当前位置: 仪器信息网 > 行业主题 > >

观测方法与研究

仪器信息网观测方法与研究专题为您整合观测方法与研究相关的最新文章,在观测方法与研究专题,您不仅可以免费浏览观测方法与研究的资讯, 同时您还可以浏览观测方法与研究的相关资料、解决方案,参与社区观测方法与研究话题讨论。

观测方法与研究相关的论坛

  • 研究者观测到银河系中心巨大“能量喷泉”

    新华社堪培拉1月3日电 (记者王小舒)一个国际天文学团队在最新一期《自然》期刊上发表报告说,他们观测到银河系中心存在一个巨大“能量喷泉”,散发着伽马射线的大量气体从那里的超新星中喷发出来,其中的能量相当于100万个超新星爆发所产生能量的总和。 来自澳大利亚、美国、意大利、荷兰的天文研究者共同观测到这一现象。他们在报告中说,这个“能量喷泉”已存在一亿多年,它主要从银河系中心的超新星中喷射出来,而不是此前所猜测的黑洞。 研究人员通过大型天文望远镜获取的图像显示,这个“能量喷泉”分上下对称的两部分,每一部分都宽达1.3万光年,两部分相加的长度则达到5万光年,其中的气体以时速360万公里向外喷发。气体中充满带电粒子,蕴含着海量的磁场能量,这也是为什么这些气体会不断散发伽马射线。 报告的主要作者澳大利亚天文学家埃托雷·卡雷蒂说,这一发现显示,从银河系中心到边缘区域,存在大量流动的能量和强大磁场。这可能改变研究者对银晕区域的认识。银晕指包围着银河系主要可见物质、密度相对较低的扁球形银河系区域。 卡雷蒂说,天文学界此前普遍认为,银晕区域是一个“非常平静的地方”,但新发现推翻了这一观点,大量能量会不断涌入这一区域。(中国科技网)

  • 新方法可观测玻色—爱因斯坦冷凝物 宇宙最冷物体

    原标题 新方法可观测宇宙中最冷物体 科技日报讯 (记者刘霞)据物理学家组织网11月28日(北京时间)报道,玻色—爱因斯坦冷凝物(BEC)是宇宙中最冷的物体。它们也非常脆弱,即使一个光子都可以加热并破坏它们,迄今为止,科学家们一直认为无法同时测量并控制这种不可思议的物质形态。最近,英国和澳大利亚科学家组成的科研团队提出了一种新方法,不仅能最好地测量BEC的状态,还能消除因观察而产生的某些加热。相关论文发表在11月28日的《新物理学报》上。 BEC是一簇被冷却到绝对零度之上100纳开尔文的原子,在这一温度下,每个原子都失去了自己的个性,所有原子表现得就像一个粒子一样,也可以说是超原子。因为BEC非常冷,几乎没有“噪音”伴随,因此,对于研究与原子有关的物理学现象(例如探测原子结构)来说,它们几乎是完美的选择。 测量BEC最好的方式是用非共振光,这种光会被原子反射而不是像共振光那样被吸收后再发出。非共振光的波长与那些会被原子吸收再释放的光的波长迥然不同,因此它对BEC造成的破坏会少很多,使BEC更容易测量。然而,非共振光能导致某些自发辐射,这种辐射会产生加热并破坏BEC。 “这就像你试图检查冰箱是否工作,打开冰箱门却不想让冷空气出来一样。一点点热都会破坏BEC,迄今最先进的成像设备即使只给BEC照一次像也会破坏它,实验学家已经证明,BEC能在不受破坏的情况下成像的次数屈指可数。”该研究的主要作者、英国诺丁汉大学的迈克尔·哈希说:“但是,我们的研究将使得它们能多次成像,而且持续时间更长。” 他们研制出了一种过滤器和反馈系统来控制这种加热效应,形成了对BEC的纯冷却。过滤器能抵消测量它们的光流所造成的破坏,不仅能剔除测量中的“噪音”,最好地测量BEC的状态,还能在测量中消除由于观察而产生的某些加热。 哈希说:“研究的重要意义在于我们打开了一扇窗,让科学家们能管窥世界上最冷的物体,观察以前看不到的与BEC有关的现象,并早日实现其潜在应用。”未来在基础科学领域的运用包括,精确测量重力的原子激光器,研究黑洞释发出霍金辐射的模型等,被军方用来探测潜艇、井下储仓和其他危险,并且也能识别隐形技术。 总编辑圈点 玻色—爱因斯坦冷凝物真是比林黛玉还要娇气百倍,用“捧在手里怕摔了,含在嘴里怕化了”来形容也毫不为过。看到这里,不禁要问:这一如此脆弱的物体,它的研究价值到底在哪里?细看文中所述的众多潜在应用,最吸引人的当属“识别隐形技术”了。且不说隐形技术已经足够神秘,而对这一神秘现象的识别就显得更加夺人眼球,只是这一“不堪一击”的宇宙中最冷的物体,应用起来得加多少小心呢!来源:中国科技网-科技日报 作者:刘霞 2013年11月29日

  • 韩国科研人员在智利建造“七维望远镜”观测宇宙

    [color=#000000]韩国首尔大学科研团队公开了在智利安第斯山脉El Sauce天文台建造的7维望远镜(7-Dimensional Telescope)观测玉夫星系(NGC 253 星系)、螺旋星云和三裂星云相关信息。[/color][color=#000000]准确观测天体光谱随时间的变化对天文研究至关重要,现有观测技术只能对局部的少量天体进行光谱观测,难以追踪天体随时间变化的特征。科研团队开发的[b]7维度望远镜可实现从天体位置(2维)、距离(1维)、径向速度(1维)、亮度(1维)、波长(1维)和时间(1维)[/b]进行观测,可以同时捕获1.2平方度的宽视场、40多种颜色。每个望远镜通过中带滤光片可观察两种不同波长的光,确保观测光谱的完整。[/color][color=#000000]该研究的巨大优势在于可让每个望远镜观测不同的波长,随时获取视场内每个像素的光谱。[b]该研究将大幅提高天文观测的精度,有助于“多信使天文学”等研究,因而受到天文学界的广泛关注[/b]。[/color][color=#000000]本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。[/color][来源:科技部][align=right][/align]

  • 【分享】我国天文学家首次观测到宇宙中神奇磁零点[图]

    【分享】我国天文学家首次观测到宇宙中神奇磁零点[图]

