当前位置: 仪器信息网 > 行业主题 > >

关联数据

仪器信息网关联数据专题为您整合关联数据相关的最新文章,在关联数据专题,您不仅可以免费浏览关联数据的资讯, 同时您还可以浏览关联数据的相关资料、解决方案,参与社区关联数据话题讨论。

关联数据相关的资讯

  • 蔡司ZEN Connect软件解析:光镜电镜图像数据关联 助力材料学研究
    p  strong仪器信息网讯/strong a href="https://www.instrument.com.cn/news/20180516/463960.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "蔡司于去年推出了采用增强成像技术的软件模块——蔡司ZEN connect/span/a。3月4日,蔡司官方对这款软件模块进行了进一步解析。/pp style="text-align: center "strongspan style="color: rgb(0, 0, 255) "i“组织任意来源的图像,实现多模态数据关联/i/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 0, 255) "i  ——蔡司 ZEN Connect 助力材料科学研究”/i/span/strong/pp  大学、研究机构及工业实验室的材料研究人员均可以利用蔡司ZEN Connect软件,整合所有的显微成像技术(甚至包括非蔡司的系统)来为自己的研究服务。/pp strong 获得独特洞察力,提高效率,节省时间/strong/pp  蔡司 ZEN Connect允许用户对齐和叠加任意来源的图像。研究人员可以充分利用蔡司 ZEN Connect的工作流程,从光学显微镜的大视场概览图像,无缝过渡到高分辨率显微图像。您可使用ZEN Connect软件在概览图像上进行导航,所有相关图像将自动出现在概览图像中。 然后不同模态的数据会以项目的形式有序存储,并带有直观的图像标签。/pp  strong关联工作台/strong/pp  关联工作台可以实现从样品的完整宏观视图放大到纳米级细节。以样本为中心的全方位关联工作环境可以处理多尺度和多模态图像。/pp  strong智能数据管理/strong/pp  随着数字化技术的发展,材料显微研究也不断革新,研究人员需要处理大量的图像和数据,这种情况在研究机构中尤为明显。蔡司ZEN Connect 支持CZI、TIF、JPG、BMP、RAW等多种图像格式。蔡司 ZEN Data Storage软件将图像、数据与图像处理流程科学地分离开来,使实验室的每个人都能更高效地协同工作。/pp  strong蔡司ZEN Connect助力不同领域的材料研究/strong/pp  例如,新能源汽车的研究人员为了开发出更好的产品,需要对永磁体进行深入的研究。研究人员可以对同一样品进行表面形态,以及磁学性能等的表征,从而全方位地理解样品。比如首先通过光学显微镜进行大视场的成像,然后使用Kerr显微镜观察局部的磁畴,进而发现性能更优的磁体相。更进一步,如果需要对这些磁体相进行高分辨的表征,可以使用电子显微镜进行纳米级别的观察,从而获得更微观的结构信息。所有尺度的分析结果、所有设备的分析图像,均可以关联起来,从而为永磁体的整体表征提供更全面的研究信息。/pp  此外,蔡司 ZEN Connect将多模态显微技术关联的能力为诸多材料研究领域带来了助益,如:研究钙处理钢中的夹杂物、石油开采或碳捕捉与储存。例如,研究人员可以获取成像和分析数据,将形态与化学成分相关联,以便更好地理解材料特性,从而推进钢的各向异性研究。研究碳酸盐岩的地质学家可以识别不同尺度的孔隙结构和体积。在这些实验中,蔡司 ZEN Connect能够始终将微观数据准确链接到宏观图像的对应区域。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/a6065e39-bded-45be-945c-fbb14feb234c.jpg" title="1.jpg" alt="1.jpg" style="width: 600px height: 291px " width="600" vspace="0" height="291" border="0"//pp  span style="color: rgb(0, 176, 240) "蔡司 ZEN Connect可始终将微观数据准确链接到宏观图像的对应区域,帮助大学、研究机构及工业实验室的材料研究人员得出独特的见解,提高工作效率并节省工作时间。/span/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong关于蔡司/strong/span/pp  蔡司是全球光学和光电领域的先锋。蔡司致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。凭借其解决方案,蔡司不断推动光学事业的发展,并促进了技术进步。公司共有四大业务部门:工业质量与研究、医疗技术、视力保健/消费光学和半导体制造技术。蔡司集团在40多个国家/地区拥有30多座工厂、50多个销售与服务机构以及约25个研发机构。/pp  全球约27,000名员工在2016/2017财年创造了约53亿欧元的业绩。公司于1846年在耶拿成立,总部位于德国奥伯科亨。卡尔蔡司股份公司是负责蔡司集团战略管理的控股公司。公司由Carl Zeiss Stiftung(卡尔蔡司基金会)全资所有。/pp  span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong蔡司研究显微镜解决方案/strong/span/pp  蔡司研究显微镜解决方案是光学、电子、X射线和离子显微镜系统的一站式制造商,并提供相关显微镜的解决方案。产品组合包括生命科学和材料研究以及工业,教育和临床实践有关的产品和服务。该部门的总部设立在耶拿。其他生产和开发基地位于奥伯科亨,哥廷根和慕尼黑,以及英国剑桥、美国马萨诸塞州皮博迪和美国加利福尼亚州普莱森顿。蔡司研究显微镜解决方案属于工业质量和研究部门。部门约6,300名员工在2016/2017财年创造了总额达15亿欧元的业绩。/p
  • 蔡司扫描电镜新玩法 | 轻松实现关联定位、自动成像和量化分析
    在使用扫描电镜的过程中,您是否总是遭遇如下问题: 1. 在不同设备间切换样品时总需耗费大量时间重新定位感兴趣区域2. 总是为获取大面积高分辨图像而苦恼,需要频繁切换成像参数,调整像散聚焦3. 得到图像后又在为图像的量化分析而发愁 针对以上的困扰和需求,蔡司对扫描电镜进行了全方位武装,特别推出智能电镜解决方案,解决以上提到的所有问题,最大程度确保您日常检测和分析工作的顺畅与高效。 01 关联定位分析 蔡司Connect模块轻松实现光学显微镜到扫描电镜的桥接,快速实现样品在不同设备间的重新定位,还能统一管理关联设备的数据和信息 ✓ 关联定位:通过关联样品台实现样品在不同显微镜设备之间自动关联重定位,大幅缩减操作用时✓ 数据叠加:自由叠加来自手机,光学显微镜,扫描电镜的信息以及相关能谱信息✓ 统一管理:管理来自不同关联设备的数据,输出不同信息叠加图像和视频 ▲ PCB电路板的关联显微分析(光镜,电镜,能谱信息),左:宏观图像;右:感兴趣位置局部放大 ▲芯片关联显微分析视频(光镜,共聚焦,电镜) 02 自动成像 蔡司SmartSEM Touch定制软件,全面兼顾参数设置,成像,自动化拼图,图像浏览,实现智能高效的扫描电镜成像 ✓ 向导式操作流程,界面简洁,操作简单✓ 根据样品智能匹配成像参数,实现自动聚焦✓ 简单操作即可完成高通量图像拍摄和拼接 ▲简洁的SmartSEM Touch操作界面 03 量化分析 蔡司ZEN模块实现从电镜图像获取,图像处理,图像分割,自动测量到报告生成的整个量化分析流程 ✓ 一键获取扫描电镜图像,向导式的分析工作流程,毫无经验的新手也可轻松掌握✓ 基于机器学习的ZEN Intellesis模块轻松实现传统阈值方法难以达成的图像处理需求✓ 丰富的测量功能,如颗粒统计分析,孔隙率,含量百分比,层厚测量,晶粒度评级等 ▲量化分析界面-二值化分割 ▲金属焊接位置孔隙大小分析及含量分析 ▲满足多种测量需求——高级测量 ▲颗粒分析 ▲晶粒度评级 ▲含量百分比 ▲层厚测量 ▲孔隙率分析 蔡司智能扫描电镜解决方案满足您的多种需求,点击下方您所属的专业领域了解更多,或关注蔡司显微镜微信公众号(ZEISSMIK)留言咨询您想知道的任何信息。
  • 新品发布 | 蔡司新一代冷冻光电关联显微镜解决方案
    冷冻TEM薄片制备和冷冻体积成像的全新工作流程解决方案 蔡司冷冻关联工作流程联接了光学显微镜和双束电镜(FIB-SEM),从而用于分析细胞的超微结构随着蔡司冷冻关联工作流程的发布,蔡司为生命科学研究团体提供了一种新的软硬件结合的冷冻显微镜解决方案。该工作流程将宽场显微镜、共聚焦显微镜和双束电镜(FIB-SEM)无缝地连接起来,且便于使用。该解决方案提供了针对冷冻关联工作流程需求而优化的硬件和软件,从荧光大分子的定位到高衬度体积成像和用于冷冻电子断层成像的薄片减薄。冷冻关联显微镜技术是一种新兴的大分子结构分析技术。由于细胞和组织的超微结构可以不带人为假象的保存下来,因此冷冻显微镜可以在接近自然的状态下观察细胞结构。然而,这项技术却给用户带来了复杂的挑战,例如耗时的样品制备和成像流程、去玻璃化、冰晶污染或样品丢失。“在蔡司,我们通常致力于确保研究人员能够更快地采集数据,更好地分析数据。借助蔡司的冷冻关联工作流程,我们正朝着简化和优化科学家的工作流程的方向迈出下一步,以便他们能够完全专注于自己的研究。” 蔡司研究显微镜解决方案负责人Michael Albiez博士强调道。各种研究领域,如细胞生物学、癌症研究、植物科学和发育生物学,都将受益于冷冻显微镜获得的超微结构信息。蔡司冷冻关联工作流程帮助研究人员更容易获得这一先进技术,使他们能够更快地评估样品的质量,获得高分辨率、高衬度的3D数据流,并简化TEM薄片制备的工作流程。简化的工作流程和样本的安全传输蔡司冷冻关联工作流程联接宽场显微镜或共聚焦显微镜(蔡司Axio Imager、蔡司LSM 900/980 with Airyscan)和双束电镜(蔡司Crossbeam),以实现体积成像和TEM薄片的高效制备。专用的配件简化了工作流程,并有助于在显微镜之间安全的转移玻璃化样品。这些部件与冷冻关联显微镜样品台台Linkam CMS196V³和冷冻传输系统Quorum PP3010Z兼容。数据管理由蔡司联用软件ZEN Connect负责。这一系列的工具都有助于增强成像效果。最高的成像性能贯穿全工作流程得益于适用于冷冻成像的物镜和蔡司Airyscan探测器的高灵敏度,蔡司共聚焦显微系统能够以高分辨率探测和定位蛋白质和细胞结构,同时温和的光照可以防止样品去玻璃化。蔡司双束电镜Crossbeam提供了高衬度体积成像-甚至样品没有经过重金属染色。这两种方式为彻底了解超微结构提供了有价值的功能和结构信息。在室温下使用可提高工作效率不同于其他解决方案,该工作流程中使用的蔡司显微镜不仅可用于冷冻显微镜技术,也可用于室温的应用。将设备从冷冻状态转换为室温状态非常快速且无需专业技术。这种灵活性为用户提供了更多的实验时间。成像平台可以从更高的利用率和更快的投资回报中受益。
  • 生物物理所开发冷冻结构光照明与电镜关联成像新技术
    面向原位结构解析的冷冻电子断层成像(cryo-ET)是研究生物大分子复合物的原位高分辨率结构及其相互作用关系的关键技术。但受限于电子束穿透能力,需要先利用聚焦离子束(cryo-FIB)将细胞和组织样品减薄成200纳米左右的薄片后才能进行cryo-ET数据采集。冷冻光电关联成像技术可以为cryo-FIB精准制备包含特定目标结构的冷冻含水切片提供荧光定位指导,但是冷冻荧光显微镜的光学分辨能力以及光镜、电镜图像的对齐精度是制约冷冻光电关联实验成功率的关键因素。  为了解决上述技术瓶颈,中国科学院生物物理研究所蛋白质科学研究平台生物成像中心一直致力于开发新型冷冻光电关联成像技术,在前期自主研发的冷冻光电关联成像高真空光学冷台HOPE(Journal of Structural Biology,2017)基础上,通过引入结构光照明成像技术,成功研制了冷冻结构光照明成像系统HOPE-SIM,实现了横向优于200纳米的光学分辨率,以及优于150纳米的光镜-聚焦离子束三维关联对齐精度,相关研究成果于4月29日在线发表在《通讯-生物》(Communications Biology)上。   光镜-电镜关联成像技术(Correlative Light and Electron Microscopy,CLEM),是利用荧光特异标记对特定生物大分子或亚细胞结构进行荧光示踪,实现对整个细胞的三维荧光定位成像,之后通过荧光图像和电镜图像的配准,获得荧光标记信号和电镜超微结构的关联信息。冷冻光电关联成像技术的应用方向之一,是通过关联图像,指示出荧光标记的结构在电镜图像中的具体位置,实现对荧光示踪目标物的电镜高分辨率结构解析。而得益于光镜成像对生物样品的无损特性,可以在不损伤样品的前提下获得样品内部的三维荧光定位信息,再通过光电关联成像流程和关联对齐软件,将三维荧光图像与扫描电镜图像关联匹配,实现在荧光信号的指导下进行cryo-FIB对目标区域的减薄加工。如此,便可以避免“盲切”,实现对荧光指示目标物的指导切割,以期提高冷冻聚焦离子束技术用于电子断层成像切片样品制备的效率。   目前,光电关联成像指导cryo-FIB减薄技术流程的实现方式有多种类型,根据系统构成可以分为光镜电镜分体式光电关联成像系统和集成型光电关联成像系统。生物成像中心技术团队自2013年开始专注于冷冻光电关联成像技术方法学研究,在光镜电镜分体式光电关联成像系统研制方面, 于2017年自主研制了一款可搭载在倒置荧光显微镜上的高真空光学冷台HOPE(High-vacuum Optical Platform for cryo-CLEM),HOPE可与透射电镜冷冻样品杆适配连接,完成荧光定位后样品将随冷冻样品杆被转移进电镜当中进行高分辨率数据采集,同时结合光电关联定位软件,可以实现大视野光学定位成像与电镜成像的匹配。HOPE采用冷冻样品杆来实现冷冻光镜成像、冷冻传输以及冷冻透射电镜成像,有效避免了光电关联成像过程中对冷冻载网的反复夹取,保证了冷冻样品的完整性和同一性,有效提高了关联成功率和实验效率。  然而,基于宽场成像技术的HOPE系统受限于光学衍射极限和冷冻光学成像装置的空间限制等,仅能使用长工作距离、低数值孔径的冷冻荧光成像系统,所能达到的横向分辨率约为400-500纳米,纵向分辨率则达微米级,这对于精准捕获数微米厚度细胞内百纳米尺度的目标结构而言,是非常不利的。  结构光照明超分辨荧光成像技术在能提高宽场荧光显微镜一倍分辨率的前提下,还具备不需要特殊的荧光探针、成像速度快、辐照密度低等技术优势,是所有超分辨成像技术中最适合应用到冷冻环境中对冷冻样品进行高分辨率成像的技术。因此,研究团队选择了结构光照明成像技术作为提高冷冻荧光成像分辨率的手段,基于倒置荧光显微镜自主研制了大腔室高真空冷台,腔室内置0.9NA长工作距离光学物镜和防污染器系统(ACS和cryo-box)、外接真空传输系统(TPS)以及冷冻电镜样品杆(cryo-holder)适配器。同时,借助三维结构光照明(SIM)光路,实现了真空环境下对冷冻样品的三维结构光照明成像,在提高冷冻光镜分辨率的同时,有效增强了光电关联成像样品传输过程中对冷冻样品的保护。图1 冷冻结构光照明成像系统HOPE-SIM。a.HOPE-SIM硬件组成,b. HOPE-SIM设计原理图,c. HOPE-SIM光路原理图   借助HOPE-SIM高分辨率冷冻光电关联成像系统以及自主编写的三维关联对齐软件3D-View,团队成功制备了包含宿主细胞内鼠疱疹病毒(图2)和海拉细胞内荧光标记的中心体(图3)的细胞切片样品,通过冷冻电子断层原位结构分析图像处理流程和软件分析其在原位结构。实验结果表明,基于HOPE-SIM技术的高精度冷冻光电方法可以实现优于150nm的三维对齐精度,为尺寸较大、胞内丰度高的目标物的原位捕获提供了一种高效、精确的靶向冷冻聚焦离子束减薄技术方案。图2 基于 HOPE-SIM冷冻光电联技术捕获宿主细胞中的MHV-68病毒颗粒。a.冷冻明场透射光图像;b.HOPE-SIM荧光图像的z投影。绿色,荧光微球。红色,MHV-68病毒;c将b中的荧光图像与a中的明场图像合并,以显示目标信号的位置;d.冷冻SIM和冷冻FIB图像之间的三维关联匹配;e.对目标区域减薄后的冷冻FIB图像;f.减薄后冷冻扫描电镜图像,与b中冷冻SIM图像的融合;g.制备的冷冻含水切片的冷冻透射电镜显微照片(3600倍);h.冷冻断层扫描成像,放大倍率为64000倍,显示了被捕获的病毒颗粒。 图3 基于HOPE-SIM技术流程精准捕获海拉细胞内红色荧光标记的中心体。a.3D-View光-电关联软件获得的冷冻结构光-cryo-FIB关联配准图;b.cryo-FIB对红色荧光标记所在区域进行减薄;c.cryo-FIB减薄获得的200nm冷冻含水切片;d.冷冻含水切片在透射电镜下8700倍成像,黄色框线内为目标中心体;e.目标中心体的cryo-ET数据采集(53000倍)激光指向位置主动稳定系统示意图。   相关研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(B类)等项目的资助。  值得一提的是,在集成型光电关联成像系统研制方面, 2023年1月,《自然-方法》(Nature Methods)报道了中科院院士、生物物理所研究员徐涛和研究员纪伟团队研发的cryo-CLIEM系统和生物成像中心技术团队自主研发的三束共焦成像系统ELI-TriScope系统,在双束扫描电镜真空腔室内集成了光学成像系统,避免了样品传输过程,有效提高了冷冻光电关联成像的精度和成功率。其中生物成像中心技术团队自主研发ELI-TriScope系统集成了一个基于冷冻样品杆的传输系统(cryo-transfer system),并在冷冻样品下方嵌入了一个倒置荧光成像系统(cryo-STAR system),从而实现电子束(E)、光束(L)和离子束(I)被精确地聚焦到同一点上,可以在cryo-FIB减薄的同时实时监控目标分子的荧光信号,显著提高了cryo-FIB减薄技术对特定目标物的捕获精度,将制备冷冻含水切片的时间成本从每片2-2.5小时降低到约0.8小时。   生物成像中心技术团队研发的基于结构光照明技术的HOPE-SIM系统可以实现三维高分辨率冷冻荧光成像,同时还可以通过冷冻样品杆直接衔接三束共焦光电关联成像系统ELI-TriScope,实现高分辨三维冷冻荧光成像的同时,完成后续原位荧光实时监控聚焦离子束减薄全技术流程,有效提高了冷冻聚焦离子束减薄的效率、准确性、成功率和样品制备通量,为原位结构解析研究提供了成功的解决方案,在未来的原位结构生物学中有巨大应用潜力。
  • 全蛋白质组关联研究发现阿尔茨海默症发病新机制
    全球有3500万人深受阿尔茨海默症(AD)的困扰,但目前尚无临床有效的治疗手段。为了促进AD治疗手段的发展,研究者进行了大量的遗传学研究。已有研究者通过 GWAS鉴定出许多阿尔茨海默症风险基因,但这些风险基因是如何导致阿尔茨海默症的尚不十分清楚。全蛋白质组关联研究(Proteome-Wide Association Study, PWAS)通过蛋白质的功能变化将基因和表型联系起来,是一种新型的以蛋白质为中心的遗传关联研究方法,在人类遗传学研究领域具有广泛的应用前景。  2021年1月28日,国际学术期刊Nature Genetics(IF=27.603)上报道了来自埃默里大学医学院题为“Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis”的研究文章。该团队运用全蛋白质组关联研究(proteome-wide association study,PWAS),将阿尔茨海默症(AD)队列 GWAS结果与人脑蛋白质组进行了整合,旨在鉴定通过影响脑蛋白丰度而导致AD风险的基因,深入了解这些基因座如何影响AD的发病机制。  研究结果  1.PWAS鉴定出AD相关重要基因  在发现阶段,作者收集到375例捐献者死后大脑的背外侧前额叶皮层(dPFC)样本,使用TMT质谱策略获得人脑蛋白质组数据。整合已有的AD GWAS结果与蛋白质组学结果,通过全蛋白质组关联研究(PWAS)鉴定出13个顺式调节脑蛋白水平的基因(图1,表1)。接下来,作者使用相同的AD GWAS数据与另一组独立的152例人脑蛋白质组数据整合分析,与前面发现的13个蛋白相比较,其中10个在PWAS阶段得到验证(表1)。  图1 发现集AD PWAS曼哈顿图  表1 AD PWAS鉴定13个重要基因  2.重要风险基因COLOC和SMR分析  为了研究调控脑蛋白的重要基因与AD是否存在因果关系,作者进行了贝叶斯共定位(COLOC)和孟德尔随机化(SMR)分析。首先,使用贝叶斯共定位(COLOC)检验发现13个基因中有9个符合因果关系。然后通过孟德尔随机化(SMR)分析,结果表明顺式调控蛋白丰度介导了这13个基因的遗传变异与AD的关联。总的来说,作者发现7个基因在COLOC和SMR / HEIDI分析的因果关系上具有一致的结果(CTSH,DOC2A,ICA1L,LACTB,PLEKHA1,SNX32和STX4),另外有4个基因的因果关系在这两种分析中结果不一致( ACE,CARHSP1,RTFDC1和STX6),EPHX2和PVR的结果不具备因果关系(表2)。  表2 发现阶段AD PWAS中13个重要基因的 COLOC和 SMR分析3.确定11个AD PWAS重要基因  通过验证队列重复和因果关系测试的结果,作者在13个通过PWAS发现的重要基因中,确定了11个与AD有因果关系的风险基因(CTSH,DOC2A,ICA1L,LACTB,SNX32,ACE,CARHSP1,RTFDC1,STX6,STX4和PLEKHA1),其中9个重要基因在PWAS阶段得到验证(表3)。  表3 总结11个AD PWAS重要基因,并证明与AD中的因果作用一致  4.PWAS结果不受APOE e4影响  载脂蛋白APOE e4等位基因与阿尔茨海默症密切相关,因此作者为了探究APOE e4是否影响了PWAS结果,从蛋白质组中去除掉APOE e4的作用,使用去除后的蛋白质组图谱进行了AD PWAS。分析发现了13个与发现阶段PWAS结果一致的重要基因和6个其他基因,且所有13个基因都具有与发现阶段PWAS中相同的关联方向。此外,COLOC和SMR / HEIDI测试的结果发现了与原始发现相同的因果关系证据,这些结果均表明本实验发现不受APOE e4的影响。  5.TWAS锁定与PWAS相关基因  众所周知,分子生物学的中心法则是遗传信息从DNA转录传递给RNA,再从RNA翻译传递给蛋白质。因此,作者收集到888个欧洲个体的大脑转录组数据,将AD GWAS结果与其整合,进行了AD的全转录组关联研究(TWAS)。AD TWAS鉴定了40个基因,其FDR为p0.05时,其基因调控的mRNA表达水平与AD相关(图2)。与蛋白质水平上鉴定出的11个潜在风险基因相比,ACE,CARHSP1,SNX32,STX4和STX6这5个基因与PWAS结果相似,与AD具有关联性。(表3)。  图2 AD TWAS Q-Q图  6.单细胞测序发现细胞类型特异性  最后,作者使用背外侧前额叶皮层样本(dPFC)单细胞RNA测序数据进行分析,发现在先前确定的11个重要风险基因中,有6个基因呈现细胞类型特异性富集。DOC2A,ICA1L,PLEKHA1和SNX32富含兴奋性神经元,而CARHSP1在少突胶质细胞中富集,CTSH在星形胶质细胞和小胶质细胞中富集(图3)。  图3 单细胞类型表达总结  本文作者通过收集阿尔茨海默症(AD)患者队列,开展多中心、大样本的基因组学和蛋白质组学研究。运用全蛋白质组关联研究(PWAS)挖掘了十多个重要风险基因,这些风险基因可以通过改变大脑中蛋白质丰度进而影响阿尔茨海默症的发生,为AD的发病机制提供了新的见解,并为进一步治疗提供了潜在的靶标。
