当前位置: 仪器信息网 > 行业主题 > >

光保护蛋白

仪器信息网光保护蛋白专题为您整合光保护蛋白相关的最新文章,在光保护蛋白专题,您不仅可以免费浏览光保护蛋白的资讯, 同时您还可以浏览光保护蛋白的相关资料、解决方案,参与社区光保护蛋白话题讨论。

光保护蛋白相关的论坛

  • 如何明辨重组蛋白、融合蛋白与天然蛋白:重组蛋白常见问题详解

    [font=宋体][b]重组蛋白、融合蛋白与天然蛋白的区别:[/b][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白是利用基因工程技术产生的,通常是由转基因动物的乳腺产生,其作为生物制药在医学领域中作用显著。利用基因工程技术,可以使哺乳动物本身变成[/font][font=宋体]“批量生产药物的工厂”。方法:是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]融合蛋白又称为[/font][font=宋体]“标签蛋白”,常用的标签有[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]Strep[/font][font=宋体]标签。融合蛋白是通过[/font][font=Calibri]DNA[/font][font=宋体]重组技术将要表达的目的蛋白基因和表达载体上融合蛋白基因相连,通过这种方式表达出来的蛋白质,就是既含有目的基因蛋白又含有融合基因蛋白的重组蛋白。融合蛋白表达是重组蛋白表达的一种策略,融合表达是一种方法。[/font][/font][font=宋体] [/font][font=宋体]天然蛋白质是在自然界中存在的,不经过人工的任何修饰或加工,比如大豆中的蛋白质和病毒表面的蛋白质。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]重组蛋白常见问题解析:[/b][/font][font=宋体][font=Calibri]1.[/font][font=宋体]蛋白为什么要冻干?冻干对蛋白的影响有哪些?[/font][/font][font=宋体] [/font][font=宋体]蛋白质对热敏感,冻干能使绝大部分蛋白质的活性保留下来,提高蛋白的稳定性并延长保存时间,同时降低运费。[/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]冻干前为什么向蛋白溶液中加保护剂?一般冻干保护剂有哪几种?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]保护剂是用来在冻干和储存过程中保护蛋白的。常用的保护剂或稳定剂有糖类,多元醇,聚合物,表面活性剂,某些蛋白和氨基酸等。我们通常加[/font][font=Calibri]8%[/font][font=宋体](质量比体积)的海藻糖和甘露醇作为冻干保护剂。海藻糖可明显阻止蛋白质二级结构改变以及冻干过程中蛋白质的伸展和聚集;甘露醇也是一种普遍应用的冻干保护剂和填充剂,可以降低某些蛋白的冻干后聚集情况。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]温馨提示:对于大多数蛋白,重悬后在[/font][font=Calibri]4[/font][font=宋体]℃仅能短期保存[/font][font=Calibri]([/font][font=宋体]约[/font][font=Calibri]1[/font][font=宋体]周[/font][font=Calibri])[/font][font=宋体]。如想长期保存,请先配制成稀释液[/font][font=Calibri]([/font][font=宋体]其中必须含有载体蛋白,如[/font][font=Calibri]0.1% BSA[/font][font=宋体],[/font][font=Calibri]5%HSA[/font][font=宋体],或[/font][font=Calibri]10% FBS)[/font][font=宋体],然后分装冻存于[/font][font=Calibri]-20[/font][font=宋体]℃或[/font][font=Calibri]-80[/font][font=宋体]℃。一定要避免反复冻融,因每次冻融均会引起蛋白的部分失活。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]如何重构冻干粉?[/font][/font][font=宋体] [/font][font=宋体]请查看您的货物随附的分析证书以获取有关重构的确切说明,因为并非所有产品都在相同条件下重构。一般来说,我们建议使用无菌水进行复溶。将推荐体积的无菌水加入小瓶中,轻轻摇晃以完全溶解蛋白质。不要涡旋。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]为什么我的管内几乎看不见蛋白产品?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白产品中不含载体蛋白或其它添加物[/font][font=Calibri]([/font][font=宋体]如牛血清白蛋白[/font][font=Calibri](BSA)[/font][font=宋体],人血清白蛋白[/font][font=Calibri](HSA)[/font][font=宋体]和蔗糖等,并以最低含盐量的溶液进行冻干时,常常不能形成白色网架结构,而是微量的蛋白在冻干过程中沉积在管内,形成很薄或肉眼不可见的透明蛋白层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5.[/font][font=宋体]应如何确定细胞因子的种属交叉活性?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1) [/font][font=宋体]除少数例外,大多数人类细胞因子对小鼠细胞均有活性。[/font][font=Calibri]2) [/font][font=宋体]许多小鼠细胞因子也可作用于人类细胞,但比活性可能低于对应的人类细胞因子。 [/font][font=Calibri]3) IL-7[/font][font=宋体]等为数不多的人类细胞因子作用于小鼠细胞时比对应的小鼠细胞因子活性更强。[/font][font=Calibri]4) [/font][font=宋体]干扰素,[/font][font=Calibri]GM-CSF, IL-3[/font][font=宋体]和[/font][font=Calibri]IL-4[/font][font=宋体]等细胞因子种属特异,对非同源细胞几乎没有活性。[/font][font=Calibri]5) [/font][font=宋体]相反,成纤维细胞生长因子[/font][font=Calibri](FGFs)[/font][font=宋体]和神经营养素[/font][font=Calibri](neurotrophins)[/font][font=宋体]高度保守,在不同动物种属细胞上均具有很好的活性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6.[/font][font=宋体]什么是载体蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]载体蛋白如[/font] [font=Calibri]HSA [/font][font=宋体]或 [/font][font=Calibri]BSA [/font][font=宋体]用于提高重组蛋白的稳定性,并有助于避免产品粘在小瓶壁上。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]我应该如何储存重组蛋白?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]对于长期储存,蛋白质溶液应与载体蛋白(例如[/font] [font=Calibri]0.1% BSA [/font][font=宋体]或 [/font][font=Calibri]0.1% HSA[/font][font=宋体])分装保存,并在 [/font][font=Calibri]-20[/font][font=宋体]°[/font][font=Calibri]C [/font][font=宋体]下冷冻保存。请记住,每个冷冻[/font][font=Calibri]/[/font][font=宋体]解冻循环都可能导致蛋白质变性。除非分析证书上另有说明,否则大多数重组蛋白的保质期为一年。如果将它们保存在分析证书上所述的最佳存储条件下,则提供此保证。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]8.[/font][font=宋体]如何确定重组蛋白的数量?为什么我的检测产生的蛋白质数量与您的结果不同?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]我们通过[/font][font=Calibri]BCA[/font][font=宋体]、[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、[/font][font=Calibri]HPLC[/font][font=宋体]等方法确定重组蛋白的数量。不同的测定产生不同的量化结果。有时,如果您进行不同的检测,差异可能会很大。蛋白质也有可能在储存过程中形成聚集体,在重组和离心后导致损失。我们对每批产品进行质量控制测试,但是,同一批次中的一些小瓶可能与其他小瓶不同(这种情况很少发生)。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白资源[/b][/url]详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font]