    以前,科学家只是从理论上推测,在太阳风暴、核反应中,“应该存在”一个非常重要而奇特的“点”——磁零点。而最近,我国天文学家通过卫星观测数据,真实地“捕捉”到了宇宙中的磁零点。最新成果发表在近期出版的《自然物理学》杂志上。  磁零点是什么?它就像地球上的台风眼——别看台风呼啸横扫数百公里,小小的台风眼里却风平浪静。我国天文学家发现,来自太阳的电磁风暴同样也有台风眼——尽 管“太阳风暴”袭击地球磁场时,甚至可以引起无线通讯中断,但在台风眼之中,却有个磁场为零的地方。  多年来,为寻找磁零点,欧洲宇航局启动了“星簇”计划,连续发射了四颗卫星,中国也实施了“双星”计划。日前,卫星在离地球约12.6万公里的太空中,观测到一次“太阳风暴”侵袭下的地球磁场。根据观测数据,国家天文台肖池阶副研究员、大连理工大学王晓钢教授、北京大学濮祖荫教授等为主的研究小组,首次发现了自然界中存在的磁零点。当期杂志配发评论,认为这是磁重联研究领域中“极其重要的”进展。[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703261044_46640_1643735_3.jpg[/img]资料图片:太阳风下的地球磁场示意图1[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703261045_46641_1643735_3.jpg[/img]资料图片:太阳风下的地球磁场示意图2 在神奇的磁零点上,发生着太空中十分常见的物理过程——磁重联。在太阳风暴的“劲吹”下,“背风”处的地球磁场从原先的圆球形,被“吹”得好像飘扬的长发。长发般的磁力线在太阳风的“逼迫”下,不断逼近磁零点。  当两条磁极方向相反的磁力线与磁零点无限接近的那一瞬间,两条磁力线开始“重新联结”:同时从中断开,并连接成两条新的磁力线——一条带着太阳风暴的等离子体飞向浩淼的太空,另一条则如同拉满的橡皮筋,缩向地球,它所携带的高能粒子“撞”进地球南北两极的大气层,形成美丽的极光。 据国家天文台汪景琇研究员介绍,以前人们只是在理论上推测磁零点的存在,但这次他们利用该台赵辉博士发展的微分拓扑学方法,通过实际观测数据分析,发现了磁重联的中心区域存在磁零点,并计算出磁零点周围的磁力线存在螺旋结构。由于磁重联存在于太阳耀斑、磁约束核聚变等重要物理过程中,是能量转换和加速带电粒子的基本机制之一,因此,这一发现有助于彻底解决磁重联理论中一些长期悬而未决的难题。

  • 气象自动监测系统区域环境观测站

    气象自动监测系统区域环境观测站

    气象自动监测系统区域环境观测站气象自动监测系统可以实时探测气温、湿度、气压、风速、风向、降雨量、紫外线、辐射等气象信息,可以通过网络实时观测气象数据。下面介绍下气象自动监测系统的工作原理、硬件基本配置、观测的主要地面气象要素和技术特点。气象自动监测系统具有对不同区域气候的观测功能。气象站的基本构造包括气象自动监测系统、气象站主机、控制台、专业气象数据采集软件组成。气象自动监测系统通过不同的传感器采集地面气象要素数据,数据采集完成后通过网络统传输到气象服务器上,再经气象采集软件处理各项数据,观测的实时气温、气压、风向、风速等气象数据通过专业气象软件传出,并在气象站主机上自观显示各项气象要素值,不同气象自动监测系统点所观测的气象数据可以通过网络上传让更多的人及时了解天气变化情况。气象自动监测系统可广泛应用于城市环境监测、风力发电、气象监测、桥梁隧道、航海船舶、航空机场等领域,无需现场维护何校准。超声波探头顶盖隐藏式设计,避免雨雪干扰,避免探头突出而影响风速。 ASA材质耐腐蚀性强,适合野外环境。一体式设计磨损小、使用寿命长、响应速度快。[img=气象自动监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204290906375353_2689_4136176_3.jpg!w690x690.jpg[/img]气象自动监测系统是按照气象WMO组织气象观测标准,研究而开发生产的多要素自动观测站。可监测风向、风速、温度、湿度、气压、雨量、土壤温湿度等常规气象要素,具有自动记录、超限报警和数据通讯等功能。自动观测站由气象传感器,气象数据记录仪,气象环境监测软件三部分组成。广泛应用于工农业生产、旅游、科研、气象等城市环境监测和其它专业领域。气象自动监测系统功能特点:1、低功耗采集器:静态功耗小于50uA2、GPRS联网、支持扩展RJ45联网3、支持扩展传感器远传,30km以内lora透传,30km以外物联网卡传输4、支持LED屏显示z大兼容32768px5、支持扩展安卓屏显示、存储、扩展安卓屏支持2G数据存储、U盘数据导出6、支持modbus485传感器扩展7、太阳能充电管理MPPT自动功率点跟踪8、可选配2000mah-24Ah蓄电池9、配套物联网数据展示、存储、分析平台[img=气象自动监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204290907023512_4838_4136176_3.jpg!w690x690.jpg[/img]

  • 中国气象局气象探测中心:聚力攻坚温室气体观测关键技术研发及应用

    自主可控,观测精密——中国气象局“温室气体观测关键技术研发及应用”青年创新团队(以下简称“创新团队”)为推动我国温室气体观测事业的发展而努力。紧紧围绕《气象高质量发展纲要(2022—2035年)》的统筹规划,面向气象高质量发展对温室气体站网建设、能力提升和质量加强的业务服务要求,针对国家双碳战略的重要决策部署,为精确评估我国减排成效并“摸清家底”,在精密观测和技术自主创新方面狠下功夫。创新团队由来自青海、浙江、广东、黑龙江等省气象局、中国气象局广州热带海洋气象研究所以及复旦大学的20名青年组成。汇集了各单位的业务专业知识以及来自科研、高校、企业等优势资源,致力于温室气体观测关键技术的研发和应用,以推动我国温室气体观测事业发展。该团队从我国温室气体观测面临的主要问题出发,包括由于观测装备国产化不足限制大规模开展、二氧化碳/甲烷缺乏国家计量基准、观测主要在近地面垂直观测资料缺乏、温室气体浓度时空变化机制研究不够深入等,设立了四个方面共计12项任务,努力推动装备自主、计量可控、观测立体、数据可靠、服务有效。这些任务旨在解决现有观测体系存在的瓶颈,推动温室气体观测技术的创新和进步。为确保研发工作的顺利进行,创新团队依托于中国气象局大气探测中心,并根据《联合国气候变化框架公约》等对温室气体基础设施和数据产品的要求,建立了高精度温室气体装备测试平台、运行监控和数据质控平台、标气管理和标准平台等业务信息化平台,为团队的工作提供了强有力的支持,保障了观测装备的精确性和可靠性。该团队在温室气体观测的立体化方法和技术上重点着力。为了弥补垂直观测资料相对较少这一不足,创新团队利用高山观测站和气象探空等平台,开展了大规模的垂直观测。以此成功获取了不同高度上的温室气体浓度和变化趋势数据,为气候模型和减排政策提供了重要依据。针对观测装备的需求,该团队进行了深入研究和探索,在光腔衰荡法国产高精度温室气体分析主机噪声降低技术取得新进展。针对国产光腔衰荡法国产高精度温室气体分析主机艾伦方差所示低频噪声较大的问题,使用多手段降低衰荡时间不确定度。采用三角环形腔极大提升有效光程,进而提升整体精度;通过抑制高阶模引入的拍频噪声,利用稳频技术压窄激光线宽等方法降低背景噪声,提升信噪比,降低探测不确定度。目前,已在两个大气本底站国产光腔衰荡法国产高精度温室气体分析主机开展观测试验。该团队完成了低干扰进气除水系统的集成、测试和应用示范。结合大气本底站业务运行和维修维护经验,采用低露点无尘压缩气源、无损渗透除湿干燥管、集成组装式电磁阀组、定制低泄率无油隔膜泵、小型化气体流量计、压力传感器等多项新技术、新装置,优化了气路结构设计,形成集成紧凑的预处理系统。目前,已在浙江省多个温室气体观测站开展应用示范。此外,该团队还完成基于小型无人机的园区观测试验预研工作。10月,在上海东滩湿地公园完成两个航次500米以下的温室气体垂直廓线研究,获得初步的甲烷浓度廓线。针对超级排放源园区,确定大致羽流分布和羽流横截面浓度分布,制定观测实验方法。该团队非常注重成果的应用与推广,将研究成果及时转化为实际应用,为温室气体减排和环境保护提供技术支持。在温室气体观测关键技术的研发和应用方面取得了重要的进展。这些成果不仅推动了我国温室气体观测事业的发展,还为温室气体减排和环境保护作出了重要贡献。[来源:中国气象报社][align=right][/align]