  • 青岛能源所提出“拉曼组内关联分析”揭示代谢物转化网络
    细胞内代谢物之间是否正在发生相互转化,是细胞代谢活动最重要的动态特征之一,但其检测方法一般极为繁琐。针对这一瓶颈,青岛能源所单细胞中心提出了名为“拉曼组内关联分析”(Intra-Ramanome Correlation Analysis IRCA)的理论框架与算法,并示范了细胞工厂功能测试等方面的应用。在无需标记或破坏细胞的前提下,IRCA仅仅基于一个拉曼组数据点(即一个样品的一个状态),利用其中不同单细胞拉曼光谱的差异,就能推测该状态下的代谢物相互转化网络。相关工作于8月31日发表于《mBio》。图 拉曼组内关联分析(IRCA)仅需一个细胞群体的一个状态,即可预测其代谢物转化网络  代谢物相互转化网络的构建,传统上基于质谱或色谱等代谢组学方法。它们通常必须破坏细胞,每次分析需要大量的细胞,而且要求基于一系列不同代谢状态的实验样品进行关联比较,这导致整个过程非常繁琐与耗时。针对这一瓶颈问题,单细胞中心提出了基于“拉曼组”(ramanome)的原创解决方案。拉曼组,是一个细胞群体在特定状态下单细胞拉曼光谱的集合。这些单细胞,尽管遗传背景与环境条件等均一致,其代谢状态却可各不相同,导致其拉曼光谱之间具有细微但显著的差异。一个“遗传同质性”样品中细胞间具有“代谢异质性”,是生命体系最本质的特性之一。  利用该本质特性,单细胞中心何曰辉博士带领的研究小组提出了命名为“拉曼组内关联分析”(Intra-Ramanome Correlation Analysis IRCA)的思路。首先,一张单细胞拉曼光谱中数百乃至数千的拉曼谱峰中,每个谱峰(或其组合)可潜在代表一个代谢表型,如一类化合物的种类与含量。其次,把每个细胞作为一个独立的生物学重复,在不同细胞之间,将同一位置的谱峰与其它任一谱峰进行两两关联分析,如果发现呈现“负关联”的峰-峰组合,即意味着其对应的两类化合物之间存在相互转化的关系。最后,将该分析拓展到单细胞拉曼光谱中所有可能的峰-峰组合,则能建立一个该状态下之胞内化合物相互转化(或代谢表型相互关联)的“网络”。  该研究小组以各种光合微藻为模式,通过一系列系统性的生物化学与遗传学实验,验证了IRCA预测结果的准确性和可靠性。这些实验证明,仅仅需要一个样品(即一个拉曼组数据点)中的数十个细胞,通过IRCA算法,就能够揭示该特定条件与时间下,细胞中蛋白、多糖、油脂、色素、核酸等各种储碳物质的相互转化规律。这些规律的快速探测,对于光合固碳细胞工厂的筛选与表征至关重要。  最后,研究人员还通过IRCA,构建了微藻、酵母、大肠杆菌等物种在多种状态下的代谢物转化网络,验证了该方法的广谱适用性,并证明这种名为IRCN(Intra-Ramanome Correlation Network)的网络有望成为一种极为灵敏、信息量丰富的代谢表型组学数据类型,来定义、表征乃至监测任何细胞体系的代谢功能。  相对于质谱、色谱等分析手段,IRCA具有超灵敏、快速、高通量、低成本(无需试剂耗材)等核心优势,因此IRCA将在合成生物学、精准医学、生态监控、生物制造等广阔领域开辟一系列全新的应用。同时,基于拉曼组概念和单细胞拉曼分选等核心器件的创新,单细胞中心发明和产业化了临床单细胞拉曼药敏快检仪CAST-R、单细胞拉曼分选-测序文库耦合系统RACS-Seq、高通量流式拉曼分选仪FlowRACS等。IRCA将通过这些原创国产的单细胞科学仪器,服务于广大的科学与产业用户。  该工作由单细胞中心徐健研究员主持完成,获得了国家自然科学基金、中国科学院先导专项、山东省自然科学基金、中国博士后科学基金的支持。  原文链接:https://journals.asm.org/doi/10.1128/mBio.01470-21  Yuehui He, Shi Huang, Peng Zhang, Yuetong Ji, Jian Xu. Intra-Ramanome Correlation Analysis unveils metabolite conversion network from an isogenic population of cells. mBio 2021, 12(4): e01470-21.
  • 史上最大的血浆蛋白质组研究发布 有助建立基因组与疾病之间的关联
    在2日发表于英国《自然遗传学》杂志上的一项研究中,安进 (Amgen)制药属下deCODE基因公司的科学家们展示了通过结合序列多样性和RNA表达的数据,测量出迄今最大规模血浆中大量蛋白质的水平,以深入了解人类疾病和其他表型。  deCODE基因公司的科学家们使用了血浆中的5000种蛋白质,这些蛋白质以群体规模的多重平台为目标,以解开它们的遗传决定因素以及它们与人类疾病和其他特征的关系。  利用技术平台“SOMAscan”的蛋白质组学测定法测量的血浆蛋白质水平,deCODE基因公司的科学家们测试了2700万个序列变异与35559名冰岛人血浆中4719种蛋白质水平的关联。他们发现了18084个序列变异与蛋白质水平之间的关联,其中19%与通过全基因组测序确定的罕见变异相关。总体而言,93%的关联是新颖的。此外,他们分别基于“SOMAscan”方法和基于抗体的OLINK精准蛋白质组学分析,从现有最大的血浆蛋白质组学研究中重复了83%和64%的报告关联。  科学家们测试了血浆中蛋白质水平与373种疾病和其他特征的关联,并产生了257490个这样的关联。他们整合了序列变异与蛋白质水平、疾病和其他特征的关联,发现已报告的与疾病和其他特征相关的大约5万个变异中的12%,也与蛋白质水平相关。  deCODE基因公司首席执行官、该论文的资深作者之一凯瑞斯蒂凡森表示,蛋白质组学可以帮助解决遗传研究中的一个主要难题:确定哪个基因负责序列变异对疾病的影响。此外,蛋白质组还提供了一些时间相关的测量方法,因为血液中的蛋白质水平会随着事件发生和发生的时间而上升和下降。
  • 蔡司原位sem-raman关联系统助力高校分析测试青年创新
    p  strong仪器信息网讯/strong 2017年10月27-28日,由高校分析测试中心研究会主办,重庆大学理学部、重庆大学分析测试中心、重庆大学青年教师科协承办的“高校分析测试中心研究会青年部成立大会暨创新论坛”在重庆大学虎溪校区成功召开。卡尔蔡司(上海)管理有限公司作为支持单位出席本次会议,并带来题为《蔡司原位sem-raman关联系统及其在材料科学的应用》的精彩报道,以更全面的分析技术,助力高校分析测试青年创新。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/e5fae269-afc9-4a80-b745-fa126b4337fa.jpg" title="IMG_9273.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "高校分析测试中心研究会青年部成立大会暨创新论坛/span/ppspan style="color: rgb(0, 112, 192) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/4a86f975-5a79-4f2c-ad18-e907aa887f4c.jpg" title="IMG_9388.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "蔡司展位/span/pp  2008年,蔡司隆重推出扫描电镜 (SEM)-拉曼光谱联合平台系统,通过配置Witec、Renishaw、Horiba等多家知名品牌拉曼光谱,能够更全面地表征样品微观形貌、元素分析与分子结构、理化性质、结晶度及晶体缺陷等信息,为科研人员提供全新多维度分析平台。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/c59e3201-fec2-47a0-8d6c-4f1ea177e6eb.jpg" title="IMG_0031.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "蔡司显微镜部高校及研究机构市场片区专员任祺君做报告/span/pp  据任祺君介绍,相比传统方法,蔡司原位sem-raman关联系统最大优势在于可在不同测试手段之间精确定位样品同一位置,并实现数据之间的准确关联。平台结合了SEM快速且高分辨的表面观察与Raman的强大分析功能,能够以极高的效率对材料进行高分辨的物理、化学以及结构分析。样品保持在同一环境中,只需少量移动或操作,即可快速得到准确的样品组成数据,在纳米材料、光电子、半导体,电池等研究领域均有广泛应用。/pp  除sem-raman系统外,蔡司显微镜家族还拥有丰富产品线,可实现从cm到nm、从2D到3D、从大尺度到高分辨的全面分析,以应对材料科学研究的复杂挑战。而除关联拉曼外,蔡司多尺度、多功能关联显微镜平台还可实现微分干涉、相差、AFM等多种功能,为用户提供多样化与个性化选择。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/cfaccdb7-e480-47c4-bd27-1a2288220f6e.jpg" title="微信图片_20171030134857_副本.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "蔡司设宴欢迎全体参会代表/span/pp  26日大会开幕前夜,蔡司于重庆富力假日酒店安排晚宴,欢迎远道而来的全体代表,对高校分析测试中心研究会表示衷心的感谢,同时也预祝大会取得圆满成功。/p
  • 高分子表征技术专题——荧光关联光谱在高分子单链研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20238《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304荧光关联光谱在高分子单链研究中的应用周超 1,2 ,杨京法 1,2 ,赵江 1,2 1.中国科学院化学研究所机构 北京 1001902.中国科学院大学机构 北京 100049作者简介: 赵江,男,1967年生. 分别于1989年、1992年在吉林大学物理系获得学士、硕士学位,1995年于中国科学院物理研究所获得博士学位,之后分别于北京大学化学与分子工程学院、日本产业综合研究所、美国伊利诺伊大学从事博士后研究,2004年起于中国科学院化学研究所任研究员,入选中国科学院“百人计划”,2009年获得国家杰出青年科学基金资助,2013年当选美国物理学会Fellow. 以单分子荧光显微与光谱方法开展关于高分子物理基础性研究,研究方向包括:多电荷大分子、聚合物表界面、高分子动力学、相变与玻璃化转变等 通讯作者: 赵江, E-mail: jzhao@iccas.ac.cn摘要: 荧光关联光谱(fluorescence correlation spectroscopy,FCS)是一项用于研究体系动力学性质的统计光谱技术,随着它被引入材料与化学研究领域,近年来取得了大量全新的研究成果. 该技术在高分子科学研究中也逐渐发挥出越来越大的作用,特别是在聚合物结构和动力学方面,这表明它在高分子领域的巨大潜力. 本文将从FCS的基本原理、实验技巧以及在一些具有挑战性体系中的应用等方面展开,着重介绍它在高分子溶液,如聚电解质溶液、高分子混致不溶现象,以及不同的表界面体系中取得的新成果,展示FCS区别于其他传统技术的特点和优势.关键词: 荧光关联光谱 / 高分子 / 聚电解质 / 表界面 / 混致不溶 目录1. 荧光关联光谱的基本原理2. 荧光关联光谱的实验技巧2.1 实验样品的标记和纯化2.2 激发体积的校准3. 荧光关联光谱在高分子单链研究中的应用3.1 FCS在聚电解质体系中的应用3.2 FCS在高分子混致不溶现象中的应用3.3 FCS在表界面体系中的应用3.4 FCS在有外场作用的体系中的应用4. 荧光关联光谱技术的发展和应用5. 结论参考文献高分子物理研究的目标之一是探究聚合物在不同尺度上的结构与动力学,及其对于高分子体系性质的决定性. 其中,聚合物构象是最为基础的研究内容. 高分子构象是指由于主链上单键内旋转而产生的分子链在空间的不同形态. 对于中性聚合物体系,由于分子链的结构自相似性,利用标度理论可以成功描述其在良溶剂、θ溶剂以及不良溶剂中分子链的尺寸. 散射技术是研究高分子链构象最成功的方法,如:光散射、X射线散射以及中子散射. 就动态光散射而言,它通过检测高分子溶液散射光强随时间涨落而得到其关联函数,从而获得单分子链的扩散速率信息,并获得分子链的流体力学半径信息[1,2]. 结合静态散射实验所获得的回转半径,可以确定聚合物在溶液中的形态[3,4]. 虽然光散射方法在具有短程相互作用的中性聚合物体系表征中非常成功,但是该项技术在一些条件或情形下却遇到了很大的困难,如:多电荷体系、多组分复合体系、表界面体系等. 在多电荷体系中,多重长程静电相互作用使得动态光散射信号中出现令人费解的“快慢模式”[5~7]. 用光散射法来考察高分子的混致不溶现象时,混合溶液中强烈的组分涨落导致强烈的光散射背景信号,严重影响了光散射对信息的提取[8]. 因此,采用新的技术和研究方法开展高分子表征无疑是重要的.荧光关联光谱(fluorescence correlation spectroscopy,FCS)是表征高分子的有效新方法之一. 它与动态光散射同属于光子相关光谱技术,通过分析光信号的涨落而得到分子链动力学信息. 然而,FCS具有很高的探测灵敏度,通过获取荧光涨落信号而得到单个分子的动力学信息. 荧光关联光谱技术是由Madge、Elson和Webb[9~11]在20世纪70年代发展起来的,20世纪90年代,随着Rigler等[12]将共聚焦技术引入,FCS得到快速发展. 采用共聚焦显微技术,FCS的激发-探测空间体积缩小至~10−15 L,激发-探测空间内的分子数目大大地降低,实验的信噪比也随之提高. 与此同时,具有很高灵敏度的单光子检测器的采用使得FCS实现了单分子水平的测量. 随着计算机技术的进步,数据采集卡能够实时地进行数据的采集和相关性计算,使得FCS技术得到了重要的突破,在科学研究中的应用也越来越广泛.近年来,FCS在高分子物理研究中逐渐表现出重要作用,相比于传统的散射技术,它有着独特的优势. 第一,FCS具有极高的灵敏度,可以在极稀薄条件下(~10−9 molL−1)进行测量,同时具有达到光学衍射极限空间分辨率(~200 nm)与出色的时间分辨率(10−6 s). 第二,FCS的信噪比与聚合物的分子量无关. 在实验中,聚合物链通过化学键合的方式实现一比一的荧光标记,因此,分子量不同的样品对于信号的贡献相同. 但是,对于光散射技术而言,散射光强与聚合物分子量具有依赖性,因而信噪比也随之改变,分子量偏小样品的实验难度较大. 第三,对样品的荧光标记同样带来了可选择性与识别性,实现了同一体系中不同组分的区分式研究. 例如,通过对不同组分使用不同的荧光分子进行标记,采用多色FCS对各组分间的运动及其关联进行分析;也可选择性地对多组分体系中的特定组分进行标记,实现复杂体系中特定组分的研究.伴随着FCS技术的发展以及与其他研究手段的联用,其应用越来越广泛,从最初的生物领域[13~15]到胶体[16,17]、聚合物[18,19],从溶液[20~23]到熔体[24~26]、凝胶[27~29]、表界面体系[30~32]等,都取得了许多原创性的成果. 值得指出的是,FCS在测量平动和转动扩散系数、反应速率常数、平衡结合常数、细胞内粒子浓度等方面有着突出的优势[33~35].1. 荧光关联光谱的基本原理当一个体系处于热力学平衡态时,分子的热运动会导致体系浓度、密度等发生局部涨落. 通过相关分析方法,计算这些局部涨落的关联函数,就可以从信号中提取出体系的热力学信息. 动态光散射技术正是运用了此方法,通过测量溶液的散射光强随时间涨落而获得其关联函数,从而获得样品的动力学信息. 荧光关联光谱测量共聚焦空间内样品荧光强度随时间的涨落,通过计算其关联函数而得到对涨落有贡献的热力学性质信息.在激发空间内在任一时刻荧光强度F(t),激发空间内荧光信号在t时刻的强度涨落δF(t)为:其中,⟨F(t)⟩=1/T∫0TF(t)dt,为从0到T 时间内的平均荧光强度.上述涨落的归一化自关联函数为G(τ):自关联函数包含了导致共聚焦空间内荧光信号强度涨落的所有信息,如:平动及转动扩散导致的荧光信号涨落、探针的光物理和化学变化(如:三重态)等导致的涨落等. 对于单光子激发体系,激发空间内的光强分布满足三维高斯分布,对在溶液中进行三维扩散的荧光分子而言,其浓度的涨落满足扩散方程,因而其关联函数的表达式为:其中,Veff=π1.5w02z0为激发空间的体积,特征时间τD=w02/4D为荧光分子通过激发空间所需的平均时间. G(0)=1/Veff⟨c⟩=1/N为激发空间内荧光分子平均数目的倒数,当样品的浓度越低时,G(0)值越大.从G(τ)的表达式可知,FCS的自关联函数有4个变量w0、z0、⟨c⟩、D,其中w0、z0属于仪器的参数,即共聚焦空间的横向半径与纵向半高度,而⟨c⟩、D分别是荧光分子的平均浓度和扩散系数. 因此,在准确标定仪器参数w0w0、z0z0的条件下,通过数值拟合将得到未知样品的浓度和扩散系数. 扩散分子的流体力学半径可以根据Stokes-Einstein方程得到:其中,kB为玻尔兹曼常数,T为温度,η为介质黏度.FCS仪器结构如图1所示,激光器的输出光经过准直扩束后由二向色镜反射进入物镜,并经物镜聚焦在样品中激发荧光. 产生的荧光由同一物镜收集,再次通过二向色镜以及滤镜将杂散的激光以及背景光过滤压制,最终由透镜聚焦并由针孔进行空间滤波进入到检测收集系统.图 1Figure 1. Schematic illustration of instrument structure of fluorescence correlation spectroscopy.由于单光子检测器可能出现接收一个光子产生多个电子的情况,为了消除这个过程带来的误差,可以将荧光信号分成等强度的两部分,然后对2个通道内的信号作交叉关联:2. 荧光关联光谱的实验技巧由于一般的聚合物不发光,因此FCS实验所采用的样品需要进行荧光标记. 另外,在实验操作方面,最需要注意对于激发体积的严格校准,以确保实验测量的准确性.2.1 实验样品的标记和纯化样品标记方法主要有以下2种:第一,在样品需要标记的位点预留反应的基团,如:氨基、羧基、叠氮基团等,再根据不同的基团及FCS实验的要求选择合适的活性荧光分子进行化学键合. 为了获得较高的标记效率,在标记过程中加入的荧光分子的量远大于聚合物,所以反应结束后有大量游离的自由荧光分子存在,需要通过体积排除色谱和超滤等方法进行分离提纯,直至滤液中不再检测到荧光信号.第二,在样品合成过程中加入适当比例的共聚合荧光单体进行共聚,例如,通过RAFT聚合制备聚异丙基丙烯酰胺(PNIPAM)时,可以加入适当比例的荧光单体来合成具有一定分子量范围、分子量分布较窄和荧光标记的样品[36]. 反应完成后同样也需要超滤、透析等方式进行分离提纯.2.2 激发体积的校准FCS实验之前,需要对仪器进行校正得到仪器激发体积的参数. 采用已知浓度和扩散系数的荧光分子样品来进行校正,例如Rhodamine 6G (Rh6G)分子,它在纯水中的扩散系数为414 μm2s−1 (25 °C),实验中一般将其配置成5×10−9 molL−1 (5 nmolL−1)的水溶液进行FCS测量,然后通过对测得的关联函数进行拟合即可得到激发空间的尺寸.另外,温度对于扩散系数的影响很大,不同温度下进行实验时,同样需要对扩散系数进行校正,校正的公式如下:如图2所示,以波长为488 nm的激光作为激发光,对FCS测量得到的Rhodamine 6G的自相关曲线进行拟合得到激发空间的尺寸为w0=0.224 μm,z0=1.608 μm.图 2Figure 2. A typical autocorrelation function curve and the fitting result of free Rhodamine 6G molecules in water.需要说明的是,FCS的测量会受到样品体系折射率不匹配的影响. 如图3所示,当样品溶液与物镜的折射率不匹配时,会导致表观的激发体积出现显著变化:第一,表观的w0值随折射率不匹配的增加而减小,这是折射率不匹配产生的像差导致;第二,随着物镜焦点位置从界面处愈加深入到样品溶液中时,折射率不匹配导致的表观w0值的变化愈明显[36].图 3Figure 3. (a) Representative normalized autocorrelation function curves of fluorescent nanoparticles diffusing in aqueous solution of glycerol at a small focal depth (25 μm) (b) Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the refractive index of the solution. The distance of the focal point in the sample medium away from the coverslip surface is displayed. (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).依据FCS的原理,w20=4DτDw02=4DτD,因此,即使微小w0变化也将显著影响探针分子拟合得到的扩散系数值. 因此,选择合适的溶液体系和物镜使得折射率尽可能匹配,对于FCS的测试准确性至关重要. 在折射率不匹配问题无法避免时,如图3(b)中,可以使用一个较低的焦点位置(25 μm)能有效地避免激发体积的畸变[36].此外,如图4所示,以厚度为0.16 mm的盖玻片为例,当实验使用物镜的校正环与样品池底部的盖玻片厚度不匹配时,激发体积的尺寸也会出现较大的偏差,所以在实验前还需注意物镜校正环与盖玻片厚度是否匹配[37].