当前位置: 仪器信息网 > 行业主题 > >

寡聚化并形成

仪器信息网寡聚化并形成专题为您整合寡聚化并形成相关的最新文章,在寡聚化并形成专题,您不仅可以免费浏览寡聚化并形成的资讯, 同时您还可以浏览寡聚化并形成的相关资料、解决方案,参与社区寡聚化并形成话题讨论。

寡聚化并形成相关的资讯

  • 部署合规LC-MS流程,深耕寡聚核苷酸业务
    BioSpring是一家位于德国法兰克福的合同生产机构(CMO),为商业化寡聚核苷酸药物开发、商业化生产提供可靠的分析解决方案。随着寡聚核苷酸生产及分析业务不断扩张,BioSpring部署Waters BioAccord LC-MS系统和waters_connect平台,保障数据可靠性和满足监管机构要求。BioSpring的寡聚核苷酸生产和分析业务BioSpring自1997年起就致力于为全 球客户开发和生产高质量寡聚核苷酸。其生产的寡聚核苷酸在反义技术、siRNA、偶联药物和单链长RNA等领域均有应用。2007年,该公司取得了寡聚核苷酸治 疗药物的cGMP生产认证,提供符合cGMP、ICH Q7和ISO 13485要求的服务。公司近日部署了Waters BioAccord LC-MS系统和waters_connect信息学平台,用以满足寡聚核苷酸业务需求。图1. BioSpring正在扩充其质量控制部门,该部门部署BioAccord LC-MS系统。寡聚核苷酸业务需求不断攀升BioSpring质量控制部门负责人JAN NICKOLAUS博士说到:我们的客户遍布世界各地,类型多样,有全 球制药巨头,亦不乏小型生物技术公司。这就是为什么我们要确保服务足够灵活并且以客户为中心,因为每位客户的需求都不尽相同。例如,我们可以带领客户完整实施整个项目,也可以只帮忙起草申报文件的CMC部分,还可以只在药品申报文件提交阶段提供支持。我们愿意根据客户需求开展合作。图2. BioSpring生产的寡聚核苷酸种类随着寡聚核苷酸类治 疗药物的产品管线不断扩展,寡聚核苷酸cGMP生产方面的需求也在增加。BioSpring提供覆盖面相当广的生产和分析服务。Nickolaus博士解释说:我们的业务中有70%是遵循cGMP标准生产,剩下30%则是分析客户提供的寡聚核苷酸,开展放行检测。在某些情况下,我们需要生产寡聚核苷酸并交付给制药厂商。QC部门负责BioSpring的一切综合分析业务,包括方法开发、研究和生物分析,还负责涉及GMP分析和非GMP临床前研究的常规业务。我们还提供商业化产品的稳定性研究和放行检测服务。研究已经证明,经化学修饰的核苷酸与递送系统(如GalNac)相结合,可以显著提高寡聚核苷酸类药物的稳定性和疗 效,这也是近年来此类药物大获成功的关键。因此,确认寡聚核苷酸序列中的化学修饰及其具体位置至关重要,而质谱(MS)已被证明具有100%确认序列(包括序列中每一个修饰核苷酸的位置)的特殊能力。寡聚核苷酸LC-MS工作流程对于治 疗或临床诊断用途的寡聚核苷酸,BioSpring的QC部门必须遵循法规要求确认产品成分、序列和纯度。新的治 疗方式激发了更多需求,包括鉴别、表征和定量低水平杂质,以及开展临床前和临床药物代谢及药代动力学(DMPK)研究,以确保药物安全性和有效性。BioSpring质量控制部门负责人JAN NICKOLAUS博士:部署符合cGMP及ISO要求的高分辨率质谱系统是我们的工作重 点之一。Rühl博士和他的团队曾前往沃特世英国分公司实地考察沃特世高分辨率质谱系统,这是我们第 一次看到运行中的Waters BioAccord LC-MS系统。Waters BioAccord LC-MS系统对BioSpring而言很有吸引力,因为这款仪器专为满足法规要求而开发,在色谱分离度、质谱分辨率、灵敏度、质量精度和线性方面也能充分满足各种常规生物制药分析的需求。不仅如此,Waters BioAccord LC-MS系统还自带经过优化的合规工作流程,包括:完整蛋白分析和完整寡聚核苷酸分析单克隆抗体(mAb)亚基分析肽图分析/MAM(多属性方法)游离N-糖分析在开发和制造该系统的过程中,沃特世还对整套BioAccord解决方案实施了严格的验证。验证测试从样品到结果报告全程采用生物制药方法,验收标准符合生物制药行业标准的要求。Waters BioAccord LC-MS系统还具备全面审计追踪功能、可配置访问权控制和关系型数据库,有助于公司保障数据可靠性和满足21 CFR第11部分及欧盟GMP附件11的要求。BioSpring质量控制部门负责人JAN NICKOLAUS博士:沃特世解决方案的审计追踪、用户管理和其他合规功能正是我们需要的。通过部署BioAccord LC-MS系统在内部完成各项分析,对我们接受监管机构和客户的审计有很大帮助。特别是在申报过程中,我们必须列出用到的所有外部应用程序,它们可能也得接受审计。投资回报2020年,BioSpring安装了第 一套Waters BioAccord LC-MS系统和waters_connect信息学平台,紧接着又安装了第二套BioAccord系统。这家CMO公司一直使用沃特世系统分离35~130 nt的寡聚核苷酸。BioAccord鉴定长链寡聚核苷酸的性能尤其突出,质量精度可达50 ppm。不仅如此,该系统还可以确认序列,过去这往往需要使用更精密的QToF质谱设备才能实现。这可谓该领域的一个里程碑,因为BioAccord将分析所需的质谱功能与操作简单的全套GMP认证工具成功结合到了一起。图3. 借助Waters BioAccord LC-MS系统,BioSpring公司得以将部分过去外包业务收回公司内部完成。这款LC-MS仪器采用Waters SmartMS技术,具有内置的健康状态检查功能,可确保数据质量。SmartMS简单易用,这意味着无论是LC-MS专家还是新手,都能轻松使用BioAccord获得同样高质量的结果。BioSpring质量控制部门负责人JAN NICKOLAUS博士:我们在法兰克福不只设有分析实验室,还设有生产工厂。为了支持工厂产能,我们还会表征生产过程中观察到的杂质。这是Waters BioAccord LC-MS系统发挥作用的又一个方面。它可以帮我们缩短周转时间,同时降低成本。除了提升和扩大产能,Waters BioAccord LC-MS系统让BioSpring得以将一部分过去需要外包的业务收回公司内部完成。这意味着能节省更多的时间和成本,业务流程也更加可控。Nickolaus博士解释:我们曾与美国某伙伴实验室合作开展序列确认。每执行一个放行检测项目,我们就得往他们的实验室送一次样品。内包这些工作有助于提高数据质量和可靠性,周转时间也可从原来的10周缩短到几天。此外,部署这套系统还能让我们进一步为业务做好更充分的准备。使用Waters BioAccord LC-MS系统,相同的服务以更低的成本就能实现完全控制和完成试验。在此基础上,我们可以进一步提升服务质量,同时显著降低成本和缩短交付时间。展望未来BioSpring目前在QC部门安装了两套Waters BioAccord LC-MS系统和waters_connect信息学平台,但这只是公司长期计划的一部分。BioSpring还希望在不久的将来部署更多Waters BioAccord LC-MS系统,进一步扩大服务规模。增添这些设备将有助于BioSpring达成其长期目标,那就是让服务适应未来发展,满足新客户需求。随着寡聚核苷酸市场不断发展和BioSpring持续扩张公司设施和服务规模,BioSpring打算继续与沃特世开展密切合作。投资部署Waters BioAccord LC-MS系统是BioSpring长期战略的一个关键组成部分,旨在让BioSpring在这个快速发展的行业中保持企业可信度和品牌信誉。BioSpring质量控制部门负责人JAN NICKOLAUS博士:Waters BioAccord LC-MS系统的性能本身就令人信服。不过除此之外,开展合作的机会和来自沃特世的支持对我们来说也很重要。与沃特世合作的方式类似于我们与客户合作的方式,这一点非常吸引人。
  • 上海首个核酸产业园7月正式开工,一起来聊聊寡核苷酸药物解链温度
    导 读近年来,以核酸药物为首的功能性核酸备受关注,2021年底治疗罕见病脊髓性肌肉萎缩的反义寡核苷酸药物诺西那生钠进入中国医保,几乎同一时间,诺华降血脂的小干扰RNA药物Leqvio获FDA批准上市,据悉一年只需用药两次。寡核苷酸药物已经从罕见病过渡到了常见慢性病,并可大大降低患者用药频率。随着寡核苷酸类药物的陆续上市,核酸药物已成为当前生命科学和药物研究的热点之一。为了更好促进核酸药物的快速发展,上海首个核酸产业园于7月中旬在上海杭州湾经济技术开发区正式开工,该产业园是以生物医药产业为发展方向,基于核酸开发各种疫苗及药物。今天,我们就一起来聊聊核酸药物以及解链温度等话题。01核酸药物小科普核酸类药物核酸类药物是各种具有不同功能的寡聚核糖核苷酸(RNA)或寡聚脱氧核糖核苷酸(DNA),能够直接作用于致病靶基因或者靶mRNA,在基因水平上发挥治疗疾病的作用。常见的寡核苷酸药物主要包括反义寡核苷酸(ASO)、小干扰RNA(siRNA)、微小RNA(microRNA)、小激活RNA(saRNA)、适配体(Aptamaer)、信使RNA(mRNA)。解链温度在这些核酸药物中,对于具有双链结构的药物,需要对其解链温度进行分析。解链温度是衡量双链结构核酸类物质热稳定性的重要指标,它是控制结构和功能的关键因素。例如小干扰RNA(siRNA)药物等具有双链结构,当温度升高时,氢键断裂,双链逐渐解体,形成单链结构。这种现象称为核酸的“溶解”,将双链和单链所占比例相等的温度定义为解链温度(Tm)。因为核酸类物质在260 nm附近有一个紫外吸收峰,吸收值在解链过程中增加,通过测试该吸光度变化,以确定Tm值。因此在进行核酸药物Tm值分析时,可以利用紫外分光光度计加上控温附件和对应的数据分析软件来完成。02分析利器对于核酸解链温度Tm测试,岛津拥有成熟的方法和分析设备,该设备一般为UV-1900i配Tm分析系统(TMSPC-8)。Tm分析系统由8列控温支架、专用8列微量比色池、温度控制器和Tm分析软件构成,最多可同时测定8个样品。UV-1900i和Tm分析系统专用8列微量比色池(光程10 mm)03案例分享接着小编带您看看具体的寡核苷酸分析案例,操作步骤简单快捷,结果直观。测试样品为M13-25mer核酸,测试前先进行样品溶液脱气的预处理,通过UV-1900i和Tm分析系统可以轻松获得Tm 曲线(绘制260nm处的吸光度对温度曲线,如下图所示),该曲线可以显示升温时和降温时的结果。样品的Tm曲线测试完成后,可以通过中线法和微分法两种方法计算Tm值,最终得到的Tm值结果基本一致。Tm计算结果结 语核酸分子的解链温度对核酸药物的稳定性、有效性等研究有重大意义,在核酸药物研发生产过程是一个重要的参数指标。岛津紫外配合Tm分析系统,可以满足轻松获取Tm曲线,通过中线法或者微分法均可计算Tm温度,满足测试要求,为核酸药物质量控制提供了可靠数据。更多寡核苷酸药物分析,敬请持续关注。撰稿人:王娟娟本文内容非商业广告,仅供专业人士参考。
  • 国家十三五规划新鲜出炉 人口健康技术深度解读(一)
    不久前,李克强总理签发了十三五国家科技创新规划。过去我国在创新方面受到比较多的质疑,现在这个情况有所好转,在全球创新能力排名中从第18升至第15。 记得施一公先生也曾提及:有外国友人对于中国载人航天比较不屑,如果有中国的经济体量,他的国家足以将载人航天计划完成十次。也许因为这样的原因,创新在领导们看来,是非常紧迫的国情。十三五国家科技创新规划体现了决心。 在我国刚刚进入全球公认的创新国家行列的时刻,我们可以看看哪些领域和技术将成为未来的创新支柱? 人口健康技术是总理重点强调的部分。我们来看看是怎么说的: “体外诊断产品要突破微流控芯片、单分子检测、自动化核酸检测等关键技术,开发全自动核酸检测系统、高通量液相悬浮芯片、医用生物质谱仪、快速病理诊断系统等重大产品,研发一批重大疾病早期诊断和精确治疗诊断试剂以及适合基层医疗机构的高精度诊断产品。” 这里提到的微流控芯片,单分子检测,高通量液相悬浮芯片是总理希望快速突破的拳头性的新技术,代表未来诊断行业的发展趋势。默克早在10年前就开始布局诊断行业,开发创新性技术。今天我们可以重点扒一扒什么是单分子检测。 规划中所谓的单分子检测(Single Molecule Counting, SMC),是生物医药领域的,指的是生物大分子,特别是蛋白,因为蛋白是生物功能的体现者。这些蛋白也叫生物标志物,存在于体液等各种生物样本中,有些能够跟疾病的状况形成密切的联系,因而有非常高的研究价值。 单分子检测的基本原理在于利用毛细管进行荧光素标记分子的上样,并以激光聚焦的方式进行单个分子的激发检测。当荧光素标记分子通过高能量的激光焦点时,单个蛋白分子偶联的荧光素所发射的光闪烁信号被检测器测得。光闪烁信号的次数和强度与分子浓度呈正相关性,从而能建立标准曲线。通过对一定时间之内光闪烁信号进行统计,可以对溶液浓度进行定量检测。这种方式中,信号是真正来源于单个分子,并没有刻意的放大和扭曲,能做到真正的数字化计量。 普通检测技术,例如酶联免疫,简单易用且成本较低,但只能以较低的灵敏度检测标志物。单分子检测具有超级灵敏度(相当于酶联免疫上千倍的水平)和样品消耗量低的突出优点。有人可能会不理解,为什么需要超级灵敏度?我不去检测那些特别稀少的蛋白就OK了。真实的情况是,在所有的蛋白中,大多数蛋白(75%)种类都是现有技术很难去测的。如果因为技术的限制只研究丰度较高的蛋白,我们会忽略掉大多数有用的信息。要想在国际竞争中PK取胜,我们应该具备先进的手段。 灵敏度带来的好处不光是可以检测低丰度蛋白,同样重要的是,我们对于样本的要求不再苛刻,很多样本的优势体现得更加明显。例如眼泪,房水,脑脊液等这些蛋白含量本身很低的样本,通过传统方法检测是相当困难的。这些样本更贴近于目标组织,其中所包含的蛋白变化比血液更能揭示机体的变化,能够善于利用常常会有更重要的发现。例如下图中脑脊液里的寡聚Aβ蛋白,虽然含量极低,通过单分子检测方法的发掘,能清晰的界定阿尔茨海默疾病。在这个实例中,对Aβ寡聚体的检测达到0.09pg/mL灵敏度,酶联免疫法根本望尘莫及。 摘自Savage et al, Journal of Neuroscience, 2014 单分子检测,即在单分子层面进行目标分子定量,是科研工作者长期以来梦寐以求的检测手段,将分子检测灵敏度推到极限,是极微量物质检测技术的皇冠或者终极里程碑。这种测量技术意味着我们利用生物标志物的历史将迎来变革。默克适时推出的Erenna单分子免疫检测平台,将为中国人口健康技术创新提供原创动力。 索取SMCTM单分子免疫检测技术资料,点击此处 相关资料:错过默克发布会 别再错过单分子检测讲座见“微”知著——默克发布Erenna单分子免疫检测平台新品2015创新产品:单分子免疫检测平台十年一剑!默克密理博发布SMC™ 单分子检测技术新应用
  • 青岛能源所关于高效稳定有机太阳能电池的研究获进展