  • 【前沿科技】科学家首次观测到从量子通道逃离出的电子

    德国科学家在最新一期英国《自然》杂志上发表论文介绍说,他们最近首次测量到通过量子通道“逃离”原子的电子,而且发现每个电子“逃离”的速度极为惊人。 电子带负电荷,在带正电荷的原子核的吸引下被束缚在原子内部。就经典物理学而言,如果电子没有在一段时间内获得足够的能量,它就无法“逃离”原子核的束缚。但量子力学可以提供另一种方法,电子可以直接通过量子通道逃脱出来。科学家比喻说,这好比站在一座山前的人们需要到达山的另外一边,通常情况下只能翻越山岭,但量子世界里还有另外一种可能,即通过“隧道”直接抵达山的另一边。 量子通道在微观世界普遍存在,但这一现象迄今仍未被观测到,原因是原子在失去电子后迅速从外界环境又找回新的电子进行补充,其过程过于短暂,任何传统方法都无法测量。不过,近年来光学研究的进步,为观测这一现象提供了有力工具。 德国马克斯普朗克量子光学研究所的弗伦克克劳兹介绍说,光学研究已经迈进了阿秒(1阿秒为百亿亿分之一秒)领域,这为测量电子通过量子通道“逃离”提供了方法。 克劳兹领导的研究人员用两种精心设计成同步的阿秒级激光脉冲——紫外线脉冲和红外线脉冲——攻击氖原子,紫外线脉冲通过提升电子能量为电子“逃离”氖原子做好准备,但这一能量不足以使电子按照经典物理学描述的方式脱离原子。然后研究人员在红外线脉冲中设计3个峰值,以抵消来自原子核的吸力,这就给电子提供了3个“逃离窗口”。不过,由于所选用的脉冲是阿秒级的,因此“逃离窗口”开启时间非常短暂,只有通过量子通道的电子才有可能成功“逃离”。 结果发现,在这3个“逃离窗口”都能够测量到从原子“逃离”出来的自由电子,这就证明了单个电子可以在极短的时间内实现“逃离”,也进一步证明量子通道确实存在。来源:新华网

  • 【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    http://ng1.17img.cn/bbsfiles/images/2011/03/201103062216_281178_2193245_3.jpg英研制分辨率最高光学显微镜 可观测50纳米物体  英国曼彻斯特大学科学家近期研制出了世界上分辨率最高的光学显微镜,能够观测50纳米大小的物体。这是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。  他们的成果发表在最新一期的《通信与自然》杂志上。由于光的衍射特性的限制,光学显微镜的观测极限通常约为1微米。研究人员通过为光学显微镜添加一种特殊“透明微米球透镜”,克服了上述障碍,使这一极限达到50纳米,观测能力提高了20倍。(注:1微米等于1000纳米)  这项成果的核心是利用物体发散出的一种逐渐消失的“隐失波”。顾名思义,“隐失波”是一种逐步消失的光波,但很重要的是,它不受限于光的衍射极限,所以如果我们能捕捉住这种光,就很有希望观测到比传统成像办法高清许多的图像。曼彻斯特大学科研人员在“透明微米球透镜”的帮助下,收集到“失波”并把它转到传统显微镜,这样科学家用肉眼就可看到通常需要其它间接方法才能观测到的细微之处,譬如通过原子力显微镜或扫描电子显微镜观测。  曼彻斯特大学激光加工研究中心的李琳教授认为,这项技术在生物学研究方面的应用前景广阔,特别是对细胞、细菌甚至是病毒的研究。  李琳教授表示:“目前应用于生物学研究领域的显微镜技术特别费时,举个例子,如果我们用荧光显微镜进行观测,需要花两天时间准备一个观测所需的样品,而这些准备好的样品只有10%到20%有用。因此,直接观察细胞技术的引进将能带来潜在的收益。”

  • 纤维增强金属层板破裂形貌观测方法

    [align=center] [/align] [font=黑体][back=yellow]引言[/back][/font] [font=宋体]纤维增强金属层板([/font][font='Times New Roman','serif']Fiber Metal Laminates[/font][font=宋体],简称[/font][font='Times New Roman','serif'] FMLs[/font][font=宋体])是一种三明治式的叠层复合材料,由金属层和连续纤维复合材料层交替叠加,并通过树脂粘结而成的新式复合材料。由于[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的结构特点,使其结合了金属和复合材料的优势,即相较于传统材料其具有卓越的比强度、比刚度、高疲劳阻力、耐腐蚀性以及良好的防火性能。这些特性使[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]在航空、航天和汽车等领域得到了广泛应用。特别是其在不同加载条件下的失效形式,更是当前研究热点。本文正是基于此,介绍了借助扫描电镜([/font][font='Times New Roman','serif']SEM[/font][font=宋体])对纤维增强金属层板各组分破裂形貌进行分析。[/font] [align=center][img=,412,237]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446145753_2390_6561489_3.jpg!w412x237.jpg[/img] [/align] [font=宋体]图[/font] 1[font=宋体]纤维增强金属层板结构示意图[/font] [align=center] [/align] [font=黑体][back=yellow]测试方法[/back][/font] [font=宋体]为更好的观测未固化[/font][font='Times New Roman','serif']GLARE[/font][font=宋体]层板各组分失效形式,本章借助捷欧路(北京)科贸有限公司所售的[/font][font='Times New Roman','serif']JSM-IT210[/font][font=宋体](钨灯丝)扫描电子显微镜对铝合金和预浸料断口进行观测。该设备最大放大倍数为[/font][font='Times New Roman','serif']300000X[/font][font=宋体],真空度为[/font][font='Times New Roman','serif']10-650Pa[/font][font=宋体]。此外,由于玻璃纤维的导电性极差,造成纤维断口表面多余电子或游离粒子的累积不能及时导走,继而造成反复出现充电、放电现象,造成图像扭曲或变形等现象。因此,本文借助[/font][font='Times New Roman','serif']JEC-3000FC[/font][font=宋体]设备对预浸料断口进行喷金处理,即在纤维断口表面溅射一个额外的导电薄层材料,从而提升纤维的导电性。[/font] [align=center][img=,354,252]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446253708_8792_6561489_3.jpg!w354x252.jpg[/img][/align] [font=宋体]图[/font] 2[font=宋体]微观观测设备[/font]: (a).JSM-IT210[font=宋体]扫描电镜[/font] (b).JEC-3000FC[font=宋体]离子溅射仪[/font] [font=黑体][back=yellow]测试结果[/back][/font] [font=宋体]下图给出了[/font][font='Times New Roman','serif']2024-T3[/font][font=宋体]铝合金、[/font][font='Times New Roman','serif']W-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-10000[/font][font=宋体]预浸料的微观断口形貌。对于铝合金来讲,断口处显示了一系列的圆形韧窝,这表明铝合金是由正应力导致的韧性失效。而对于玻璃纤维来讲,不论是[/font][font='Times New Roman','serif']WP-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-1000[/font][font=宋体]预浸料,其断口位置的纤维均呈现参差不齐的牙刷状形貌,即典型的拉伸导致的纤维脆性断裂失效形貌。综上所述,[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的各组分材料在试验中的破坏方式为正应力为主导的拉伸破坏行为[/font] [align=center][font='Times New Roman','serif'][img=,382,417]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161446362290_802_6561489_3.jpg!w382x417.jpg[/img][/font][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif'] 3Nakajima[/font][font=宋体]试验后铝合金和预浸料断口微观照片[/font][/b][/align] [align=center] [/align]