图 4Figure 4. Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the value of correcting collar (Reprinted with permission from Ref.[37] Copyright (2018) University of Chinese Academy of Sciences).因此,在FCS实验中,应该尽量选择合适的物镜类型以匹配样品的折射率,并调整镜头校正环数值与盖玻片厚度一致,如果折射率不匹配的情况不能避免,那就选择较低的、固定的焦点深度值以保证实验结果可靠可信.除了上述两点之外,在实验过程中还需要注意激光光强的选择,过强的入射光容易导致荧光探针发生光漂白而带来实验误差,因此应该降低进入物镜的激光光强进行实验.3. 荧光关联光谱在高分子单链研究中的应用FCS以其独特的优势在一些传统研究手段难以涉足的高分子体系中展现出独特的优势,例如:考察水溶液中聚电解质的单链动力学[38~44]、混致不溶现象中高分子链构象的变化[36]、表界面体系中高分子的扩散动力学[30~32,45~48]等等.3.1 FCS在聚电解质体系中的应用聚电解质是主链或者侧链上带有可离子化基团的聚合物,在极性溶剂中,聚电解质主链由于解离而带电,同时存在大量带有相反电荷的抗衡离子[49,50]. 正是聚电解质链间、链段间以及链与抗衡离子间多重长程静电相互作用,在赋予聚电解质丰富性质的同时,也给聚电解质的研究带来了很大的困难[51~53]. 例如,当采用动态光散射技术研究带电聚合物体系时,在低离子强度的聚电解质溶液中,存在“快与慢”的2种松弛模式. 为了探究聚电解质中的这种多级松弛模式的起源,研究人员进行了大量的实验并提出了多种可能的解释,但至今仍未有一个确切的回答[5,6,54~56].如果采用传统散射技术来研究低离子强度条件下带电聚合物体系的扩散运动,实验中遇到不少困难,而FCS实验中样品极稀浓度和极高选择性的优势就体现出来,依靠FCS技术,研究人员可以在极稀薄条件下进行实验研究,在聚电解质溶液体系获得全新的信息.Wang等[38]利用FCS在实验上第一次观察到了在无扰溶液中疏水聚电解质的一级构象转变. 如图5(a)所示,弱聚电解质聚(2-乙烯基吡啶) (P2VP)分子的构象随带电分数的变化而呈现出一级转变特征,即:随pH的升高由伸展的线团构象至坍缩的链球. 除了通过pH值改变聚电解质的带电分数,聚电解质的构象转变也可以由改变外加盐的浓度导致,即:抗衡离子吸附与静电屏蔽作用. 如图5(b)所示,P2VP的单分子链流体力学半径随着静电屏蔽长度的增加而连续增加.图 5Figure 5. (a) Diffusion coefficient of P2VP as a function of pH value of the solution. Inset: The hydrodynamic radius of P2VP as a function of pH value (b) The hydrodynamic radius of P2VP as a function of Debye length of the system (Reprinted with permission from Ref.[38] Copyright (2007) American Institute of Physics).Xu等[39]利用FCS技术在单分子水平上研究了强聚电解质的构象. 实验发现,在无外加盐的情况下,强聚电解质聚苯乙烯磺酸钠(NaPSS)和季胺化聚(4-乙烯基吡啶)(QP4VP)的流体力学半径和聚合度之间分别存在着0.7和0.9的标度关系,说明在低离子强度时,聚电解质链的构象比中性聚合物在良溶剂中溶胀的无规线团构象更加伸展. 如图6所示,采用棒状构象的分子模型得到了理想的拟合结果(其中QP4VP在高分子量部分出现偏离是高分子量聚电解质吸附更多的抗衡离子所导致的). 拟合结果显示分子链的直径分别为2.2和2.3 nm,这比理论假设的裸露水合聚电解链的直径0.8 nm要大很多,这也说明了聚电解质链的周围有抗衡离子云的存在.图 6Figure 6. Values of hydrodynamic radius of NaPSS and QP4VP plotted as a function of degree of polymerization. The solid lines denote the numerical fitting based on the theoretical model of diffusion of a rod-like molecule, and the dashed line denotes the fitting results using the diameter of a hydrated chain, i.e., d=0.8 nm. (Reprinted with permission from Ref.[39] Copyright (2016) American Institute of Physics).Xu等[40]进一步研究了在不同外加盐浓度情况下聚电解质链的构象. 如图7所示,聚电解质分子链构象具有分子量依赖性:在低盐浓度时,短链分子的聚电解质采取棒状构象,而长链分子采取无规线团构象;随着外加盐浓度的增加,所有的NaPSS和QP4VP均采取无规线团构象.图 7Figure 7. Diffusion coefficient of NaPSS (a) and QP4VP (b) as a function of degree of polymerization under salt concentrations of 10−4, 0.1, and 1.0 molL−1, respectively The solid lines represent the results of fitting using the relation of Rh∼N−v. (Reprinted with permission from Ref.[40] Copyright (2018) American Institute of Physics).Ren等[41]通过FCS技术研究了i-motif DNA的解折叠过程. 如图8所示,在不同盐浓度的条件下,随着pH值的升高,i-motif DNA均发生了从有序的四联体结构到无规线团的构象转变,并且这一转变对盐浓度有着依赖性:盐浓度越高,解折叠的起始pH值就越低. 这种盐浓度依赖性的主要原因是外加盐的引入导致更多的抗衡离子吸附在DNA链上而降低了链的电荷密度,降低了链周围的局部质子浓度,而后者是控制折叠形成的关键因素.图 8Figure 8. The values of hydrodynamic radius of a single i-motif DNA strand as a function of pH value in the solution Three conditions were chosen: solution without any salt addition (salt-free), and 50 mmolL−1 and 100 mmolL−1 NaCl solutions (physiological environment) The start and end points of the conformation transition are denoted by the arrows. (Reprinted with permission from Ref.[41] Copyright (2018) The Royal Society of Chemistry).如果将光子计数直方图(PCH)技术与FCS相结合,可以对聚电解质主链的电势、有效带电量、抗衡离子分布等方面进行深入研究. 例如,Luo等[42]将pH敏感的荧光探针标记于NaPSS链的不同位点,采用PCH技术测量分子链局部的pH值,发现聚电解质链附近的局部氢离子浓度比本体溶液中高2~3个数量级,而末端效应使得分子链中间的静电势高于末端的静电势. 同时,他们还发现氢离子浓度在径向呈现出e指数衰减的趋势,这证明了聚电解质链周围存在抗衡离子云的说法[43].Jia等[44]研究了抗衡离子分布与聚合物浓度的依赖关系,通过FCS测量NaPSS溶液中作为抗衡离子探针的带负电荧光分子的扩散系数,确定自由探针和吸附于主链的探针2个组分,发现与主链结合的抗衡离子组分随着聚合物浓度的增加而增加. Xu等[40]采用PCH测量NaPSS单分子链电位,发现其随着聚合度的增大而单调上升,且在聚合度大的区间达到饱和. 这说明主链的静电势与分子量不是线性关系,其有效带电分数以及有效电荷密度随着分子量的增加而减小. 上述实验结果说明聚电解质抗衡离子与主链的相互作用是吸附与脱附的动态平衡,而不是经典的Manning抗衡离子凝聚[57~60].3.2 FCS在高分子混致不溶现象中的应用高分子的混致不溶现象(cononsolvency)是一类回归型过程:2种高分子的良溶剂按一定比例混合后反而成为了不良溶剂[61,62]. 一个典型的例子是:常温下聚异丙基丙烯酰胺(PNIPAM)在水与一定比例的甲醇、乙醇、异丙醇、丙酮、四氢呋喃、DMSO等良溶剂的混合液中不再溶解,溶液的相分离温度显著改变,溶液黏度下降,PNIPAM凝胶溶胀率下降. 研究人员对这一现象的起源进行了大量的实验探究,至今未能达成共识[8,63~66].了解高分子链的构象对于理解混致不溶现象至关重要. 前人采用光散射方法研究了水和甲醇混合溶剂中PNIPAM链从线团到塌缩球再到线团的构象转变[64]. 需要特别说明的是,为了在极稀溶液中获得足够高的散射强度与信噪比,研究中采用了分子量高达107 gmol−1的样品. 当采用FCS技术研究该过程时,由于其超高的灵敏度以及与样品分子量无关的信噪比,可在混合溶剂环境下高分子单链的研究中提供独特的信息[67]. Wang等[36]利用FCS研究了PNIPAM在水-乙醇混合溶剂中的混致不溶过程. 如图9所示,PNIPAM具有非对称的回归型构象变化特征:随着乙醇浓度的增大,在一个很窄的乙醇浓度范围内PNIPAM链剧烈塌缩,然后在很宽的乙醇浓度范围内逐渐地再度伸展,说明这一构象转变不是先前文献中所认为的一级构象转变过程. 这表明乙醇分子比水分子更强烈地与PNIPAM链发生作用,这是由乙醇较强的疏水水合效应所致,暗示了Tanaka提出的模型中水合/失水的协同能力强于醇分子吸附/脱附的协同能力[65,66].图 9Figure 9. Normalized autocorrelation function curves of diffusing single chains of PNIPAM with five degrees of polymerizations in pure ethanol (a) and at xEtOHxEtOH of 0.25 (b) The solid line with each data set denotes the results of the numerical fitting using three-dimensional diffusion model Rh6G in (a) denotes the results of free fluorescent Rhodamine 6G, and its drastic difference from those of polymers indicates the successful labeling and sample purification (c) The values of hydrodynamic radius of PNIPAM single chains as a function of xEtOHxEtOH (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).如图10所示,不同乙醇浓度下得到PNIPAM单链的尺寸的标度率(Rh∼NυRh∼Nυ)表明,标度指数νν随着xEtOHxEtOH变化:随着乙醇的浓度的增加,ν从~0.57到0.5再到~1/3变化,说明在上述3个区域,PNIPAM高分子链分别采取了溶胀、无规线团、坍缩链球的构象,即:由纯水中的溶胀线团经无规线团构象而急剧转变为塌缩链球构象,进而又再度逐渐伸展,经过无规线团构象变化至溶胀线团构象. 从标度指数的变化也可以发现回归型链构象变化的高度非对称性,进一步印证了Tanaka提出的协同吸附-优先吸附模型[65,66].图 10Figure 10. Typical double-logarithmic plot of hydrodynamic radius of single PNIPAM chains as a function of degree of polymerization under different solvent compositions: (a)xEtOH=xEtOH=1.0, (b)xEtOH=xEtOH=0.28, (c)xEtOH=xEtOH=0.25 Solid lines are the least-squares linear fitting (d) The vv values as a function of xEtOHxEtOH The three dotted lines denote the theoretical values of the static scaling index for a random coil (0.588), an undisturbed coil (0.5), and a compact globule (1/3). (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).3.3 FCS在表界面体系中的应用受限高分子链,尤其是处于界面的高分子链结构及动力学性质,直接关系到表界面的机械性能、摩擦性能、流变性能等,这些性质与高分子材料在表界面上的应用息息相关,如涂料、润滑剂、胶黏剂等[68~71]. 但是对于高分子链在表界面处的动力学研究存在着不少技术难题,主要原因是表界面动力学带来的浓度涨落被局限于二维或准二维空间,探测难度极大,使得传统的散射方法难以应用. 近年来,得益于单分子技术的迅猛发展,空间和时间分辨能力分别有了显著的优化,极大提高了人们直接“观察”分子或粒子行为的能力,这为我们从分子水平认识聚合物在界面上的动力学性质打下了基础.荧光关联光谱因其极高的灵敏度与显微测量能力被成功地应用于表界面体系的研究中. 对于处于二维自由扩散的分子而言,其自关联函数为:其中,w0是二维FCS观察区域(即激发空间在界面等二维平面投影)的半径,⟨ρ⟩=⟨N⟩/A,即单位面积内荧光探针的平均数量,A是激发空间在界面等二维平面上投影的面积.Sukhishvili等[30]利用FCS研究了荧光染料标记的不同分子量的聚乙二醇(PEO)在固-液界面上的扩散. 从分子链界面扩散运动行为出发,分析出在极稀浓度的条件下聚合物分子在固-液界面上呈现出了紧密吸附的pancake构象,发现了界面扩散系数与分子量的-3/2的独特标度率. Zhao等[31,32]则利用FCS研究了PEO在固-液界面上扩散速率与界面吸附浓度的非线性关联性,即:随着聚合物浓度的增加,其扩散系数先增加并在某一浓度值达到极值,进而骤然大幅下降. 这是由于极低浓度分子链紧密吸附的pancake构象会随着吸附浓度的增加变成loop-tail-train构象,即:吸附使得分子链构象变得相对松散,其扩散速率由与基底接触的train部分占主导. 随着吸附浓度的增加,较为自由的loop-tail部分则增加了其运动能力,因此扩散系数增加;更高浓度时扩散系数出现骤降是因为体系中出现了jamming效应,即分子链间的作用增强,阻碍了分子链的扩散运动.Ye等[45]利用FCS研究了不同拓扑结构的聚合物链在石英-二氯甲烷界面上的扩散,如图11所示,线形聚苯乙烯(PS)扩散的标度率为D∼M−1.5,重现了reptation模型;而环形PS的标度率则为D∼M−1,展现为Rouse模型. 两者的差异是由于环形分子没有末端,无法像线形分子一样完成蛇行运动,而是由一系列链段受到热激发进行跳跃,跨过局部能垒的运动组成.图 11Figure 11. Double-logarithmic plots of center-of-mass diffusion coefficient against molecular weight for surface diffusion of cyclic (c-PS) and linear (l-PS) polystyrene chains on fused silica-DCM interface The solid lines with slopes of 1 and 3/2 are drawn as guides to the eye The dashed lines through the points representing the best fit of the data give power law slopes of 1.46 for linear chains and 1.00 for cyclic chains. (Reprinted with permission from Ref.[45] Copyright (2016) The Royal Society of Chemistry)Yang等[46]利用FCS研究了不同盐溶液作为液相时,NaPSS在疏水单层分子膜界面上的扩散行为. 如图12所示,吸附在疏水表面的聚电解质分子链的扩散受到液相中不同阴离子的影响,主要原因在于不同的阴离子效应改变了界面疏水相互作用强度,从而改变了界面与分子链之间摩擦力,造成扩散系数的显著改变.图 12Figure 12. Typical data of the lateral diffusion coefficient of a NaPSS single chain at the interface of a hydrophobic surface and an aqueous solution as a function of the salt concentration in the aqueous solution (Reprinted with permission from Ref.[46] Copyright (2011) American Chemical Society)Yang等[47]利用FCS技术研究了聚苯乙烯与聚异戊二烯(PI)的嵌段共聚物在二甲基甲酰胺(DMF)与PI聚合物构成的液体界面上的扩散运动. 如图13所示,在本体聚合物分子量跨越了2个数量级的变化,界面上PS-b-PI的扩散系数仅有轻微的下降. 这表明,在PI/DMF的体系中,存在很低黏度的界面层,该界面层的黏度与构成界面的本体聚合物的分子量不存在明显依赖性.图 13Figure 13. Interfacial diffusion coefficient of single PS-b-PI chain as a function of the molecular weight of bulk PI The dashed line is for the guide of eye Inset: illustration of the sample geometry (Reprinted with permission from Ref.[47] Copyright (2008) American Chemical Society).Li等[48]利用FCS探究了PEO分子在烷烃-水界面上的扩散行为. 研究发现,PEO在该界面上聚合物的横向扩散为正常扩散,与二维布朗运动模型相吻合. 如图14所示,液-液界面上的PEO的界面扩散系数与其聚合度之间存在D∼N−0.5的标度关系,这一新的标度关系表明其界面扩散运动遵循着新的运动机理.图 14Figure 14. The logarithm of interfacial diffusion coefficient of PEO as a function of the logarithm of molecular weight (Reprinted with permission from Ref.[48] Copyright (2020) The Royal Society of Chemistry).从单分子层面上研究界面扩散,有助于发现分子最真实和原始的扩散行为规律,这在传统的系综平均实验中往往会被忽略或者被多种因素耦合而产生的运动行为掩盖,这是上述FCS实验结果最大的优势之处. 此外,值得注意的是,在研究固-液界面上聚合物扩散机理时,不同研究团队利用FCS和单粒子追踪(single particle tracking, SPT)技术,得到了不同的结果及界面扩散机理,也因此导致了FCS和SPT 2种技术在界面分子动力学研究上存在多年的学术争论[30,31,72,73]. 我们基于这个问题也展开了实验对比,发现FCS和SPT都能够提供准确且可靠的实验结果,在条件满足时两者能够得到相互吻合相互匹配的实验结果,相关数据结果将在未来进行发表.3.4 FCS在有外场作用的体系中的应用对于聚合物而言,在其合成、分离、加工等过程中有可能会经历电场、流动场、剪切场等作用,尤其在生命体中更是常见. 因此,对于外场作用下的聚合物性质的研究也是极为重要的.当我们将荧光关联光谱应用于外场作用下的体系中时,除了分子热运动导致平动扩散引起的荧光信号涨落,还不得不考虑外场导致荧光分子定向运动通过激发体积带来的信号涨落. 带有定向运动的FCS,如果其运动的方向垂直于激光光束的方向,经过修正的模型拟合关联函数可以获得扩散系数与定向运动速率:其中,vf=w0/τf即为定向运动速率.Dong等[74]将FCS和毛细管电泳结合起来测定了量子点在极稀溶液中的表面电势. 利用FCS的自关联函数拟合得到荧光粒子的定向运动速度和扩散系数,在电泳实验中定向运动的特征时间τf和自扩散系特征时间τD之间满足:其中,Q为带电量,E为外加电场强度. 通过测定不同电场强度下定向运动和扩散的特征时间,通过线性拟合得到荧光粒子的表面电势. Wang等[75]利用FCS研究了P2VP在交变电场下的单链构象转变. 结果表明电场强度对于分子链构象的影响存在滞后转变. 这种滞后现象可以归因于单个疏水性聚电解质链的不对称双稳态能态,由于抗衡离子的解离、迁移和凝聚,其coil和globule构象之间的势垒可以通过交变电场诱导的偶极子降低到kBT以下.4. 荧光关联光谱技术的发展和应用随着FCS技术的发展,出现了双色荧光关联光谱(DC-FCCS)[76,77]、双焦点荧光关联光谱[78,79]、FCS与荧光共振能量转移(FRET)联用[80,81]、可连续改变共焦体积荧光关联光谱[82]等新技术. 这些新技术相较于传统的FCS,可以获取样品更多的热力学信息. 