    有机太阳能电池(OSC)由于本征柔性、质轻、半透明等特点,在便携能源、光伏-建筑一体化、节能玻璃及高效农业等领域具有广阔的应用前景。不同于硅基等无机光伏电池,OSC的给受体异质结界面问题更为复杂,因而调控活性层本体异质结的微观形态对改善激子/电荷行为及光伏效率至关重要。同时,活性层溶液法制备过程中,体相内不可避免地产生部分亚稳态区域。OSC长期工作过程中,给受体界面的小分子受体会自发进行扩散再聚集,从而破坏两相分离,影响电荷传输并导致OSC性能下降。因此,抑制亚稳态区域的形成,对改善OSC的稳定性、获得长效运行的光伏电池具有重要作用。中国科学院青岛生物能源与过程研究所研究员包西昌带领的先进有机功能材料与器件研究组,从第三组分掺杂出发,采用分子外围功能化方案,在OSC的相态调控、稳定性提升及高效率制备等方面取得了一系列进展。相关成果相继发表在《先进材料》(Advanced Materials)上。   该研究优化受体分子侧链功能基团的位置(图1),将face-to-face/face-to-edge混合取向堆积的客体分子转换为100% face-to-face优势取向,提高了垂直方向的电子传输性能。单晶解析和相关理论分析发现,侧链外围功能化的分子可以通过外围共轭平台与相邻受体分子骨架形成紧密的π-π相互作用,使分子取向实现定向锚定。而相对于功能化基团在内侧的客体分子,外围功能化的客体与主体受体之间形成类合金聚集态,呈现出更为规整的分子排列与取向,降低了受体相内的缺陷密度及复合损失。掺杂后的OSC光伏效率达到19.12%,且类合金体相在热力学上更趋向于平衡态,OSC的热稳定性得到明显提升。因此,调控掺杂客体分子的堆积取向及主客体相互作用,对获得合适相分离、抑制亚稳态生成、提升光伏电池稳定性具有积极作用。   进一步,研究对外围功能化的客体分子主骨架进行再调控,获得了高质量的类合金体相,同时,类合金聚集体的晶域尺寸可以通过客体掺杂比例进行线性调控(图2)。相比受体相内同时存在客体自聚集区域及类合金区域,该研究中客体分子与主体受体具有高度兼容性。实验结果分析显示几乎所有的客体分子均参与类合金体相的构建,这是类合金晶域尺寸可以线性调控的本质原因。同时,客体分子掺杂后,无论是主体聚合物给体还是主体受体的结晶性均得到增强,促进了垂直方向空穴和电子的传输。此外,客体分子形成的类合金聚集体均包覆在主体受体相内,形成了核壳结构(主体包覆客体),增强了主客体之间的能量转移。对于这种独特的聚集态结构,研究首次提出了具有普适性的主客体结晶性、表面能、兼容性相互关系以及给受体相互作用四要素协同作用的驱动机制。此类独特的主客体聚集态及分子堆积,对于提高电荷传输、抑制电荷复合起到重要作用。研究将其作为客体分子进行掺杂,在多个体系中实现了超过80%的填充因子(最高达到81.1%)和19.2%的高能量转换效率。除了效率提升外,研究再次发现类合金体相的形成明显改善了OSC的稳定性,验证了类合金体相对抑制亚稳态形成、提高光伏电池稳定性的作用。   基于上述研究,类合金体相提升稳定性的机制可归因于类合金晶域更为规整的分子堆积以及由此产生的更高玻璃化转变温度(Tg)。受体域Tg的提高可降低给受体界面小分子受体向聚合物给体相的扩散系数,保持活性层相分离的稳定。有研究报道,相对于单个小受体分子单元,构建寡聚物受体分子(如二聚体和三聚体等)可提升受体的Tg及OSC的热稳定性。例如,基于寡聚受体制备的OSC效率可达18%,T80达到35000小时(每天工作8小时计算,相当于稳定运行12年),可满足应用需求。然而,寡聚受体的合成和分离成本均较高。目前,研究组在开发更加廉价的寡聚受体制备方法,并在锚定OSC稳定性的本征提升,开发更适合大面积印刷工艺、低成本、易操作提高OSC稳定性的原位技术及方案(包括热稳定性、柔性电池的机械稳定性等),以发展高效稳定、更具应用前景的OSC。   研究工作得到国家自然科学基金委员会、山东能源研究院及中国科学院青年创新促进会等的支持。图1. 客体分子功能化的空间方位调控分子取向及主客体聚集态图2. 多因素驱动的客体分布对OSC光伏性能和稳定性的影响图3. OSC老化机制分析及展望
  • 用户之声丨光催化水氧化过程的分解机理研究
    韩国西江大学Kyung Byung Yoon教授 岛津拜访了韩国西江大学的Kyung Byung Yoon教授。他是人工合成领域的顶尖研究人员之一。Yoon团队曾在《Science》上报道了一种不怕水的CO2捕获新材料,为低成本捕获CO2并再利用研究提供了方向。他的实验室配备许多分析仪器,包括Tracera GC-BID系统和QYM-01光反应量子产率评价系统*,QYM-01系统可实现对吸收光子准确而快速的定量测量。 * QYM-01 为岛津今年6月刚发布的Lightway PQY-01光反应评价系统的前序机型。 Q 请介绍一下您的研究内容。 这个广泛用于均相光催化水氧化过程的系统包含作为光泵的水氧化催化剂RuⅡ(bpy)32+和作为电子牺牲受体的S2O82?。但是,因为RuⅡ(bpy)32+会发生非常快速的分解,导致在所有S2O82?消耗完之前,反应过程就停止,所以该系统还远不够理想。就这一点而言,如果能研究清楚RuⅡ(bpy)32+的分解途径和产物,就可以设计出更高效的光催化水氧化系统。 我们发现,在光-RuⅡ(bpy)32+-S2O82?系统中存在两种RuⅡ(bpy)32+分解途径。第一种是通过黑暗环境中,在pH>6条件下,RuⅢ(bpy)33+氧化OH?而下形成OH• 自由基,OH• 自由基攻击RuⅡ(bpy)32+的bpy配体。这个在黑暗中分解的途径是次要的。在辐照过程中,RuⅡ(bpy)32+和RuⅢ(bpy)33+都受到光激发,并且光激发的RuⅢ(bpy)33+与S2O82?反应生成一种中间体。当中间体浓度较低时,中间体分解为催化活性的钌μ-氧代二聚体,当中间体浓度较高时,中间体分解为催化惰性的寡聚钌μ-氧代物。光诱导分解途径是主要途径。当RuⅡ(bpy)32+浓度较低时,即使在没有任何添加催化剂的情况下,光-RuⅡ(bpy)32+-S2O82?系统也会通过类似在黑暗中生成氧气的途径产生氧气。当RuⅡ(bpy)32+浓度较高时,由于光诱导分解途径的总速率比生成氧气的暗途径的总速率要快得多,因此系统中不会生成氧气。 Q “QYM-01”和“Tracera(GC+BID检测器)”是否正高效地用于您的研究?它们有多大用处? QYM-01可以在每分钟或更短的时间内获得紫外-可见光谱。这使我们能够监测光反应过程中物质的反应速度有多快。QYM-01还可以测量光敏剂吸收的光子数量。当我们检测到产物时,通过绘制吸收光子数量与生成产物的关系曲线来计算反应的量子产率。Tracera可高效检测液体产物,检测灵敏度较高。几乎检测到了柱内所有物质。 Q 您认为“QYM-01”和“Tracera(GC+BID检测器)”有哪些优点? 我们可以在光解过程中获得紫外-可见光谱,无需改变任何其他反应系统。我们可以测量我们正在使用的激发光的功率,这就是QYM-01的优点。至于Tracera,检出限很好。 Q 请告诉我们您对“岛津”的印象。 你们提供前所未有的产品和优质服务。 我们与Kyung Byung Yoon教授的交谈很愉快,通过这次采访,我们了解了Yoon教授对我们仪器和我们公司的看法。我们必须努力,争取越来越好。也非常感谢Yoon教授接受岛津的采访! 关于采访的评论 采访之后,Yoon教授说:“虽然QYM-01还有一些地方有待改进,但是岛津拥有QYM-01等前所未有的独特性创新技术,这令我印象深刻,我也期待这些技术的未来发展。”
  • 帕金森病的希望:对α -突触核蛋白聚集抑制剂的研究突破
    Jody Mason博士在美国JBC上发表文章,验证了构建抗α-Syn聚集肽抑制剂的方法,而且为潜在的药物候选分子提供了一种很有前途的肽序列。梅森博士评论道:“使用CEM公司的Liberty Blue做多肽合成实验,它能够快速合成研究所需的多肽,节省了我们大量的成本和时间,我们也愿意尝试更多的研究,面对更多的风险和挑战。Liberty Blue是我们实验室的一个很好的补充,我强烈建议其他研究人员使用这个系统。”帕金森病是神经系统的一种渐进性疾病,约占所有痴呆症的15%。多见于老年人,据国内权威机构统计,我国65岁以上人群患病率大约是1.7%,并随年龄增长而升高,据推算,目前国内帕金森病患者已经超过220万。目前的医学水平对这一病理改变的准确病因仍不清楚,也没有一个明确的诊断方法(主要依靠病史、临床症状及体征),目前药物治疗是最主要的治疗手段,手术治疗是药物治疗的一种有效补充。应用的治疗手段虽然不能阻止病情的进展,也无法治愈疾病,但能改善症状,有效的提高患者的生活质量。对于这个“老大难”,各大药厂使出浑身解数,近几年,上市了几款帕金森新药,像奥匹卡朋(Opicapone)、GOCOVRI (缓释金刚烷胺)等,但对于这个渐进性的疑难病来说,仍未突破既往的作用靶点。迫于研发难度和资金压力,全球最大制药公司辉瑞在2018年年初宣布,将放弃研发治疗阿茨海默症和帕金森症的新药,裁撤时间科学研究和早期发展项目约300个相关职位,足可见研发帕金森类药物的困难程度。帕金森病是神经系统的一种渐进性疾病,约占所有痴呆症的15%。多见于老年人,据国内权威机构统计,我国65岁以上人群患病率大约是1.7%,并随年龄增长而升高,据推算,目前国内帕金森病患者已经超过220万。目前的医学水平对这一病理改变的准确病因仍不清楚,应用的治疗手段虽然不能阻止病情的进展,也无法治愈疾病,但能改善症状,有效的提高患者的生活质量。 帕金森的病理特征是蛋白质团簇的形成,这些蛋白质称为路易体。 α-Syn(一种突触前神经元蛋白质)作为路易体的主要成分,与帕金森病有密不可分的联系,因此引起了科学界极大的兴趣。 目前的研究表明,α-Syn通过中间可溶的寡聚构象(称为原纤维)来帮助路易体。 而这些原纤维在神经元包涵体中沉积,然后通过影响细胞内靶标和突触功能而导致细胞死亡。之前的研究已经证明,α-Syn的71-82区域负责整个140 mer蛋白的聚集。但是梅森博士的小组指出,早发性帕金森病相关的突变是在该蛋白质的另一个片段中发现的。在观察到大多数突变后,发现该突变位于或非常接近46-53区域,他们选择根据这个肽段检测一个10聚体,具体而言,他们创建了45-54序列的209952个成员库,其中包括已知的突变,以及如图1所示的一系列可选的残基选择。然后用多路复用的细胞内蛋白片段互补分析法(PCA)筛选该多肽库。在此基础上,从文库中筛选出约200个候选基因。随后,在序列选择生长条件下进行了基于竞争的主成分分析,阐明了生长速率的差异。竞争主成分分析从最初发现的200个α-Syn结合剂中获得了一个最有前途的序列,可以通过测序来确定。图1. α-Syn(TOP)的45-54原生型序列被用来建立一个209952个成员肽库。包括与早发帕金森病相关的残基位置和选项(下划线和粗体表示部分)。 从竞争的PCA循环中鉴定的前导肽候选物能够与疾病相关的原生型α-Syn结合并降低淀粉样蛋白的形成超过90%。梅森博士然后利用固相多肽合成技术原生型45-54,α-Syn肽(作为对照)和PCA衍生肽候选物,研究其对140聚体原生型α-Syn结合的影响。从PCA研究中得到的肽能够防止原生型α-Syn在1:1化学计量下聚集,与原子力显微镜(图2)和THT染料结合试验一起证实,圆二色性实验证实几乎完全预防了多肽的β折叠二级结构。正如预期的选择方法,抑制剂也导致与α-Syn聚集相关的毒性大幅度降低。因此,该研究不仅验证了构建抗α-Syn聚集肽抑制剂的方法,而且为潜在的药物候选分子提供了一种很有前途的肽序列。图2. 左边显示的是α-Syn蛋白形成的毒性淀粉样纤维的原子力显微镜图像。这些都是在帕金森病患者的大脑中发现的。右边是与新衍生肽混合的同一蛋白质。多肽结合在α-Syn蛋白中的粘性部分,几乎完全阻止了纤维的形成。 梅森博士在2013年底开始使用CEM的?Liberty Blue™ 多肽合成仪。该系统使他能够快速合成研究所需的多肽。相较于之前购买多肽,现在能够节省大量的成本和时间,这对他的工作来说是非常有价值的。另一个好处,梅森博士不再关心是否有足够的肽材料用于实验问题,因为现在他可以快速有效地制造更多的肽。梅森博士评论道:“自从有了Liberty Blue,我们愿意尝试更多的研究,并能面对更多的风险挑战。Liberty Blue是我们实验室的一个很好的补充,我强烈建议其他研究人员使用这个系统。” Jody Mason博士发表的文章:Intracellular Screening of a Peptide Library to Derive a Potent Peptide Inhibitor of a-Synuclein AggregationJournal of Biological Chemistry, 2015, 290 (12), 7426–7435DOI: 10.1074/jbc.M114.620484
  • 天津海河标测技术检测有限公司-岛津合作实验室正式挂牌
    天津海河标测技术检测有限公司(以下简称“海河标测”)与岛津企业管理(中国)有限公司(以下简称“岛津”)多年来保持良好合作,为共同验证“人类辅助生殖技术用医疗器械 培养用液中氨基酸检测方法”、“无源外科植物硅凝胶填充乳房植入物中寡聚硅氧烷类物质测定方法”、“植入性医疗器械 高分子材料 浸提液中有毒有害物质的测定 戊二醛迁移量 高效液相色谱法”和“植入性医疗器械 高分子材料 浸提液中有毒有害物质的测定 丙交酯迁移量 气相色谱法”等标准工作,双方决定成立天津海河标测技术检测有限公司-岛津合作实验室,并于2021年7月23日正式挂牌。 海河标测成立于2015年,隶属于海河生物医疗集团,按照国际标准ISO17025 和美国21 CFR Part 58 良好的实验室规范建立,可依据国内和国际先进检测标准开展大鼠、小鼠、豚鼠、兔、狗、羊、猪等动物试验、提供生物相容性检测、微生物检测、过程确认和临床前动物试验等服务,是国内唯一一家为医药厂商从产品研发到上市各个阶段提供服务的实验室。 现场传真 此次签约揭牌仪式与天津海河生物医药科技集团新检测基地落成暨集团开业庆典共同举办,庆典开始,海河生物医药集团总裁洪晓鸣及各方领导分别进行致辞,对到场嘉宾标识热烈欢迎。 天津海河生物医药集团总裁洪晓鸣 庆典中的揭牌仪式环节,天津海河生物医药集团总裁洪晓鸣与岛津分析计测事业部分析中心部长黄涛宏共同为天津海河标测技术检测有限公司-岛津合作实验室进行揭牌,宣告天津海河标测技术检测有限公司-岛津合作实验室正式成立。 揭牌仪式 揭牌仪式结束,岛津分析计测事业部分析中心部长黄涛宏进行了致辞并为天津海河生物医药科技集团新检测基地开业典礼剪彩,致辞中,黄涛宏部长提到岛津具有宽产品线优势,综合成分分析、力学性能分析和X射线CT测试等全方位分析手段,将为海河标测提供一站式综合解决方案。而海河标测与岛津双方将本着战略需要、优势互补的原则,通过友好协商,共同建立“海河标测-岛津公司合作实验室”,以期发挥双方优势力量,在植入性医疗器械、人类辅助生殖技术用医疗器械等多个领域进行合作与验证。合作实验室的建立是双方深化合作的开端,黄涛宏部长期待在双方的共同努力下,不断提升合作的深度和广度,并取得更多丰硕的成果,反馈给业界。岛津分析计测事业部分析中心部长黄涛宏 剪彩仪式 岛津祝天津海河生物医药科技集团在新落成的检测基地有更良好的发展,同时,也祝愿海河标测未来通过应用更多的岛津仪器功能及方法开发,继续打造建设国际一流的实验室。海河标测实验室中的岛津仪器
  • 中国气象局:我国已初步形成天、空、地一体化温室气体立体观测能力