  • 纤维增强金属层板破裂形貌观测方法

    [align=center] [/align] [font=黑体][back=yellow]引言[/back][/font] [font=宋体]纤维增强金属层板([/font][font='Times New Roman','serif']Fiber Metal Laminates[/font][font=宋体],简称[/font][font='Times New Roman','serif'] FMLs[/font][font=宋体])是一种三明治式的叠层复合材料,由金属层和连续纤维复合材料层交替叠加,并通过树脂粘结而成的新式复合材料。由于[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的结构特点,使其结合了金属和复合材料的优势,即相较于传统材料其具有卓越的比强度、比刚度、高疲劳阻力、耐腐蚀性以及良好的防火性能。这些特性使[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]在航空、航天和汽车等领域得到了广泛应用。特别是其在不同加载条件下的失效形式,更是当前研究热点。本文正是基于此,介绍了借助扫描电镜([/font][font='Times New Roman','serif']SEM[/font][font=宋体])对纤维增强金属层板各组分破裂形貌进行分析。[/font] [align=center][img=,690,988]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161356384565_5977_6561489_3.jpg!w690x988.jpg[/img][/align] [font=宋体]图[/font] 1[font=宋体]纤维增强金属层板结构示意图[/font] [align=center] [/align] [font=黑体][back=yellow]测试方法[/back][/font] [font=宋体]为更好的观测未固化[/font][font='Times New Roman','serif']GLARE[/font][font=宋体]层板各组分失效形式,本章借助捷欧路(北京)科贸有限公司所售的[/font][font='Times New Roman','serif']JSM-IT210[/font][font=宋体](钨灯丝)扫描电子显微镜对铝合金和预浸料断口进行观测。该设备最大放大倍数为[/font][font='Times New Roman','serif']300000X[/font][font=宋体],真空度为[/font][font='Times New Roman','serif']10-650Pa[/font][font=宋体]。此外,由于玻璃纤维的导电性极差,造成纤维断口表面多余电子或游离粒子的累积不能及时导走,继而造成反复出现充电、放电现象,造成图像扭曲或变形等现象。因此,本文借助[/font][font='Times New Roman','serif']JEC-3000FC[/font][font=宋体]设备对预浸料断口进行喷金处理,即在纤维断口表面溅射一个额外的导电薄层材料,从而提升纤维的导电性。[/font] [img=,355,1086]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161357550424_2345_6561489_3.jpg!w355x1086.jpg[/img] [font=宋体]图[/font] 2[font=宋体]微观观测设备[/font]: (a).JSM-IT210[font=宋体]扫描电镜[/font] (b).JEC-3000FC[font=宋体]离子溅射仪[/font] [font=黑体][back=yellow]测试结果[/back][/font] [font=宋体]下图给出了[/font][font='Times New Roman','serif']2024-T3[/font][font=宋体]铝合金、[/font][font='Times New Roman','serif']W-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-10000[/font][font=宋体]预浸料的微观断口形貌。对于铝合金来讲,断口处显示了一系列的圆形韧窝,这表明铝合金是由正应力导致的韧性失效。而对于玻璃纤维来讲,不论是[/font][font='Times New Roman','serif']WP-9011[/font][font=宋体]和[/font][font='Times New Roman','serif']G-1000[/font][font=宋体]预浸料,其断口位置的纤维均呈现参差不齐的牙刷状形貌,即典型的拉伸导致的纤维脆性断裂失效形貌。综上所述,[/font][font='Times New Roman','serif']FMLs[/font][font=宋体]的各组分材料在试验中的破坏方式为正应力为主导的拉伸破坏行为[/font] [align=center][font='Times New Roman','serif'][img=,383,1086]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161356523395_3601_6561489_3.jpg!w383x1086.jpg[/img][/font][/align][align=center][b][font=宋体]图[/font][font='Times New Roman','serif'] 3Nakajima[/font][font=宋体]试验后铝合金和预浸料断口微观照片[/font][/b][/align] [align=center] [/align]

  • 按教科书所说,做方法的时候要选择功率、气流量、观测高度等等条件

    按教科书所说,做方法的时候要选择功率、气流量、观测高度等等条件不过在实际工作的时候这几个条件几乎都是不变的--不管是做什么样如功率基本上保持1200W,至于观测高度和载气流量,安装工程师是叮嘱我们不要动的请问大家做方法的时候有没有专门做这些条件的选择? -------------------------------------------------------------------------------------------

  • 太阳辐射综合观测系统基准辐射测量

    太阳辐射综合观测系统基准辐射测量

    太阳辐射综合观测系统基准辐射测量一般简单的太阳辐射传感器由于观测视野的限制,无法进行全向观测,而太阳的运行位置是在时刻不停地变化的。为了使太阳辐射传感器,尤其是在测量直接辐射(DNI)时,能够准确始终垂直于太阳,保证测量的准确性,绿光新能源推出太阳辐射综合观测系统。可用于光伏/光热发电、大气化学成分研究等领域需要用的准确的测光数据,是构建一座太阳辐射综合观测系统的必要组成部分。更是光伏电站光功率预测的重要工具助手。太阳辐射综合观测系统是目前市场上高准确性和高可靠性的一款高精度自动太阳辐射测量仪器。是太阳能和气象应用领域使用最为广泛的太阳辐射测量仪器,其性能可靠,符合全球基准辐射测量网络(BSRN)级别。采用高精度蜗轮蜗杆传动系统,具有主动跟踪和被动跟踪相结合的方式,安装和操作比其他许多太阳辐射仪器都要方便。适合在重负载以及最恶劣的气候条件下使用。它不需额外的计算机支持,并且可通过GPS自动进行时间和位置修正。[img=太阳辐射综合观测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210250912569137_1263_4136176_3.jpg!w690x690.jpg[/img]太阳辐射综合观测系统配置水平安装盘、倾角安装盘、可调天顶角支架(用于安装直接辐射传感器)和遮光机构等附件,从而构成一个完整的太阳辐射监测站点,最多可同时安装直接辐射,倾角总辐射各一台;天顶可安装散辐射,总辐射共3台或总辐射2台、云量仪1台等,总共5台辐射传感器;也可以增扩到2台直接辐射和1台镜面反射太阳光装置,用于测量电池板的洁净系数。太阳辐射综合观测系统应用领域1.光伏电站光功率预测2.光伏/光热发电太阳辐射资源监测3.海洋气象光学资源监测4.高精度太阳辐射研究5.大气化学成分研究[img=太阳辐射综合观测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210250913237766_8811_4136176_3.jpg!w690x690.jpg[/img]