图15是DC-FCCS的简单示意图,采用2种波长的激光分别激发2种对应的荧光分子,然后选择性光学器件对不同波长的荧光进行分离,最后由2个APD检测器分别检测2种荧光信号,再对信号进行关联性分析. DC-FCCS的基本原理就不在此赘述,除了对2种荧光分子的荧光强度涨落进行各自的自关联分析之外,我们还可以对这2种荧光信号做交叉关联分析得到两者相互运动乃至相互作用的信息. 需要说明的是,选择的这2种荧光分子在光谱上必须分离得很好,否则会出现很大的串扰影响实验结果.图 15Figure 15. Schematic illustration of dual color fluorescence cross-correlation spectroscopyChen等[83]利用DC-FCCS和光散射相结合的方法深入研究了聚电解质溶液中单链运动之间的关联性,发现了聚电解质分子链间的运动耦合. 将DC-FCCS实验得到自关联函数的自由扩散部分转化为均方位移数据(MSD),发现其在长短2个时间尺度上分别存在具有不同扩散系数的正常扩散运动,表明链间的静电排斥相互作用带来的“笼子效应”导致了单个分子链的自扩散运动中同样存在一快一慢2种时间尺度上的扩散模式:短时间尺度上为“笼子”内的快扩散行为,长时间尺度上为跨越不同“笼子”的慢扩散行为(如图16所示). 这2种松弛模式均存在强烈的离子强度依赖性,随着外加盐浓度的增加,削弱了链间的排斥作用而弱化了“笼子效应”,导致了长短时间尺度上的动力学非均匀性减弱,甚至消失. 实验结果还表明,聚合物浓度的增加限制了聚电解质链的运动,从而削弱了链间运动的关联性(如图16(b)所示). 将其与光散射中“慢模式”对应的扩散系数对比发现,“慢模式”对应的扩散系数数值处于分子链自扩散长短时间尺度的扩散系数之间,这说明光散射观察到的“快慢模式”与长程静电相互作用引起“笼子效应”有着密切的联系,同时也说明聚电解质的多级松弛过程比我们预想的更加复杂.图 16Figure 16. (a) Values of the diffusion coefficient of the short-time diffusion (Dshort-timeDshort-time) and the long-time diffusion (Dlong-timeDlong-time) of NaPSS with three different molecular weights under different salt concentrations (b) Diffusion coefficient of single NaPSS chain with three different molecular weights at short- and long-time lag as a function of concentration Diffusion coefficients measured by DLS (the slow mode, DDLS,slowDDLS,slow) are displayed for comparison. (Reprinted with permission from Ref.[83] Copyright (2019) American Chemical Society).5. 结论荧光关联光谱技术作为一种高灵敏度的显微统计光谱方法,能够有效地在多种复杂条件下开展高分子动力学的研究,包括:极稀薄溶液、表界面等等. 这项技术出色的空间分辨能力以及由于荧光标记带来的分子识别性,赋予了更加丰富的应用能力与前景. 随着这项技术的不断发展和应用范围的进一步拓展,相信未来它会和传统的散射技术一样被越来越多的人了解和使用,在多个领域都能取得丰富且具创造性的成果.致 谢 感谢研究生及合作者的辛勤劳动与贡献.参考文献[1]Wu C, Zhou S. Phys Rev Lett, 1996, 77(14): 3053−3055 doi: 10.1103/PhysRevLett.77.3053[2]Gao J, Wu C. Macromolecules, 1997, 30(22): 6873−6876 doi: 10.1021/ma9703517[3]Liu X B, Luo S K, Ye J, Wu C. Macromolecules, 2012, 45(11): 4830−4838 doi: 10.1021/ma300629d[4]Morishima K, Ishiwari F, Matsumura S, Fukushima T, Shibayama M. Macromolecules, 2017, 50(15): 5940−5945 doi: 10.1021/acs.macromol.7b00883[5]Sedlak M, Amis E J. J Chem Phys, 1992, 96(1): 826−834 doi: 10.1063/1.462468[6]Muthukumar M. Macromolecules, 2017, 50(24): 9528−9560 doi: 10.1021/acs.macromol.7b01929[7]Zhou K, Li J, Lu Y, Zhang G, Xie Z, Wu C. Macromolecules, 2009, 42(18): 7146−7154 doi: 10.1021/ma900541x[8]Hao J, Cheng H, Butler P, Zhang L, Han C C. J Chem Phys, 2010, 132(15): 154902 doi: 10.1063/1.3381177[9]Magde D, Webb W W, Elson E. Phys Rev Lett, 1972, 29(11): 705−708 doi: 10.1103/PhysRevLett.29.705[10]Elson E L, Magde D. Biopolymers, 1974, 13(1): 1−27 doi: 10.1002/bip.1974.360130102[11]Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29−61 doi: 10.1002/bip.1974.360130103[12]Rigler R, Mets U, Widengren J, Kask P. Eur Biophys J Biophy, 1993, 22(3): 169−175[13]Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J. PLoS One, 2009, 4(4): e5041 doi: 10.1371/journal.pone.0005041[14]Mtze J, Ohrt T, Schwille P. Laser Photonics Rev, 2011, 5(1): 52−67 doi: 10.1002/lpor.200910041[15]Schwille P, Haupts U, Maiti S, Webb W W. Biophys J, 1999, 77(4): 2251−2265 doi: 10.1016/S0006-3495(99)77065-7[16]Xie J, Nakai K, Ohno S, Butt H J, Koynov K, Yusa S. Macromolecules, 2015, 48(19): 7237−7244 doi: 10.1021/acs.macromol.5b01435[17]Caruso F, Donath E, Mohwald H. J Phys Chem B, 1998, 102(11): 2011−2016 doi: 10.1021/jp980198y[18]Vagias A, Raccis R, Koynov K, Jonas U, Butt H J, Fytas G, Kosovan P, Lenz O, Holm C. Phys Rev Lett, 2013, 111(8): 088301 doi: 10.1103/PhysRevLett.111.088301[19]Lumma D, Keller S, Vilgis T, Radler J O. Phys Rev Lett, 2003, 90(21): 218301 doi: 10.1103/PhysRevLett.90.218301[20]Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G. J Phys Chem B, 2009, 113(11): 3355−3359 doi: 10.1021/jp809707y[21]Schaeffel D, Yordanov S, Staff R H, Kreyes A, Zhao Y, Schmidt M, Landfester K, Hofkens J, Butt H J, Crespy D, Koynov K. ACS Macro Lett, 2015, 4(2): 171−176 doi: 10.1021/mz500638e[22]Jee A Y, Cho Y K, Granick S, Tlusty T. P Natl Acad Sci USA, 2018, 115(46): E10812 doi: 10.1073/pnas.1814180115[23]Jee A Y, Dutta S, Cho Y K, Tlusty T, Granick S. P Natl Acad Sci USA, 2018, 115(1): 14−18 doi: 10.1073/pnas.1717844115[24]Cherdhirankorn T, Floudas G, Butt H J, Koynov K. Macromolecules, 2009, 42(22): 9183−9189 doi: 10.1021/ma901439u[25]Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K. Macromolecules, 2009, 42(13): 4858−4866 doi: 10.1021/ma900605z[26]Doroshenko M, Gonzales M, Best A, Butt H J, Koynov K, Floudas G. Macromol Rapid Commun, 2012, 33(18): 1568−1573 doi: 10.1002/marc.201200322[27]Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F. Macromolecules, 2004, 37(26): 10212−10214 doi: 10.1021/ma048043d[28]Zustiak S P, Boukari H, Leach J B. Soft Matter, 2010, 6(15): 3609−3618 doi: 10.1039/c0sm00111b[29]Modesti G, Zimmermann B, Borsch M, Herrmann A, Saalwachter K. Macromolecules, 2009, 42(13): 4681−4689 doi: 10.1021/ma900614j[30]Sukhishvili S A, Chen Y, Muller J D, Gratton E, Schweizer K S, Granick S. Nature, 2000, 406(6792): 146 doi: 10.1038/35018166[31]Zhao J, Granick S. Macromolecules, 2007, 40(4): 1243−1247 doi: 10.1021/ma062104l[32]Zhao J, Granick S. J Am Chem Soc, 2004, 126(20): 6242−6243 doi: 10.1021/ja0493749[33]Ries J, Schwille P. Bioessays, 2012, 34(5): 361−368 doi: 10.1002/bies.201100111[34]Elson E L. Methods Enzymol, 2013, 518: 1−10 doi: 10.1016/B978-0-12-388422-0.00001-7[35]Papadakis C M, Kosovan P, Richtering W, Woll D. Colloid Polym Sci, 2014, 292(10): 2399−2411 doi: 10.1007/s00396-014-3374-x[36]Wang F, Shi Y, Luo S J, Chen Y M, Zhao J. Macromolecules, 2012, 45(22): 9196−9204 doi: 10.1021/ma301780f[37]Zheng Kaikai(郑锴锴). Dynamics of a Single Polymer Chain under Shear(剪切场下聚合物分子单链动力学行为研究). Doctoral Dissertation of University of Chinese Acdemy of Sciences((中国科学院大学博士学位论文), 2018.[38]Wang S, Zhao J. J Chem Phys, 2007, 126(9): 091104 doi: 10.1063/1.2711804[39]Xu G, Luo S, Yang Q, Yang J, Zhao J. J Chem Phys, 2016, 145(14): 144903 doi: 10.1063/1.4964649[40]Xu G, Yang J, Zhao J. J Chem Phys, 2018, 149(16): 163329 doi: 10.1063/1.5035458[41]Ren W, Zheng K, Liao C, Yang J, Zhao J. Phys Chem Chem Phys, 2018, 20(2): 916−924 doi: 10.1039/C7CP06235D[42]Luo S J, Jiang X B, Zou L, Wang F, Yang J F, Chen Y M, Zhao J. Macromolecules, 2013, 46(8): 3132−3136 doi: 10.1021/ma302276b[43]Luo Shuangjiang(罗双江), Gao Peiyuan(高培源), Guo Hongxia(郭洪霞), Yang Jingfa(杨京法), Zhao Jiang(赵江). Acta Polymerica Sinica(高分子学报), 2017, (9): 1479−1487 doi: 10.11777/j.issn1000-3304.2017.17065[44]Jia P, Yang Q, Gong Y, Zhao J. J Chem Phys, 2012, 136(8): 084904 doi: 10.1063/1.3688082[45]Ye S, Tang Q, Yang J, Zhang K, Zhao J. Soft Matter, 2016, 12(47): 9520−9526 doi: 10.1039/C6SM02103D[46]Yang Q, Zhao J. Langmuir, 2011, 27(19): 11757−11760 doi: 10.1021/la202510d[47]Yang J F, Zhao J, Han C C. Macromolecules, 2008, 41(20): 7284−7286 doi: 10.1021/ma8015135[48]Li Z, Yang J F, Hollingsworth J V, Zhao J. RSC Adv, 2020, 10(28): 16565−16569 doi: 10.1039/D0RA02630A[49]Oosawa F. Polyelectrolytes. New York: Marcel Dekker, 1971[50]Dobrynin A V, Rubinstein M. Prog Polym Sci, 2005, 30(11): 1049−1118 doi: 10.1016/j.progpolymsci.2005.07.006[51]Forster S, Schmidt M, Antonietti M. Polymer, 1990, 31(5): 781−792 doi: 10.1016/0032-3861(90)90036-X[52]Fuoss R M. J Polym Sci, 1948, 3(4): 603−604 doi: 10.1002/pol.1948.120030414[53]Muthukumar M. J Chem Phys, 2004, 120(19): 9343−9350 doi: 10.1063/1.1701839[54]Mattoussi H, Karasz F E, Langley K H. J Chem Phys, 1990, 93(5): 3593−3603 doi: 10.1063/1.458791[55]Reed W F, Ghosh S, Medjahdi G, Francois J. Macromolecules, 1991, 24(23): 6189−6198 doi: 10.1021/ma00023a021[56]Li J, Li W, Huo H, Luo S, Wu C. Macromolecules, 2008, 41(3): 901−911 doi: 10.1021/ma071284b[57]Manning G S. J Chem Phys, 1969, 51(3): 924−933 doi: 10.1063/1.1672157[58]Manning G S. J Chem Phys, 1969, 51(3): 934−938 doi: 10.1063/1.1672158[59]Manning G S. J Chem Phys, 1969, 51(8): 3249−3252 doi: 10.1063/1.1672502[60]Manning G S. Biophys Chem, 1977, 7(2): 95−102 doi: 10.1016/0301-4622(77)80002-1[61]Schild H G, Muthukumar M, Tirrell D A. Macromolecules, 1991, 24(4): 948−952 doi: 10.1021/ma00004a022[62]Winnik F M, Ringsdorf H, Venzmer J. Macromolecules, 1990, 23(8): 2415−2416 doi: 10.1021/ma00210a048[63]Chee C K, Hunt B J, Rimmer S, Soutar I, Swanson L. Soft Matter, 2011, 7(3): 1176−1184 doi: 10.1039/C0SM00836B[64]Zhang G Z, Wu C. J Am Chem Soc, 2001, 123(7): 1376−1380 doi: 10.1021/ja003889s[65]Tanaka F, Koga T, Kojima H, Xue N, Winnik F M. Macromolecules, 2011, 44(8): 2978−2989 doi: 10.1021/ma102695n[66]Kojima H, Tanaka F. Soft Matter, 2012, 8(10): 3010−3020 doi: 10.1039/c2sm06883d[67]Grabowski C A, Mukhopadhyay A. Phys Rev Lett, 2007, 98(20): 207801 doi: 10.1103/PhysRevLett.98.207801[68]Fleer G J. Adv Colloid Interface Sci, 2010, 159(2): 99−116 doi: 10.1016/j.cis.2010.04.004[69]Granick S, Bae S C. J Polym Sci, Part B: Polym Phys, 2006, 44(24): 3434−3435 doi: 10.1002/polb.21004[70]Granick S, Kumar S K, Amis E J, Antonietti M, Balazs A C, Chakraborty A K, Grest G S, Hwaker C J, Janmey P, Kramer E J, Nuzzo R, Russell T P, Safinya C R. J Polym Sci, Part B: Polym Phys, 2003, 41(22): 2755−2793 doi: 10.1002/polb.10669[71]Guo Z Y, Cao X L, Guo L L, Zhao Z Y, Ma B D, Zhang L, Zhang L, Zhao S. J Dispersion Sci Technol, 2020, Doi:10.1080/01932691.2020.1725543 doi: 10.1080/01932691.2020.1725543[72]Skaug M J, Mabry J N, Schwartz D K. J Am Chem Soc, 2014, 136(4): 1327−1332 doi: 10.1021/ja407396v[73]Walder R, Nelson N, Schwartz D K. Phys Rev Lett, 2011, 107(15): 156102 doi: 10.1103/PhysRevLett.107.156102[74]Dong C, Ren J. Electrophoresis, 2014, 35(16): 2267−2278 doi: 10.1002/elps.201300648[75]Wang S Q, Chang H C, Zhu Y X. Macromolecules, 2010, 43(18): 7402−7405 doi: 10.1021/ma101571s[76]Schwille P, Meyer-Almes F J, Rigler R. Biophys J, 1997, 72(4): 1878−1886 doi: 10.1016/S0006-3495(97)78833-7[77]Schaeffel D, Staff R H, Butt H J, Landfester K, Crespy D, Koynov K. Nano Lett, 2012, 12(11): 6012−6017 doi: 10.1021/nl303581q[78]Goossens K, Prior M, Pacheco V, Willbold D, Mullen K, Enderlein J, Hofkens J, Gregor I. ACS Nano, 2015, 9(7): 7360−7373 doi: 10.1021/acsnano.5b02371[79]Muller C B, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J. Epl, 2008, 83(4): 46001[80]Price E S, Aleksiejew M, Johnson C K. J Phys Chem B, 2011, 115(29): 9320−9326 doi: 10.1021/jp203743m[81]Torres T, Levitus M. J Phys Chem B, 2007, 111(25): 7392−7400 doi: 10.1021/jp070659s[82]Masuda A, Ushida K, Okamoto T. J Photoch Photobio A, 2006, 183(3): 304−308 doi: 10.1016/j.jphotochem.2006.06.040[83]Chen K, Zheng K K, Xu G F, Yang J F, Zhao J. Macromolecules, 2019, 52(10): 3925−3934 doi: 10.1021/acs.macromol.9b00025