    “截至目前,中国气象局已经组建了包含60个地面观测站的国家温室气体观测网,同时有3颗具备全球主要温室气体监测能力的卫星在轨运行,已初步形成天、空、地一体化的温室气体立体观测能力。”1月9日,在中国气象局举行的新闻发布会上,中国气象局科技与气候变化司副司长张兴赢如是说。在此场发布会上,中国气象局发布了《2021年中国温室气体公报》(以下简称《公报》)。《公报》显示,2021年,位于中国青海的瓦里关国家大气本底站观测到的二氧化碳浓度为417.0±0.2ppm、甲烷的浓度为1965±0.6ppb、氧化亚氮的浓度为335.1±0.1ppb,二氧化碳浓度较2020年增幅为2.5ppm,与全球增幅持平,甲烷浓度较2020年增幅约21ppb,略高于全球同期增幅。张兴赢在介绍《公报》时表示,中国气象局在世界气象组织(WMO)框架下,协调中国区域的温室气体及相关微量成分高精度观测。自20世纪80年代开始,中国气象局陆续建成了由1个全球大气本底站和6个区域大气本底站组成的大气本底观测站网,实现对《京都议定书》管控的7大类30余种温室气体观测,形成了观测——运行监控——维护标校——质量控制——应用分析等于一体的温室气体本底观测业务体系。张兴赢谈到,我国高度重视应对气候变化工作,全力推动碳达峰碳中和目标如期实现。中国气象局作为我国应对气候变化、服务"双碳"战略的重要科技支撑部门,在温室气体监测、评估、计量标准、碳源汇核算等领域不断发挥着自身优势和重要作用。下一步,中国气象局将如何进一步助力“双碳”目标实现?对此,张兴赢表示,未来,中国气象局将进一步提升观测能力,形成覆盖我国16个气候关键区并辐射全球主要纬度带的全要素温室气体本底观测骨干网,不断提升二氧化碳、甲烷等温室气体高精度、高密度的观测能力,进一步支撑碳源汇监测核校业务,为顺利实现“双碳”目标提供科学监测支撑。
  • 诚邀参加——东曹色谱分离纯化技术研讨会
    随着2017年初《“十三五”生物产业发展规划》的发布,中国的生物技术产业迎来新的快速发展阶段。其中生物医药产业将重点发展生物技术药物等多个创新药物品类,推动医疗向精准医疗和个性化医疗发展。如何加快研发项目进展,提高产品质量是生物医药研发和生产企业关注的焦点。东曹(上海)生物科技有限公司(TOSOH)将于近期在武汉、成都和上海举办技术应用研讨会,围绕生物医药(单克隆抗体、ADC药物等)在研发或生产中所涉及的HPLC分析分离及中低压层析纯化技术展开介绍及讨论,助力中国生物医药产业的技术进步。 【会议主题】单克隆抗体HPLC分析领域的最新技术介绍;TSKgel色谱柱在生物样品分析实验中条件优化与应用举例;抗体药物在中低压层析技术方面的最新话题。 【会议日程】城市时间地点武汉11月28日(周二)9:00-13:00武汉华美达光谷大酒店成都11月29日(周三)9:00-13:00四川锦江宾馆上海12月1日(周五) 9:00-13:00博雅酒店 【报名方式】请致电东曹公司:021-34610856-212或发送邮件:info@tosoh.com.cn (标题注明:技术研讨会报名)名额有限,请尽早报名参加。 本次参会免费,安排自助午餐及茶歇,会后更有精彩抽奖环节,期待您的参与! 关于东曹东曹集团生命科学事业部是全球知名的液相色谱仪器耗材和工业层析填料产品供应商。其产品包括EcoSEC系列凝胶渗透色谱仪、离子色谱仪、TSKgel高效液相色谱柱、TSKgel高压层析填料、TOYOPEARL中低压层析填料、TOYOPEARL PAK、TOYOSCREEN层析工艺方法筛选用预装柱。广泛应用于蛋白、多肽、多糖、寡聚糖、DNA、低聚核苷酸、抗生素、合成高分子、天然产物和其他小分子量化合物的分析、分离及纯化工作中。东曹(上海)生物科技有限公司作为东曹集团在中国的全资子公司,秉承东曹集团通过化学创新、实现幸福、回报社会的理念,为中国客户提供优质的产品和完善的服务。
  • 只会半定量分析?来看WB的灵活运用吧
    WB实验是我们平时最常接触到的实验类型,也是最经典的免疫学实验,每年写WB实验技巧的文章,真是让人看花了眼,如果你厌倦了老生常谈的实验技巧,不如来看看我们今天的拓展,WB在半定量分析之外的妙用吧。 一、目标蛋白构象结合功能分析WB 用于构象分析,主要基于其不同构象形式时分子量所发生的变化,比如不同的寡聚、翻译后修饰、配体结合等情况。还原和非还原型电泳分析链间二硫键,并判断蛋白聚合情况;抗体表位分析法初步判断蛋白空间结构;利用(N - 端或 C - 端)抗体研究蛋白异构体及翻译后酶切修饰;更重要的是,WB 等方法获得的是蛋白在寡聚、结合配体、底物、信号标签等生理条件下,其分子量的动态变化,从而将蛋白结构研究与功能研究有机结合。泛素化-蛋白酶体系统对于错误蛋白降解具有重要意义。上图显示 Nrf2 蛋白在泛素连接酶作用时间延长后,泛素化程度逐渐增加。若将各时间点的 Nrf2 蛋白结构解析,即可将该蛋白的结构研究与功能研究相结合。在 Virology 的这篇文献中,作者发现蛋白酶体抑制剂 MG132 和 lactacystin 可显著降低猪 II 型圆环病毒(PCV2)早期感染的滴度,并通过对泛素基因的沉默实验,发现其也显著降低 PCV2 滴度,由此推断泛素 - 蛋白酶体系统是 PCV2 的早期复制所必须的。 二、磷酸化信号分析磷酸化是细胞信号系统的重要调节方式,特异的磷酸化抗体可以用于:分析信号分子磷酸化水平,从而与其功能研究建立联系;分析不同磷酸化位点对于信号分子功能的影响,比如 p53 总磷酸化水平与不同位点磷酸化水平对转录的调控,以及与癌症发生发展之间的联系。Cai 等在JBC上发表的文章,揭示了微小RNA在肿瘤发生中的调节作用。研究发现微小RNA miR-17/20a 靶向抑制 p53 的核心激酶DAPK3(死亡相关蛋白激酶 3)的表达,去除这些微小 RNA 将导致依赖于 p53 的微小RNA转录抑制被去除,从而形成一个正反馈环,促进肿瘤形成,它们被称为原癌微小 RNA(oncomiRs)。C图清楚显示了当对 Hela 细胞转入 miR-17、miR-20a 或 miR-17/20a 拮抗剂后,DAPK3 蛋白表达增加,双链 DNA 不稳定性的标志物 ATM(Ser-1981)、p53BP1(Ser-25/29)蛋白丝氨酸磷酸化程度增高,而各自总蛋白水平并没有变化。D 图进一步确认了这些磷酸化水平升高是由 DAPK3 表达量升高引起的。p53 磷酸化水平升高将导致其抑制原癌微小 RNA 转录的水平下降,进一步提高 DAPK3 激酶的表达。该研究补充了原有的通过 E2F 家族蛋白激活 miR-17/20a 的负反馈调节通路。 爱必信的两款经典的WB产品,ECL发光液(abs920)和marker(abs924、abs922) 货号 品名 规格 abs50001 Annexin V-FITC apoptosis assay kit 50T/100t abs920 ECL化学发光检测试剂盒 2*250ml abs922 预染蛋白marker, 10-180kDa 500ul abs924 预染蛋白marker, 10-180kDa 2×250ul abs923 预染蛋白marker 500ul/5*500ul※ECL发光液是持久型,有效延迟淬灭时间。爱必信彩虹marker,经过与多种品牌对比验证,结果如图,看的见得优秀!Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)... 爱必信(上海)生物科技有限公司联系邮箱:info@absin.cn公众平台:爱必信生物
  • Nature Methods:冷冻电镜解析高分辨率RNA结构
    作为强大的结构解析工具,冷冻电镜在解析蛋白质结构中具有超强能力。RNA作为另外一种生物大分子,在生命活动中发挥着与蛋白质同等关键的作用,解析它们的三维结构也是科学家们持久探索的问题。但RNA由于分子量小,柔性大等因素,无论是依靠冷冻电镜还是其他结构解析手段,这一目的在往日很难实现。近日,哈佛大学廖茂富博士和尹鹏博士合作,利用ROCK技术改造RNA,赋能冷冻电镜技术,解析了多种RNA的高分辨结构,进一步扩展了冷冻电镜技术的应用场景,也为揭示RNA参与的生命活动,以及围绕RNA的药物开发,打开了全新局面。作为遗传分子DNA的姊妹,RNA支持着我们生活的世界。进化生物学家曾提出假设,认为在DNA和它所编码的蛋白质出现之前,RNA就已经存在并具有自我复制功能。而现代科学发现,只有不到3%的人类基因组被转录成信使RNA(mRNA)分子,并在后续被翻译成蛋白质。相比之下,82%的基因组被转录成具有其他未知功能的RNA分子。为了了解单个RNA分子的功能,在原子和分子键的层面上对其三维结构进行解析是极其必要的。通过对DNA和蛋白质分子进行结晶处理,研究人员已经可以通过X射线晶体学方法或核磁共振方法进行常规的结构研究。然而,由于RNA的分子构成和结构柔性特点,它们往往难以结晶,因此这些需要结晶的方法并不适用于解析RNA分子的结构。 近日,哈佛大学韦斯生物启发工程研究所(Wyss)的尹鹏博士和哈佛大学医学院(HMS)的廖茂富博士合作完成了一项研究,报告了一种对RNA分子进行结构研究的新技术"ROCK"。该技术可以将多个相同的RNA分子组装成一个高度组织化的结构,大大降低单个RNA分子的灵活性,并使其分子量成倍增加。应用于具有不同大小和功能的知名模型RNA作为基准,该团队表明ROCK技术能够将冷冻电镜 (cryo-EM) 方法应用在包含RNA亚基的生物大分子的结构解析上。他们的研究结果发表在《自然-方法》上。 与廖茂富博士一起领导这项研究的尹鹏博士说:「ROCK技术正在打破目前针对RNA进行结构研究的限制,使RNA分子的近原子级分辨率结构得以揭示,这一过程往往难以甚至无法用传统的方法实现。我们期望这一进展能为基础研究和药物开发的许多领域注入活力,包括正在蓬勃发展的RNA疗法。」获得对RNA的控制权 尹鹏博士的研究团队开发了多种方法,包括DNA砖块和DNA折纸术,这些方法使DNA和RNA分子能够根据不同的规则和需求进行自我组装,从而形成超大分子。他们假设,这种策略也能够将自然存在的RNA分子组装成高度有序的环形复合物,通过将特定分子连接在一起的方式,对柔性进行限制。许多RNA以复杂但可预测的方式折叠,在小片段之间进行碱基配对交互。其结果往往会将稳定的 "核心 "和 "茎环 "向圆环外侧凸出。 在ROCK技术(通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)中,目的RNA被设计成通过吻式发夹序列(红色)自组装成一个封闭的同源环,这些序列定位在在功能非必要的外周螺旋上(蓝色)。在确定了可编辑的非必要外周螺旋后,连接吻式发夹模体和目的RNA核心的螺旋的长度被计算优化。带有目的RNA的多个单独亚基的RNA构建体被转录、组装,通过凝胶电泳纯化,并通过冷冻电镜进行结构解析。 「在我们的方法中,我们构建了吻式发夹,可以将同一RNA两个拷贝的不同外围茎环连接起来,使之形成一个整体稳定的环,其中包含了目的RNA的多个拷贝。我们推测,这些高阶环可以通过冷冻电镜进行高分辨率结构解析,该技术已首次成功应用于RNA分子的结构解析。」 —刘迪,第一作者 描绘稳定的RNA 在冷冻电镜方法中,许多生物大分子的单一颗粒在低温下被瞬间冻结,以阻止它们的运动。随后,在电子显微镜和计算算法的帮助下,对颗粒各个方向的二维表面投影进行比较,以重建其三维结构,实现生物大分子的可视化。彭和刘与廖和他的前研究生弗朗索瓦塞洛(François Thélot)博士合作进行了该工作,后者是该研究的另一位第一作者。廖和他的团队在冷冻电镜领域、以及对特定蛋白质形成的单颗粒的实验和计算分析中做出了重要贡献。 廖茂富说:「与传统方法相比,冷冻电镜在解析包括蛋白质、DNA和RNA在内的生物分子的高分辨率结构细节方面有很大的优势,但是大多数RNA的小分子量和高柔性使其结构难以解析。我们组装RNA多聚体的新方法同时解决了这两个问题,通过增加RNA的分子量,并降低其柔性,我们的方法为基于冷冻电镜方法解析RNA结构这一领域打开了大门。」由于整合了RNA纳米技术和冷冻电镜方法,该团队将这一复合技术命名为"ROCK" (RNA oligomerization-enabled cryo-EM via installing kissing loops, 通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)。 为了证实ROCK技术的可行性,该团队将研究聚焦于四膜虫(一种单细胞生物)的大内含子RNA和固氮弧菌(一种固氮细菌)的小内含子RNA,以及FMN核糖开关。内含子RNA是散布在新转录RNA序列中的非编码RNA序列,必须被 "剪接"出来才能形成成熟RNA。FMN核糖开关存在于一些细菌RNA中,这些细菌会参与由维生素B2衍生的黄素代谢物的生物合成。在与RNA结合后,黄素单核苷酸(FMN)将切换其三维构象,并抑制其母RNA的合成。 在对四膜虫 I 组内含子的结构解析过程中,研究人员收集了约十万张ROCK技术处理的单颗粒冷冻电镜图像,通过一系列计算分析步骤重建了其结构,整体分辨率达到了2.98Å,结构核心的分辨率达到了2.85Å。最终的模型提供了四膜虫 I 组内含子的详细视图,包括之前未知的外围结构域(以土黄色和紫色显示),它们构成了围绕核心的条带。 研究小组称,他们将四膜虫 I 组内含子组装成一个环状结构,使样品更加均匀,并能够利用组装结构的对称性来进行计算。虽然数据采集两的规模并不大,但ROCK技术的优势使研究小组能够以前所未有的分辨率解析该结构。RNA的核心结构以2.85Å的分辨率解析,揭示了核苷酸碱基和糖骨架结构的详细特征。研究小组还称如果没有ROCK技术加持,在当前的资源条件下,他们不可能做到这一点。 冷冻电镜还能够捕捉不同构象的分子。研究小组通过将ROCK方法应用于固氮弧菌内含子RNA和FMN核糖开关结构解析中,确定了固氮弧菌内含子在其自我剪切过程中的不同构象,揭示了FMN核糖开关配体结合部位的相对刚性的构象。 这项研究生动演示了RNA纳米技术如何推动着其他学科的发展。将天然状态的RNA分子结构进行可视化,对理解不同细胞类型、组织和生物体的生物及病理过程产生巨大的影响,甚至能够实现新的药物开发方法。 相关文献摘要高分辨率的结构研究对于理解各种RNA的折叠和功能至关重要。在此,我们提出了一种纳米结构工程策略,利用单颗粒冷冻电镜(cryo-EM)对纯RNA结构进行高效的结构测定。即ROCK技术(通过安装吻式发夹实现RNA寡聚化的冷冻电镜技术): 将吻式发夹序列安装到RNA的非必要功能茎上,使其自组装成具有多倍分子量和降低结构柔性的同源封闭环。ROCK技术能够以2.98 Å的整体分辨率(核心部分为2.85 Å)对四膜虫 I 组内含子进行冷冻电镜三维重构,以建立完整的RNA模型,包括以前未知的外围域。ROCK技术被进一步地应用于两个较小的RNA: 固氮弧菌 I 组内含子和FMN核糖开关,揭示了前者的构象变化和后者的结合配体。ROCK技术有望大大促进冷冻电镜在RNA结构研究中的应用。评论来源:Science Dailyhttps://www.news-medical.net/news/20220503/New-method-enables-the-structural-analysis-of-RNA-molecules.aspx文献来源:Nature Methodshttps://www.nature.com/articles/s41592-022-01455-w#citeas水木未来视界丨iss. 18
  • 高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制