  • 【分享】中国科学家首次观测到化学反应中分波共振现象

    [b]大化所杨学明小组首次观测到化学反应中分波共振现象[/b][align=center][b]  研究成果发表在美国《科学》杂志上,图像达到了光谱精度[/b]   [/align][align=center][img=500,360]http://bimg.instrument.com.cn/lib/editor/UploadFile/20103/20103239343687.jpg[/img][/align][align=center][font=楷体_GB2312]  实验测量到的F+HD反应中后向散射HF(v=2,j=6)产物强度随碰撞能量的变化(实圆点)。红实线是理论计算的结果。观测到的三个振荡峰被归属为J=12,13,14的分波共振。图中的三维图是在1.285kcal/mol碰撞能下HF产物在各个方向的散射微分截面图。B代表后向散射方向,F代表前向散射方向。[/font][/align]  在实验上观测由特定分波引起的动力学现象,一直是化学动力学研究领域的一个极具挑战的课题。如今,通过设计一个世界上最高分辨率的交叉分子束散射实验,中国科学院大连化学物理研究所杨学明研究小组首次在实验中观察到了化学反应中的这种分波共振。研究成果发表在3月19日出版的美国《科学》杂志上。杨学明说:“这一反应共振动力学图像已经完全达到了光谱精度,为反应共振态动力学研究提供了一个教科书式的例子。”  这是杨学明和中国科学院大连化学物理研究所研究员张东辉等近年来在反应共振态研究方向的又一个新的突破。在同期出版的《科学》杂志上,英国剑桥大学Althorpe教授发表评述文章,详细介绍了这项工作的学术意义。  化学反应是旧化学键断裂、新化学键生成的过程,是化学学科的核心科学问题。在所有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子反应中,新化合物的形成都是通过两个反应物之间的碰撞而达成的。每一个反应必须先经过一个“过渡态区域”,在这个区域中,反应物分子中的旧化学键即将断裂、生成物分子中的新化学键即将生成。而所有的反应碰撞都是在特定的碰撞参数条件下,通过过渡态区域而进行的。这些特定的碰撞参数在量子力学中是一个“好量子数”,因此在整个反应过程中是守恒的,这些特定的碰撞参数相当于反应体系特定的转动量子态,一般被称为“分波”(PartialWave)。  过渡态的分波结构是影响化学反应的决定性因素,也是化学动力学研究的重要基础课题。由于反应过渡态寿命非常短(飞秒量级,1飞秒等于10-15秒),分波一般在能量上很宽且重叠在一起,因此很难在实验室观测到单个分波的结构。在绝大多数情况下,即使完全量子态分辨的交叉束实验测量的微分截面也是不同分波叠加后的平均值,因此,观测单个特定的分波结构是动力学研究领域的一个极大挑战。

  • 【分享】河南首批自动土壤水分观测站在平顶山试点

    经过前期的选址、土壤水分常数的测定等充足的准备工作,10月12~15日,由河南省气象局和市气象局共同筹建的自动土壤水分观测站相继在平顶山市新华区滍阳镇西滍村及各县(市)进行最后的仪器安装、调试。至此,该市7家自动土壤水分观测站建设全部完成,彻底改变了传统的、落后的人工土壤水分观测工作,标志着平顶山市气象现代化建设又上了一个新的台阶,对服务全市粮食生产具有重大意义。  该市位于河南省中部,地处伏牛山和黄淮平原的过渡地带,属于半干旱、半湿润的大陆性季风气候区域,降水的年际变化及季节变化较大,加之受复杂地形、地貌的影响,干旱发生频繁,对农业生产影响严重。多年来,气象部门始终把对为农业生产服务放在气象服务的第一位,通过高科技的技术手段,观天测雨,趋利避害,为我市农业生产保驾护航。土壤水分观测是气象为农业服务的基础性工作之一。  土壤水分的监测,就是通过连续的、定点的土壤水分含量的测定,掌握土壤墒情的动态变化,为农业生产服务提供第一手实况资料。但是,由于受技术条件的限制,我国在土壤水分观测设施和技术方面长期处于落后的人工操作状态,这不仅不能适应目前气象现代化建设的要求,也不能满足为农业生产服务的需求。为此,由河南省气象科学研究所和中国电子科技集团公司第二十七研究所共同研究开发了自动土壤水分观测仪。经过前期的实验研究,目前已进入面对全国进行推广、安装阶段。根据中国气象局部署,河南省作为全国现代农业气象业务服务建设试点省,要率先安装并投入业务化运行;平顶山市是先期试点单位之一。  这次自动土壤水分监测站建设,由中国气象局投资,河南省气象局和平顶山市气象局共同承建。首期分别在新华区、鲁山县、舞钢市等县(市、区)建立7个监测站,总投资约65万元。今后根据服务需求,还将逐渐增加观测点密度,扩大观测区域覆盖面,以便全面掌握全市各地土壤水分含量情况及土壤水分变化情况,更好地服务于农业生产。

  • 气相色谱法观测本底大气中的甲烷和二氧化碳

    周凌NFDA1  汤 洁(中国气象科学研究院大气化学研究所,北京100081)张晓春 季 军 王志邦(青海省气象局,西宁 810001)Douglas Worthy Michele Ernst Neil Trivett(Atmospheric Environment Service, Toronto, CANADA)摘要 根据世界气象组织全球大气监测网(WMO/GAW)开展全球温室气体监测的要求,建立了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)法甲烷和二氧化碳(CH4/CO2) 连续观测系统.概述了该系统在加拿大大气环境局(AES)5个月的组装调试,以及在中国大气本底基准观象台(CGAWBO)一年多时间里的业务运行和标定情况.组装调试和运行标定,与红外吸收(NDIR)法、气瓶采样-实验室分析(FLASK)法数据,以及与国内外其它台站观测资料的对比结果表明,该系统具有良好的线性、灵敏度、精度和准确度,其设计完全符合WMO全球大气本底测量的要求,具有高自动化的操作性能和严格的质量控制;所获我国大陆上空本底大气中CH4和CO2的浓度资料具有国际可比性,观测结果反映了我国西部高原地区大气CH4和CO2的本底变化特征.关键词 甲烷;二氧化碳;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];大气本底.1 引言  近百年来,大气中温室气体含量的增加及其可能导致的气候变化和生态环境问题,已引起人类社会日益广泛的关注,对主要温室气体——CH4和CO2本底浓度的监测就显得十分重要[1]. 科学家们自60年代起开始了对主要温室气体本底浓度的连续监测和研究,并相继在全球的不同经纬度地区建立起主要温室气体的本底监测站网,但这些台站大多建立在岛屿及海岸,导致内陆大气本底观测资料的稀少.1989年起,中国气象局与WMO及全球环境基金组织合作,在我国青海省海南藏族自治州的瓦里关山顶 (海拔3816m,纬度36°17′N,经度100°54′E)建立了世界上第一个内陆高原型的全球大气本底监测站CGAWBO(以下简称瓦里关本底台).在进行温室气体/大气臭氧/降水及气溶胶化学/太阳辐射和气象观测的所有全球大气本底观象台中,它的海拔最高,具有开展大气本底监测较为理想的自然地理环境.在严格的国际检验比对技术基础上,使用先进技术设备建立起较为系统完整的大气本底监测体系,填补了WMO/GAW监测网在欧亚大陆腹地的重要地域空白[2,3].采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法大气本底基准监测技术的GC-CH4/CO2连续观测是其中的一个重要监测项目,这种高度定型的装配有氢火焰离子化检测器(FID)的GC系统是在1981年发展起来的,它对CH4的测量精度是目前实际应用的连续观测方法中最好的,对CO2的测量精度已经接近通常用于CO2测量的红外吸收技术(NDIR)的精度水平,据报道,这种GC系统还成功地应用于对大气中微量气体如氧化亚氮和氟里昂的监测[4—7].瓦里关本底台的GC系统由AES根据中加双边大气科学合作协议援助提供,中方业务 人员在AES接受培训,并对系统进行了组装调试;1994年7月系统运抵瓦里关山观测基地,由中加双方的专家共同完成安装,对瓦里关山大气中的CH4和CO2浓度进行连续测量,开始系统的业务运行.  2 仪器系统及测量方法  该系统主要包括:装配有FID和HP19205A镍催化剂管的HP5890(Ⅱ)型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url];HP3396Ⅱ型积分仪及HP样品/外部事件控制器 (S/ECM);带有HP82169C HP-IL/HP-IB接口的HP9122C型磁盘驱动器;用HP19238E阀加热器保持恒温的4路选择阀和6口进样阀;保存于高压铝瓶和钢瓶内的两个标准气、高纯氮气、高纯氢气;合成空气发生器.图1是系统工作流程的示意图.图1 工作流程示意图