  • 【原创】现货供应手性蛋白柱一根

    ChromTech AGP 手性柱(CHIRAL-AGP柱;CHIRAL-HSA柱;CHIRAL-CBH柱 高压液相色谱手性柱 ChromTech AGP 手性柱 1.CHIRAL-AGP柱 α-酸糖蛋白(AGP)是一种非常稳定的蛋白质 它不溶于各种有机溶剂,耐高温以及较高或较低 的PH值。AGP是CHIRAL-AGP柱的手性选择 体,它涂敷在5μm的球形硅颗粒之上。CHIRAL -AGP柱适用于反相色谱,用途十分广泛,是所有 手性柱中应用范围最广的,可以分离所有类型化合 物、胺(伯,仲,叔,季胺)、酸(强和弱)、非光 解质(酰胺,酯,醇,亚砜等)该柱的手性选择性 及保留值可以通过改变流动相的PH、缓冲液的浓 度和性质以及有机改性剂的浓度来调节。因此它是 目前使用最广泛的手性柱之一 货号: 产品描述: AGP 100.4 AGP 100.4 ,5u 100mm ×4.0mm AGP 150.4 AGP 100.4 ,5u 150mm ×4.0mm AGP 10.42 AGP 保护柱芯,PK2 CH 10.3 AGP 保护柱套,PK1 CON 2 AGP 保护柱套连接器