    高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制 MDA5是细胞内的异体RNA监测蛋白,属于RIG-I样受体家族(RLRs)的重要成员。MDA5参与多种RNA病毒引起的免疫反应,是天然免疫的一道重要屏障。RLRs家族共有RIG-I、MDA5及LGP2三个成员,其中RIG-I和MDA5的N端均拥有串联CARDs结构域,可通过CARD-CARD同型相互作用招募MAVS,最终促进I型干扰素(IFN)通路的激活。在RLRs抗病毒信号的激活过程中,K63连接的多聚泛素链(K63-polyUb)起着关键作用[1]。前期研究发现,短链K63-polyUb可以通过共价锚定和非共价锚定两种方式有效地促使RIG-ICARDs的寡聚[2, 3]。形成的异源四聚体复合物(K63-polyUb-RIG-ICARDs)可激活MAVSCARD寡聚,形成MAVS纤维的核心[2, 3]。然而,K63-polyUb是如何调控MDA5 CARDs组装以及招募、激活MAVS CARD的分子机制,仍是待解决的科学问题。 Immunity近期中国科学院上海药物研究所郑杰团队在Immunity杂志上以Research Article形式在线发表了题为“Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains”的研究成果,本研究通过生物大分子氢氘交换质谱技术(HDX-MS)以及冷冻电镜技术(Cryo-EM)揭示了长链,非锚定K63-polyUb促进MDA5-MAVS组装程序与信号传递的分子机制。MDA5-MAVS首先研究人员建立了K63-,K48-连接泛素链的生化合成平台,并制备了不同长度的K63-polyUbn(2≤n≤14)(图1)。通过基于Orbitrap Fusion平台的氢氘交换质谱技术(Hydrogen/Deuterium Exchange Mass Spectrometry,HDX-MS),研究人员发现MDA5CARDs和RIG-ICARDs的氢氘交换保护程度依赖于不同长度的K63-polyUbn(MDA5: n≥8 RIG-I: n≥3)而不依赖于K48-polyUbn(n≥10);并且保护强度随着K63-polyUb的长度增加而特异性加强。 图1:HDX-MS分析K63-polyUb(2≤n≤14)对RLR CARDs寡聚的影响(点击查看大图) 为了研究K63-polyUbn介导的MDA5CARDs寡聚体的组装机制,研究人员利用冷冻电镜首次解析得到了分辨率为3.3Å的MDA5CARDs与K63-polyUb13复合体的结构。这也是MDA5CARDs第一个近原子分辨率的冷冻电镜结构。 那么MDA5CARDs-K63-polyUbn异源四聚体又是如何招募其下游信号蛋白MAVS?研究人员进一步通过Cryo-EM解析得到了分辨率为3.2Å的由长链K63-polyUb11拴系的“自下而上”的左手螺旋MDA5CARDs-MAVSCARD复合体结构。 同时研究人员通过生物大分子氢氘交换质谱技术,首次证明了人类MDA5全长蛋白的CARDs在初始状态下处于张开的构象并可与长链K63-polyUb10结合。然而在早期研究中,氢氘交换质谱已经证明了RIG-ICARDs在初始状态下呈闭合的构象[4, 5]。这也直接证明了RIG-I和MDA5的CARDs在溶液状态下构象上的巨大差异。其次,研究人员进一步发现K63-polyUb10拴系的MDA5CARDs复合物在溶液中的稳定性受MDA5的RNA依赖的ATP酶活性别构调节。图2:HDX-MS分析全长MDA5在其识别配体或底物作用下(dsRNA/ATP/K63-polyUb)的动态的构象变化与信号传导机制(点击查看大图)综上所述该研究通过生物大分子氢氘交换质谱和冷冻电镜技术发现长链,非锚定K63-polyUb类似于一个“分子桥梁”,促进了MDA5CARDs四聚体的组装,使之形成一个激动状态的构象来招募下游MAVSCARD,以进一步促进MAVSCARD的寡聚和激活(图2)。激活状态下的MDA5可以结合并水解ATP,远程提升CARDs-K63-polyUb10的稳定性以持续激活MAVS。该研究弥补了MDA5通路激活与信号传导研究的空白,进一步揭示了长链,非锚定K63-polyUb在细胞内作为内源性激动剂的免疫学功能,为理解泛素分子多样性在抗RNA病毒天然免疫信号传导与调控中的作用提供了新的线索。* 上海药物所博士后宋斌和美国NIH Research Associate陈运为论文第一作者,上海药物所郑杰研究员为论文的通讯作者。该工作得到了新加坡南洋理工大学罗大海教授、吴彬教授,美国Scripps研究所Patrick Griffin教授,上海药物所罗成研究员和张乃霞研究员的大力支持,得到了国家自然科学基金、上海市浦江人才计划等项目的支持。 专家访谈郑杰(中国科学院上海药物研究所 研究员)Q根据您的经验对氢氘交换质谱技术的理解?以及这篇文章的主要的难点在哪里?答:我觉得HDX-MS是基于生物化学这个学科,围绕表征酶活反应机理的一个很实用的技术,HDX-MS第一个应用是来自美国工业界,可以很好地应用于药物发现。这个新工作的一个难点就是采用生化合成了不同长度的K63多聚泛素链,并对RLR CARDs进行了后续功能筛选和表征。如果无法系统合成K63-polyubn(n>8),我们也无法解决这个科学问题。Q基于高分辨质谱技术的HDX-MS技术作为捕捉蛋白质溶液构象变化的重要研究工具,相对于冷冻电镜技术提供哪些不可或缺的生物学信息?答:HDX-MS和cryoEM提供的信息非常互补,首先,两者联用可以提供高分辨的结构和溶液中动态构象变化的信息。其次,在我们这个研究中,我们使用了HDX-MS去表征MDA5全长蛋白的一系列的构象变化,这对cryoEM研究是很有难度的,因为全长MDA5 的CARDs和Helicase之间的linker长度达到了120个氨基酸且在溶液中是非常活跃的,我们这次利用了HDX分析了MDA5与RNA,ATP互作如何远程调控CARDs与K63-polyub的构象变化。表征好这一系列的构象变化就是表征MDA5在溶液状态下是如果进行信号传导的机制。QHDX-MS技术目前有哪些应用方向,未来应用前景如何?答:HDX-MS捕捉的是溶液状态下蛋白质稳态的信息,研究蛋白质动力学,这对药物发现(drug discovery)研究非常关键,可以大大加速药物的发现与研发。HDX-MS可以直接提供药物与小分子互作,以及生物大分子抗体药物识别抗原等研究提供接近生理意义的重要信息。我博士后是在美国Scripps研究所Patrick Griffin教授进行的训练,当时实验室的同事很多都去了美国大药企利用HDX-MS参与药物发现。其中Mike还在礼来公司搭建了一套高通量全自动的HDX设备,专门为礼来的小分子药物发现筛选而设定。回国后我们也正朝着这个方向努力,实现HDX-MS软件和硬件的进一步自动化,希望未来在国内可以实现HDX-MS高通量。另一个努力的方向是早日实现单氨基酸残基分辨率的HDX-MS技术的升级,这可以 帮助精准表征药物作用关键氨基酸残基。为了实现这个目标,HDX-MS的自动化进样平台机械臂模块需要一定的改造,比如更严格的控温,更高频率的连续进样来优化质谱的采集效率。最终我希望可以利用高通量HDX-MS平台去建一个蛋白库,提供氢键,自由能,单氨基酸残基HDX等可以量化的参数,更精准的帮助科研工作者了解蛋白质的折叠,去折叠等稳态的信息。 关于作者中国科学院上海药物研究所郑杰实验室长期结合生物大分子氢氘交换质谱技术交叉解决由蛋白质(酶)的动力学异常变化所导致的重大疾病的发生机制,聚焦RNA天然免疫模式识别受体的内源,外源性配体识别与信号传导机制,以及自身免疫疾病发生机制。围绕氢氘交换及其应用,以第一作者或通讯作者在Immunity 2021,Anal Chem 2019,Nat Commun 2018,structure 2018, Nat Commun 2017,Nucleic Acids Res 2015等期刊上。感谢郑杰老师对本文的指导与支持参考文献:1. Hu, H. and S.C. Sun, Ubiquitin signaling in immune responses. Cell Res, 2016. 26(4): p. 457-83.2. Zeng, W., et al., Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell, 2010. 141(2): p. 315-30.3. Peisley, A., et al., Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature, 2014. 509(7498): p. 110-4.4. Zheng, J., et al., High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res, 2015. 43(2): p. 1216-30.5. Zheng, J., et al., HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat Commun, 2018. 9(1): p. 5366.扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 冷冻电镜,两篇Science!
    Science:施一公团队首次揭示人源IgM-B淋巴细胞受体组装的分子机制北京时间2022年8月19日,西湖大学施一公团队在《科学》(Science)上发表了题为《人源IgM B细胞受体的冷冻电镜结构》(Cryo-EM structure of the human IgM B cell receptor)的研究论文。该论文首次报道了人源IgM同种型B细胞受体(IgM-BCR)的高分辨率三维结构,揭示了膜结合的IgM(mIgM)与Igα和Igβ异源二聚体复合物组装的分子机制,从而回答了B细胞受体如何组装这一重要科学问题,同时也为基于B细胞受体的免疫疗法提供了关键的结构基础。B细胞也叫B淋巴细胞, 是适应性免疫系统的重要组成部分。它在抗原刺激下可分化为浆细胞和记忆B细胞:浆细胞可合成和分泌抗体,是人体的免疫屏障之一;记忆B细胞则可以“记录”下感染信息,并在体内长期存在,以备不时之需。B细胞需要抗原与B细胞受体(BCR)的结合,才能进行增殖和分化,产生浆细胞和记忆细胞。这就好比,如果B细胞要组织一场免疫战斗,入侵的抗原是敌人,B细胞受体(BCR)则是探知敌人虚实的先锋。B细胞的“生命周期”概略示意图早在1990年,德国马普所的Michael Reth实验室就鉴定发表了BCR的组分,在之后的三十多年中,人们对BCR胞外区如何识别各种抗原并激活B细胞信号通路进行了深入的研究。BCR由膜结合的免疫球蛋白(mIg)和Igα/Igβ异二聚体组成。其中mIg负责与抗原结合,Igα/Igβ参与信号传递。抗原结合以后,BCR在细胞膜表面寡聚化,Igα和Igβ被Lyn激酶磷酸化,之后激活下游信号通路。BCR被认为是治疗B细胞恶性肿瘤的重要治疗靶点。例如,Polatuzumab vedotin是一种抗体偶联药物,该药物可以结合BCR中的Igβ组分,释放偶联的毒素分子,对B淋巴瘤细胞进行精准杀伤。尽管BCR十分重要,但科学家一直未能看清其结构。一旦获知BCR的结构信息,对于理解B细胞活化以及针对该复合物进行抗体药物的开发,将具有很高的潜在价值。BCR根据mIg类型的不同,可以分为五种类型,即IgM、IgD、IgG、IgA和IgE。此次施一公团队的研究对象,正是其中的IgM型。实验过程中,他们首先将IgM-BCR的四个组分的cDNA进行密码子优化并克隆到表达载体上,接着通过共表达内质网潴留蛋白pERp1促进IgM二硫键的形成,帮助其正确折叠。之后,在蛋白纯化时加入抗体偶联药物Polatuzumab的Fab片段,最后通过冷冻电镜解析了第一个人源IgM同种型B细胞受体复合物3.3 埃(1埃等于0.1纳米)的高分辨率结构(图1)。图1 IgM-BCR复合物的整体结构图该IgM-BCR复合物结构包含一个mIgM和一个Igα/Igβ,它们以 1:1 的化学计量比非共价结合。在Igβ的上方,观察到了Polatuzumab的Fab片段的电子密度,证实了Polatuzumab结合在Igβ氨基末端的柔性区域。在IgM-BCR的胞外区域,重链的胞外域与 Igα/Igβ的胞外域紧密堆叠。在近膜区域,两条重链中的一条通过连接肽(linker)穿过由 Igα/Igβ包围的中空结构。在跨膜区域,mIgM和Igα/Igβ的跨膜螺旋(TM)形成一个四螺旋束,通过跨膜螺旋之间的氢键来稳定构象(图2)。图2 IgM-BCR复合物组装的细节图这样的结构特征暗示了mIgM和Igα/Igβ在细胞内通过共折叠的方式形成复合物。施一公团队通过体外pull-down和体内免疫共沉淀(co-IP)实验, 验证了IgM-BCR的组分通过共折叠的方式在细胞内形成复合物的猜想,同时揭示了TM和linker在复合物组装中的重要作用。除此之外,该结构揭示了胞外域上的 14 个糖基化位点,并发现三个潜在的表面抗体结合位点,可能有助于用于疾病干预的治疗性抗体或微型蛋白质的理性设计(图3)。和已经批准的抗体偶联药物Polatuzumab vedotin一样,这些特异性结合IgM-BCR的抗体或微型蛋白质,具有治疗B细胞淋巴瘤的潜力。图3 IgM-BCR糖基化位点分布图Science的审稿人对该项研究给予了高度评价:“这是B细胞生物学的一大突破,也是一项非常了不起的成就。”西湖大学生命科学学院施一公教授及其团队博士后宿强为本文的共同通讯作者。西湖大学生命科学学院博士后宿强、清华大学生命科学学院博士生陈梦莹以及西湖大学访问学生、郑州大学博士生史嫣为本文的共同第一作者。西湖大学生命科学学院助理研究员张晓峰、博士后黄高兴宇、博士生黄邦栋,郑州大学刘章锁教授、刘东伟教授,参与了本研究的部分工作。电镜数据采集于西湖大学冷冻电镜平台,计算工作得到西湖大学高性能计算平台的支持。本研究获得了科技部、国家自然科学基金委、西湖教育基金会、西湖大学、西湖实验室的相关经费支持。Science:哈工大黄志伟课题组发文揭示人B细胞受体复合物组装的分子机制8月18日,哈尔滨工业大学生命学院/生命科学中心黄志伟课题组在《科学》(Science)上发表题为《两种亚型的人类B细胞受体的冷冻电镜结构》(Cryo-EM structures of two human B cell receptor isotypes)的研究文章,揭示了BCR复合物亚基的组装、识别机制,以及发现不同亚型BCR尽管在膜内具有保守的组装模式,然而在胞外却具有不同的组装模式。人类适应性免疫细胞(T细胞和B细胞)在病原感染、癌症发生以及自体免疫疾病中起着关键作用。T、B细胞分别通过T细胞受体(TCR)和B细胞受体(BCR)识别抗原信号,把信号跨膜传递至胞内,激活T、B细胞的免疫反应。T、B细胞受体属于一类由多个蛋白组成的最复杂的细胞受体,对T、B细胞的发育、分化、功能起着至关重要的作用。TCR和BCR复合物信号转导,免疫激活的结构基础与分子机制问题一直是免疫学领域的重要基础科学问题。人IgG-和IgM-BCR复合物结构人类B细胞受体有5种亚型,在该研究中,该课题组解析了人IgG和IgM两种亚型的BCR复合物结构,BCR复合物结构包含了一个膜结合形式的免疫球蛋白(mIg)同源二聚体,用于识别抗原,以及一个膜结合形式的Igα/β(CD79α/CD79β)异二聚体,用于信号传递(化学计量比为1:1)。其中,mIg二聚体包含了Fab和Fc结构域、连接肽(CPs)和跨膜(TM)螺旋,Igα/β结构由两个胞外Ig样结构域、CPs和TM螺旋组成。IgG和IgM-BCR复合物的组装分别由胞外的IgG-Cγ3和IgM-Cμ4与Igα/β的Ig样结构域,以及连接肽、跨膜螺旋承担。课题组通过两个亚型的结构比较发现,mIgG和mIgM的跨膜螺旋区通过保守的疏水和极性作用与Igα/β 结合。相比之下,在胞外区域,IgG-Cγ3和IgM-Cμ4分别通过“首尾相连”(head-to-tail)以及“肩并肩”(side-by-side)的模式与Igα/β的Ig样结构域结合,其中,Igα的CD loop 旋转了90度,分别与Cγ3和Cμ4结构域结合。结构上观察的不同亚型组装模式是否和活性有关值得进一步研究。