  • 进展|气溶胶中关键毒性化学组分的内在关联机制
    在国家自然科学基金项目(批准号:T2122006、22188102)等资助下,复旦大学李庆教授和清华大学王书肖教授等课题组合作,提出以削减人群健康风险为导向的工业烟气治理策略。相关研究成果以“基于工业源气溶胶毒性效应实现以健康为导向的大气污染控制(Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles)”为题,于2023年10月14日发表在《自然•通讯》(Nature Communications)。论文链接:https://www.nature.com/articles/s41467-023-42089-6  空气污染已成为全球最大的环境健康风险因素。工业化的迅速发展带来了大气污染,为了改善空气质量,各国政府优先对火力发电行业实施了日趋严格的污染物浓度控制政策。然而,近年来学术界在质疑基于污染物质量浓度的控制标准是否能有效降低健康风险。如何有效控制大气污染排放源,以保护人民生命健康,一直是国际上面临的巨大挑战。  针对这一难题,该研究团队对我国重点工业源(包括钢铁、电力和水泥行业)产生的气溶胶开展系统研究,发现了工业源气溶胶的生物毒性差异,阐明了气溶胶中金属等关键毒性化学组分的内在关联机制(图1)。基于气溶胶毒性效应的量化参数,结合我国大气污染物排放清单、空气质量模式、人群暴露模型与费效分析,阐释以削减“健康风险”为导向的大气污染调制机制(钢铁行业实施超低排放改造),相比于以削减气溶胶“质量浓度”为导向的机制(电力行业实施超低排放改造),可以更为有效的降低人群健康暴露风险(约5.4~8.2倍)。此外,若优先对气溶胶毒性效应更高的工业源开展超低排放(钢铁),能节约大量的经济成本(图2)。图1 钢铁厂(Iron and steel plants)、电厂(Power plants)和水泥厂(Cement plants)燃烧排放气溶胶(a)氧化应激效应(ROS)、(b)毒性金属组分以及(c)关键化学组分对ROS效应贡献比例解析(金属是工业源气溶胶的主导毒性成分)  图2 (a)我国工业大气污染基于“质量浓度”和“健康风险”减排策略的花费以及收益(2019年,超低排放削减的PM2.5排放量及基于ROS效应调控的排放量)的概念图 我国大陆区域电力行业(b)和钢铁行业(c)超低改造后的气溶胶基于ROS效应调控的人群暴露健康风险改善效果的分布情形  该研究基于对18个省/直辖市的82个实际工业排放源现场测量、关键毒性组分的化学甄别、生物毒性解析、空气质量模拟、暴露风险评估以及成本效益计算,突破了当前“基于PM2.5质量浓度”的大气污染控制政策,提出“基于PM2.5健康风险”的工业烟气污染治理思路,为建立面向人民生命健康的大气污染调控机制提供了理论依据和数据支撑。
  • 数字化改革“成绩单”⑦丨产业服务:生猪精密智控让畜牧业更“智慧”
    托普云农全资子公司——浙江森特信息打造的桐乡“生猪精密智管”应用内设服务、治理两个端口,于在2021年7月15日正式上线,并于9月14日在“浙政钉”上架,在操作上实现电脑端和移动端的无缝衔接。且依托生猪智能生物耳标的信息采集监测和数据自动传输功能,对生猪生长性能和生产性能指标进行精细化管理,对生猪饲养、防疫、检疫、屠宰、调运、无害化处理等环节实施精准监管,让生猪生产管理更加智能精细,让政府监管服务更加高效便捷。 一、改革需求 生猪生产是事关国计民生的基础产业,但一直以来都存在数据采集统计费时费力、个体异常难以及时发现、政策需求不能及时满足等问题。 ①生猪生产周期长,业务环节多,政府部门难以精准掌握生猪数据,统计分析不够精细,对生猪生产形势研判和生产过程监管不能做到精准及时。 ②养殖主体疫病防控中个体异常难以及时发现,疫病防控任务较重,对生产技术、政策服务等方面的需求不能及时满足,产供销信息不能及时掌握,价格波动较大,抗风险能力弱。 ③生猪养殖管理流程复杂,疫病发现难、防控任务重、用工量大、养殖效率低。 二、改革创新 从重构养殖模式、建立预警体系以及再造服务流程三个方面进行改革: ①重构养殖模式 通过智能耳标将饲养管理由群体精准到个体,精确掌控生猪个体生产全流程,及时淘汰低下产能。 ②建立预警体系 及早预警个体异常、及时统计生产数据,提升养殖主体疫病防控的实效性和政府部门稳产保供的科学性。 ③再造服务流程 重塑“先打后补”政策补助制度,打通生猪生产与金融、保险等的关联数据,实现补助、服务一网办结。 三、改革成效 桐乡依托生猪智能生物耳标的信息采集监测和数据自动传输功能,在全省第一批开展数字畜牧多跨应用场景的“先行先试”,建设应用于生猪企业的服务端和应用于部门监管的治理端,让企业生产管理更加智能精细,政府监管服务更加精准高效,金融保险等三方服务更加便捷及时。 ①重塑生猪业务流程 重构生猪养殖、屠宰、防疫、检疫、饲料兽药、无害化处理等业务闭环流程,打造保险、贷款、产销、重大风险防控等精密智控体系,有利于政府部门准确研判形势,提前谋划工作政策。 ②企业服务更加便捷 生猪数据精准统计分析,产供销信息及时发布,免疫效果和健康状况及时掌握,检测服务线上开展,服务监管更加高效。 ③数据采集更加精准 养殖主体可通过智能生物耳标自动采集传输生产数据,提高数据采集的及时性和精确度,减少人工操作的工作量,还可对采集来的生猪信息进行分类,为主体安排生产提供数据依据。 ④饲养管理更加智能 通过智能生物耳标的体温监测功能,可以及时对体温异常猪只进行预警,便于管理人员及早发现问题,及早采取措施,起到积极防控动物疫病作用。另外,对生猪生产免疫等关键节点开展提示,免疫检测结果进行提醒预警,养殖档案数字化记录查询,生产指标开展对比分析,让养殖主体精准发现生产薄弱环节,更加有针对性开展提升。 桐乡“生猪精密智管”应用为养殖企业提供了精细化、智能化、便捷化的贴心服务,也撬动了畜牧业数字化改革的再深化。接下来,浙江森特信息将以此撬动畜牧业数字化改革再深化,全力打造“互联网+”高地上的人民群众满意的“智慧菜篮子”。
  • 生猪精密智管,看托普云农如何助力桐乡智养“二师兄”
    一走进位于桐乡市凤鸣街道的双丰猪场,就能看到一块巨大的电子显示屏,上面清晰显示着猪场的猪场存栏数量、生猪价格、体温异常数、PSY指数等数据。而这些拥有专属“身份证”的“二师兄”们正在享受着舒适环境,食用着天然绿色饲料。养殖户通过大屏获取关键数据实现对生猪全生命周期的精密智管,显著提升了产出效益。 这个由桐乡市农业农村局联合浙江森特信息技术有限公司(托普云农全资子公司)共同打造的“生猪精密智管”应用,旨在通过数字赋能,打造农业产业管理新技术新模式,推进桐乡市畜牧业高质量发展。日前,“生猪精密智管”应用作为浙江省数字农业领域优(you)秀示范案例,成功入选首批数字赋能促进新业态新模式典型企业和平台名单。重构养殖模式 “智”养“二师兄” “生猪精密智管”应用依托生猪智能生物耳标的信息采集监测和数据自动传输功能,重构养殖模式,一猪一码,实时采集动物行为感知分析、动物生命体征信息感知等数据,按时发布配种、预产、断奶以及异常状况预警等信息,有助于猪场及时淘汰低下产能、及早发现疫病风险,智慧化管理好每头“二师兄”,高效提升生猪养殖场的生产能力和安全水平。再造业务流程 “智”服养殖户 依托“生猪精密智管”应用,浙江森特信息技术有限公司(托普云农全资子公司)改变以往生猪强制免疫“先打后补”政策补助制度,再造业务流程。通过打通生猪生产与金融、保险等关联数据,将以前需要以日、月来衡量办事效率的生猪养殖补助、投保、贷款等业务,变为手机投保、线上申请病死猪理赔,最快1个工作日就能收到赔偿款。建立预警体系 “智”管全产业 同时,通过对生猪生产数据的统计分析、养殖场管理码/市场价格的监测预警/产供销信息的实时发布、疫病检测等服务的线上审核办理,全链路智能化管理,为监管部门对市场供应早预警,疫情风险早排查和生猪产业全周期管控提供便利。全流程公开透明化,为制定更加具有时效性、前瞻性的生猪稳产保供、非洲猪瘟防控等相关政策措施筑牢基础,助力桐乡畜牧业高质量发展。 如今,信息科技带来农业产业生产方式变革,让人们享受更加智能化、便捷化的社会化服务。除了生猪的智能化养殖监管,现在桐乡市“生猪精密智管”平台还接入了全市犬、猫等动物检疫,犬、猫产地检疫数字化应用后,犬、猫饲主只需线上申请,即可完成检测、开证“一键达成”,大大优化了服务流程,减少了饲主来回跑腿,办理体验更加现代化。 现代化的乡村发展离不开人和社会化的创新服务应用。随着国家数字乡村发展战略的大力引导支持,托普云农积极实践乡村数字化服务系统建设工程,基于多年农业行业深度理解,先后探索出仙居“亲农在线”、浦江“超级农场”、桐乡“田保姆”等一批创新服务应用,通过技术手段实现场景互联、客户互联、交易互联等,打造数字乡村“最(zui)佳实践”共享共用模式,让用户体验更智能,让乡村发展更有内生动力。
  • 863计划被动光学高光谱强度关联成像技术课题通过验收
    p  2017年7月28日,863计划地球观测与导航技术领域先进遥感技术主题“强度关联遥感成像技术研究(二期)”项目下设课题“被动光学高光谱强度关联成像技术”顺利通过技术验收。/pp  为突破传统光学成像体制对光谱成像技术在探测灵敏度、光谱分辨率和空间分辨率上的原理性制约,课题牵头单位中国科学院上海光学精密机械研究所联合中国科学院上海技术物理研究所、北京师范大学等多家单位,在国际上首次提出被动光学高光谱强度关联成像技术,经过三年技术攻关,突破了随机相位编码器的优化设计、随机色散光谱分光光路设计、高效快速三维多光谱图像重建算法等关键技术,成功研制出具有原创性自主知识产权的单次曝光高光谱强度关联成像外场试验样机,并完成了基于浮空平台的典型应用场景成像试验,充分展示了这一全新光谱成像方案的高速、高效获取光谱分辨图像信息的能力。课题组还在单光子探测灵敏度的强度关联光谱成像技术、光参量无噪声图像放大技术在超高探测灵敏度强度关联遥感成像中的应用、强度关联成像系统图像获取能力定量描述、系统优化设计和图像重构、以及光学强度关联成像体制的性能评价指标体系构建等方面取得了一系列国际一流的理论和实验成果。/pp  单次曝光高光谱强度关联成像技术具有高探测灵敏度、高图像信息获取效率及高光谱和空间分辨率等优点,在资源环境、灾害评估等领域,该技术可以弥补现有光谱遥感成像技术的不足,可以在弱光源及其它不良天候环境下获取高光谱遥感影像,更好地满足城市安全、土地资源监测、自然灾害、林业、农业、水利、环境等众多遥感应用领域的需求。/pp/p
  • 数字赋能推动乡村振兴 托普云农数字化项目独占两元
    为推广浙江省数字赋能典型实践经验,推动各地互学互鉴,学学相长,日前,浙江省发展改革委公布了首批数字赋能促进新业态新模式的典型企业和平台名单。其中,入选数字农业领域的7个案例中,浙江森特信息技术有限公司(托普云农全资子公司)作为项目支撑单位打造的数字化项目独占两元——浦江葡萄“超级农场”与桐乡“数字牧场”。 浦江“超级农场” 甜蜜“智”富路 金华市浦江县拥有500年种植葡萄的历史,到如今葡萄已经成为浦江农业的第(di)一大产业。浙江森特信息技术有限公司(托普云农全资子公司)作为项目支撑单位,通过数字赋能“超级农场”,创新使用农场“数字孪生”技术、全面汇集农事Al专家、全新使用农事行为自动捕捉。以全方位3D影像呈现农场真实场景,基于数字化设备对葡萄生长的全方位数据采集,农事AI专家全自动给出生产建议与种植情况结果分析。 通过自动化数字种植管理技术,浦江“超级农场”降低人工成本 90%以上,降低农事失误率 90%以上,每年总体有效节约劳动力投入、农资投入等成本30%。全新打造的智慧葡农“一键通”应用,将葡农贷款、补贴申请、项目申报流程再造,推动业务流程重塑。 从“面朝黄土背朝天,风吹日晒满身土”的传统种植方式,到“手机点一点、不见人奔忙”的现代化生产模式,浦江葡萄种植在数字化技术加持下,真正成为富农产业。 桐乡“数字牧场” 智养“二师兄” 为推进畜牧业高质量发展,桐乡市以乡村振兴为引领,规划建设数字化牧场,盯紧生猪增产保供目标任务,联合浙江森特信息技术有限公司(托普云农全资子公司),打造桐乡“生猪精密智管”应用,给每头猪一张专属“电子身份证”,认真养好每头“二师兄”。 “生猪精密智管”应用依托生猪智能生物耳标的信息采集监测和数据自动传输功能,重构养殖模式,建立预警体系、打通生猪生产与金融、保险等的关联数据,实时采集动物行为感知分析、动物生命体征信息感知等数据,并对养殖异常状况作预警提示。通过对生猪饲养、防疫、检疫、屠宰、调运、无害化处理等环节的精(jing)准监管,解决过去养殖用工量大、效率低、产销信息不及时等难题,让生猪生产管理更加智能精细,让政府监管服务更加高效便捷。 数字赋能农业发展,智慧助力乡村振兴。不止浦江葡萄“超级农场”、桐乡“智慧牧场”,依托强大信息化服务能力和品牌影响力,托普云农不断锻造数字化精品应用,比如,仙居杨梅“产业大脑”、兰溪“柚香畲风”数字果园、重庆南川区数字茶园、四川安岳国家现代农业产业园等等,通过一批可复制可推广的农业新业态新模式,打造乡村振兴的科技样板,让数字经济红利更好惠及广大农民群众。
  • 重磅|蔡司全新拉曼-电镜关联系统RISE隆重上市
    p  近期,蔡司在北京正式发布了全新Sigma300-RISE关联显微镜系统。作为一家拥有170多年历史且专注于显微技术研发的企业,蔡司从未停止其与科研俱进的脚步。/pp  与德国Witec公司合作,蔡司对共焦Raman显微镜系统进行了改进,实现了快速Raman成像(Fast Raman Imaging),并成功将其集成到现有的SEM平台上,实现了关联SEM-EDS-Raman成像分析能力。至此,继EDS,EBSD, CL, EBL等各种分析与材料改性功能后,蔡司SEM平台的新家族成员 – RISE(Raman Imaging Scanning Electron Microscope),即关联SEM-Raman显微镜系统的加入,为您的科研提供了全方位的解决方案。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/42e0a1eb-9f6e-4447-b99a-838c0b8e3fc2.jpg" title="1.jpg" alt="1.jpg" style="width: 450px height: 300px " width="450" vspace="0" height="300" border="0"//pp  作为全新的关联分析解决方案,蔡司Sigma300-RISE系统不仅能够实现FESEM和传统共焦Raman分析的所有功能,同时还带来了更为高效而强大的分析能力:/pp  ■ 基于蔡司独特Gemini技术的高分辨、高兼容性FESEM/pp  ■ 基于蔡司高性能光学显微镜Axio Scope的共焦Raman显微镜/pp  ■ 快速的2D和3D Raman成像,与传统Raman Mapping相比极大地提升了成像速度/pp  ■ SEM, EDS, Raman图像的位置关联与重合,实现真正的原位多角度分析/pp  先进的一体化设计保证了整个系统的稳定性,在测试过程中样品始终处于SEM腔室中,同时快速的原位关联技术保证了测试的精确性与高效性,从而使蔡司SEM-RISE关联显微镜系统能够广泛应用于材料科学(纳米材料,二维材料,高分子材料,碳材料,生物材料研究等),半导体,地质,矿物分析,生命科学,制药,能源等领域。/pp  strong应用案例:/strong/pp  ▲ 有机聚合物的相分离/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/e7bc3978-cdb8-4d63-9ebf-9c963074ceee.jpg" title="2.jpg" alt="2.jpg" style="width: 450px height: 314px " width="450" vspace="0" height="314" border="0"//pp  通过蔡司Gemini优秀的低电压成像技术对PMMA/PS聚合物进行成像,并使用关联共焦Raman显微镜对PMMA和PS两种成分进行区分。/pp  ▲ 二维材料的表征/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/152d68d9-2593-4dbb-9d8b-4cdc7a3d41f5.jpg" title="3.jpg" alt="3.jpg" style="width: 450px height: 338px " width="450" vspace="0" height="338" border="0"//pp  通过SEM与Raman成像的关联实现对不同层数石墨烯的表征,以及石墨烯层间扭曲角度的分辨/pp  ▲ Li离子电池研究/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/2bede61b-d176-4494-8659-86af3bc16293.jpg" title="4.jpg" alt="4.jpg"//pp  SEM-EDS-Raman共同关联,对Li离子电池的正负极材料,以及电池隔膜在电池老化过程中的变化进行分析/pp  ▲ 矿物分析/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/90c79e67-7a9c-4d96-a786-14881569fdce.jpg" title="5.jpg" alt="5.jpg" style="width: 450px height: 338px " width="450" vspace="0" height="338" border="0"//pp  对铁矿石中不同矿物相的分离,以及对同一矿物不同相晶体取向的表征/pp  目前,蔡司Sigma300-RISE关联显微镜系统已经在蔡司北京客户中心安装完成并投入使用,欢迎各位老师莅临交流。/p
  • 最新Science:二维材料内电子强关联证据首现
    来自美国麻省理工学院(MIT)的科研人员在最新一期《科学》杂志上撰文指出,他们首次直接探测到二维材料内电子之间的强关联作用,而且测量出了这种排斥力的大小。最新研究有望帮助科学家设计出奇异的功能材料,比如非常规超导体等。近年来,物理学家发现,包括“魔角”石墨烯等在内的一些二维材料可以根据施加的电压改变电子状态,从金属“变身”为绝缘体甚至超导体。尽管促使这种材料“变身”的潜在物理机制仍是未解之谜,但物理学家们怀疑与“电子关联”——两个带负电荷电子之间的相互作用有关。这种排斥力对大多数材料的性质几乎没有影响,但可能是影响二维材料性质的主要原因。了解电子关联如何改变电子状态,可以帮助科学家设计出奇异的功能材料(如非常规超导体)。现在研究人员首次揭示了一种名为ABC三层石墨烯的二维材料内电子关联的直接证据,最新研究主要作者、MIT助理教授鞠龙(音译)说:“更好地理解超导性背后的物理学,将使我们设计出能改变世界的设备,从零损耗能量传输到磁悬浮列车等。”墨烯类似于研究更深入的魔角双层石墨烯(由六边形排列的碳原子晶格制成)。在最新研究中,鞠龙团队首先合成了ABC三层石墨烯样品,创造出带有能阱的超晶格,随后使用自己开发的独特光学技术确认这种材料确实拥有一个“平带”结构——其间所有电子的能量几乎相同,他们认为正是这一结构影响了材料的性质。然后他们稍微调低电压,使晶格中每个阱中只有一个电子。在这种“半填充”状态下,材料被视为莫特绝缘体(一种奇特的物质状态),材料应该能像金属一样导电,但表现为绝缘体。在此过程中,他们首次直接检测到这种特定莫特超晶格材料中的电子关联,并测量其强度约为20毫电子伏。结果表明,强电子关联是这种特殊二维材料的物理基础。
  • 关联方竞争之危 川仪股份IPO增长存水分