  • 重组蛋白是什么?重组蛋白的生产、应用及选择

    [font=宋体][font=宋体]重组蛋白([/font][font=Calibri]recombinant protein[/font][font=宋体])是指应用重组 [/font][font=Calibri]DNA [/font][font=宋体]或重组 [/font][font=Calibri]RNA [/font][font=宋体]技术而获得的蛋白质。重组蛋白工程先应用基因克隆或化学合成技术获得目的基因([/font][font=Calibri]gene of interest[/font][font=宋体],[/font][font=Calibri]GOI[/font][font=宋体]),连接到适合的表达载体,导入到特定的宿主细胞,利用宿主细胞的遗传系统,表达出有功能的蛋白质分子。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白的产生是应用了重组[/font][font=Calibri]DNA[/font][font=宋体]或重组[/font][font=Calibri]RNA[/font][font=宋体]的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。[/font][/font][font=宋体] [/font][font=宋体]其获得途径可以分为体外方法和体内方法。两种方法的前提都是应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子。[/font][font=宋体] [/font][font=宋体][font=宋体][b]当前重组蛋白的生产主要有四大系统[/b]:原核表达系统:最常用的大肠杆菌蛋白表达,真核表达系统如酵母,哺乳动物细胞蛋白表达(常用的细胞[/font][font=Calibri]CHO[/font][font=宋体],[/font][font=Calibri]HEK293[/font][font=宋体])及、昆虫细胞蛋白表达系统。重组蛋白的产生尚可利用转基因动物的乳腺或者植物产生,产生的重组蛋白作为生物制药的产物,在医学中作用显著。利用基因工程技术,可以使细胞或者动物本身变成“批量生产药物的工厂”。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]以利用转基因动物的乳腺表达重组蛋白为例:其方法是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。科学家已在牛和山羊等动物的乳腺生物反应器中表达出了抗凝血酶、血清白蛋白、生长激素和[/font][font=宋体]α[/font][font=Calibri]-[/font][font=宋体]抗胰蛋白酶等重要的医药产品。[/font][/font][font=宋体]重组蛋白在制药工业上主要是指表达获得的细胞因子、凝血因子或者人工设计的蛋白分子。[/font][font=宋体] [/font][font=宋体][font=宋体]目前,重组蛋白试剂已被广泛应用于生物药、细胞免疫治疗及诊断试剂的研发和生产中。其中重组蛋白药物是生物药物的重要组成成分,常被被广泛应用于医疗领域[/font][font=Calibri],[/font][font=宋体]包括肿瘤治疗、免疫调节、神经保护、结缔组织疾病、肾病治疗等。包括细胞因子类、抗体治疗性疫苗、激素及酶等。[/font][/font][font=宋体] [/font][font=宋体]义翘神州致力于提供[url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白生产[/b][/url]、[url=https://cn.sinobiological.com/resource/protein-review/protein-expression][b]重组蛋白表达[/b][/url]及[url=https://cn.sinobiological.com/resource/protein-review/protein-production-systems][b]重组蛋白系统[/b][/url]详情的咨询与解决方案。为实验中特定的应用选择正确的表达系统是成功的关键所在。在选择表达系统时,蛋白溶解度、功能、纯化速度和产量通常是必须考虑的重要因素。此外,每个表达系统都有其独特的优势和挑战,这一点在选择时也需着重考虑。我们的专业团队将为您提供个性化的建议,以帮助您根据实验需求选择最合适的表达系统。[/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font][font=Calibri] [/font]