人IgG-和IgM-BCR复合物结构比较分泌型sIgM通常形成五聚体,但在膜结合的静息态BCR上只观察到IgM的单体状态。结构分析显示Igα的Ig样结构域和膜结合的IgM-Cμ4完全重合,从而解释了膜结合的静息态IgM-BCR为什么处于单体状态。BCR的激活通常伴随着BCR多聚体的形成,静息状态下,由于Igα/β的Ig样结构域与Cμ4或Cγ3结合,在空间上阻断了mIg寡聚化,而当抗原结合后可能会对Fab结构域施加机械力,以触发mIg_Fc的结构变化,从而释放被Igα/β占据的Cγ3或Cμ4的寡聚体界面,导致BCR分子形成寡聚体启动下游信号转导,其潜在机制还有待进一步研究。电子密度分析分别在IgG和IgM-BCR上清晰地鉴定出6个和14个糖基化位点。分泌型sIgM和膜结合型mIgM-BCR复合物结构比较上述数据不仅解析了长久以来关于BCR结构与组装机制之谜,且对认识BCR启动免疫反应的分子机制,以及开发靶向BCR的免疫疗法用于治疗相关疾病提供了关键结构基础。同期《科学》(Science)“观点(Perspective)”栏目发表了评论文章《揭开B细胞受体结构面纱——分子结构为理解和控制B细胞受体活性提供了路径》(Unveiling the B cell receptor structure - Molecular structures provide a road map for understanding and controlling B cell receptor activation),对该研究成果进行了介绍。近年来,在人免疫细胞受体的结构与分子机制研究方面,黄志伟课题组首先通过解决TCR、BCR复合物的动态复杂性等技术问题,解析人TCR复合物的三维结构,揭示TCR复合物的亚基组装、识别机制(Nature, 2019)。课题组通过进一步解析高分辨率的TCR复合物结构,发现TCR跨膜区域存在“胆固醇结合通道”(Molecular Cell, 2022),胆固醇分子结合于该通道抑制TCR激活,通过去除胆固醇分子引起TCR组成型激活,揭示了TCR激活的结构基础,从而提出TCR的“胆固醇——门栓”控制理论,为理性设计靶向TCR调控T细胞活性的免疫疗法提供理论依据。哈尔滨工业大学生命学院/生命科学中心黄志伟教授为本论文的通讯作者。生命学院2021级博士研究生马新宇、朱玉威副研究员、董德博士、陈彦博士为该论文的并列第一作者。生命学院2021级博士研究生王书博、张帆研究员、郭长友博士等参与该研究的部分工作。本项目受到国家自然科学基金委、腾讯科学基金、哈工大青年科学家工作室等基金的资助。
  • 全国生命分析化学研讨会召开 八院士齐聚
    第三届全国生命分析化学学术报告与研讨会在京召开  仪器信息网讯 为进一步促进我国生命分析化学研究的发展,加深学者之间的交流,强化学科交叉,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”于2010年8月20日在北京大学召开。会议现场  在大会开幕式上,大会组织者北京大学刘虎威教授首先向与会者介绍了会议的筹办情况,本次大会共收到投稿论文840余篇,报名参会人数超过1200人,会议规模超过以往。大会得到了安捷伦科技、赛默飞世尔科技、岛津、沃特世、大连依利特等多家国内外著名仪器厂商的赞助。刘虎威教授 会议由国家自然科学基金委化学部庄乾坤教授致开幕词,他表示,与前两届会议的举办宗旨一致,本次会议仍然以自由研讨的形式,让思想撞击出火花,使创造力突涌,集小智为大智,化零散为整体,逐渐形成我国生命分析化学研究的独特战略发展思路,壮大具有特殊战斗力的我国生命分析化学研究队伍,开创生动活泼的生命分析化学研究新局面。庄乾坤教授致开幕词  我国生命分析化学领域的八位著名院士出席了开幕式并分别作了重要的大会报告。北京大学庄乾坤教授和邵元华教授主持了院士论坛环节。邵元华教授主持院士论坛环节  报告题目:生命活体分析-核成像技术  报告人:中国科学院柴之芳院士  柴之芳院士表示,核成像技术就是研究生命活动的有力武器之一。用于生命成像研究的核方法包括单光子发射计算机断层扫描技术(Single Photon Emission Computerized Tomography, SPECT), 正电子发射计算机断层扫描技术(Positron Emission Tomography, PET), 基于x射线发射的成像技术,以及基于同步辐射的x射线成像技术等。  柴之芳院士在报告中重点叙述了以PET为代表的核成像技术的特点和功能,并结合中科院高能所的一些研究成果,选择性地介绍核成像技术的应用领域和最新进展。  报告题目:细胞图案化、计数及其区分的研究  报告人:中国科学院陈洪渊院士  近年来,活体细胞固定化的研究,在涉及生命科学的诸多领域都受到极大关注,诸如系统生物学、生化分析、毒理监测、临床诊断和公共卫生等等。在电化学传感器、微流控技术及细胞图案化等研究领域,构建各种利于细胞粘附的生物界面用于完整活体细胞的研究巳成为当今的研究热点。  陈洪渊院士在报告中介绍了其研究组在细胞图案化,细胞计数及其区分等方面的最新进展:(1)提出了一种利用化学镀金结合电化学刻蚀构造Au/PDMS图案基底以实现细胞图案化的新方法 此外,结合微流控体系在PDMS基底构建纳米银模板图案,成功地用于有效介导具有时空选择的细胞的固定。(2)基于PDMS-PDDA薄膜和APBA修饰的多壁碳管对细胞的固定作用,我们分别构建了两种细胞电化学传感器。(3)设计并研制成一种用于细胞计数及其区分的芯片装置。  报告题目:生物计算逻辑体系在生命分析化学中应用的前景  报告人:第三世界科学院董绍俊院士  以硅片为基础的计算机因其集成电路的密度已接近理论极限而妨碍发展。近期科学家们已开始利用DNA计算来创造生物计算机,DNA逻辑门作为DNA计算的基础同样受到了广泛关注。作为分析化学工作者,围绕当前科技发展,从学科交叉角度,不断研发出简单实用的DNA逻辑门,将是进行DNA计算以及未来DNA计算机的最根本前提。  董绍俊院士介绍到,其课题组利用适配体控制生物燃料电池的能量输出,制备出适配体逻辑控制(NAND逻辑门)的生物燃料电池,可作为自我供电的、智能的适配体逻辑传感器。它能逻辑确定样品中两种目标物是否同时存在。另一方面,将生物燃料电池和密码锁相结合,其课题组进一步制备了一种新的生物计算安全体系,它具有模拟密码锁的功能。其特点是,能自我供电,并且可重复利用。这项研究有利于模拟和设计自然信号的传导,新陈代谢和基因调控体系。  报告题目:持久性有机污染物(POPs)生物指示物的研究  报告人:中国科学院江桂斌院士  江桂斌院士在其报告中首先提出,过去 10 年间,随着仪器分析技术特别是色谱与质谱技术的进步,若干环境中的新型污染物(Emerging Chemical Contaminants)被分离和鉴定出来。这些污染物所导致的环境与健康问题已经引起了国际社会的广泛关注。由于新型污染物通常浓度较低、组分复杂,而且干扰物质较多,因此,对分析技术有更高的要求,发展高灵敏度和高选择性的分离分析方法是解决问题的主要出路。  近年来,江桂斌院士所在的课题组在新型污染物的筛选及识别技术方面已开展了一些工作,通过三种不同的技术途径筛选到一些新的污染物并开展了有关毒理学的前期研究:(1)基于化合物定量结构-物化性质相关模型(QSPRs) 对环境中新型PBT物质的鉴别。(2)基于质量平衡关系筛选和鉴别新型污染物。(3)生物效应引导的新型污染物识别方法。  江桂斌院士表示,其课题组通过将多维化学分析与毒性测定仪器相结合,已研制出用于EDA 的成组毒理学分析仪(Integrated Toxicology Analyzer),并建立了以发育神经毒性为检测终点,环境样品中溴代阻燃剂等复合有机污染物的毒性筛选及识别方法。  报告题目:DNA保护的荧光银纳米簇及其分析应用  报告人:中国科学院汪尔康院士  近十年来,科学家发现由几个到几十个贵金属原子构成的纳米簇表现出强的依赖于尺寸的荧光发射,并将其发展为一类新型的荧光物质。这些新型荧光团在很多研究领域如光学分析、单分子研究、纳米器件中都具有很大的应用潜力。  汪尔康院士向与会者汇报了其课题组在当前的工作中,发现一种单链寡聚核酸(dC12)保护的荧光银簇,其荧光可被Hg2+离子高选择和灵敏地淬灭。基于此,他们建立了一种简单高效的Hg2+离子检测方法,并尝试在杂交DNA双链里进行银簇合成,设计了包含有一个额外的胞嘧啶环的杂交双链DNA为合成模板进行荧光银纳米簇合成,发现荧光银纳米簇的形成对杂交DNA双链中胞嘧啶环附近碱基序列有高度依赖性,可以识别单碱基的差异,成功识别了一种典型的单碱基突变疾病-镰刀型细胞贫血症,联合PCR基因体外扩增方法,有望将其应用于实际样品检测。另外,汪尔康课题组还尝试利用银纳米簇作为荧光探针来研究DNA-药物的相互作用。以几种药物分子(包括抗癌药物、染色剂等)和DNA的相互作用为模型体系,对银纳米簇作为荧光探针在生物分析中的适用性进行了研究和验证。  报告题目:新仪器在生物传感领域的应用  报告人:中国科学院姚守拙院士  姚守拙院士向大家介绍了其实验组基于非质量响应液相压电传感理论和技术,开发了压电微生物传感器,用于血液、体液中微生物的快速培养和检测,旨在通过病原体的快速检出,促进临床的合理用药,延缓和控制耐药菌的产生。  此外,针对传统传感器有线有源的缺陷,根据磁致伸缩原理,其实验组研制出无线磁传感测定仪,应用于癌细胞和细菌生长等实时监控。  报告题目:DNA单碱基突变的压电与电化学检测  报告人:中国科学院俞汝勤院士  俞汝勤院士在报告中着重介绍了检测DNA单碱基突变的压电与电化学传感器设计。杂交与等位特异性探针的连接反应可在传感界面或在均匀溶液相中进行。在传感界面上修饰巯基标记的寡核苷酸捕获探针与目标基因突变位一侧互补,与另一侧互补的标记的寡核苷酸检测探针配合,以目标基因为模板,利用连接酶介导捕获探针与检测探针的连接反应,结合热变性处理,是实现目标基因的单碱基变异的区分的最基本途径。  用纳米金标记的检测探针或末端生物素化的检测探针将保留于传感器表面,直接提供质量变化信号或利用亲合素化的辣根过氧化物酶催化反应产生难溶沉淀,扩增质量变化信号。在均相溶液中进行杂交与连接则采用生物素标记的捕获探针,最终借生物亲和配合物的形成将检测探针导向压电传感界面。  采用电化学传感时,以二茂铁标记的寡核苷酸检测探针提供检测信号并设计使捕获探针与检测探针两端序列互补,连接的捕获探针与检测探针将形成分子信标(MB)发夹结构,有效提高二茂铁标记的电化学反应效率改善灵敏度。MB技术亦可直接用于单碱基突变电化学传感器设计。特别是在均相反应中综合运用DNA聚合酶与连接酶完成二步连接反应后,再在界面传感中采用MB技术进一步优化电化学检测。  报告题目:蛋白质组分离鉴定新技术新方法进展  报告人:中国科学院张玉奎院士  张玉奎院士在其报告中详细阐述了近年来发展的多种蛋白质组分离鉴定新技术新方法:  在高丰度蛋白质去除方面,发展了基于多维阵列液相色谱的通用型高丰度蛋白质去除技术 一次运行可去除58 种高丰度蛋白质,并将样品中蛋白质的鉴定数目提高2 倍以上。此外,还发展了基于蛋白质印迹材料的高丰度蛋白质选择性去除技术和基于蛋白质均衡器技术的降低蛋白质丰度分布范围的方法。利用上述策略,均显著提高了低丰度蛋白质的鉴定能力。  在低丰度蛋白质富集方面,研制了多种固载金属亲和色谱材料,包括无机有机杂化整体材料、聚合物颗粒和介孔材料,以及金属氧化物气溶胶和复合金属氧化物微球,实现了磷酸化肽的高选择性富集。此外,还研制了亲水材料和硼酸功能化材料,实现了糖肽的高选择性富集。  在多维多模式液相分离方面,研制了多种固定化酶反应器,实现了蛋白质组的在线快速酶解。研制了多种色谱柱和毛细管等电聚焦柱,提高了蛋白质和多肽分离的柱效和分辨率。建立了多维液相色谱、多维毛细管电泳和多维芯片毛细管电泳分离方法 通过与样品预处理或在线酶解的集成,不仅提高了系统的分析通量,而且提高了蛋白质鉴定的可靠性。  在质谱高灵敏度鉴定方面,合成了新型磁性微纳米材料,提高了基体辅助激光解吸离子化质谱对蛋白质鉴定灵敏度。发展了针对磷酸化肽的衍生技术,可不经过富集,直接实现磷酸化肽的高灵敏度鉴定。此外,还建立了多种质谱数据处理新方法。  除八名院士作大会报告外,本次会议还举办了分场讨论会,包括“青年论坛、生物纳米技术、食品分析、海外学者论坛、组学分析、临床分析、前沿论坛、生命分析基础理论、药物分析、仪器装置、环境与健康” 等不同主题,多名专家将在不同议题的专场讨论会上发表精彩演讲。此外,大会还设立了优秀论文墙报展以及小型的仪器展览会,多家厂商参展并在大会召开同期举办了技术交流会。优秀论文墙报展部分参展厂商
  • 扫描隧道显微镜助力“药物击靶”可视化:原来药物分子也会“玩乐高”
    p  8月5日,Science Advances期刊发表我国学者论文,其上登载了一张“药物击靶”显微镜照片。据论文通讯作者之一的中国医学科科学院基础医学研究所副研究员王晨轩介绍,这是科学家首次直观看到“药物击靶”的状态,可用于指导药物分子的设计。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 489px " src="https://img1.17img.cn/17img/images/202008/uepic/a84d5415-9f82-46e6-9b7b-49dcd99b74d4.jpg" title="微信图片_20200813111429.png" alt="微信图片_20200813111429.png" width="500" height="489" border="0" vspace="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 363px " src="https://img1.17img.cn/17img/images/202008/uepic/3faeb35b-438a-4004-a05c-ddb29962f12d.jpg" title="1b2fd81ff88d4487bc9adafb2c51ee14.jpg" alt="1b2fd81ff88d4487bc9adafb2c51ee14.jpg" width="600" height="363" border="0" vspace="0"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "strong  照片显示:当药物分子(硫黄素T)要与生命体内的靶蛋白结合、起药效时,不是像人们想象的单个分子去结合蛋白,而是自动像“乐高积木”一样组装后,合力“击靶”,这种“机灵劲儿”与之前人们的想象完全不同。/strong/span/pp  本以为它只身赴命,没想到它两两成对、凑四成团、甚至6人成伍… … 这个新发现可能带来哪些颠覆性改变?据王晨轩介绍:“教科书中有一个经典的‘锁钥模型’,是说药物分子能够‘击靶’必须要和蛋白严丝合缝,像一把钥匙开一把锁,但现在的显微镜观测结果表明,药物分子用寡聚态的方式‘工作’,或许我们只需要半个钥匙就能开锁。”/pp  “药物设计是个‘配钥匙’的过程。人们已知一个疾病相关的蛋白质结构,想设计一种反向性的药物,需要有机化学家、计算机辅助药物设计的理论化学家等一起构筑一个和蛋白质活性中心匹配的足够大的钥匙才能工作。药物合成越长越难,每个基团像“粘胳膊”一样,到了产业化的时候对工艺的要求更是指数级的增加。如果药物其实只需要合成原来的很小一段,1/4或者是1/8,那么难度将大大降低。此发现可以简化药物合成路径。/pp  据悉,蛋白质的照片拍摄很困难,先是晶体衍射法,再是冷冻电镜的方法,但是至今仍不是所有的蛋白都能拍摄成功,原因是都必须要让蛋白排列成有序的阵列,才能满足成像要求。“这就好比,只有阅兵式上的解放军方阵才能成像,而后面的群众大联欢方阵是拍不上的。”王晨轩打了个特别形象地比方,因此要拍摄和药物分子结合的蛋白分子,就要用新的拍摄设备。/pp  扫描隧道显微镜勇最初是物理学家用来探测原子、亚原子的微观结构,具有超高的分辨能力。王晨轩说,把物理设备引进生物领域是上世纪90年代的事情,需要完成对设备的硬件、软件、算法的全新研制,中国团队在国际上是较早进入这一领域的。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 400px " src="https://img1.17img.cn/17img/images/202008/uepic/bdfe1e18-3132-4394-88b3-5eff33787fac.jpg" title="1597292515109044001.jpg" alt="1597292515109044001.jpg" width="300" height="400" border="0" vspace="0"//pp  由于它是通过量子力学中的隧穿效应,通过记录穿越样品的电子直接捕捉蛋白质和药物分子的“模样”,最开始的扫描隧道显微镜操作必须在真空中。中国科学家团队很早解决了常态下用扫描隧道显微镜观测的问题,在世界上首次使用了扫描隧道显微镜,实现了在大气室温下对化学分子的观察。/pp  为了拍摄首张“药物击靶”显微镜照,医科院基础所王晨轩、于兰兰、张文博,与国家纳米科学中心的王琛、杨延莲、方巧君团队等几代科研人打磨多年,不仅发明了蛋白质对基底的吸附技术、分子伴侣的固定技术、扫描探针的脉冲技术等一系列专利技术,还对整个“拍照”的流程进行优化和摸索。/pp  “整套(拍照)技术非常复杂,很难形成照搬流程,只能像是匠人之间的口口相传,需要知识、经验和揣摩,专业人员可能需要一年或者几年的训练时间跟着走下来,才能系统掌握。”王晨轩说。/p