    16年前资产上市,三年后因连连亏损而卖壳、资产退出上市公司,如今退市资产再度闯关IPO,这就是重庆川仪自动化股份有限公司(简称“川仪股份”)。  千龙网证券研究室发现,如今改头换面的川仪股份资产质量依然饱含风险,利润增速因税收优惠与土地资产处置存在水分之外,利润贡献率位列第三的优质资产横河川仪却为有着竞争关系的日方企业即日本横河绝对控股。  关联方竞争之危  川仪股份目前主要从事工业自动控制系统装置及工程成套的研发、生产、销售、技术咨询、服务等业务,具体可划分为7个单项产品和系统集成及总包服务,其中7个单项产品分别是智能执行机构、智能变送器、智能调节阀、智能流量仪表、温度仪表、控制设备及装置和分析仪器。  川仪股份为重庆市国企,不过,日本横河电机株式会社(简称日本横河)持股7.12% 同时双方还有合资公司横河川仪,分别占比40%、60%。  千龙网证券研究室发现,川仪股份在2009年、2010年、2011年向关联方横河川仪的采购金额分别为1.78亿元、2.31亿元、3.08亿元,分别占川仪股份当年采购总额的10.49%、10.53%、11.57%,不论采购金额还是采购占比都成上升态势,虽然占比不是太大,但也“量比齐升”。  对于上述关联采购,川仪股份称,报告期内,公司与横河川仪发生的关联采购是向横河川仪采购变送器,采购产品的价格标准与横河川仪向其他非关联公司销售同类、同型号产品执行的价格标准基本相同。  资料显示,2010年6月,川仪股份从控股股东四联集团手中收购横河川仪40%股权。横河川仪主要从事差压、压力变送器、记录仪、分析仪、工业自动化控制系统及其他工业仪器的生产、销售。截止2011年末,横河川仪总资产5.69亿元、净资产2.65亿元、当年实现净利润5585.46万元,净资产收益率达 21.1%。  2011年,横河川仪对应为川仪股份贡献了2234万元利润,这仅次于川仪股份全资子公司川仪调节阀公司2928.88万元与川仪分析仪器公司2862.40万元的利润贡献。  而在2009年、2010年、2011年,川仪股份扣除非经常性损益后的加权平均净资产收益率分别为12.54%、16.05%、15.39%,均低于横河川仪。作为川仪股份上游、同行的横河川仪,净资产收益率高出横河川仪不少,也让投资者感觉蹊跷。  此外,千龙网证券研究室还发现,川仪股份有总经理、财务负责人、董秘等5个高管同时在横河川仪担任高管,并有多人现在或曾在四联集团担任(过)高管。  如此两块牌子一套人马的关系,横河川仪是否会成为川仪股份的一体外公司,而川仪股份在向横河川仪关联采购的时候,是否存在利益输送,将如何监管,这些问题对川仪股份都是巨大挑战。  处置土地粉饰业绩  资料显示,2009年、2010年及2011年,川仪股份营业总收入分别为21.49亿元、24.68亿元、30.88亿元,实现净利润分别为14277.99万元、13824.37万元和18341.93万元。  不过,千龙网证券研究室发现,上述川仪股份的净利润里面非经常性损益占比不少。实际上公司的净利增速已现颓势。  报告期内,川仪股份的非经常性损益主要是非流动性资产处置损益、政府补 助,其中,2009-2011年,计入当期损益的政府补助分别为5222.67万元、1150.21万元和1672.89万元 2011年,川仪股份非流动性资产处置损益为5853.77万元,主要是公司处置土地取得营业外收入5404.19万元。2009年-2011年,川仪股份非经常性损益净额占净利润比例分别为39.05%、14.97%和32.42%,非经常性损益占净利润比例较大。  而扣除非经常性损益后,2009-2011年,川仪股份的净利润分别为8701.76万元、11754.63万元和12395.98万元,2010年、2011年同比增幅分别为35%、0.545%,增长速度严重下滑。  对于政府补助,川仪股份称,总体呈下降趋势,政府补助对公司净利润影响也降低,同时,川仪股份称不存在对非经常性损益的依赖,但其利润里面非经常性损益占比如此之高,特别是2011年,川仪股份来处置土地取得营业外收入5404.19万元,使得公司业绩在上市前增色不少。  此外,值得一提的是,川仪股份曾于1996年登陆深交所,1999年因经营不利而卖壳,即当年将壳000607卖给浙江华立集团的后存续资产,如今其再度归来欲自主上市,保荐人为广发证券。虽然主营业务没有发生太大变化,但川仪股份招股书称,企业竞争能力发生了根本变化。  有媒体报道称,内部人士透露,对该公司证监会已经审核了近两年,是否能通过还有待观察。
  • 量子关联上转换新方案,实现超灵敏中红外光谱探测
    中红外(2.5-25 μm)波段能够覆盖复杂分子的振动和转动能级跃迁,揭示多种分子的基础吸收带和复杂化合物独特的光谱特征。因此,高效分析工具——超灵敏中红外光谱探测,成为智能生化传感、新兴材料研究、环境气体监测、高精度医学层析成像等领域的重要测量手段。近年来,随着非线性频率上转换技术的进步,基于频率上转换的中红外光谱探测技术表现出显著的科研潜力。该技术利用强泵浦光场作用于非线性光学材料,将中红外光子耦合转换至近红外或可见光波段进行探测,从而规避了现有中红外探测器噪声大的不足,成为了一种有效的中红外直接光谱探测的替代方案,有望在中红外光谱探测灵敏度、探测效率、响应速度、成本效益等方面取得重要突破。现有对中红外光谱探测系统的研究成果表明,进一步扩大中红外频率上转换技术的超灵敏、宽频段的优势,可使其更广泛适用医学、生物、国防等领域的应用。然而,基于多种非线性光学材料的宽带中红外频率上转换系统往往需要强泵浦场来提升宽带转换效率,且系统在短波泵浦模式下工作,强泵浦场导致的非线性参量噪声将覆盖中红外波段,使得实现超灵敏的宽带中红外光谱探测极具挑战。为解决上述问题,华东师范大学精密光谱科学与技术国家重点实验室武愕、陈昱、蔡羽洁等研究团队基于非简并光子对的时间-光谱量子关联技术,提出了一种低功耗、强鲁棒性的高灵敏中红外单光子光谱探测方案,实验验证了单光子水平光子通量下的中红外样品光谱测量。相关研究成果发表于Photonics Research 2022年第11期。该文章报道了一种极低光子通量条件下的中红外上转换光谱测量方案。该方案利用结合同步频率上转换技术的非简并关联光子、对时间-光谱量子关联特性实现了单光子水平的中红外上转换光谱探测,降低了强泵浦非线性噪声和环境噪声对中红外光谱测量的影响,大幅度提高单光子水平下的中红外光谱测量灵敏度和鲁棒性。图(a)展示了基于时间-光谱量子关联的宽带中红外单光子上转换光谱探测系统光路图。利用啁啾极化铌酸锂晶体中的非线性过程,自发参量下转换产生非简并宽频带的关联光子对,光子对产生率6.76×106 counts s-1 mW-1。其中,中红外信号光子覆盖3.14-3.80 μm中红外波段,提供了大于660 nm的光谱探测波长窗口。图(a)单光子频率上转换量子光谱系统图;(b)38 μm厚聚苯乙烯薄膜透射光谱实验基于同步脉冲泵浦技术实现了中红外信号光子的非线性频率上转换,验证了中红外上转换光子(0.78-0.81 μm)与共轭的近红外预报光子之间的非经典相关性得以保留,展示了基于时间-光谱量子关联的中红外单光子上转换光谱测量的可行性。利用该系统对38 μm厚的聚苯乙烯样品进行透射光谱的测量,如图(b)所示。入射样品的中红外光子通量低至每脉冲0.09光子。实验表明,中红外单光子上转换光谱与傅里叶变换红外光谱仪(FTIR)的测量结果吻合,系统的光谱分辨率约为11.4 nm(10.5 cm−1)。相比于传统FTIR光谱探测方案,基于时间-光谱量子关联技术的宽带中红外单光子上转换光谱系统,既能够利用光子对的时间关联、频率关联量子特性降低频率上转换过程中多种噪声的影响,将中红外光谱测量灵敏度推进至单光子水平;又能使单光子探测器和单色仪等元件工作在其最优的工作波段,无需受待测样品特征波长的限制,拓展了系统的应用场景。系统高灵敏、低噪声、强鲁棒性、结构简单的优势,为光敏生化样品的中红外光谱测量提供了新的技术方案。后续将进一步开展更宽中红外带宽、更高灵敏度、更高信噪比的上转换光谱成像研究。
  • 数字乡村指数百强县域榜单发布,位居榜单前十的县域都做了啥
    日前,北京大学新农村发展研究院联合阿里研究院举办《县域数字乡村指数报告》(以下简称《报告》)发布会。报告显示,浙江的县域数字乡村指数为82.6,远高于2020年平均值55分,全国第d一;会上公布的数字乡村百强县榜单上,浙江摘得第二个第d一,共有32个区县上榜,其中,德清、安吉、桐乡、余姚、武义、萧山、慈溪、苍南进入百强榜前十。 而在百强榜前十的这些强县在数字乡村建设方面有什么亮点做法,我们一起来了解。德清“有德鲜生”,“链”出农业产业新图景 位于榜首的湖州德清,依托优越的区位优势和产业资源优势,聚焦农业主体、消费者和政府侧的痛点堵点,注重多跨协同,重塑业务流程,以数字工厂的管理服务为突破口,用小切口牵引大场景,构建德清“有德鲜生”应用场景,打造完整的农产品产、供、销、配的全链条数字化服务和运营体系。 数字赋能供应端和销售端,实现农产品精j准产销对接。通过“有德鲜生”减少流通环节,缩短供应半径,本地消费者在6小时内能吃到本地优质优价农产品。安吉“惠农百事通”,“惠”办事群众很满意 位于榜单第二的湖州安吉,打造“惠农百事通”服务应用,以“农业补贴申请”为切入点,遵循“数字赋能、制度重塑”的原则,打造群众满意的数字化改革硬核成果。 “惠农百事通”服务应用切实解决了农民在补贴申请办事“验”材料、“取”结果的“堵点”和“痛点”,实现了“一次都不跑”的审批模式,农民利用数字化工具就能进行网上受理、网上办理、网上反馈,简化业务办理流程,做到补贴申请服务“全程在线”,让农民足不出户就能办实事。桐乡“生猪精密智管”,智养“二师兄” 位居榜单第三的嘉兴桐乡,盯紧生猪增产保供目标任务,打造桐乡“生猪精密智管”应用,依托生猪智能生物耳标,给每头猪一张专属“电子身份证”。让生猪生产管理更加智能精细,让政府监管服务更加高效便捷。 通过数字赋能,重构养殖模式、建立预警体系以及打通生猪生产与金融、保险等的关联数据,解决了过去养殖用工量大、效率低、产销信息不及时等难题,及时预防疾病,减少损失。为养殖企业提供精细化、智能化、便捷化的贴心服务,也撬动了畜牧业数字化改革的再深化。萧山“蔬”香萧山,拎稳人民的“菜篮子” “蔬”香萧山蔬菜保供数字化项目以产业地图为基础,以政策补贴为抓手,聚焦蔬菜保供各环节的业务协作、保供监管、保供手段等问题,通过创新机制体制、拟定政策制度、重塑业务流程、共享蔬菜数据,进一步提升蔬菜保供跨部门联动能力,实现蔬菜产地高质量生产、政府保供精j准化管理。 “蔬”香萧山为市场提供了数字化蔬菜保供新模式,平时保障、战时应急,稳稳地拎住人民的“菜篮子”。 以上就是各区县农业农村局联合托普云农全资子公司——浙江森特信息技术有限公司共同打造的部分代表案例。 数字乡村建设是深入实施乡村振兴战略的具体行动,是推动农业农村现代化的有力抓手。得益于浙江互联网大省和数字经济发展先发地的良好发展环境,浙江数字乡村建设具有独特的优势和良好的基础。去年以来,浙江以数字化改革为牵引,在农业农村领域取得了丰富的“硬核”成果。例如,以省农业农村厅、各地市农村农村局牵头,浙江森特等农业科技企业作技术支撑,打造的浙江乡村大脑、长兴县乡村大脑、桐乡数“智”乡村等。通过高标准谋划总体架构,建立统一的区域农业农村时空图服务平台,夯实数字底座。以先进的信息技术推进区域跨部门、跨层级、跨区域、跨主体的“三农”数据“全面共享、互联互通”。 在浙江,还有例如“梅”好兰溪产业大脑,浦江“超级农场”、仙居“亲农在线”服务应用、衢江防返贫监测预警等典型的数字化改革成果,推动着乡村信息基础设施不断夯实、乡村产业加快发展、乡村监管服务日益完善、乡村治理持续推进。 顺应时代趋势,浙江省准确把握数字化改革新机遇新要求,加快数字乡村“新基建”,扩大数字技术推广应用,大力提升数字化生产力,抢占数字乡村制高点,为农业农村现代化先行省建设注“智”赋能,让广大农民共享数字红利。
  • 大连化物所发现化学污染物暴露与慢性疾病风险间的新关联
    近日,大连化物所高分辨分离分析及代谢组学研究组(1808组)许国旺研究员团队与中国疾病预防控制中心营养与健康研究所、华中科技大学同济医学院合作,在化学污染物暴露对慢性疾病的风险研究中取得新进展,发现了血清中全氟化合物残留与高尿酸血症风险呈显著正相关,在代谢水平上揭示了血清中外源化学残留与慢性疾病风险关系的机制。  慢性疾病已成为人类健康的一大杀手,肥胖、高血压、糖尿病、高尿酸血症和血脂异常等重大慢性疾病的发病率高达10%至30%,且呈逐渐上升的趋势。越来越多的研究表明,环境暴露因素是不容忽视的慢性疾病危险因素。然而血液中环境来源的有害物质与重大慢性疾病的关联仍不清楚。  针对此问题,研究团队收集了上述5种重大慢性疾病共计496例血清样本,采用高分辨质谱技术分析血清中106种农兽药化学污染物的含量及内源性代谢物的改变,揭示了这些风险物质与疾病发生发展的关系;利用暴露组-代谢组关联研究策略,结合中间相遇原则探究了血中化学残留物与慢性疾病之间的关系,发现全氟化合物暴露与高尿酸血症的风险呈正相关,脂质不仅与全氟化合物暴露呈正相关,而且是高尿酸血症的危险因素。研究还发现,关键中介代谢物(肌酸、肌酐及磷脂类等)介导了25%-68%的暴露与疾病风险关系。暴露组-代谢组关联研究从代谢的角度阐明了环境来源的化学物质与慢性疾病的关联及相关机制,为疾病的发生发展提供了深层次的病因学认识,有助于疾病的早期发现及预警标志物的识别。  相关研究成果以“Metabolome-wide Association Study of Serum Exogenous Chemical Residues in a Cohort with 5 Major Chronic Diseases”为题,于近日发表在《环境国际》(Environment International)上。该工作的第一作者是大连化物所1808组博士研究生由蕾。上述工作得到了国家重点研发计划、大连市重点基金、中国科学院青年创新促进会、我所创新基金等项目的资助。(文/图 由蕾)  文章链接:https://doi.org/10.1016/j.envint.2021.106919
  • 俄罗斯将于2013年2月15日强制执行海关联盟(CU)新认证制度
    俄罗斯、白俄罗斯与哈萨克斯坦组成的海关联盟(Customs Union,CU)共同遵循的第768号低电压设备安全技术法规将自2013年2月15日开始强制执行。该技术法规涉及的产品范围非常广泛,涵盖电压在50V-1000V ac以及75V-1500V dc 的电气产品,包括家用电器、音视频产品、信息技术设备、照明设备等。认证证书的有效期为五年。该技术法规的实施进程如下:  2011年9月2日前取得的认证证书可继续使用到证书有效期结束。  2011年9月2日至2013年2月15日期间取得的证书,有效期到2015年3月15日。  从2013年2月15日起,凡属于海关联盟(CU)管辖下的产品,必须申请CU认证。届时,三国将中止颁发原有各自独立的认证证书,包括俄罗斯的GOST-R证书。也就是说,俄罗斯必须于2013年2月15日完成GOST-R认证向CU认证的转换。
  • 与冻干机用户价值关联 博医康用服务赢得信任
    随着市场规模的扩大,冻干机市场的竞争日益激烈。在这种情况下,坚持以客户为根本,将客户利益与自身价值相关联的北京博医康,用自己的实际行动,用更为全面的服务赢得了客户的信赖。  在市场竞争愈发激烈的今天,企业与企业之间的比拼,除了产品和营销之外,更全面的服务已经成为了必不可少的条件。而深谙此道的北京博医康,在不断提升产品品质的同时,也将服务升级作为了企业重要的责任。客户是企业的衣食父母,失去了客户就是丢掉了企业的饭碗。认识到此点,博医康从客户关系入手,从建立开始,进一步跟进了解客户动态,时刻掌握客户的需求计划,加强沟通与交流,及时提供贴身贴心的延伸服务,从而真正实现互惠共赢之目的。  作为国内冻干机生产制造的代表企业之一,博医康的客户可谓遍布国内,在对冻干机产品不断升级换代的同时,客户服务的升级也就成为了博医康发展之路上的重大课题。为了更好服务于客户,博医康已经建立了一支功能完备的服务团队。从售前的产品咨询,技术问题释难,到售后的技术培训,冻干工艺支持,以及设备维修维护等环节,都有专业的工作人员随时待命。  将客户利益与自己相连,让博医康背负起客户服务这一责任的同时,也让企业与客户的目标得到了统一。产品与服务并重,不断在服务升级上有所行动的博医康,自然也收获了广大用户的认可和支持。
  • 南昌大学预算1730万采购4套代谢/蛋白组学研究质谱(附详细技术指标)
    p  日前, 江西省南昌大学食品学院发布发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目,预算1730万采购4套质谱系统,其中2套蛋白组学研究质谱,2套代谢组学研究质谱,并给出了详细的技术指标:/pp  项目编号:JXDY2020-G0067/pp  项目名称:南昌大学食品学院发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目/pp  预算金额:1730.0000000 万元(人民币)/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 103px " src="https://img1.17img.cn/17img/images/202011/uepic/2a157889-5108-4b77-aaed-ddcd0f71e19d.jpg" title="微信图片_20201118100404.png" alt="微信图片_20201118100404.png" width="600" height="103" border="0" vspace="0"//ppstrong  技术要求/strong/pp strong 一、代谢组学研究质谱:/strong/pp  1.基本配置要求:/pp  1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。/pp  1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软/pp  件,全景定量采集模块软件各两套。/pp  1.3代谢组学软件:2套/pp  1.4系统实时校正系统:2套。/pp  1.5专业版 Microsoft Office 2016软件:2套。/pp  1.6工作站电脑:2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬盘,DVD-RW,23″/pp  液晶显示器,正版Windows10操作系统。/pp  1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB/pp  DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume,/pp  8x DVD+/-RW Slimline。/pp  1.8泵油 4 瓶。/pp  1.9二元高压混合泵:2套。/pp  1.10温控自动进样器:2台。/pp  1.11控温柱温箱:2台。/pp  1.12五通道在线脱气机:2 套。/pp  1.13配套大型氮气发生器:1套。/pp  1.14配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。/pp  1.15 C18 色谱柱:2根。/pp  1.16 2 mL 样品瓶:200个。/pp  1.17配套启动试剂及工具包:2套。/pp  2.质谱联用仪要求技术指标:/pp  2.1 质谱主机:精确质量数四极杆-飞行时间质谱仪。/pp  2.2质量范围(m/z):5-40000amu或更宽。/pp  2.3分辨率:扫描速度 60张谱图/秒时分辨率≥40000 FWHM。/pp  2.4离子源:/pp  2.4.1清洗离子源时不影响系统真空。/pp  2.4.2电喷雾源(ESI)。/pp  2.4.3 ESI 源流速10 µ L~3mL/min,100%H2O无需分流。/pp  2.4.4灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N 2000:1。/pp  2.4.5 离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。/pp  大气压化学源(APCI)。/pp  2.4.6 APCI 源流速 50 µ L-3mL/min,100%H2O 无需分流。/pp  2.4.7 灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N 2000:1。/pp  2.5质谱数据采集速度:大于60张谱图/秒同时同时仪器稳定性≤1ppm。/pp  2.6检测器数据转换速率: 25GHz。/pp  2.7质量精确度:≤1 ppm。/pp  2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。/pp  2.9 DIA扫描速度 80可变窗口,最窄2 Da。/pp  2.10谱图内动态范围: 105。/pp  2.11检测器:高性能电子倍增器。/pp  2.12工作流程:具有定性、定量和同时定性定量三种工作模式。/pp  2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。/pp  2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。/pp  2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。/pp  2.13 质谱控制和数据分析软件。/pp  2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。/pp  2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。/pp  2.13.3可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。/pp  2.13.4利用进样的 MS/MSALL 数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。/pp  2.13.5分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。/pp  2.13.6定量软件和处理软件,可用于小分子和大分子肽类化合物,符合 GLP 的定量分析软件,内有多种不同的定量积分模式,帮助 您更合理的积分色谱峰,界面方便快捷。/pp  2.13.7实时质量亏损触发的 IDA 功能,一级 MS 扫描可同时接 50 个以上 MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。/pp  2.14具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集/pp  不到MSMS的弊端。/pp  2.15计算机工作站:商用电脑。/pp  2.15.1 处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。/pp  2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。/pp  2.15.3 显卡:独立显卡,显存≥1GB,具备 DVI 或 HDMI 输出接口。/pp  2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。/pp  2.15.5 I/O 接口:千兆网卡,USB3.0 接口。/pp  2.15.6 显示器:尺寸≥21 英寸,最佳分辨率≥1920× 1080,具备 DVI或 HDMI 输入接口。/pp  2.15.7 系统软件:正版 windows10专业版、工作站所需的支持软件。/pp  2.15.8 Microsoft office 2016专业版操作软件。/pp  2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB)/pp  2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW/pp  Slimline./pp  3.高效液相色谱技术要求指标:/pp  3.1二元并联高压混合泵:/pp  3.1.1流量范围:0.001~5.000 mL/min,步进 0.001 mL/min。/pp  3.1.2最大压力:18500 Psi 。/pp  3.1.3流量准确度: 0.5% 。