、设备拆除,三通一平等,工程范围内的污泥干化焚烧处理设施及配套的生产、生活辅助设施建设。主要工程建设范围包括主体生产设施:污泥接收系统、污泥干化系统、污泥焚烧系统、污水收集输送系统以及配套的作业设备(污水外输管线接至本次工程所在地西面围墙外1米,围墙内设阀门井)、应急池等环保设施、供排水、电气、监控监管(包括接入监管单位指定的系统和区域)、自控、智慧化系统、在线监测、场内绿化等设施工程施工、设备采购安装、蒸汽、沼气等管线(蒸汽、沼气等外部管线接至本次工程所在地西面围墙外1米,围墙内设阀门井)接入、调试、试运行及相关缺陷责任期保修等工程。本工程采用“污泥干化+鼓泡流化床焚烧”处理工艺,主要包括污泥接收系统、污泥干化系统、污泥焚烧系统、烟气处理系统、臭气处理系统等工艺系统;污泥设计处理能力 600 吨/日(折算80%含水率)。2、招标内容:项目土建工程、安装工程、设备工程施工阶段及缺陷维修、质保期维修等全过程监理。 招标范围: 项目土建工程、安装工程、设备工程施工阶段及缺陷维修、质保期维修等全过程监理。 标段名称 规模 标段内容 招标控制价(元) 1标段 600 小涧西污泥干化焚烧处置项目监理 2946292.64 二、投标企业应具有的条件 1、具有工程监理综合资质或市政公用工程专业乙级及以上监理资质; 2、与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标。单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段投标或者未划分标段的同一招标项目投标。 三、项目负责人应具有的条件 具有市政公用工程专业国家注册监理工程师执业资格。 四、联合体投标要求 本工程 不接受 联合体投标。 五、投标标段要求 本工程不分标段。 六 、资格审查办法和方式 经符合性审查,合格投标人应全部参加投标。 七 、评标办法 综合评估法 八 、同类工程经验要求 1.投标人参加投标无须具备同类工程经验。2.潜在投标人或投标人参加资格预审会或开标会时,应提供同类工程经验证明材料,否则将导致潜在投标人或投标人在资格审查打分或商务标书评审打分时相应评分项不得分。3.同类工程界定:二等及以上市政公用工程监理。 九 、招标文件获取 开标时间前在全国公共资源交易平台(山东省青岛市)青岛市公共资源交易电子服务系统(http://ggzy.qingdao.gov.cn)本项目招标公告页面免费下载招标文件。 十 、投标文件递交时间以及地点 递交地点: 青岛市民中心位于市南区福州南路17,27号公共资源交易中心【三楼13号开标室 】 投标文件递交截止时间: 2023-12-15 09:30 十一 、投标截止时间、开标时间及地点 开标地点: 青岛市民中心位于市南区福州南路17,27号公共资源交易中心【三楼13号开标室 】 投标截止时间、开标时间: 2023-12-15 09:30 十二 、其他 1.本工程无保密内容。 2、异议受理联系人:万宏锐,联系电话:0532-84679019,邮箱:gtwzbb@126.com,传真:/,地址:青岛市李沧区滨海路36号 3.投诉举报电话:0532-85916158,邮箱:qdswgljgcs@qd.shangdong.cn 传真/,地址:青岛市市南区香港中路17号。4.网上技术支持电话:0532-858715055.上一年是指从工程招标公告发布之日至前一年的1月1日,上两年是指从工程招标公告发布之日至前两年的1月1日,以此类推。 下载PDF版招标文件 小涧西污泥干化焚烧处置项目监理1标段.pdf 下载电子招标文件 下载投标文件制作工具
  • 重庆市固体废弃物运输有限公司152.00万元采购固体废弃物
    详细信息 重庆市固体废弃物运输有限公司车用尿素定点采购项目比选公告 重庆市-渝北区 状态:公告 更新时间: 2024-01-31 重庆市固体废弃物运输有限公司车用尿素定点采购项目比选公告 重庆市固体废弃物运输有限公司车用尿素定点采购项目比选公告重庆市固体废弃物运输有限公司对车用尿素定点采购项目进行竞争性比选,欢迎有资格的单位参加竞选。一、 项目概况与采购范围 1. 项目概况:采购内容为公司所需的车用尿素,采购内容包括明细表中所有产品货物、技术资料、货物的税费、运输费、安装费、保险费、包装费、转运费、装卸费、培训费、与货物有关的供方应纳的税费、售后服务费以及交付采购人正常使用前的一切费用(如:安装地现场保管费或场地租用费、转运费、照管人员工资等均属中选人自行负责)。 