  • 原位检测艾滋病病毒的分子显微镜问世
    艾滋病病毒原位分析技术再次取得突破。美国科学家在上周召开的国际艾滋病会议上,展示了他们开发的全新检测技术及检测结果,这个被称为“分子显微镜”的探针能够准确检测到艾滋病病毒在细胞内外的隐藏之地。  美国过敏性和传染性疾病研究所疫苗研究中心副主任瑞查得普表示,这一分子显微镜新技术堪称神奇,它的超能力完全可以洞察到艾滋病病毒在任何细胞内的蛛丝马迹,最终能帮助弄清艾滋病病毒长时间存留的谜底,从而将其从体内彻底清除。  新技术几乎不受干扰  目前所用的检测组织中艾滋病病毒的原位分析技术都面临共同的大难题。这些探测技术,无论是利用荧光物质作标记物,还是放射性物质作标记,在精确定位组织样本中艾滋病病毒的位置时,经常难以将周围的细胞物质与目标检测物,如艾滋病病毒的RNA和DNA区别开来。这些标记物会将细胞组织当作病毒进行错误识别,对结果分析造成背景干扰。  据《科学》杂志网站报道,会议上展示的猴子不同组织中获得的艾滋病病毒的详细图片表明,新技术几乎没有受到任何干扰。美国国家癌症研究所弗雷德里克国家实验室的免疫学家杰克伊斯特,与拥有RNA显微镜的美国高级细胞诊断公司(ACD)合作开发出这一新技术,能分别或同时检测到组织中艾滋病病毒的DNA和RNA。得益于ACD公司独特的探针设计专利,RNA显微镜是目前最先进的RNA检测技术工具,实现了单个RNA在原位的可视化和量化,能够同时实现信号放大并降低背景干扰,可检测任何组织的任何基因。检测艾滋病病毒的分子显微镜就是在RNA显微镜的基础上开发的。  DNA和RNA都由互补的核苷酸对构成。捕获遗传物质的传统方法都是用称为寡聚体的核苷酸长链,在组织样本中寻找与之配对DNA或RNA链并相互配对。这些寡聚体携带着标记物,当它检测到目标物后,标记物会发出信号并拍照,研究人员可从图片中找到病毒遗传物质在组织样本中的分布位置。但是这些寡聚体分子太长,它们偶尔会犯错,与其他细胞物质结合时,并不理会那些要检测的目标序列。  分子显微镜作用原理  伊斯特的新技术包含一种更复杂的探针系统,能完全消除寡聚体带来的误打误撞。该技术的基本原理在于,先将寡聚体切成两等分,再将这两等分送到样本内寻找目标序列,只有当被分开的两段都停留在目标检测序列附近时,它们才能分别与目标序列成功配对后再重新连接起来。这意味着,寡聚体的两段只有遇到艾滋病病毒时才能分别配对并重新相遇,其他细胞物质再也无法造成干扰。  艾滋病病毒本身是RNA病毒,但它会转换成DNA形式,以便随时“潜入”人类染色体。伊斯特还与病毒学家杰弗瑞立夫逊合作,成功开发出可视化艾滋病病毒DNA的DNA显微镜。这些潜伏的病毒前体会融入人体细胞,并在受到免疫系统或抗逆转录病毒药物攻击前安然隐藏数十年之久,抗逆转录病毒无法消除艾滋病传染并治愈艾滋病患者的一大重要原因,就是这些将病毒前体“隐藏”起来的细胞的大量存在。  不放过任何一个病毒  伊斯特、立夫逊和同事们向一些猴子注射了猿类艾滋病病毒,然后对这些猴子体内的许多组织进行了原位分析。结果表明,RNA显微镜和DNA显微镜能清楚区分出细胞中潜伏的艾滋病病毒前体(即病毒DNA)、病毒RNA以及细胞外的病毒。伊斯特说:“我坚信我们的新技术不会放过任何一个病毒,它完美地将灵敏性和特定性集于一身。”  这些全新的分子显微镜能够克服治愈艾滋病道路上的几大障碍。第一大障碍是无法检测出接受抗逆转录病毒疗法的艾滋病患者血浆中的艾滋病病毒,因此研究人员难以评估一些艾滋病新疗法的具体效果,新显微镜技术将是克服现有技术障碍的有力补充。另一大障碍是无法确切知道病毒前体隐藏在体内何处,新技术能揭开这一由来已久的谜底,有助于大大缩小感染艾滋病病毒的细胞数量,更有针对地治疗患者。
  • 靶向Aβ蛋白的近红外荧光小分子探针的发现和成像研究获进展
    阿尔兹海默病(Alzheimer’s Disease,AD)是一种严重的神经退行性疾病,其起病隐匿,病程长,病因复杂,严重影响患者的生活质量,给患者家庭和社会带来巨大的经济负担。AD的主要病理特征之一表现为患者脑部出现β-淀粉样蛋白(β-Amyloid proteins,Aβ蛋白)的沉积。开发能特异性靶向Aβ蛋白,特别是AD早期的Aβ蛋白单体和寡聚体的分子影像探针,对于AD的早发现和早治疗,以及抗AD药物治疗效果的早期评估都具有重要意义。  近日,中国科学院上海药物研究所研究员柳红课题组与南京大学化学化工学院教授叶德举课题组合作构建了靶向Aβ蛋白的近红外荧光小分子探针,并应用于转基因AD模型小鼠脑部Aβ蛋白的实时荧光成像与可视化。该成果以Engineering of donor-acceptor-donor curcumin analogues as near-infrared fluorescent probes for in vivo imaging of amyloid-β species为题发表在Theranostics上。  近红外荧光成像由于具有灵敏度高、成像快捷、操作简便等优点,已被广泛应用于疾病标志物的检测中。近年来,研究人员也相继开发了Aβ蛋白响应的荧光探针用于Aβ蛋白的检测。但是,目前报道的荧光探针大多还存在荧光发射波长较短,与Aβ蛋白的结合动力学过程较慢、亲和力较低,以及仅能检测AD病程较晚期的Aβ蛋白斑块等不足。因此,发展具有近红外荧光发射波长,对Aβ蛋白单体、寡聚体和聚集体具有快速响应和高亲和力的近红外荧光探针用于活体内Aβ蛋白的高灵敏度和高特异性检测,对AD的早期诊断和疗效监测具有重要意义。  该工作基于Aβ单体、寡聚体和聚集体的蛋白结构与结合模式,通过理性设计和官能团替换,设计并合成得到9个具有Donor-Acceptor-Donor(D-A-D)结构的近红外荧光探针(1-9),可以与Aβ蛋白单体、寡聚体和聚集体高特异性结合并产生显著增强的近红外荧光信号。  该研究中发现的探针9具有较红的近红外荧光发射波长,较高的荧光量子产率,一方面可提高光对颅骨和头皮的穿透深度,从而提高探针活体上检测Aβ蛋白的灵敏度;另一方面可降低探针在活体应用时的给药剂量,从而减少了高剂量探针对神经系统的潜在毒性。此外,探针9因引入具有一定亲水性能的羟乙基官能团,改善了探针的理化性质,提高了探针的进脑量。同时,探针9表现出快速的结合动力学过程( 120 s)、较高的检测灵敏度和良好的选择性。该研究进一步利用正置荧光显微镜进行脑部微区实时动态荧光成像发现,探针9可快速穿透血脑屏障,进入脑实质,并与脑部的Aβ蛋白结合,产生“激活的”近红外荧光信号,以此有效区分转基因AD模型小鼠与对照野生型小鼠。  探针9可高灵敏度、高特异性地检测Aβ蛋白单体、寡聚体和聚集体,并在活体上有效区分6月龄的早期AD模型小鼠与对照野生型小鼠,可用于AD的精确诊断,进而对AD进行早期发现和干预治疗。探针9有望作为一种检测Aβ蛋白的有效工具,并应用于实时评估抗AD药物的治疗效果。  相关研究工作得到国家自然科学基金、江苏省自然科学基金以及南京大学优秀研究项目的资助。  论文链接探针与Aβ蛋白响应机理示意图
  • 晶泰科技在港交所主板挂牌上市,聚焦实验室自动化与智能化
    2024 年 6 月 13 日,晶泰科技(2228.HK)正式在香港交易所主板挂牌上市,上市股票发行价格为 5.28 港元/股,净募集资金约 8.96 亿港元。香港特别行政区财政司司长陈茂波,香港特别行政区政府创新科技及工业局局长孙东、副局长张曼莉,香港交易所集团主席唐家成、行政总裁陈翊庭出席上市仪式,与晶泰科技联合创始人温书豪、马健、赖力鹏一起,共同见证港交所 18C 第一股诞生的历史性时刻。右起:香港特别行政区政府创新科技及工业局局长孙东、香港交易所集团主席唐家成、香港特别行政区财政司司长陈茂波、晶泰科技联合创始人/CIO赖力鹏、联合创始人/董事长温书豪、联合创始人/CEO马健、CFO谭文康、港交所行政总裁陈翊庭、香港特别行政区政府创新科技及工业局副局长张曼莉在上市典礼现场,晶泰科技三位联合创始人——董事长温书豪,首席执行官马健、首席创新官赖力鹏,与晶泰科技首席财务官谭文康共同敲响开市锣,庆祝公司创业以来的重要里程碑,并开启 AI+ 机器人赋能研发新基建的全新时代。与他们一同庆祝的还包括晶泰科技众多新老投资人,最早入职的员工代表,来自深圳、上海、北京、波士顿的研发科学家代表,学术界与产业界的合作伙伴,以及参与本次 IPO 的保荐人与中介机构等,共 200 多位嘉宾共襄盛举。右起:晶泰科技联合创始人/CIO赖力鹏、联合创始人/董事长温书豪、联合创始人/CEO马健、CFO谭文康作为首家根据 18C 规则在港交所主板挂牌上市的公司,晶泰科技此次 IPO 不仅得到了 5 位领航资深独立投资者和8家全球知名机构基石投资者的支持,还吸引了近 80 家全球投资机构参与锚定投资,其中不乏有来自欧美和中东的知名国际长线、医疗专项基金和对冲基金等,国际配售订单超额认购 2.13 倍,也是过去两年规模5000万美元以上的发行中,唯一超 100 倍 HKPO 认购的上市公司。晶泰科技联合创始人/董事长温书豪在致辞中,温书豪强调,晶泰科技的目标是成为社会价值与商业价值并重的卓越企业,以 AI 和机器人技术构建未来产业的研发新基建。上市后,晶泰科技将延续 “利他即利己” 的商业理念,广泛赋能全球客户的研发创新,致力于让 AI(爱)流淌进每一款新药,让 AI(爱)创造更多造福人类的新材料。同时,温书豪鼓励更多的科技创新公司利用港股 18C 规则来港上市,共同催生出 AI 时代的万亿级企业,为香港市场带来新的活力。作为一家以量子物理、AI 与机器人驱动创新的研发平台企业,晶泰科技自 2015 年成立以来,深耕算法与自动化的融合互通,在微观中改造世界,以智能化、自动化的新一代技术平台与解决方案,推动药物与材料科学产业的升级与高质量发展。公司已成为 AI for Science 领域的先锋,是学术和工业界创新研发的重要伙伴,获得 300 多家企业与科研客户的信赖与合作,并成功将业务拓展至农业技术、新化工、能源及化妆品等高附加值产业场景。未来,晶泰科技将继续致力于研发创新,打造未来产业的智能化、自动化基础设施,积极推动海外业务拓展,以 AI+ 机器人催生更多新药和新材料领域的突破性进展,解决迫切的社会问题,通过不懈努力,为改善人类共同的健康与生活环境做出贡献,为投资者创造更高的价值回报。  热知识:晶泰科技已入驻仪器信息网信通金牌会员,了解企业产品及更多信息,请点击晶泰科技展位:https://www.instrument.com.cn/netshow/sh116271
  • 中国转基因食品链已形成
    原标题:转基因食品链已形成 转基因食品是否安全?  日前,农业部副部长陈晓华透露,中国已经就转基因生物技术制定了加快研究、推进应用、规范管理、科学发展的方针。也就是说,尽管绝大多数人对转基因食品还抱有怀疑甚至抗拒,但不久的未来,将有更多的转基因食品大量上市。目前,转基因食品到底是好是坏国际上两大阵营仍各执一词,但转基因生物链已在人们的日常饮食生活中渐渐扎根。  获批的"转基因"农作物有哪些  市面上其实很早就有转基因食品,比如调和油,很多都是利用转基因大豆和转基因菜籽压榨的。记者在市场上逛了一圈,市面上的非转基因食品标签的"非转基因"四个字标识很大、很醒目,但转基因食品上的"转基因"标识却很小,甚至隐藏在一排小号字的说明之中,一般人一不留意根本不可能注意到。  据记者了解,按照自2002年3月20日起我国便开始实施的《农业转基因生物标识管理办法》规定,被列入目录的转基因生物产品必须进行标识。但迄今,市面上很多转基因食品并没有贯彻落实和执行,即使有也是"犹抱琵琶半遮面",而监管部门也没有行之有效的进行监督和查处。  记者查看了农业部第一批实施标识管理的农业转基因生物目录,一共有5类17种,包括大豆种子、大豆、大豆粉、大豆油、豆粕、玉米种子、玉米、玉米油、玉米粉、油菜种子、油菜籽、油菜籽油、油菜籽粕、棉花种子、番茄种子、鲜番茄、番茄酱,而农业部已经批准种植的转基因农作物包括甜椒、西红柿、木瓜、土豆、玉米和水稻。记者查看了转基因水稻的安全证书,2009年11月27日,农业部首次颁发了两种转基因水稻、一种转基因玉米的安全证书,但并未批准其大规模商业种植,而在2005年前后,已经有一些地区违规种植了转基因稻米,这些转基因大米被夹杂在普通大米中出售,而转基因水稻种子的销售渠道已经遍布湖北、江西、安徽、江苏、四川、湖南、河南、浙江等地。  奇怪的是,记者就转基因问题试图采访一些业内专家时,都遭到了推诿和婉拒,或自谦不懂这一块,或听到问题后婉拒,有业内熟识的专家甚至以"敏感问题"搪塞过去。  转基因食品链已成  据了解,目前转基因食品已经形成完整的产业链,消费者可能无法逃避。比如转基因大豆榨油后,油会不会也含有转基因成分?"食用油脂中是几乎不含转基因成分的",中国粮油学会油脂分会会长王瑞元告诉记者,"转基因主要存在于蛋白质中,各类油料无论是通过压榨还是浸出工艺制油,蛋白最后是分离到油料饼粕中,食用油脂通过精炼处理后基本不含有蛋白,所以油脂中也检测不出转基因成分。"  但这些油料饼粕的去向呢?这是牛、羊、猪的最佳饲料,有的还被加工成鱼饲料,比如转基因稻谷、大豆,就是加工鸡、鱼饲料的主要原材料。这些吃了含有转基因蛋白的饲料而生长的家畜、家禽和鱼,是否会将转基因成分转嫁到人体呢?目前仍没有人能给出明确的答案。  "不只是这些,我国目前有100多个转基因项目,几乎涵盖所有食品类别,很多都已经非法流入市场。"华农一位不愿具名的教授告诉记者,在中国销售的雀巢咖啡就曾被检出含有转基因成分,而生产奶酪的凝乳酶现在大部分都是转基因产物,至于蔬菜、瓜果都有转基因产品在市面上销售,但很多都没有明确标识,人们根本无从知晓。  