  • 生物多样性观测技术导则等11项国家环境保护标准发布

    环境保护部公告公告 2014年 第74号关于发布《生物多样性观测技术导则 陆生维管植物》等11项国家环境保护标准的公告  为贯彻《中华人民共和国环境保护法》,保护生态环境,现批准《生物多样性观测技术导则 陆生维管植物》等11项标准为国家环境保护标准,并予发布。  标准名称、编号如下:  一、生物多样性观测技术导则 陆生维管植物(HJ710.1-2014);  二、生物多样性观测技术导则 地衣和苔藓(HJ710.2-2014);  三、生物多样性观测技术导则 陆生哺乳动物(HJ 710.3-2014);  四、生物多样性观测技术导则 鸟类(HJ710.4-2014);  五、生物多样性观测技术导则 爬行动物(HJ710.5-2014);  六、生物多样性观测技术导则 两栖动物(HJ710.6-2014);  七、生物多样性观测技术导则 内陆水域鱼类(HJ710.7-2014);  八、生物多样性观测技术导则 淡水底栖大型无脊椎动物(HJ710.8-2014);  九、生物多样性观测技术导则 蝴蝶(HJ710.9-2014);  十、生物多样性观测技术导则 大中型土壤动物(HJ710.10-2014);  十一、生物多样性观测技术导则 大型真菌(HJ710.11-2014)。  以上标准自2015年1月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。  特此公告。  环境保护部  2014年10月31日  抄送:各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局,辽河保护区管理局,环境保护部环境标准研究所。  环境保护部办公厅2014年11月2日印发

  • 【分享】<<核电领域电器安全保护设备校准方法研究》项目通过验收

    3月8日,由上海市计量测试技术研究院在线通用所承担的国家质检总局科技项目《核电领域电器安全保护设备校准方法研究》顺利通过项目验收。  验收评审专家认为,课题主要研究成果思路新颖,具有开拓性、创新性及前瞻性;项目为今后开展核电及相关领域电器安全保护设备的校准提供了整套装置和完善的校准方法,填补了我国在核电电器安全保护设备校准领域的空白,达到同类研究的先进水平。

  • ICP光谱观察方式比较:垂直观测、水平观测、双向观测

    在ICP光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观测(Radial)、水平观测(Axial)和双向观测(DUO),下面介绍他们的区别:ICP光谱仪垂直观测:又称为垂直观测或者测试观察,是采用垂直放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向垂直;从光谱仪能够接收整个分析区的所有信号。  对不同的元素不用进行炬管调节,是分析测试的常用观察方式。具有更小的基体效应和干扰,特别是对有机样品;对复杂基体也有好的检出限。可以测定任何基体的溶液,如高盐分样品测定、复杂样品的分析、有机物而积炭相对不严重的分析。较低的氩气消耗量。侧向观测方式的炬管是垂直炬,热量和分析废气自然向上进入排气系统。ICP光谱仪垂直观测示意图ICP光谱仪水平观测:又称为轴向观察或端视观测,是采用水平放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向呈水平重合;可使整个火焰个个部分的光都全部通过狭缝。  水平观测方式的优点是:由于整个“火焰”各个部分的光都可以被采集导致灵敏度高,对简单样品有较好的检出限;其缺点:基体效应和电离干扰大,线性范围小,炬管溶液积炭和积盐而沾污,需要及时清洗和维护,RF功率设置不能一般不超过1350W;使用于光谱仪水质分析中。ICP光谱仪水平观测示意图总体而言,ICP垂直观测检测的只是最佳分析区给出的发射信号,其特点就是干扰信号少,但分析元素的发射强度不如水平观测的效果好;水平观测检测的是整个分析通道的发射信号,其特点是分析元素的发射强度大,但缺点是干扰信号比较大。双向观测:  传统双向观测是在水平观测ICP光源的基础上,增加一套侧向采光光路,实现垂直/水平双向观测,即在炬管垂直观测的方向依次放置3块反射镜,当要使用垂直观测的时候,就通过3块反射镜把炬管垂直方向上的光反射到原光路中,并通过旋转原光路的第一块反射镜,使垂直方向来的光与原水平方向来的光在整个光路中重合。该观测方式的切换反射镜由计算机控制,该方式融合了轴向、径向的特点,具有一定的灵活性,增强了测定复杂样品的能力。改观测方式可实现以下3中方式的测量:  ①全部元素谱线水平测量。  ②全部元素谱线垂直测量。  ③部分元素谱线水平测量,部分元素谱线垂直测量。  双向观测能有效解决水平观测中存在的电子干扰,进一步扩宽线性范围。但是该观测方式需要不断地切换反射镜,可能导致仪器的稳定性变差。由于径向观测的需要,炬管侧面必须开口,导致炬管的寿命大大降低,同时也改变了炬焰的形状。炬管开口处必须严格与光路对准,要不然炬管壁容易积累盐,会使检测结果严重错误;同时如果在开口出现积盐同样也会导致仪器检测结构存在严重的错误,必须注意清洗。而且增加了曝光次数,降低了分析速度,增加了分析消耗。ICP光谱仪双向观测示意图  在有上述考虑之后,需要改变传统,尤其是改变光路使其简单,几家都推出了双向观测技术。安捷伦的双向观测  首先是安捷伦的5100,它采用ZL的智能光谱组合技术 (DSC),以及全新的仪器设计理念,推出区别于传统的、极具创新的、全新概念的双向观测 5100 SVDV ICP-OES,可实现同步的水平和垂直双向观测分析。安捷伦5100同步垂直双向观测技术的设计原理  传统的双向观测 ICP-OES 需要人为定义测量 元素、分析波长及观测模式,无法完成同 步的双向观测分析。 某些系统甚至采用多狭缝模式,分别应对不同波段、不同观测方式以及不同灵敏度样品的分析要求,极大地降低了样品分析通量和测量效率。5100 SVDV ICP-OES 凭借独特的智能光谱组合技术 (DSC) 一次测量完成水平和垂直信号的同步采集读取,实现高速高效的样品分析,确保复杂基质样品的分析准确度斯派克的双向观测  斯派克公司也推出了双向观测技术  首先,斯派克专门开发了不需经过很多的光路反射、折射,而是采用了无需反射镜的MultiView 等离子体接口,让等离子体切换方向,真正实现直接观测。比如在贵金属分析中,贵金属作为基体元素,其含量90%多,其他微量元素含量极低;而对于贵金属冶炼厂家,矿样中贵金属则变成了微量元素,伴生元素很多;那么采用这种观测方式可以兼顾高含量元素的分析,也可以兼顾低含量元素的分析,同时还能满足复杂基体的分析。MultiView 的切换示意图  此外,斯派克的产品还采用垂直同步双观测(DSOI)技术,一种全新的等离子体视图设计方法,采用垂直等离子体炬,通过新的直接径向视图技术进行观察。两个光学接口捕获从等离子体两侧发射的光,仅使用一个额外的反射,以增加灵敏度和消除困扰新的垂直火炬双视图模型的问题。因此,垂直同步双观测(DSOI)提供了传统径向系统的两倍灵敏度,但是避免了垂直双视图模型的复杂性、缺点和成本。垂直同步双观测(DSOI)示意图  采用同步双向观测应用于斯派克的多款ICP光谱上,包括ACRO,SPECTROGREEN等。  除了观测方面,斯派克的ICP光谱整体采用的光学器件少,包括其不用中阶梯光栅,而用帕邢—龙格结构。优点包括:首先在很宽的光谱范围内分辨率是一个恒定的常数,因此能轻松区分谱线富集区域内相邻谱线,最大限度减少光谱干扰。而中阶梯光栅正相反,只是在200nm处有最好的分辨率,而到了300nm或400nm处分辨率会有大幅度的下降。其次是线性范围宽,例如在做固体金属分析时,几乎所有光谱仪器都是采用的帕邢—龙格结构,因为一个固体样品里既有主量元素也有微量元素,高低含量元素都要兼顾到。帕邢—龙格结构线性范围很宽。第三点,帕邢—龙格结构系统采用的光学器件最少,只有反射镜和光栅,由于光路设计越简单,光量损失就越少,仪器灵敏度越高。帕邢—龙格结构的缺点是:仪器体积大。