2.采购内容: 序号 采购项目 规格 需求数量(桶) 1 车用尿素(AUS 32) 10kg/桶 61000 注:(1)具体货物参数(服务要求)见第四章相关内容。 (2)比选人有权根据实际需求增加或减少采购数量,竞选人自行考虑货物数量调整带来的潜在风险及可能造成的经济或其他损失。 3. 项目地点:重庆市固体废弃物运输有限公司下属各站点。 4. 项目预估金额:152万元(含税)。 5. 服务期限:2年 二、资金来源 资金来源:重庆市固体废弃物运输有限公司运行资金。三、竞选人资格要求 (一)基本资格条件(竞选人自行提供诚信声明): 1. 具有独立承担民事责任的能力; 2. 具有良好的商业信誉和健全的财务会计制度; 3. 具有履行合同所必需的设备和专业技术能力; 4. 有依法缴纳税收和社会保障资金的良好记录; (二)特定资格条件: 1. 竞选人须为独立法人资格,具有有效的营业执照。(提供营业执照复印件) 2.本次比选要求竞选人具备的业绩条件:2021年1月1日至比选文件递交截止时间为止具有至少1个15万及以上尿素或相关产品销售的业绩合同(提供合同及发票复印件,业绩时间以合同为准,业绩金额以发票为准)。 3.竞选人提供参与竞选的项目产品,具有第三方检验资质(具备 CMA 或 CNAS 认证)出具的产品合格检验报告,且检测标准符合国家标准GB29518-2013。(提供检测报告加盖公章) 4. 本项目不接受竞选人以联合体形式参与竞选。四、比选文件获取时间及地点 有意参与竞选的单位,请于2024年1月 31 日至于2024年2月 3 日止,每天上午9:00时至11:30时,下午14:00时至17:00时。竞选人须提供加盖公章的营业执照扫描件、法定代表人身份证明书扫描件、法定代表人授权委托书扫描件,发送至QQ邮箱地址:461761284@qq.com,并注明“车用尿素水溶液定点采购项目报名资料+竞选人全称”以获取比选文件,比选文件售价500元/套,售后不退。五、比选文件的质疑和澄清 1.质疑截止时间:竞选人在收到比选文件后,应仔细检查比选文件的所有内容,如有残缺或文字表述不清以及存在错、碰、漏、缺、概念模糊和有可能出现歧义或理解上的偏差的内容等应在于2024年2月 3 日17:00时前以书面形式向比选人或比选代理机构提交质疑,质疑文件发送至QQ邮箱地址:461761284@qq.com。 2.比选人澄清截止时间:于2024年2月 3 日18:00时前(北京时间)比选人集中对各竞选人的质疑以及比选文件的澄清进行回复。六、竞选文件递交时间及地点 1.竞选文件递交起止时间:于2024年2月 7 日下午13:30时起至14:00时止(北京时间),竞选人还须同时递交加盖公章的营业执照复印件、法定代表人身份证明书、法定代表人授权委托书。 2.竞选文件递交地点:渝北区金开大道351号万科万悦汇2B栋10楼 3.不接受邮寄竞选。 4.竞选开标时间:于2024年2月 7 日下午14:30时(北京时间)。 5.竞选开标地点:渝北区金开大道351号万科万悦汇2B栋10楼 6.竞选人在竞选文件递交截止时间前未按要求递交文件的,将拒绝接收竞选文件。七、比选公告发布媒介 本次比选公告同时在“《》(http://____)”、“《重庆市环卫集团有限公司》(http://www.cesg.com.cn)”网上发布。八、联系方式 比选人名称: 重庆市固体废弃物运输有限公司 地 址: 重庆市渝北区夏家坝智慧固废物流转运港办公楼212室 联系人:李老师 电 话:023-62851702 比选代理机构名称:重庆航景工程咨询有限公司 地 址:渝北区金开大道351号 万科万悦汇2B栋10楼 联系人:胡女士 电 话:18580515037 2024年 1 月 31 日 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:固体废弃物 开标时间:2024-02-07 14:30 预算金额:152.00万元 采购单位:重庆市固体废弃物运输有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆航景工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆市固体废弃物运输有限公司车用尿素定点采购项目比选公告 重庆市-渝北区 状态:公告 更新时间: 2024-01-31 重庆市固体废弃物运输有限公司车用尿素定点采购项目比选公告 重庆市固体废弃物运输有限公司车用尿素定点采购项目比选公告重庆市固体废弃物运输有限公司对车用尿素定点采购项目进行竞争性比选,欢迎有资格的单位参加竞选。