一位不愿具名的食品行业内部人士认为,"不管转基因食品是好还是坏,只要食品中含有转基因成分,必须标注清楚,要让人们明白消费".但根据此前转基因稻种、大米、玉米、蔬菜、瓜果等所有转基因种子、食品进入市场的过程都是偷偷摸摸的情况看,消费者已经陷入了转基因食品的包围中,丧失了不吃转基因食品的选择权。  农业部农业转基因生物安全管理办公室以及大多专家指出,被政府批准进入市场的转基因产品是安全的。但对于反对转基因的阵营来说,最有利的佐证是,中国特供食品、世博会、亚运会、大运会以及全世界所有国际运动会都严禁转基因食品。  解构转基因  转基因食品是指利用基因工程(转基因)技术在物种基因组中嵌入了(非同种)外源基因的食品。转基因作为一种新兴的生物技术手段,它的不成熟和不确定性,必然使得转基因食品的安全性成为人们关注的焦点。由农业部批准的我国即将推广种植的转基因水稻就是将细菌中的有毒基因(下称Bt),插入到水稻的遗传物质DNA中,使水稻自己产生Bt抗虫毒素,杀死以谷物为食的昆虫。  标识管理规定:2002年3月农业部颁布实施的《农业转基因生物标识管理办法》规定,转基因农产品的直接加工品,标注为"转基因××加工品(制成品)"或"加工原料为转基因××" 用农业转基因生物或用含有农业转基因生物成分的产品加工制成的产品,如果销售产品中已不再含有或检测不出转基因成分的产品,标注为"本产品为转基因××加工制成,但本产品中已不再含有转基因成分"或者标注为"本产品加工原料中有转基因××,但本产品中已不再含有转基因成分".2002年7月卫生部颁布实施的《转基因食品卫生管理办法》规定,转基因食品要标注"转基因××食品"或"以转基因××食品为原料".  国际上两派说法各执一词  对于转基因食品的安全性,目前国际上没有统一说法。但如今已经在世界上多个国家成了环境和健康的中心议题。并且,它还在迅速分裂着大众的思想阵营:赞同它的人认为科技的进步能大大提高我们的生活水平,而畏惧它的人则认为科学的实践已经走得"太快"了。争论的重点应在转基因食物是否会产生毒素、是否可通过DNA蛋白质过敏反应、是否影响抗生素耐性等方面。印地安那大学生物系副教授玛莎克劳奇的研究更令人侧目,因为有的生物技术公司为了保护自己的知识产权,对销售给农民的转基因种子作了"绝育"处理,这种绝育基因有可能在无意中使其他作物也变成不育。截至2009年,各国已经试种的转基因植物超过4500种,可是获得政府批准上市的品种仅40~50个,约1%.  总部设在荷兰首都阿姆斯特丹的国际非政府组织绿色和平(Greenpeace)是全球反转基因运动的一面旗帜,他们透露,美国虽是转基因粮食生产大国,可是国内消费转基因食品却极少,其所种植的转基因大豆、玉米在美国本土主要用于动物饲料和生产酒精燃料,再就是出口到包括非洲、中国等发展中国家。而欧盟成员国政府和民众对于转基因作物大部分都采取坚决抵制的态度,2008年至2009年,法国、希腊、匈牙利、卢森堡、奥地利等国政府均下达了禁令,禁止种植转基因作物。而在亚洲国家中,日本只批准了转基因康乃馨的种植。在印度只有棉花是唯一进行商业化种植的转基因作物。  但与此截然不同的是另一份数据,世界卫生组织、联合国粮农组织及欧美的权威组织均证实:在国际市场上的转基因产品都已通过了风险评估,它们对人类健康无任何风险。到目前为止,全球大部分人食用了由转基因作物玉米、大豆和油菜籽等加工得来的食品,均未发现任何不利影响的证据。到2010年为止,全球转基因作物累计种植面积增长了87倍。目前,全球有29个国家(包括德国、西班牙、瑞典等欧盟国家)批准了24种转基因作物的商业化种植,有53个国家批准了110多个转基因产品进入市场。全球转基因作物累计种植面积已达到10亿公顷,相当于我国耕地面积的8倍,转基因技术成为近年来世界农业增产的重要手段。  隐性转基因食品一览  目前,大米、大豆、胡萝卜、土豆、玉米、西红柿、木瓜都有转基因农产品。其中玉米使用转基因最早、最广、最多,还有就是夏威夷木瓜,绝大部分是转基因产物。而还有不少"隐性"转基因食品,其实使用了转基因农产品制成的食品也是转基因产品。  食用油:在售的调和油和大豆油大都采用转基因大豆为原料。但相对非转基因的"高调",转基因字样比较难找,一般隐藏在桶身标签下方一堆密密麻麻的文字说明中,有"本品大豆加工原料为转基因大豆或者本品菜籽油加工原料为转基因菜籽"的小字。  豆制品:酱油、豆奶、豆瓣酱、豆腐等的主要原料也是大豆,这些食品会采用转基因大豆吗?记者在超市货架上搜索了一遍,只有超市自有品牌在配料表上注明了"原料采用转基因黄豆".海天系列酱油标注使用非转基因黄豆,其他品牌的瓶身上,对"基因问题"都没有涉及。  休闲食品:方便面、饼干等食品一定要用到食用油,但记者在饼干、薯片、方便面等休闲食品进行了调查,发现这些食品的配料表只标注了"植物油"或"食用油",并未对转基因进行说明。  贴士:转基因大豆不发芽,可以用水检测。本土大豆用水浸泡三天会发芽,转基因大豆不会发芽,只不过是个体膨胀而已。转基因胡萝卜表面相对较光滑,一般是直的,它的尾部有时比中间还粗,且头部是往内凹的。市场上有种说法,胡萝卜只有在秋冬季节有,夏季的一般是转基因的。
  • 三大石墨烯产业聚合区集聚效应凸显 多地形成新增长极
    p style="text-indent: 2em "近日,在常州举办的2018石墨烯前沿技术高峰论坛上,中国经济信息社发布《2017—2018中国石墨烯发展年度报告》(下称《年报》)。《年报》认为,我国长三角、珠三角、环渤海三大产业聚合区集聚效应凸显,四川、重庆、福建、黑龙江等地形成新的增长极。/pp style="text-indent: 2em "《年报》指出,长三角地区是目前国内石墨烯产业发展最活跃、产业体系最完善、下游应用市场开拓最迅速的地区,已经形成了涵盖石墨烯制备设备生产、原料制备、下游应用、科技服务等全产业链协同发展的产业格局。/pp style="text-indent: 2em "江苏是国内最早进行石墨烯产业化应用的省份,已形成相对完整的石墨烯产业链,产业化进程全国领先。企业数量居全国首位,拥有常州第六元素、二维碳素、江苏同创、新纶科技、中超电缆、南京先丰纳米等一批骨干企业。2017年,江苏石墨烯技术专利申请量为6379件,占全国总量的18%,位居全国第一。其中,常州、无锡等地产业发展领先全国。/pp style="text-indent: 2em "珠三角地区石墨烯应用领域全国领先,企业集中在深圳、广东等地,拥有烯旺科技、鸿纳(东莞)新材料、贝特瑞等先进石墨烯企业。其中,烯旺科技在全球范围内最早将石墨烯科研成果产业化,先后推出石墨烯理疗保健护具、智能发热服等多款发热产品。/pp style="text-indent: 2em "环渤海地区研发实力雄厚,产业发展势头强劲。北京是石墨烯产业智力核心,综合研发实力全国领先。2017年北京石墨烯产业创新中心成立,加强产学研用一体化。近年来,京津冀三地高校科研院所和企业共建唐山石墨烯产业集群,预计2017年,唐山石墨烯产业集群产值可达20亿元,形成京津冀石墨烯产业高地。/pp style="text-indent: 2em "《年报》显示,四川、重庆、福建、广西、黑龙江等地石墨烯产业发展较为迅速,政府从资源保障、政策促进等方面推动产业发展,形成了新增长极。四川、重庆、广西分别在“十三五”相关规划中明确提出石墨烯产业发展目标,福建、黑龙江分别出台石墨烯专项规划,突破石墨烯前沿技术,壮大石墨烯产业。/pp style="text-indent: 2em "《年报》分析认为,未来我国石墨烯产业资源要素将进一步向优势地区集聚,石墨烯热点城市和产业园将不断涌现,各地石墨烯产业有望实现差异化、特色化发展。/pp style="text-indent: 2em "近年来,常州市依托江南石墨烯研究院,以西太湖科技产业园为主要集聚地,推动石墨烯产业化。作为专业信息运营商,中国经济信息社与西太湖科技产业园共建石墨烯高端产业智库,全力助力常州石墨烯产业高地品牌建设。/p
  • 表面增强的拉曼光谱揭示阿尔茨海默氏症细节
    p  来自塔塔基础研究所(位于印度孟买)、跨学科科学塔塔基础研究所中心(位于印度海得拉巴)、多伦多大学(位于加拿多伦多)和印度科技大学(位于印度班加罗尔)的科学家们已经利用表面加强的a title="" href="http://www.instrument.com.cn/zc/34.html" target="_self"strong拉曼光谱/strong/a(SERS:Surface-enhanced Raman spectroscopy)在试图钻入细胞的过程中,捕捉到阿尔茨海默氏症分子的有毒形态。这项技术是基于利用脂肪涂层的纳米银粒子和表面增强剂而完成的。/pp style="TEXT-ALIGN: center"img title="Alzheimers.jpg" src="http://img1.17img.cn/17img/images/201509/noimg/4ed1f3e0-c0e4-4c6c-9235-4043a2c05c21.jpg"/p  脂肪薄膜涂层模仿活细胞的外膜,当淀粉& #946 淀粉样蛋白寡聚体试图攻击“细胞膜”时被分光镜探测到了。/pp  淀粉样& #946 蛋白分子有一个螺旋形状的发夹结构的空间,该项研究主撰稿人Debanjan Bhowmik说,“我们以前也这么设想过,但是我们在发夹结构中发现一个螺旋结构是我们所没有预料到的,现在变成了一个& #946 发夹结构——和人们想象中的经典发夹结构大不相同。这也许造成淀粉& #946 分子束在细胞膜里形成有毒毛孔。/pp  研究者之一Gilber Walker表示,当淀粉& #946 分子被脂肪层愚弄,并且被粘到细胞膜上时,内部的银使信号增强到可检测水平,然后充当灯塔的角色,揭示胜肽特性。/pp /pp/p/p
  • 复旦大学陈建民/方明亮等合作揭示可降解塑料微粒在体内的健康风险
    暴露于人为来源的“生态友好型”可生物降解塑料的健康风险及其对胃肠道的影响在很大程度上是未知的。  2023年3月2日,复旦大学方明亮、陈建民及安徽医科大学黄以超共同通讯在Nature Nanotechnology(IF=40)在线发表题为“Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation”的研究论文,该研究表明肠道酶催化的聚乳酸塑料释放低聚物纳米颗粒引发急性炎症。该研究证明了聚乳酸微塑料在胃肠道过程中通过争夺甘油三酯降解脂肪酶而酶解生成纳米塑料颗粒。纳米颗粒低聚物通过疏水驱动的自聚集形成。  在小鼠模型中,聚乳酸寡聚物及其纳米颗粒在肝脏、肠道和大脑中生物积累。水解低聚物引起肠道损伤和急性炎症。大规模药效团模型显示,低聚物与金属氧化物酶12相互作用。在机制上,低聚物对锌离子指区具有较高的结合亲和力,导致金属氧化物酶12失活,这可能介导了聚乳酸低聚物暴露后的不良肠道炎症反应。生物降解塑料被认为是解决环境塑料污染的解决方案。因此,了解生物塑料的胃肠道命运和毒性将为潜在的健康风险提供见解。  微塑料(MPs)在水生和陆地环境中无处不在,是世界上最紧迫的环境问题,因为它们对环境和人类健康有潜在风险。MPs在环境中转移,并通过食物链和直接吸入或摄入进入人体进行生物积累。尽管人类MP暴露的确切数量存在很大的不确定性,但研究初步估计,每周口服MP颗粒的摄入量在0.1至5.0克之间。因此,MPs已在人类粪便中检测到。对小鼠、牡蛎和贻贝的研究表明,接触与环境相关的MPs会导致生殖受损、DNA损伤和神经毒性。导致这些影响的机制主要是未知的,尽管许多研究调查了MPs物理损伤的原因,喂入量减少或有毒化学物质的浸出。为了减轻塑料污染,人们引入了可生物降解塑料作为传统塑料的环保替代品。例如,聚乳酸(PLA)是最常见的生物塑料,被用于制造食品包装、一次性餐具和生物医学输送载体。PLA产量稳步增长,预计到2024年将超过30万吨。包装是PLA塑料的主要用途,2014年占收入份额的36%以上。采用人类和小鼠模型的研究表明,基于PLA的植入会引发炎症。此外,PLA MPs对斑马鱼具有显著的不良影响风险,尽管其确切机制尚不清楚。  胃脂肪酶消化PLA MPs(图源自Nature Nanotechnology )PLA塑料可能比“持久性”聚合物产生更多的MPs,因此,PLA MPs越来越多地出现在土壤、沉积物和室内灰尘中。尽管摄入PLA MPs的毒理学作用值得进一步深入研究,但对其在肠道中存在的生物转化如何影响人类健康的知识尚缺乏。在低pH和酶的生理条件下,人们对PLA MPs的化学结构如何被体内的相互作用所改变的理解是不够的。因此,必须对增加PLA MPs生物反应活性的机制进行详细分析,这些机制增强了它们与蛋白质和细胞表面的相互作用。该研究探讨了PLA作为人体肠道中可生物降解塑料模型的转化和毒性。PLA MPs被胃肠道中的脂肪酶消化,形成数百万个纳米塑料。此外,生物物理和计算方法表明,所得的低聚物水解产物可以形成纳米塑料。总之,该研究表明,肠道酶会产生意想不到的降解产物,包括来自PLA塑料的低聚物和纳米塑料,这些具有潜在的健康风险,需要继续研究和潜在的监管。原文链接:https://www.nature.com/articles/s41565-023-01329-y
  • 沃特世推出全新ACQUITY PREMIER液相色谱解决方案,重新定义实验室分离科学
    继UPLC之后,沃特世在色谱领域的又一重大创新,旨在推动科学研发加速前进近日,沃特世公司(纽约证券交易所代码:WAT)隆重推出新一代液相色谱解决方案 - Waters ACQUITY PREMIER。该解决方案采用沃特世突破性的MaxPeak高性能表面(HPS)技术,在大幅提升分析数据质量的同时,省去了耗时长、成本高的钝化操作。图. Waters ACQUITY PREMIER液相色谱解决方案ACQUITY PREMIER是一套通用的液相色谱(LC)解决方案,将ACQUITY PREMIER系统与基于MaxPeak HPS技术的ACQUITY PREMIER色谱柱相结合,在进行有机酸、有机磷酸酯类、寡聚核苷酸、磷酸肽、酸性游离寡糖和磷脂分析时,通过反相/亲水作用色谱分析法减少分析物与金属表面的相互作用。在这类分析中,全新ACQUITY PREMIER解决方案可缩短从样品到结果的分析时间,提高分析物回收率和批间重现性,增强分离科学家对定性和定量分析结果完整性的信心。沃特世公司全球产品高级副总裁Ian King先生表示:“ACQUITY PREMIER解决方案是沃特世继UPLC之后,在分离科学领域的又一重大创新。在人类为对抗各种疾病而研发新型治疗药物和治疗方法的征程中,色谱技术所发挥的作用不可估量。ACQUITY PREMIER凝聚了沃特世数十年来积淀的分离科学专业知识,是沃特世材料科学家、化学家和工程师共同努力的成果,它将让长期阻碍科学进步的一大问题迎刃而解。我们坚信,这套解决方案将会重新定义分离科学对科研成果的价值。”MaxPeak高性能表面技术MaxPeak HPS技术是一种有机/无机杂化表面技术,能在样品与系统及色谱柱的金属表面间形成屏障。ACQUITY PREMIER解决方案能够减少甚至完全消除非特异性吸附,拥有以下诸多优势:• 分析物回收率更高,检测低浓度磷酸化和羧基化分析物的灵敏度提升10-100倍,降低检测结果中遗漏分析物的风险• 峰形更清晰,峰容量更大,有效提升分析物鉴定和数据解析的准确度• 对于易产生吸附损失的分离应用,赋予更高的重现性,减少返工或故障,提升结果可信度• 不再需要钝化系统,可节省宝贵的样品并缩短仪器运行周期• 分析方法可在不同地点和公司之间轻松转换• 对金属敏感或不敏感的分析物均可展现UPLC性能,是一套真正通用的液相色谱解决方案伦敦帝国理工学院医学院代谢、消化和生殖学系专家兼顾问Ian Wilson教授指出:“这种方法解决了我们在分析某些棘手分析物时遇到的难题。以磷酸化药物和脂质分析物为例,低浓度下峰形和信噪比的改善显而易见,令人印象特别深刻。这将大幅减轻分析人员的工作负担。”沃特世现已面向全球供应ACQUITY PREMIER系统和ACQUITY PREMIER色谱柱。关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有六百多名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。