  • 太阳辐射自动观测仪器光照度计

    太阳辐射自动观测仪器光照度计

    太阳辐射自动观测仪器光照度计在对太阳辐射理论和太阳运动理论的研究基础上,采用太阳模拟器技术和多自由度工作台,提出了一种新型多功能气象用太阳辐射自动观测仪器检定系统的总体设计方案,实现了对待检仪表的灵敏度,非线性误差、方位响应误差、余弦响应误差和倾斜响应误差等各项参数的检定。太阳辐射自动观测仪器检定系统主要山太阳模拟器和多维工作台组成。太阳模拟器为检定系统提供均匀稳定的模拟太阳光辐射:多维工作台能够为检定系统提供所需各种功能动作模拟不同的太阳角,两者集成共同实现了对太阳辐射自动观测仪器的标定。[img=太阳辐射自动观测仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140905147860_9891_4136176_3.jpg!w690x690.jpg[/img]由于在太阳辐射的测量中,存在太阳辐射自动观测仪器的“热偏移”现象。而对“热偏移”的研究过程中发现,太阳辐射自动观测仪器“热偏移”的大小主要和温度、湿度、风速和净波辐射这些环境因素有关,而太阳辐射自动观测仪器节点可以采集得到环境温度和湿度这些气象要素,风速和净波辐射的值则需要从协调器节点获得。当协调器节点需要向网络设备发送数据时,它会先发送信标帧在通信信道中,太阳辐射自动观测仪器节点在收到信标帧,会根据信标帧进行同步,而协调器节点会在下一个信标帧中指出协调器节点拥有某个传感器节点需要的数据,传感器节点收到信标帧后会向协调器节点的发送请求数据发送的MAC命令帧。太阳辐射自动观测仪器协调器节点在收到命令帧后,会先发送一个确认帧给传感器节点表示已经收到请求,紧接着开始传送数据。传感器节点成功接收数据后再回应一个数据确认帧给协调器节点。[img=太阳辐射自动观测仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140905378537_6710_4136176_3.jpg!w690x690.jpg[/img]

  • 水中余氯测定新方法研究

    [font=&]【题名】: 水中余氯测定新方法研究[/font][font=&]【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD406.019.htm[/font]

  • 大气科学之气象观测==气象台站

    星罗棋布的气象台站展开一张空白天气图,可以看到在以自然地理为背景的地图上,印有许多小圆圈,象点点繁星,分布于地球表面。这些小圆圈,每一个都代表着一个气象观测站点,全球约有一万多个,它们有统一的编号。这些站点一部分是天气站,一部分是气候站,事实上还有很大一部分站点在图上没表示出来,这些站也做类似的工作,统称为气象观测站,它们是监视天气的哨兵。我国气象系统目前有各类气象台站2610余个,其中气象站约2300个,气象台310个,遍及全国各县、市。另 外,军事、民航、农垦、林业、盐业等部门还各自拥有相当数量的气象台站,各类气象台站的共同任务是,为我国的国民经济建设和国防建设服务。气象站是气象业务的基层单 位,其任务主要是进行气象观测、整理、积累各种气象资 料。在我国,根据当地需要和条件的可能,还要开展本地补 充天气预报。气象台是进行天气预报业务的专业机构,其任务是分析、研究气象资料,发布天气预报和警报,对气象站 进行技术指导。我国各省、自治区、直辖市及地、市都设有气象台,所承担的具体工作任务因气象台的等级及所在地区 的经济状况而定。此外,还有为各类专业服务的气象台,如海洋气象台、盐业气象台、航空气象台等。

  • 天文学家观测到100亿光年外暗物质星系

    据英国《每日邮报》报道,天文学家们近日探测到一个远在100亿光年之外的“伴星系”,它属于一个所谓的“暗矮星系”类别。这是迄今在这一距离上探测到的最小质量天体。  顾名思义,科学家们认为这一星系中含有神秘的暗物质。这一发现将为天文学家们提供重要线索,帮助他们理解宇宙最初是如何逐渐构建起自身结构的。这是迄今在我们所观测宇宙范围内发现的第二例此类星系,也是目前为止距离我们最遥远的一例。  天文学家们认为,我们银河系这类大型星系正是在数十亿年的漫长时间内逐渐由这些小型的星系聚合而成的。但是天文学家们此前却一直未能如预料的那样找到更多此类卫星星系或者遥远的此类星系。但即便现在找到了两个这样的星系,其数量还是明显的太过稀少。这种情况迫使天文学家们不得不开始设想这类星系中必定仅含有少量的恒星,而其大部分质量则由暗物质构成。这项由美国麻省理工学院的博士后研究员参与的研究工作似乎证实了这一点:此次发现的这一星系是一个伴星系,这就意味着它是一个更大规模星系的卫星星系。  西莫那•维戈提(Simona Vegetti)是麻省理工学院物理学院帕帕拉多研究员(Pappalardo Fellow),也是《自然》杂志上介绍这一工作的相关论文的第一作者。他说:“出于某些原因,这些星系中未能形成很多恒星,甚至没有形成任何恒星,因此看起来一直是黑的。”  科学家们确信宇宙中存在着看不见的暗物质,因为只有这样才能解释实际观测到的数据。计算显示,我们所观测到的宇宙物质实际仅占整个宇宙质量的很小一部分,另外一大部分物质我们看不到,即所谓的暗物质。  科学家们计算后认为暗物质大约构成宇宙成分的25%,但是由于组成暗物质的神秘成分不吸收也不发射光线,因此我们一直到目前为止都无法探测到它或是确认其状态。