  • 多焦点扫描与光激活蛋白应用

    [align=center][b][/b][/align][align=center][b]Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for [i]in vivo [/i]monitoring of intracellular protein dynamics in real time[/b][/align][b]摘要[/b]使用[color=#ff0000]Lavision Biotec[/color]公司[b]多焦点双光子激光扫描显微镜[color=#ff0000]Trim Scope[/color][/b]来进行局部和选择性的蛋白激活以及细胞内蛋白动态的的量化调查。局部激活使用光激活绿色荧光蛋白(pa-GFP)和光学双光子激发来实现,以调查实时原位的细胞内动态。这个过程对于深入理解和建模活细胞内的调控和代谢过程极其重要。作为范例,既包含了一个核输入信号又包含了一个核输出信号的拟南芥MYB转录因子LHY/CCA1-like 1 (LCL1)被定量化调查。我们使用了由质粒编码的光激活绿色荧光蛋白(pa-GFP)融合蛋白和一个红色荧光转染标记联合转染的烟草BY-2原生质体,并pa-GFPLCL1在核内光激活后的快速向核外输出。作为对照,一个LCL1核输出阴性突变体仍然被束缚在核内。我们确定了由激活pa-GFP-LCL1的双向核运输和pa-GFP的扩散分别导致的核内荧光下降的51s和125s的平均时间常数。[b]材料与方法[/b][i]并行的64焦点双光子激光扫描显微镜[/i]Pa-GFP的激活和荧光的原位检测,通过基于根据蛋白动态监测需求改进的商业化系统([color=#ff0000]TriM Scope, LaVision Biotec[/color] Martini et al., 2005 Nielsen et al., 2001)多焦点2光子LSM检测(Fig. 1). 64焦点2光子LSM (Martini et al., 2006)包括一个倒置光学显微镜和一个可以产生从760nm到960nm的100fs激光脉冲的由固态激光器泵浦的锁模飞秒Ti:Sa激光器。用于激活和成像循环的波长选则通过一个允许5s内转换波长的ahome-built screw motorization来实现。激光扫描单元([color=#ff0000]TriM Scope, LaVision BioTec[/color]) 包括一个内置的预啁啾部分以补偿激光脉冲的色散,一个光束分光器部分和振镜扫描器。通过选择一组10个100%反光镜和50%分光镜,激发的NIR激光束在样品中被分为1, 2, 4,……, 64个激发焦点。这些数目可调的焦点在显微镜物镜(UPLAO60XW3/IR, NAD1.2 Olympus)的焦平面上被激光扫描单元中的2个扫描镜扫描。整个激活和测量过程在一个温度可控环境中在293±1K下进行。因为在保持每个焦点的能量沉积低于样品的退化极限的同时,多个焦点产生了相对高的双光子诱导荧光产额,成像可以30ms的时间分辨率进行。图像用一个背照明的EMCCD相机(IXON DV887ECS-UVB, Andor Technology)以non-descanned方式获取。激发的NIR激光束被引导通过一个分光镜 (2光子-Beamsplitter, Chroma)到物镜的后光圈上。为了成像深度和光谱荧光切片,倒置显微镜采用了机械聚焦驱动(MFD, Marzhauser)和一个程序控制滤波轮([color=#ff0000]LaVision-BioTec)[/color]。数据获取和实验控制由 TriM Scope的软件包Imspector(LaVision-BioTec)执行。操作和处理5维的数据列,包括光谱和时间数据轴,使用软件包Imspector ([color=#ff0000]LaVision-BioTec)[/color],ImageJ (Rasband, 1997) 或 Imaris (Bitplane)。[img=,657,421]http://qd-china.com/uploads/bio-product/81.jpg[/img]Fig. 1.多焦点双光子激光扫描显微镜的原理图(1) Tsunami Ti:Sa 激光器(波长可调)由固态Millenia X 激光器泵浦 (均来自 Spectra Physics), (2) 多焦点激光扫描单元 (TriM-scope, LaVision BioTec), (3) 分光镜 (2光子-Beamsplitter, Chroma), (4) 短波通过滤波轮 (2光子-Emitter, Chroma), (5) 物镜 (UPLAO60XW3/IR, NA D 1.2 Olympus), (6) 样品中可选择数目的荧光焦点, (7) 倒置光学显微镜(IX 71, Olympus), (8) 滤波轮 (滤波轮, LaVision BioTec)装备带通滤波片 D 605/55 (Chroma)用于检测 Ds-Red 和 HQ525/50 结合 HQ510/20 (均来自 Chroma)以检测 pa-GFP, (9) 背照式 EMCCD-camera (IXON DV887ECS-UVB, Andor Technology) 在NDD光路中, (10) 荧光灯 (HBO 50, Zeiss), (11) 带通激发滤波轮 D 540/25 (Chroma) 用于 Ds-Red 或带通激发滤波轮HQ 480/20 (Chroma) 用于 pa-GFP.