  • 王宏伟、刘迎芳课题组合作揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构
    p  2015年1月22日,《Molecular Cell》杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 Å Resolution”的流感病毒RNA聚合酶复合体的结构和功能研究方面的重要研究成果。/pp  流感病毒属负链RNA病毒,有A、B和C型三种类型。其中,A型流感病毒是具有极强的致病性和传播能力的流感病毒种类,在过去有记录的人类历史上,曾经反复爆发,造成人类社会巨大灾难。由于流感病毒的快速变异特点,可以不断产生具有抗药性、高致病性的新毒株,从而对人类健康构成长期的重大威胁。流感病毒的复制和转录由其自身编码的流感病毒RNA聚合酶复合体负责,揭示流感病毒RNA聚合酶复合体的复制机制是控制流感病毒的关键所在,国际上对此项研究高度重视。流感病毒聚合酶包括PA,PB1和PB2三个亚基,总分子量约为250KD。对这一复合体的结构研究是揭示该复合体工作机制的关键条件之一。虽然对其结构研究的历史可追溯长达四十年,但是由于研究该复合体的难度,该复合体结构一直没有得到解析。由于其极端重要性,国际上众多国家的研究团队竞相对此开展了长期的研究,竞争十分激烈。/pp  经过长期不懈的努力,由生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室最终经过通力合作,通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。四聚体的每个单体内部有一个空腔。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,推测是进行RNA合成反应的区域。其活性中心结构与正链RNA聚合酶具有相似性,由此提出推测了流感病毒合成新生RNA链的机制。在四聚体复合物中,四个单体以D2对称性排列构成一个近似正方形结构。进一步的生物化学与功能研究发现该RNA聚合酶的寡聚状态与其结合的不同RNA底物相关,并可以发生单体-二体-四体之间的四级结构转换,多聚体界面残基的突变可以大大降低流感病毒的活力。在此基础上该论文首次提出了流感病毒转录和复制的转换模型,即四聚体是该复合体复制状态,而单体很可能是转录状态。在该论文的审稿过程中,法国的一个研究组率先在Nature杂志同时发表了两篇文章,分别报道了B型和蝙蝠流感病毒RNA聚合酶复合体的晶体结构。晶体结构验证了冷冻电镜解析的结构模型,但是与本工作揭示的A型流感不同,这些聚合酶仅以单体形式存在,因此无法提出复制的可能机制。/pp style="text-align:center "img alt="" height="585" src="http://life.tsinghua.edu.cn/userfiles/image/2015/0123_t.jpg" width="600"//pp  该项目主要研究成员包括生物物理所常胜海、孙大鹏博士、梁欢欢博士、清华大学生命科学联合中心博士研究生王家等十余名联合攻关团队成员。参加本课题研究的还有:美国UCLA的程根宏教授研究组、瑞士Paul Scherrer Institute的Dr. Meitian Wang研究组、清华大学王佳伟研究组以及浙江大学医学院感染性疾病协同创新中心的李兰娟教授研究组等。该工作的高分辨率冷冻电镜数据采集于国家蛋白质科学研究(北京)设施清华大学a href="http://www.instrument.com.cn/zc/1139.html"冷冻电子显微镜/a平台,也获得了中科院生物物理所a href="http://www.instrument.com.cn/zc/1139.html"电镜/a中心的大力帮助。该项研究课题得到了中国科学院先导B项目、科技部和国家自然科学基金委的资助。/p
  • 浙江省海洋开发研究院石油及化矿研究中心在岛城挂牌
    浙江省海洋开发研究院石油及化矿研究中心,昨在岛城挂牌成立。该中心成立,有助于我市石化产业的规模化集聚,形成舟山工业新的核心增长极和特色竞争力。  目前,我市一批重大的临港石化项目纷纷上马,如国家石油战略储备基地项目、六横煤电一体项目、中石化册子岛原油中转基地等已建成或动工,舟山石油及化矿产业逐步形成,该中心应运而生。  该中心是省海洋开发研究院下设的一个检测和研究开发中心,主要从事石油及化矿产品相关技术的研究和应用。中心将建立一支专业的石油化矿科研团队,针对石油、矿石、化工等产品的储运、提炼和应用方面的难题,开展技术研究和攻关。中心将打造我省乃至全国一流的石油及化矿产品重点实验室。
  • 汪尔康院士课题组发布免标记比色检测水中Hg2+的简便方法
    中国科学院长春应用化学研究所电分析化学重点实验室汪尔康院士课题组创新出Hg2+调节的四极子DNAzyme用于比色检测Hg2+的方法,相关工作发表在国际著名杂志美国《分析化学》(Anal. Chem. 2009, 81, 2144–2149)上。该工作发表以后,引起了世界范围内的广泛关注,据中国科学技术信息研究所最新统计结果显示,该文章被评为2009年中国百篇最具影响国际学术论文。  Hg2+调节的四极子DNAzyme用于比色检测Hg2+的示意图  Hg2+是水环境中的一种重金属污染物,毒性高,损害人类健康,因此,大力监测水环境中汞污染的呼声越来越高。为此,人们发展了许多高灵敏、高选择性的Hg2+传感器,其中研究比较热门的是以含T碱基的寡聚核酸作为传感元件来传感分析水中的Hg2+ 。有研究显示,Hg2+可以结合DNA双链中的两个T碱基而形成稳定的T―Hg2+―T碱基对,能够诱导DNA发生变构现象,这是利用含T的DNA分析检测Hg2+的基本工作原理。在大多情况下,一般需要用特定的指示剂如荧光团来标记、修饰DNA传感元件,这固然会带来很多好处,但实验成本较高。相比之下,免标记的检测方法则不需要标记/修饰步骤,因而较为简便、经济。  汪尔康院士课题组通过利用Hg2+与AGRO100的T碱基之间的特异作用,来调节其DNAzyme活性,从而发展一种比色检测水中Hg2+的免标记的简便方法。由于Hg2+与四极子DNAzyme中的T碱基结合形成T-Hg2+T碱基对,使其无法正常折叠,从而抑制了其DNAzyme活性,这可以利用ABTS-H2O2反应体系进行监测。通过这种无标记比色方法,可检测到50 nM (即10 ppb)的Hg2+,在屏蔽剂PDCA的辅助下,该分析方法对Hg2+具有较好的选择性。  此外,这项研究工作的另一层意义就是证明了即使少量的Hg2+也具备破坏四极子结构的能力,而四极子结构可发现在人类线粒体末端(端粒DNA),这为Hg2+对人类毒害提供了新的认识。该论文发表后,受到广大同行的关注,成为利用核酸尤其是利用四极子DNAzyme进行Hg2+检测的必引文献之一。
  • 我国科学家发现材料非晶形成能力的新判据
    非晶合金(又称金属玻璃)兼具金属和玻璃、固体和液体的特征,呈现优异的机械、物理和化学性能,在高端装备、能源、信息等高技术领域有重要应用。然而,非晶合金是典型的多组元合金材料,其元素多样性和复杂性使得高性能非晶合金材料的按需设计极具挑战。某种合金在特定条件下形成非晶态材料的难易程度被称为非晶形成能力(GFA)。这一指标也是限制非晶合金工程应用的关键指标。在国家重点研发计划“变革性技术关键科学问题”重点专项支持下,中国科学院物理研究所/北京凝聚态物理国家研究中心柳延辉、汪卫华研究团队在前期研究基础上,实现了非晶合金新材料的高通量、流程化研发模式。研究团队及其合作者分析了5700余种合金的X射线衍射(XRD)图谱及其与非晶形成能力之间的关系,发现合金的非晶形成能力与XRD第一峰的峰宽(Δq)有明显关联。利用Δq-GFA判据,研究团队在Zr-Cu-Cr和Ir-Co-Ta合金体系中发现了非晶合金新材料,验证了这一判据的正确性。在此基础上,研究团队进一步探索了Δq-GFA判据的理论机制,发现宽Δq所反映的合金结构整体无序度与几种特定团簇的出现情况有关,团簇构型种类越多,越有利于在非晶结构中实现接近晶体的密堆度。由于每种团簇的原子间距不同,其结果即是Δq所反映的不同。上述研究成果改变了传统认为的单一特定团簇出现越多,非晶形成能力越强的研究结论,为认识非晶合金形成机理给出了新的方向。Δq-GFA判据的提出也为探索非晶合金新材料提供了便捷、实用、高效的新判据,可大幅提高研发非晶合金新材料的效率,与传统的“试错法”相比,效率提高200多倍。Δq在12种典型的非晶合金体系中的分布
  • 我国科学家发现材料非晶形成能力的新判据
    非晶合金(又称金属玻璃)兼具金属和玻璃、固体和液体的特征,呈现优异的机械、物理和化学性能,在高端装备、能源、信息等高技术领域有重要应用。然而,非晶合金是典型的多组元合金材料,其元素多样性和复杂性使得高性能非晶合金材料的按需设计极具挑战。  某种合金在特定条件下形成非晶态材料的难易程度被称为非晶形成能力(GFA)。这一指标也是限制非晶合金工程应用的关键指标。在国家重点研发计划“变革性技术关键科学问题”重点专项支持下,中国科学院物理研究所/北京凝聚态物理国家研究中心柳延辉、汪卫华研究团队在前期研究基础上,实现了非晶合金新材料的高通量、流程化研发模式。  研究团队及其合作者分析了5700余种合金的X射线衍射(XRD)图谱及其与非晶形成能力之间的关系,发现合金的非晶形成能力与XRD第一峰的峰宽(Δq)有明显关联。利用Δq-GFA判据,研究团队在Zr-Cu-Cr和Ir-Co-Ta合金体系中发现了非晶合金新材料,验证了这一判据的正确性。在此基础上,研究团队进一步探索了Δq-GFA判据的理论机制,发现宽Δq所反映的合金结构整体无序度与几种特定团簇的出现情况有关,团簇构型种类越多,越有利于在非晶结构中实现接近晶体的密堆度。由于每种团簇的原子间距不同,其结果即是Δq所反映的不同。  上述研究成果改变了传统认为的单一特定团簇出现越多,非晶形成能力越强的研究结论,为认识非晶合金形成机理给出了新的方向。Δq-GFA判据的提出也为探索非晶合金新材料提供了便捷、实用、高效的新判据,可大幅提高研发非晶合金新材料的效率,与传统的“试错法”相比,效率提高200多倍。
  • 北京形成“从农田到餐桌”的现代食品安全监控体系
    北京形成“从农田到餐桌”的现代食品安全监控体系,抽查65大类食品的43791个样本总体合格率达95% 北京市不断提升应急反应能力和市场控制能力,已初步形成了“从农田到餐桌”的全程食品安全监控体系。今年上半年,全市共监测抽查65大类食品的43791个样本,总体合格率达95%。其中列入国民经济和社会发展指标的大米、小麦粉、食用植物油、蔬菜、猪肉和豆制品等六类食品的合格率达97.18%。    据北京市政府食品安全办公室主任张志宽介绍,早在2000年,北京市就启动了食用农产品安全生产体系建设工程。2003年,北京市成立了由工商、卫生、商务、质监、农业等15个部门组成的北京市食品安全领导小组,建立了联动机制,负责全市食品质量安全工作的监督协调。    目前,北京市建立了蔬菜、水产、鲜肉、豆制品、调味品等25个大类食品的市场准入制度。全市21家大型农副产品批发市场全部与大型现代化屠宰企业和无公害蔬菜基地签订了“场厂挂钩”定向经营协议,378家零售市场全部与农副产品批发市场签订了“批零挂钩”协议。进入北京市场销售的水产品、蔬菜,必须提交检测报告和产地证明。    占北京蔬菜批发量三分之二的新发地农副产品批发市场常务副总经理顾兆学告诉记者,进入市场的蔬菜需进行电子信息登记,查询有无“绿色”标识和产品检测证明。市场还利用快速检测仪对蔬菜农药残留等随机抽检,发现问题及时处理。进入市场的鲜肉,市场配有IC卡,在屠宰、零售等各个环节层层加载信息,并加贴条形码,杜绝来源不明、私屠乱宰的鲜肉上市销售。    为确保奥运食品安全,北京市成立了奥运食品安全专家委员会,制定了奥运食品安全标准,构建了奥运食品安全检测体系。目前,北京已确定了10大类345个品种的奥运食品安全主体标准。对奥运食品供应商、赞助商、定点供应企业及物流配送中心,制定了专门的食品安全监控方案,从生产源头、产品加工、物流配送到供货的全过程进行持续监控。至今,已有6800个食品样本的检测结果被录入奥运食品安全监控数据库。    据北京市消费者协会今年初开展的问卷调查,消费者对北京食品安全监管工作表示满意和基本满意的占94%,对北京食品市场感觉放心和基本放心的占90%。
  • 碳纳米环带单分子器件研究获进展
    单分子器件可用于研究电荷传输的微观机制,并可为在纳米尺度研究物质的基本物理化学性质提供理想平台。传统上,单分子器件的构建通常需要在功能分子的末端引入杂原子锚定基团,从而将分子固定在电极之间。然而,长期以来,受限于这一方法,单分子器件的研究对象主要局限于结构相对简单的线性分子体系。   在中国科学院院士、中科院化学研究所有机固体院重点实验室研究员朱道本的指导下,臧亚萍课题组与和合作者首次报道了基于碳纳米环带的单分子器件,并发现了其由于独特的环张力效应带来的异于常规线性分子的新奇电子学和化学性质。   碳纳米环带是一种通过自下而上合成的新型碳基纳米材料,被视为碳纳米管的最短单元结构,具有高度精确可调的尺寸、边缘和拓扑结构。臧亚萍课题组和合作者发现,无需引入任何杂原子锚定基团,由于独特的环张力作用,碳纳米环分子可以利用弯曲的径向π轨道直接和金电极键合,构筑具有超低接触电阻的碳纳米环单分子器件。研究进一步利用不同尺寸碳纳米环分子张力的变化,可以实现对其电导的高效调控。此外,臧亚萍课题组、化学所陈传峰课题组及中国科学技术大学杜平武课题组合作,探讨了碳纳米环带边缘结构对其导电性质的影响规律,发现了在碳骨架中引入“五元环”边缘能够显著促进电荷传输,因而带来超高电导。   近日,臧亚萍课题组发现环张力能够影响分子的电荷输运性质,并使其展现出特殊的化学反应能力。该研究通过对碳纳米环单分子器件施加定向电场,在温和条件下(常温,0.6 V电压)实现了相邻苯环间非极性C-C键的断裂,形成了由Au-C共价键连接的线性寡聚苯单分子器件。对照实验和DFT计算进一步表明,这一独特反应遵循经典芳香亲电取代(EAS)机理,其中静电场发挥了关键的催化作用。该方法对不同尺寸的纳米环具有普适性。利用这一方法,课题组制备了目前最长的八聚苯单分子器件,揭示了电子的隧穿传输距离可以延长至八个苯环单元。该原位反应方法为在表界面精准构筑新型碳纳米结构以及研究其电子学性质提供了新手段。相关研究成果发表在《自然-通讯》(Nature Communications)上。   上述成果将单分子器件的研究拓展到复杂环形分子体系,揭示了环张力这一独特结构效应对分子电子学和化学性质的特殊调控作用。这为未来发展具有复杂几何和拓扑结构的新型分子材料和器件提供了新思路。研究工作得到国家自然科学基金和中科院的支持。碳纳米环带单分子器件
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制