  • 水文气象观测站环境数据采集

    水文气象观测站环境数据采集

    水文气象观测站环境数据采集随着生态环境监测网络的发展和水质网格化监测的推广,水文气象观测站需要进行更密集的布点,以满足污染溯源、水质预警、河长考核等大数据应用需求。常规水质自动监测站占地面积大、基建投入高,检测周期长,难以适应环境监测新形势下的应用需求,绿光新能源开发了水文气象观测站、即微型水质自动监测系统。采用了集成户外监测技术,综合智能微型监测传感器、自动控制、计算机应用和通讯网络等技术,占地面积小,可充分适应管理需求,采用低成本网格化布点、高频短周期,实时监测手段,配备一套严密的数据质量控制体系;加强了水质污染、异常事故的预防和污染排放的监管能力。可分析区域内水质动态趋势,有效加强区域管理,为污染动态研究、湖泊富营养化预测、湖泊水库水污染治理提供科学依据,为水环境管理与决策提供科学有效的技术支撑。[img=水文气象观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209190914544747_6791_4136176_3.jpg!w690x690.jpg[/img]水文气象观测站适用于流域水质评价、污染溯源、水质预警、河(湖)长考核、水库、饮用水源地、地下水观测点等水质变化状况监测与水质大数据监测需求,能满足排水管理服务中心对城市排水设施、城区河道、中水站、泉站末端运行等方面的在线监测需要,满足污水末端和其他工程管理需要,满足城市排水管理业务工作需要,可以帮助相关部门智能高效地处理排水末端设施的海量信息和数据、实现对排水末端水质安全情况的有效准确监督、实现业务办理快速高效协同。[img=水文气象观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209190915146820_6668_4136176_3.jpg!w690x690.jpg[/img]

  • 大气科学之气象观测==气象观测站网

    气象观测站网  大气是个整体,要掌握大气变化的规律,就必须了解从地面到高空大气中尽可能多的情况。由于纬度、海陆、地形地势、地面覆盖的不同,各个地方各有自己的天气、气候特色。为了整体和当地的需要,监视天气、气候变化的气象台站遍布全球。无论天涯海角,到处都有气象人员在坚持工作,气象仪器在监视探测,夜以继日、年复一年连续不断地获取大量气象信息。  由气象观测所取得的数以亿计的气象数据,要为当前及今后全世界所公用,必须有代表性、准确性和比较性,因此从观测场址的选择、仪器的安装布置、仪器的性能型号、观测的手续、方法、观测的时间和时限、观测数值的精确程度,到计算、记录、统计、编发报的方法,都有国际上统一的规定。同时,为了及时的应用,大量信息又必须通过各种传送手段,迅速地集中到一定的机构。在这里经过编排、加工,生产出可供各方面使用的气象产品有组织地向外传送出去。

  • 天文学家首次观测到黑洞“捕捉”星云过程

    http://photocdn.sohu.com/20111216/Img329202340.jpg  天文学家首次观测到黑洞“捕捉”星云过程(图)新华社北京12月15日电 一个国际研究小组利用欧洲南方天文台的“甚大望远镜”,发现一个星云正在靠近位于银河系中央的黑洞并将被其吞噬,人们有望观察到黑洞“吃大餐”的场景。据悉,这也是天文学家首次观测到黑洞“捕捉”星云的过程。  观测显示,这个星云的质量约是地球的3倍,它的位置近年来逐渐靠近“人马座A星”黑洞。这个黑洞的质量约是太阳的400万倍,是距离我们最近的大型黑洞,也是天文学家研究黑洞非常好的观测对象。  研究人员分析认为,到2013年,这个星云将离黑洞非常近,有可能被黑洞逐渐吞噬。参与研究的德国天文学家吉勒森说,吞噬过程中将会出现的种种现象可以为天文学家提供有价值的研究资料。  过去20年,德国马克斯-普朗克地外物理研究所的天文学家根策尔领导的国际天文小组一直在通过位于智利阿塔卡玛沙漠的欧洲南方天文台望远镜,跟踪观测银河系中央黑洞附近星体的活动情况。这次的发现是该项长期观测计划的一项重要成果。

  • 一体式气象观测站实时数据记录

    一体式气象观测站实时数据记录

    一体式气象观测站实时数据记录一体式气象观测站广泛应用于气象、环保、机场、农林、水文、仓储、科学研究等领域。可以实时监测风速、风向、雨量、温度、湿度、气压、太阳辐射、土壤温度、土壤湿度等九要素气象参数。一体式气象观测站配置的微电脑气象数据采集仪具有气象数据采集、实时时钟、定时存储、参数设定、参数和气象历史数据掉电保护等功能。一体式气象观测站采用标准RS232/485通讯功能,支持MODBUS通讯协议,可以通过有线、移动无线GPRS和无线数传电台等多种通讯方式与气象计算机组成气象监测系统。电源系统有市电、直流和太阳能系统多种方式。采用全不锈钢支架和野外防护箱,外形美观、耐腐蚀、抗干扰。[img=一体式气象观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209090945024221_8834_4136176_3.jpg!w690x690.jpg[/img]无线传输方式可根据通讯距离的不同分为短距离无线传输、中距离无线传输、长距离无线传输三种无线传输方式,也可通过无线通讯方式实现一个中心对多个站点的实时监测。(1)短距离无线传输方式:采用先进的微波射频通讯传输模块,通讯距离在0~300米范围之内,主要适合于校园内、场区内等短距离范围内数据传输,无任何通讯费用。(2)长距离无线传输方式:采用GSM网/GPRS网通讯技术,结合Internet网络通讯协议,配备无线通讯控制器可实现监测中心对各个站点进行实时监测,远程采集各监测站点的气象数据,不受距离限制,数据传输可靠。[img=一体式气象观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209090945175840_6900_4136176_3.jpg!w690x690.jpg[/img]

  • 多参数气象站设备气象科研观测

    多参数气象站设备气象科研观测

    多参数气象站设备气象科研观测多参数气象站设备针对野外环境和地质灾害监测具有不易采用市电供电,难以采用长距离有线传输数据,无法准确及时发现和处理故障的特点,给出了一种采用风光互补独立供电系统,GPRS远程数据传送并具有故障自诊断功能。多参数气象站设备采用主控MCU,便于与现场的其他监测对象通过ZigBee技术组网汇集数据,远程上位机采用LabVIEW编程,数据传输稳定,实时性好。多参数气象站设备是按照气象WMO组织气象观测标准,研究而开发生产的多要素自动观测站。可监测风向、风速、温度、湿度、气压、雨量、土壤温湿度等常规气象要素,具有自动记录、超限报警和数据通讯等功能。多参数气象站设备由气象传感器,气象数据记录仪,气象环境监测软件三部分组成。广泛应用于工农业生产、旅游、科研、气象等城市环境监测和其它专业领域。[img=多参数气象站设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/08/202208160912121740_7462_4136176_3.jpg!w690x690.jpg[/img]多参数气象站设备采用嵌入式技术,可用于测量风速、风向、气温、气湿、气压、全辐射、雨量、蒸发、土壤温度、土壤水份等各类气象数据。系统采用模块化设计,可根据用户需要(测量的气象要素)灵活增加或减少相应的模块和传感器,任意组合,方便、快捷的满足各类用户的需求。系统自带显示、自动保存、实时时钟、数据通讯等功能。该多参数气象站设备有技术先进,测量精度高,数据容量大,遥测距离远,人机界面友好,可靠性高的优点,广泛用于气象、海洋、环境、机场、港口、工农业及交通等领域,也适合学校和科研机构使用。[img=多参数气象站设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/08/202208160913061497_7968_4136176_3.jpg!w690x690.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制