/pp  3.1.4流量精密度: 0.05% 。/pp  3.1.5梯度混合精确度: 0.15% 。/pp  3.1.6梯度混合类型:二元高压混合。/pp  3.1.7滞后体积:≤150 μL。/pp  3.2温控自动进样器:/pp  3.2.1样品位数:不少于 110 位,同时兼容孔板及常规样品瓶。/pp  3.2.2进样体积:0.01~20μL。/pp  3.2.3交叉污染:0.005%。/pp  3.2.4进样精度: 0.15% RSD。/pp  3.2.5自动进样器还具有自动样品稀释。自动进样器温控范围:5~40℃。/pp  3.3 可冷却的柱温箱:/pp  3.3.1安全性能:具备防止误开门功能,在线监测泄露情况。/pp  3.3.2柱温箱温控范围:5~100℃。温度稳定性:± 0.1℃。温度精度:± 0.1℃。/ppstrong  二、蛋白质组学研究质谱:/strong/pp  1.基本配置:/pp  1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。/pp  1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软件,全景定量采集模块软件各两套。/pp  1.3蛋白质数据采集和分析软件:2套。/pp  1.4系统实时校正系统:2套。/pp  1.5专业版 Microsoft Office 软件:2套。/pp  1.6工作站电脑2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬 盘,DVD-RW,23″/pp  液晶显示器,正版windows10操作系统。/pp  1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume,8x DVD+/-RW Slimline。/pp  1.8泵油:4瓶。/pp  1.9二元纳升色谱泵:2套。/pp  1.10自动进样器:2套。/pp  1.11控温柱温箱:2套。/pp  1.12微流组件:2 套。/pp  1.13 上样泵:2套。/pp  1.14配套大型氮气发生器:1套。/pp  1.15配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。/pp  1.16配套启动试剂及工具包:2套。/pp  2.质谱联用仪要求技术指标:/pp  2.1质谱主机:精确质量数四极杆-飞行时间质谱仪。/pp  2.2质量范围(m/z):5-40000amu或更宽。/pp  2.3分辨率:扫描速度 60张谱图/秒时分辨率≥40000 FWHM。/pp  2.4离子源:清洗离子源时不影响系统真空。/pp  2.4.1电喷雾离子源(ESI):/pp  ESI 源流速10 µ L~3 mL/min,100%H2O 无需分流。/pp  灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N 2000:1。/pp  离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。/pp  2.4.2大气压化学离子源(APCI):/pp  APCI 源流速 50 µ L~3 mL/min,100%H2O 无需分流。/pp  灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N 2000:1。/pp  2.4.3微流离子源组件:/pp  微流离子源耐受流速范围1-200 µ L/min。/pp  配套喷雾针1-50 µ L/min和喷雾针50-200 µ L/min。/pp  2.5质谱数据采集速度:大于60张谱图/秒同时仪器稳定性≤1 ppm。/pp  2.6检测器数据转换速率: 30 GHz。/pp  2.7质量精确度:≤1 ppm。/pp  2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或/pp  S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。/pp  2.9 DIA扫描速度 80可变窗口,最窄2 Da。/pp  2.10 谱图内动态范围: 105。/pp  2.11检测器:高性能电子倍增器。/pp  2.12工作流程:具有定性、定量和同时定性定量三种工作模式。/pp  2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。/pp  2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。/pp  2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。/pp  2.13 质谱控制和数据分析软件。/pp  2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。/pp  2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。/pp  可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。/pp  2.13.3利用进样的 MS/MSALL数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。/pp  2.13.4分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。/pp  2.13.5定量软件和处理软件,可用于小分子和大分子肽类化合物,符合GLP 的定量分析软件,内有多种不同的定量积分模式,帮助您更合理的积分色谱峰,界面方便快捷。/pp  2.13.6实时质量亏损触发的 IDA 功能,一级 MS扫描可同时接 50 个以上MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。/pp  2.14 具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集不到MSMS的弊端。/pp  2.15计算机工作站:商用电脑。/pp  2.15.1处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。/pp  2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。/pp  2.15.3 显卡:独立显卡,显存≥1 GB,具备 DVI或 HDMI 输出接口。/pp  2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。/pp  2.15.5 I/O 接口:千兆网卡,USB3.0 接口。/pp  2.15.6 显示器:尺寸≥21英寸,最佳分辨率≥1920× 1080,具备 DVI或HDMI 输入接口。/pp  2.15.7 系统软件:正版 windows 10 专业版、工作站所需的支持软件。/pp  2.15.8 Microsoft office 2016 专业版操作软件。/pp  2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB)2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW Slimline./pp  3.二元纳升蛋白质分离系统技术要求指标:/pp  3.1二元高压纳流液相:采用先进的无分流模式提供恒定流量的流动相。/pp  3.2最大耐压:≥10000 psi。/pp  3.3具备纳流梯度泵,流速范围含有:100-1000 nL/min,1-50 μL/min,或具有更宽的流速范围。/pp  3.4配备自动进样器、柱温箱、进样针。/pp  3.5配备上样泵,或相关上样设计。/pp  3.6微流1-10 μL /min模块,包括柱温箱加热模块,进样针等。/pp  注:以上“技术部分”要求为实质性条款须完全响应,否则投标无效。/ppbr//p
  • 开元仪器IPO遭质疑 家族高度控制涉嫌关联交易
    开元仪器IPO遭质疑 家族高度控制涉嫌关联交易  开元仪器公司由家庭直系亲属高度控制,可能存在较大的治理结构隐患。  3月1日晚间,中国证监会网站预披露的开元仪器的首次公开发行股票招股说明书显示,开元仪器是一家主要从事煤质检测仪器设备的研发、生产和销售的公司,拟发行不超1500万股,发行后总股本6000万股,拟于深交所创业板上市。平安证券是其保荐人。  记者查阅招股说明书发现,这家公司由家庭直系亲属高度控制,可能存在较大的治理结构隐患。同时,公司发展经历和业绩也存在诸多疑问。  开元仪器系罗建文、罗旭东、罗华东等48位自然人发起成立。罗建文持有开元仪器1553.40万股,占公司总股本的34.52%,为公司实际控制人。  招股说明书披露的信息显示,罗旭东和罗华东为孪生兄弟,分别担任开元仪器副董事长和董事、总经理。两人各自持有开元仪器1059.14万股,各占公司总股本的23.54%。罗建文和罗旭东、罗华东父子三人共持有开元仪器81.6%的股份,另外,文胜为罗建文连襟,持有该公司0.21%股份,四人共计持有股份达81.81%。  公司前身为长沙开元仪器有限公司,其源头则是长沙县煤质电脑仪器厂。按照招股说明书描述,长沙煤质成立于1992年3月12日,根据当时的实际情况,以集体企业的形式挂靠在长沙县望新乡政府。该厂设立时的出资全部为私人出资,叶其山、罗奇英、常志忠、常志红、陈奇戈五名自然人共筹资11万元,并通过验资确认。五位自然人中,罗奇英为罗建文养女 叶其山现为开元仪器子公司平方软件的销售顾问 其他人身份不明。在2010年开元仪器增资时,叶其山持有6万股。
  • 全国污染源将进行第二次摸底 官方强调不得瞒报
    p  经李克强总理批准,国务院日前印发《关于开展第二次全国污染源普查的通知》(以下简称《通知》),决定于2017年开展第二次全国污染源普查。《通知》要求,任何地方、部门、单位和个人都不得迟报、虚报、瞒报和拒报普查数据,不得伪造、篡改普查资料。各级普查机构及其工作人员,对普查对象的技术和商业秘密,必须履行保密义务。据了解,上次全国污染物普查在2007年,依据《全国污染源普查条例》规定每10年开展一次普查。/pp  释疑/pp  strong1 全国污染源普查些什么?/strong/ppstrong  包括农业工业生活污染源等/strong/pp  《通知》明确,开展普查掌握各类污染源的数量、行业和地理分布情况,了解污染物产生、排放和处理情况,建立健全重点污染源档案、污染源信息数据库和环境统计平台,凡在中国境内有污染源的单位和个体经营户均属普查对象。包括:工业污染源、农业污染源、生活污染源、集中式污染治理设施、移动源及其他产生、排放污染物的设施。普查内容包括基本信息、污染物种类和来源、污染物产生和排放情况、污染治理设施建设和运行情况等。/pp  普查的标准时点为2017年12月31日,时期资料为2017年度资料。/pp  本次普查共分为三个阶段进行,第一阶段,2016年第四季度至2017年底,开展普查前期准备工作,重点做好普查方案、技术规范的编制和完善、开展普查工作试点以及培训宣传等工作。第二阶段,从2018年初开始,各地组织开展普查和数据库建设,年底完成普查工作。第三阶段,2019年,组织对普查工作进行验收、数据汇总和结果发布。/pp  strong2 普查对象应有哪些义务?/strong/ppstrong  不得阻挠调查隐匿篡改记录/strong/pp  国家机关、社会团体以及与污染源普查有关的单位和个人,应当依照《中华人民共和国统计法》《全国污染源普查条例》等有关法律、法规及《通知》精神,积极参与、配合污染源普查工作。污染源普查对象有义务接受污染源普查机构和污染源普查人员依法进行的调查,应当如实、按时填报污染源普查报表,不得虚报、瞒报、拒报和迟报污染源普查数据。/pp  污染源普查对象应当及时提供与污染源普查有关的资料。在县级以上各级政府普查机构派出的普查人员依法进行调查时,应当积极配合,如实反映情况、提供数据,不得拒绝、推诿和阻挠调查,不得转移、隐匿、篡改、毁弃原始记录、统计台账、普查报表、会计数据及其他相关数据。普查对象不履行相关义务的,将承担相应的法律责任。/pp  strong3 此次普查的难点有什么?/strong/ppstrong  要进一步分析环境污染状况/strong/pp  污染源普查除具有经济普查、人口普查和农业普查等全国性普查的一般性特点外,还有两个突出特点:一是涉及面广,只要有生产生活活动,都会有污染物的产生,而这些活动又涉及不同的部门、行业,涉及不同的利益主体,而有关各类活动主体的信息分散在不同的管理部门,必须充分调动和发挥各部门的力量,这项工作才能做好,才能有成效。从这个意义上来说,普查实施对多部门统筹协调的要求非常高。/pp  污染源普查的另一个特点是:专业性强,技术要求高。本次普查不仅要查清全国工业污染源、农业污染源、生活污染源、集中式污染治理设施、移动源及其他产生、排放污染物的设施等各类污染源的数量、行业和地区分布,主要污染物种类及其排放量、排放去向、污染治理等情况,还要进一步分析掌握现阶段我国环境污染状况、污染对环境影响范围和程度、污染变化趋势,以及污染的治理能力和现状。/pp  strong4 如何保证普查数据准确?/strong/ppstrong  多数据对比保障“不能造假”/strong/pp  为保障普查数据的准确性,将建立数据质量控制体系,制定数据质量管理技术规定和相关工作细则等制度,从普查方案设计、普查人员选调和培训、污染源清查、普查表填报、普查数据审核汇总、处理和上报的全过程进行质量监控。提升卫星遥感、无人机等调查手段和互联网、移动终端等信息化技术的应用,同时将普查数据与其他相关领域的关联数据信息进行比对验证,在提高普查效率、减少被调查对象负担和调查成本的同时,保障普查数据的质量。/pp  全面贯彻实施依法普查的要求,依法追究各类主体数据造假责任,从顶层设计上建立“不敢造假”的制度环境。在普查过程中,通过与宏观社会经济数据、卫星遥感调查数据、环境监测数据和环境统计历史数据及其他专项调查数据相比对,使各类主体“不能造假”。/pp  链接/pp  全国首次普查污染源592万个/pp  记者了解到,首次全国污染源普查是2007年度,距今已过去10年时间。这也是中国第一次采取全国普查的方式来摸清环境家底。/pp  2010年2月6日,环保部、国家统计局、农业部经过两年多的努力发布了第一个全国污染源普查公报。/pp  公报显示,全国普查对象总数为592.6万个,包括工业源157.6万个、农业源289.9万个、生活源144.6万个、集中式污染治理设施4790个。/pp  各类源废水排放总量2092.81亿吨,废气排放总量637203.69亿立方米。主要污染物排放总量:化学需氧量3028.96万吨,氨氮172.91万吨,石油类78.21万吨,重金属(镉、铬、砷、汞、铅)0.09万吨,总磷42.32万吨,总氮472.89万吨 二氧化硫2320.00万吨,烟尘1166.64万吨,氮氧化物1797.70万吨。/pp  从普查结果反映出的环境问题看,既有过去熟知的一些情况,如工业污染结构突出,集中在少数行业,经济发达地区污染物排放总量大等,也有不少通过普查反映出来的突出问题,如农业源对水污染的影响大,机动车排放污染物对城市大气污染影响大,污泥和垃圾渗滤液无害化处理率低,固体废物产生量大等问题。/p
  • 见证测序能力的重大改变
    三位大师阐述高通量和群体测序对临床研究的影响以及他们在未来医疗中扮演的角色 引言测序技术已大大超出了Carlos Bustamante、Stephen Kingsmore和John Mattick三位博士的预期。如果你在他们职业生涯刚开始时询问他们,是否有一天我们能在一天内测序人类全基因组,他们的反应分别是:“疯言疯语!”,绝对不可能”以及“做梦也不敢想”。尽管测序创新的速度让他们惊讶,但每个人都迅速采用了新一代测序(NGS)和如今的群体测序,以便推进他们的科研和转化工作。作为遗传学和生物医学数据科学的教授和斯坦福计算机、进化和人类基因组学中心的创始主任,Bustamante博士正利用群体测序来了解古代和种族亚群中的遗传变异。Kingsmore博士最近新任Rady儿童医院基因组医疗研究所的总裁兼CEO,他正利用测序来开发儿童基因组医疗的证据基础。作为Garvan医学研究所的执行主任,Mattick博士正带头利用群体测序数据开展研究和临床应用。iCommunity此次与Bustamante、Kingsmore和Mattick三位博士对话,聊聊他们的团队如何利用高通量的人类全基因组和群体测序来推进科研和转化研究,融合“组学”和表型数据的数据库的要求,以及将这一信息转化成对临床环境有用的格式所面临的挑战。从左到右:Carlos Bustamante博士是遗传学和生物医学数据科学的教授,以及斯坦福计算机、进化和人类基因组学中心的创始主任;Stephen Kingsmore博士是Rady儿童医院基因组医疗研究所的总裁兼CEO;John Mattick博士是Garvan医学研究所的执行主任。 在您刚成为科学家时,测序技术是什么样的?John Mattick (JM):我对测序的第一印象是看见放射自显影图上的条带。这是分子生物学的早期。我们正在克隆和测序基因。我当时认为,我们是高手。我们只能从胶上读取几百个碱基,之后条带挨得太近无法区分。我们组装成1-2 kb长的序列,每条序列都能发一篇论文。现在回头看,这似乎太原始了。Stephen Kingsmore (SK):我的测序体验是从放射性的p32标记以及琼脂糖和聚丙烯酰胺凝胶开始的。一个了不起的测序反应是150个核苷酸,而那要花去大半天。Carlos Bustamante (CB):我成为科学家时,自动化测序正在开发中,因此我开展了一些手动测序,之后在第一代测序仪上进行大量的测序。我初次体验是在史密森学会实习时,他们刚刚建立了分子系统学实验室。那时,测序多名个体的几个基因可是大工程。 当工具改进时,您的测序方法如何改变?CB:一开始,我们将每个片段的数据都看得很宝贵。当Celera开始进行早期的外显子组测序时,他们对20万个样品进行PCR,并测序39个人的2万个基因。我想,“这是一个数据集!我们一直在等待这个。”我们停下了手头的工作,花了4-5年的时间来研究这39个外显子组,并发表了8-9篇论文,以不同的方式分析数据。这种思维模式已经被颠覆了。如今,我们利用NGS不断地快速生成数据,然后担心它意味着什么。 当新一代测序(NGS)工具被引入时,您多快将其引入研究?CB:NGS快速成为我们研究中的重要工具。我们是猕猴和猩猩基因组计划中的一部分,其中我们分析多态性数据。我们也是千人基因组计划最初的分析小组之一,设计美洲的采样,确定2x-4x测序的价值,以及变异频率的界限。SK:NGS系统上市没多久,我们就开始使用了。那是激动人心的日子。我们将邮件收发室改为NGS实验室。关于人类基因组,人们知道得还不多,因此我们每项研究都在发现新东西。JM:多年来,我一直是基因组学新技术的早期采用者。与Craig Venter一样,我是Molecular Dynamics的Megabase测序仪的早期客户之一。Garvan研究所是最早购买HiSeq X™ Ten系统的3家机构之一。“获得精确变异信息的唯一的方式是获取数十万个基因组的准确变异信息,这样我们才能评估我们所看到的每个变异的频率。” 您早期的测序工作如何影响您目前研究的重点?CB:在早期,我们研究感兴趣的基因中的多态性和变异。在我的博士论文中,我分析了当时最大的基因组数据集,它包括对多只果蝇测序的25个果蝇基因和对多株植物测序的15个拟南芥基因。我们查看氨基酸的差异以及有利和有害突变的积累。从那时起,我开始考虑创建人类序列的大型数据集,这样我们就能以同样的方式分析。SK:在国家基因组资源中心的时候,我们利用早期NGS来测序植物和病原体的转录组,后来是基因组,并开始测序人类样品。我们中的一些人认识到,我们在科研环境中开展的研究不久将会影响医疗保健。在环顾全国之后,3个人去了堪萨斯城的儿童慈善医院,建立第一批儿科基因组学医疗中心,并开始进行转化研究。我目前在Rady儿童医院的基因组科学研究所,在这里我们将更进一步,关注基因组系统医疗在加利福尼亚州最大儿童医院中的大规模实施。JM:高通量测序对认识人类基因组的转录复杂性有巨大影响。NGS加快了我们深入转录组的能力,让我们能够探索非编码转录本的奇妙世界,它在发育过程中以精确的方式从不同的细胞和组织的基因组中涌出。我认为人类基因组就像特别的.ZIP压缩文件。人类基因组的转录复杂性至少比基因组本身高了一个数量级,它能够以不同的方式解压缩,在不同的时间,在不同的细胞中呈现出不同的编码和非编码RNA的表达和剪接模式。没有高通量测序,我们将无法探索这个世界。“在基因组学的新世界,每个学生、每个博士后、每个实验室和每个部门都需要有能力去处理大数据。” 您现在如何使用NGS?CB:NGS已经为群体基因组学开辟了新道路。我记得曾在冷泉港会议上,我意识到千人基因组计划应包含混杂的基因组。人们质疑这一点,但我认为,若要分析和开展跨种族和多种族的研究,我们需要弄清楚如何理解混杂基因组。我们参与临床基因组资源(ClinGen)联盟的一个原因是汇集临床基因检测数据,并削弱意义不明的变异(VUS)的比例,这在某些少数人种群体中更高,仅仅是因为没有太多序列可供分析。NGS让继续追踪这些GWAS hit变得廉价且轻松。我们发现的每个氨基酸改变都是确凿的证据。显然,如果我们真的想要开发让每个人都受益的基因组医疗,我们需要拓宽人类DNA研究中的种族代表。SK:我们的重点在全基因组测序(WGS),因为这是终极的分子检测。WGS如今更快了,我们与Illumina合作,开发出一种方法,让我们能够在26小时内解码和分析整个人类基因组1。我们的目标是到明年年中,向我们新生儿和儿科重症监护室(NICU和PICU)中每个无法确诊的儿童提供快速NGS,并开展临床研究,以确定基因组医疗在儿科住院和门诊环境中的临床效用和成本效益。 HiSeq X系统让您实现了哪些研究?CB:群体测序是我一直希望达到的顶峰 – 分析多个人类基因组。我们在开展大规模的群体测序研究,以它们作为基线来回答重要的群体遗传问题,并分析结果,为临床医学带来新方法。例如,我们综合利用大规模的基因分型和测序,在秘鲁开展一项子痫前期的研究,并研究一下高原适应,因为它与子痫前期相关联。SK:利用HiSeq X系统,基因组变得便宜很多,因此我们能够测序更多的家系。目前有8000种已命名的遗传病,我们及其他人都强烈感觉到,NGS将改变我们鉴定遗传病的能力。我们希望利用HiSeq X和Illumina SeqLab设施,逐步开发证据基础来支持这一点。“我们最大的挑战就在于如何分享群体测序数据。”JM:Garvan研究所是最早将基因组学推向研究工作的中心的研究所之一,而不是作为传统分子生物学的延伸。