一、 项目概况与采购范围 1. 项目概况:采购内容为公司所需的车用尿素,采购内容包括明细表中所有产品货物、技术资料、货物的税费、运输费、安装费、保险费、包装费、转运费、装卸费、培训费、与货物有关的供方应纳的税费、售后服务费以及交付采购人正常使用前的一切费用(如:安装地现场保管费或场地租用费、转运费、照管人员工资等均属中选人自行负责)。 2.采购内容: 序号 采购项目 规格 需求数量(桶) 1 车用尿素(AUS 32) 10kg/桶 61000 注:(1)具体货物参数(服务要求)见第四章相关内容。 (2)比选人有权根据实际需求增加或减少采购数量,竞选人自行考虑货物数量调整带来的潜在风险及可能造成的经济或其他损失。 3. 项目地点:重庆市固体废弃物运输有限公司下属各站点。 4. 项目预估金额:152万元(含税)。 5. 服务期限:2年 二、资金来源 资金来源:重庆市固体废弃物运输有限公司运行资金。三、竞选人资格要求 (一)基本资格条件(竞选人自行提供诚信声明): 1. 具有独立承担民事责任的能力; 2. 具有良好的商业信誉和健全的财务会计制度; 3. 具有履行合同所必需的设备和专业技术能力; 4. 有依法缴纳税收和社会保障资金的良好记录; (二)特定资格条件: 1. 竞选人须为独立法人资格,具有有效的营业执照。(提供营业执照复印件) 2.本次比选要求竞选人具备的业绩条件:2021年1月1日至比选文件递交截止时间为止具有至少1个15万及以上尿素或相关产品销售的业绩合同(提供合同及发票复印件,业绩时间以合同为准,业绩金额以发票为准)。 3.竞选人提供参与竞选的项目产品,具有第三方检验资质(具备 CMA 或 CNAS 认证)出具的产品合格检验报告,且检测标准符合国家标准GB29518-2013。(提供检测报告加盖公章) 4. 本项目不接受竞选人以联合体形式参与竞选。四、比选文件获取时间及地点 有意参与竞选的单位,请于2024年1月 31 日至于2024年2月 3 日止,每天上午9:00时至11:30时,下午14:00时至17:00时。竞选人须提供加盖公章的营业执照扫描件、法定代表人身份证明书扫描件、法定代表人授权委托书扫描件,发送至QQ邮箱地址:461761284@qq.com,并注明“车用尿素水溶液定点采购项目报名资料+竞选人全称”以获取比选文件,比选文件售价500元/套,售后不退。五、比选文件的质疑和澄清 1.质疑截止时间:竞选人在收到比选文件后,应仔细检查比选文件的所有内容,如有残缺或文字表述不清以及存在错、碰、漏、缺、概念模糊和有可能出现歧义或理解上的偏差的内容等应在于2024年2月 3 日17:00时前以书面形式向比选人或比选代理机构提交质疑,质疑文件发送至QQ邮箱地址:461761284@qq.com。 2.比选人澄清截止时间:于2024年2月 3 日18:00时前(北京时间)比选人集中对各竞选人的质疑以及比选文件的澄清进行回复。六、竞选文件递交时间及地点 1.竞选文件递交起止时间:于2024年2月 7 日下午13:30时起至14:00时止(北京时间),竞选人还须同时递交加盖公章的营业执照复印件、法定代表人身份证明书、法定代表人授权委托书。 2.竞选文件递交地点:渝北区金开大道351号万科万悦汇2B栋10楼 3.不接受邮寄竞选。 4.竞选开标时间:于2024年2月 7 日下午14:30时(北京时间)。 5.竞选开标地点:渝北区金开大道351号万科万悦汇2B栋10楼 6.竞选人在竞选文件递交截止时间前未按要求递交文件的,将拒绝接收竞选文件。七、比选公告发布媒介 本次比选公告同时在“《》(http://____)”、“《重庆市环卫集团有限公司》(http://www.cesg.com.cn)”网上发布。八、联系方式 比选人名称: 重庆市固体废弃物运输有限公司 地 址: 重庆市渝北区夏家坝智慧固废物流转运港办公楼212室 联系人:李老师 电 话:023-62851702 比选代理机构名称:重庆航景工程咨询有限公司 地 址:渝北区金开大道351号 万科万悦汇2B栋10楼 联系人:胡女士 电 话:18580515037 2024年 1 月 31 日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制