随着基因组测序的巨大进步以及随之而来的成本下降,开展群体测序并将基因组学推向科研和临床的中心已经在经济上变得可行。HiSeq X系统如何让转化和科研工作融合,这是非同寻常的。我们一直与全世界的研究人员合作。HiSeq X Ten系统的表现很出色。除了研究单基因疾病,我们也在大型研究项目中使用群体测序,包括癌症、糖尿病、骨质疏松症、免疫学疾病、神经退行性和神经精神疾病,以及衰老。作为国际癌症基因组联盟(ICGC)的一部分,我们正开展癌症分层研究,并利用NGS阐释癌症基因组,评估家族癌症风险的遗传元素。我们对1型糖尿病的患者进行测序,以发现一生中状况良好的患者与后期患有严重并发症(如肾衰竭)的患者之间的遗传差异。在我们的衰老研究中,我们正利用群体测序来研究数千名个体,他们年事已高,但没有心血管疾病、癌症、认知能力衰退或神经退行性疾病的任何迹象。我们正在开发风险去除队列,它们可作为对照,用于罹患此病的患者的研究。利用HiSeq X Ten测序能力的其他项目包括研究患有心脏、线粒体和阿尔茨海默病的群体。 您在分享群体测序数据时有何挑战?CB:我们最大的挑战就在于如何分享群体测序数据。NIH及其他机构如今命令研究人员分享他们的数据。不幸的是,这对临床数据而言是不正确的。大多数医院都没有真正的数据分享原则。我们也生活在一个互相连通的世界,这让患者对分享信息感到不自在。因此,国际基因组学健康联盟及其他机构开发前瞻性知情同意、隐私程序以及数据管理和透明度上的最佳实践将是很有价值的。SK:当我们在Rady儿童医院测序基因组之前,父母必须签署知情同意书。知情过程的一部分是同意我们能够发表基因组。我们去除识别信息,这样就没有信息能够将基因组与儿童或父母相关联,然后信息就可以从美国国家生物技术信息中心(NCBI)的基因型和表型数据库(dbGaP)中获取,这是一个私人的数据库。研究人员只有在向NIH申请,并很好地解释他们为什么需要获取这个信息之后,才能得到数据。这似乎在隐私方面的担心和其他研究人员能够研究公开基因组的好处之间达到了良好的平衡。不幸的是,并非所有医院都有一个适当的基因组共享知情同意过程。临床研究人员需要人类全基因组序列信息来确定基准。他们想看看变异在基因组中有多常见。唯一的方式是获取数十万个基因组的准确变异信息,这样我们才能评估我们所看到的每个变异的频率。“随着基因组测序的巨大进步以及随之而来的成本下降,开展群体测序并将基因组学推向科研和临床的中心已经在经济上变得可行。”将WGS、表观基因组、转录组及其他基因组和表型数据相整合,获得不同的基因组快照,有何价值?CB:开展各种类型的组学分析,RNA-Seq、甲基化组测序等,具有重要的价值。我们仍不太理解人体的调控网络。我们如今在开展和整合组学数据吗?我想,这进行得很慢,部分原因是测序要比解释简单得多。SK:泛组学无疑具有价值,其中我们正获取全基因组数据,并将它与深度表型组、表观遗传、基因表达、代谢组和蛋白质组的数据结合在一起。测序基因组并不是游戏的结束,而是一个伟大的开始。我们开始了解,我们需要什么才能带来精准医疗。例如,我们不知道我们在基因组中发现的大多数变异在功能上意味着什么。因此,我们不能自信评估,它们是否让人体产生改变。显然,我们需要更多类型的数据,能够大规模开展这种评估。JM:临床研究和医疗的未来将围绕着大数据的整合。这不仅仅是个别的及合并的基因组数据集。这些将逐渐与转录组、表观基因组、蛋白质组,以及最重要的表型数据相融合,创建高度关联、富含信息的数据集。医疗正在快速向大数据迈进,而数万个、数十万个基因组序列的获得将使其加速。它即将改变一切。 生物信息学和数据库对挖掘群体测序的全部价值有多重要?CB:从一开始,我们就很清楚需要将测序与分析工具相结合,才能理解所有数据。通过关联和分析表型及基因型信息,我们开始揭开在静态数据中看不到的模式。人们有一种乐观的态度,如果我们能够以更严格的方式测定表型和暴露,我们就能够收集到海量的数据,帮助我们发现遗传关联。JM:我认为,生物信息学框架和数据库对整个工作很关键。它将基因组数据与正交数据集相整合,以提取宝贵的信息。我们确定的遗传模式将有助于了解个体在临床中的情况,并通过元数据的分析,了解就疾病模式、并存疾病而言的整个健康体系。群体测序并不是一件轻松的事情。在过去1-2年,我们投资了1000万美元来建立计算管道。整个组装管道有一个不断扩大的60个人团队,开展测序、组装数据、检出变异和群体之间的差异,并将数据与表型数据相关联。在基因组学的新世界,每个学生、每个博士后、每个实验室和每个部门都需要有能力去处理大数据。这终将不是专家的事。它对整个研究和医疗工作都很关键。这是一个数据驱动的世界,我们正冲向它。SK:我们在最近的研究中认识到生物信息学的价值,这项研究比较了WGS和传统基因检测在确定危重新生儿的孟德尔疾病中的效果2。为了分析数据,我们开发了一些新的生物信息学工具。论文证明了基因组测序的实用性,但我们需要基因组学的临床价值的进一步证据。我们还需要一种简化的方法将结果告知医生,不仅关系到诊断,还关系到NGS数据如何提供治疗决策。“泛组学无疑具有价值,其中我们正获取全基因组数据,并将它与深度表型组、表观遗传、基因表达、代谢组和蛋白质组的数据结合在一起。” 您需要哪种类型的数据库?JM:我们需要全国水平的基因型/表型关联数据库,它们由卫生部门维护,可供认可的研究人员和医生查询。它们必须是全国的数据库,因为每个管辖区存在特有的法律及其他要求。它们需要以某种方式与一个全球数据库相关联,这样一个国家产生的数据可在其他地方使用,并以多维度的方式探索,以便推进我们对人类生物学和疾病的了解。“我认为最广泛意义的群体规模测序将从儿童开始,可能是在出生时,以取代现在的Guthrie检查。” 创建这些数据库需要多长时间?JM:我们不可能在一夜之间对全世界的每个人测序,但我相信,十年内我们将有大型的基因组数据库。基因组数据将逐渐成为病历的一个标准部分。在理想情况下,我们将在云端拥有充分审核、基于证据的基因型/表型关联数据库,它们将被维护,并不断更新全国资源。最初的应用将是对有着严重遗传缺陷的个体进行测序,因为我们能够快速从半数病例中诊断出致病突变。癌症分层将是一个重要领域,让医生能够确定疾病的分子基础,从而更有效地治疗疾病。第三个领域将是检测药物副作用的遗传标志物,因为这对每个国家的医院体系是个巨大的负担。我们能够通过基因组信息预测和避免大部分的副作用。我们正建议澳大利亚医疗系统对每个带有发育和/或智力障碍的人进行测序,作为一线治疗。我预计,这将在2-5年内变得常规。我认为最广泛意义的群体规模测序将从儿童开始,可能是在出生时,以取代现在的Guthrie检查。新一代的儿童将是基因组一代,在他们身上选择性地开展基因组测序和分析,之后随着技术和信息的价值改善,再逐步广泛应用。 您认为WGS将成为一种常规的临床检测吗?JM:测序距离常规应用(即体检的一部分)并不遥远。测序费用将不断下降,这使得人们能够再次分析以提高某个人的基因组原始数据的准确性,融入表观基因组和转录组数据,或查看体细胞变异。随着我们更深入了解基因组中的变异对生物学和医学意味着什么,测序的价值将不断提高。测序在医学中的更广泛使用如今受到数据库的丰富性和质量的限制,这些落后于信息的分析。值得一提的是,美国医学遗传学家学会(ACMG)强制报告56个基因,因为这些可能与患者未来的健康有重要的关系。我们将开始查看充分验证的基因集合,无论是强制报告的,还是这一领域的机构自信报告给医生和患者的,随着时间的推移,这个列表将不断扩展。SK:我们有着新生儿筛查项目的丰富传统,其中每个婴儿在出生时都会进行足跟采血,检测29种疾病。一些美国的研究小组开始研究,如果我们将足跟采血换成基因组测序,那将会提供其他哪些信息。我们还不知道。“群体测序将让我们发现和鉴定与不良反应有关的临床可行动变异的整体等位基因频率。” 人类全基因组数据是否让我们离个性化医疗更近?CB:我认为,基因组测序最终将成为常规医疗的一部分,以及人们电子病历中的一部分。这是一个有趣的时代,因为我们有点处在过渡阶段。测序技术已经成熟,而人们在开展高通量测序,很快将常规开展群体测序。我们需要提出一个协商好的计划,来集合这些数据,分析它们,并尽快将其转化成健康收益。最终,我们需要为公众提供良好的投资回报。SK:未来,测序结果将带来治疗的改变。一般来说,诊断领域是属于病理学家和检验师的,而医疗实施才是医生的责任。对于基因组医疗,这两项将融合。这将是一个挑战,因为没有一方习惯让另一份来参与这些任务或信息。JM:我认为问题在于我们对基因组的了解还很有限。如今,我们只能准确报告蛋白编码序列中的一些变异的影响。从文献中收集足够的证据和数据,以便自信检出基因组其他部分中可能有医学意义的突变或变异,这是一个大工程。通过群体测序创建的全球大型数据库将支持这一工作。这些数据库将包含反映一系列突变和表型特征的序列,并允许人们通过查询来确定新样品是否反映了数据库中已存在的症状和突变。 群体测序的数据将如何改变医疗?JM:群体测序将对医疗产生深远的影响,将其从危机管理的艺术转变为良好健康的科学。我们知道,个体的基因组变异和我们的遗传特质影响了我们现在的健康,并带来了未来疾病的风险,无论是2型糖尿病、癌症、类风湿性关节炎,还是阿尔茨海默病。对许多病例而言,有备无患,这让医生和患者能够实施策略,以降低、避免或准备这些可能性。SK:我研究儿童的罕见遗传病,它们只是遗传的。我们如今有能力做出快速诊断,因此,这些疾病可能在开发和制造新药上具有成本效益。我们的希望是,基因组学在诊断复杂疾病上将逐渐变得与单基因疾病同样宝贵。这也许需要几十年才能赶上,但群体研究对缩小这一差距将是非常重要的。关于群体研究,激动人心的一件事是我们开始根据遗传学来重新定义我们描述疾病的方式,而不是根据症状。JM:群体研究将为治疗药物的开发提供信息,特别是在鉴定不良反应的遗传学上。美国一年有10万人死于处方药的不良反应3。在澳大利亚,至少2-3%的入院是由于处方药的不良反应4。CB:例如,Abacavir是一种重要的HIV药物,而研究人员已鉴定出一种与Abacavir过敏相关的HLA变异。这个变异在非洲和欧洲人中的流行程度很低,但在印度和亚洲的某些群体中却达到20%的频率5。如果携带变异的患者服用一次Abacavir,他们会变得非常虚弱。如果他们服用两次,则会死亡。群体测序将让我们发现和鉴定与不良反应有关的临床可行动变异的整体等位基因频率。瓶颈在于让医生理解药物代谢信息,这样他们将知道选择药物A还是药物B,或者将剂量减半或加倍。JM:制药公司也开始利用群体测序来鉴定过去药物试验中的异常响应者。如果他们能够将群体分层,并确定响应者的特定遗传背景,则他们能够分析相关的生物化学通路。他们不仅在挽救失败的药物,也在挽救响应患者,带来有效且可能救命的治疗。“特别是在美国,我们需要对那些健康结果最差的种族群体进行群体测序,这样保健上的负缺口才不会扩大。” 种族亚群的测序有多重要?CB:我们掌握技术来开展群体测序,这真是棒极了。然而,我们需要协调工作,让研究继续在种族亚群上开展。没有的话,重点将仍是测序大量的同质群体,如芬兰人或冰岛人。尽管这些工作很重要,但它们的收益将无法转化到所有群体。特别是在美国,我们需要对那些健康结果最差的种族群体进行群体测序,这样保健上的负缺口才不会扩大。这带来了一个挑战,因为不会有高级的行动来资助这些工作。美国政府的精准医疗行动是一项伟大的工作,但它不能与英国及其他国家的工作相比。特别是中国,它认为基因组学是他们发展计划中主要的一块。“最终,基因组信息将自动从智能设备报告到云端。这将带我们进入一个从未梦想过的境界。” 1,000美元基因组已经或将要产生哪些影响?SK:好消息是,1000美元基因组存在于群体测序中。在临床保健中,我们需要的是快速基因组测序的成本也降低至1000美元基因组的水平,这还没有实现。JM:1000美元基因组是一个实际且心理的临界点。它改变了我们考虑技术的方式以及我们认为哪些是可能的。它激发了临床和科研活动的整合,以一种我们从未想过的方式。人们如今认识到,基因组学正从一个研究工具逐渐转变成一个日常的临床分析工具。 当您刚成为科学家时,您是否相信有一天人类全基因组测序将在一天内开展?CB:我可能会说,那是不可能的。疯言疯语!SK:绝对不可能。即使让我回到我使用第一台Solexa系统测序时,我也不敢期望,我们能够如此快速地大量产生基因组。JM:做梦也不敢想。在20世纪下半叶,我们才刚刚懂得DNA长什么样,基因长什么样,并开发出原始的基因组分析工具。那时,我们所做的一切都被认为是处在前沿,的确是这样。如今,我们以超乎寻常的速度前进。21世纪将是生物学和医学的世纪。NGS与大数据的整合仍将展开,并带来可预见的未来。最终,基因组信息将自动从智能设备报告到云端。这将带我们进入一个从未梦想过的境界。这是一个精彩绝伦且激动人心的时代。我们很感激Illumina这样的公司,从技术上引领这一切。参考文献1. Miller NA, Farrow EG, Gibson M, et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Medicine. 2015 7(1) 100. do: 10.1186/s13073-015-0221-8.2. Willig LK, Petrikin JE, Saunders CJ, et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. Lancet Respir Med. 2015 3(5):377–387.3. Preventable Adverse Drug Reactions: A Focus on Drug Interactions. U.S. Food And Drug Administration. www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm110632.htm. Accessed May 16, 2016.4. Roughead L, Semple S, Rosenfield E. Literature Review: Medication Safety in Australia. www.safetyandquality.gov.au/wp-content/uploads/2014/02/Literature-Review-Medication-Safety-in-Australia-2013.pdf. Published August 2013. Accessed May 16, 2016.5. Puthanakit T, Bunupuradah T, Kosalaraksa P, et al. Prevalence of human leukocyte antigen B*5701 among HIV-infected children in Thailand and Cambodia: implications for abacavir use. Pediatri Infect Dis J. 2013 32(3): 252–253.长按指纹“识别二维码”快速关注Illumina微信号
  • 沈阳自动化所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像研究方面取得新进展,提出一种将原子力显微镜(AFM)与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法。相关研究成果(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在Advanced Science上。  在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。  为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合,实现了三种成像模式——微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。  实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了新的技术手段。  研究工作得到国家自然科学基金国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的支持。AFM和扫描微透镜关联成像示意图半导体芯片成像结果
  • 沈阳自动所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像方面取得新进展,提出一种将AFM与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法,相关成果以论文的形式(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在国际顶级学术期刊Advanced Science (中科院一区,IF= 16.806)。在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合起来,实现了三种成像模式:微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了一种新的技术手段。该研究得到了国家自然科学基金委国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的大力支持。(机器人学国家重点实验室)AFM和扫描微透镜关联成像示意图半导体芯片成像结果
  • 新污染物前沿合作系列(二)| 新型卤代多环芳烃(HPAHs)人体内暴露与健康效应关联性研究进展
    中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室张庆华研究员课题组李英明研究员等人,与岛津中国创新中心合作开发人体血清中卤代多环芳烃的气相色谱串联质谱定量分析方法,应用于母体(PAHs)及卤代多环芳烃的人体内暴露与健康研究中并取得新进展,揭示了相关暴露人群血清中目标化合物的浓度水平、性别差异、累积趋势和健康风险。研究成果以“Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks”为题,发表在环境领域国际顶级期刊《Environmental Science & Technology》(中科院JCR 1区,影响因子11.4)(DOI: 10.1021/acs.est.2c03099)。背景介绍多环芳烃 (PAHs)是一类众所周知且普遍存在的致癌物。伴随着燃料的燃烧过程,会产生一类新持久性有机污染物卤代多环芳烃 (HPAHs)。HPAHs是PAHs母环上一个或者多个氢原子被卤素原子取代的化合物,包括氯代多环芳烃和溴代多环芳烃。相较于母体PAHs, HPAHs具有更强的持久性、毒性和生物累积性,而目前其在人体的内暴露水平和潜在的健康风险间的关联尚不清晰。燃煤电厂相关人员对于PAHs和HPAHs具有较高的暴露风险,其内暴露水平以及与健康指标的关联亟待研究(图1)。图1 燃煤电厂相关人员血清中HPAHs内暴露水平和体内累积及其与健康指标的关联研究研究内容本研究采用岛津气相色谱三重四极杆质谱仪(GCMS-TQ8050 NX),建立了血清中16种多环芳烃和23种卤代多环芳烃的定量分析方法。实验结果发现超过80%的血清样本中均可检测到12种PAHs和8种氯代PAHs,以三环PAHs和一氯代HPAHs为主。燃煤电厂相关人员的血清HPAHs浓度显著高于对照组(图2),PAHs和HPAHs血清浓度随年龄和职业暴露持续时间的增加而增加,表明其在人体内的持续累积(图3)。图2 对照组和暴露组中男性与女性PAHs及HPAHs的血清浓度对比(a)和BaPeq(b)对比(C:对照组,E:暴露组;*: p 0.05, **: p 0.01)图3 全部参与者(a, d)、男性(b, e)和女性(c, f)的∑12PAHs和∑8HPAHs血清浓度与年龄和职业暴露时间(年)的相关性此外,尽管男性和女性受试者的HPAHs血清浓度差异不显著,但HPAHs各单体与各项健康指标的相关性呈现出性别差异。男性的HPAHs各单体血清水平虽与肝功能指标均呈正相关,但不显著;3-氯菲(3-ClPhe)、9-氯菲(9-ClPhe)和7-氯苯并[a]蒽(7-ClBaA)与高血压和肺功能减退呈正相关(p 0.05)。而在女性中,1-氯芘(1-ClPyr)与肝功能指标呈负相关,与空腹血糖水平呈正相关。根据苯并[a]芘当量,氯代多环芳烃中9-ClPhe、7-ClBaA和1-ClPyr具有较高的健康风险。结论基于岛津气相色谱三重四极杆质谱仪GCMS-TQ8050NX开发建立人体血清中PAHs和HPAHs的定量分析方法,通过分析人体血清中PAHs和HPAHs的浓度水平,首次揭示了燃煤电厂暴露人群血清中HPAHs内暴露水平和体内累积及其与健康指标的关系,为HPAHs的人体健康风险评估提供了证据。此外,该定量分析方法已形成岛津特色GCMS-TQ Smart MRM数据库,助力用户开展相关研究工作,为新污染物人群内暴露与健康效应关联研究提供有力分析工具。岛津气相色谱三重四极杆质谱仪GCMS-TQ8050 NX本文内容非商业广告,仅供专业人士参考。参考文献:[1] Zhao, C, et al. Ultrasensitive determination of 39 parent and emerging halogenated polycyclic aromatic hydrocarbons in human serum. Analytical Methods. 2022, 14, (14), 1430-1438.[2] Zhao, C, et al. Parent and Halogenated Polycyclic Aromatic Hydrocarbons in the Serum of Coal-Fired Power Plant Workers: Levels, Sex Differences, Accumulation Trends, and Risks. Environmental Science & Technology. 2022, 56, (17), 12431–12439.
  • 600万!南京理工大学肖特基场发射扫描电子显微镜-关联拉曼测试系统采购项目
    项目编号:ZZ0147-G22HZ0317/TC229J0LQ项目名称:肖特基场发射扫描电子显微镜-关联拉曼测试系统采购项目预算金额:600.0 万元(人民币)最高限价(如有):600.0 万元(人民币)采购需求:采购内容:肖特基场发射扫描电子显微镜-关联拉曼测试系统采购数量:1套项目概况:本项目拟采购1套肖特基场发射扫描电子显微镜-关联拉曼测试系统用于无机材料、有机材料、金属材料(包括铁磁性材料)等各类型材料的形貌观测。该系统需同时对材料进行能谱和电子背散射衍射分析,对材料的元素成分和晶体结构以及物质化学结构进行多尺度联用综合分析、表征。合同履行期限:自合同签订生效之日起10个月内交货,并安装、调试结束,验收合格,交付招标人使用。本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制