[b]结果[img=,380,768]http://qd-china.com/uploads/bio-product/82.jpg[/img][/b]Fig. 2.含有核输入输出信号的拟南芥转录因子LCL1 (分别为NLS, NES). 由质粒编码GFP融合蛋白转染的烟草BY-2原生质体。通过单光子共聚焦激光扫描显微镜分析的GFP融合蛋白稳定态定位。(a) GFP-LCL1 揭示的核与细胞质间的分区。(b) 使用核输出抑制剂leptomycin B (LMB)孵育后,由于功能性NLS的存在,GFP-LCL1的稳定态分区剧烈转化为几乎完全分布于核中。 (c,d) 对照,LMB对单独的GFP没有影响。 (e) GFPLCL1(NESm)中,它的NES的点突变造成的LCL1的核输出活性削弱同样导致了GFP融合蛋白在核内的聚集。(f) 与(e)中同一个原生质体的透射光与GFP荧光成像的叠加标尺为10um (g) 作为对照的 GFP-NLS 在核内的增加。 (h) 同一原生质体的GFP-NLS绿色荧光蛋白和作为转染标记的Pra1-DsRed (At2g38360)红色荧光蛋白的叠加。[img=,700,109]http://qd-china.com/uploads/bio-product/83.jpg[/img]Fig. 3. pa-GFP 在一个活原生质体内的自由动态扩散。选出的5幅表达pa-GFP的烟草BY-2原生质体的单光子透射荧光图像。(a)实验开始,未激活 (b) pa-GFP的双光子激活期间 (c-e) 双光子激活后,所示时间点。(a)核内(红虚线)的pa-GFP在双光子激发前平均荧光很难被检测到。使用4个平行焦点(10mW at 800 nm 每焦点)的持续3s的飞秒激光对一个7X8um的区域进行pa-GFP 2光子激发开始 (b) 激发后很短时间内检测到一个强的荧光信号(c-e) pa-GFP从核内向细胞质的扩散被监测,直到两组分间达到平衡。荧光强度标尺显示在每幅图的左边。[img=,707,514]http://qd-china.com/uploads/bio-product/84.jpg[/img]Fig. 4.在核内被光激活后,pa-GFP从核内向细胞质扩散的量化分析。在激活前,核内(ROI)平均的1光子荧光强度非常低(平均强度~300).在26s和29s间的时间点,由飞秒激光激活诱导的荧光增强在图上进行了监测。 与光激活前相比,平均荧光强度是之前的大约5倍,伴随着ROI内的荧光降低。在第一个地方,监测到的细胞核内荧光下降是由于激活的pa-GFP向细胞质内的扩散。后来,光漂白变得显著。双指数拟合非常近似地拟合了整个荧光下降过程(红线)。以此方式计算出这个实验中175s的扩算时间常数。[img=,705,375]http://qd-china.com/uploads/bio-product/85.jpg[/img]Fig. 5. 烟草BY-2原生质体中At2g38360-DsRed的定位和平行双光子荧光显微镜对pa-GFP的3D监测(64 foci, 920 nm, 240 mW)。 (a) 双光子荧光下降的量化分析,给出了一个123s的扩散时间常数。Figs. 3 and 4中的数据源于两个不同的实验,解释了荧光值的绝对差异(不同的表达水平)和统计分析。 (b) At2g38360-DsRed作为转染标记在核中pa-GFP激活前的荧光 (c) At2g38360-DsRed和pa-GFP数据采集后400 s的3D荧光图像,清楚显示了荧光团从细胞核向细胞质的扩散。[img=,697,603]http://qd-china.com/uploads/bio-product/86.jpg[/img]Fig. 6.在核内光激活前后,烟草BY-2原生质体内活跃转运的pa-GFP-LCL1的3D动态监测和量化分析。(a) 在pa-GFP-LCL1双光子激发后核内的单光子荧光表明双光子激活荧光增强 (b) pa-GFP被双光子激活后双指数曲线拟合(红线)的荧光下降量化分析。计算得出的由于主动运输导致的核内pa-GFP-LCL1荧光下降的一个20s的时间常数(c,d) At2g38360-DsRed(转染标记)和pa-GFP-LCL1的双色双光子荧光3D成像 (c)核内光激活前 (d)数据获取后。[img=,691,345]http://qd-china.com/uploads/bio-product/87.jpg[/img]Fig. 7. 烟草BY-2原生质体的核输出阴性突变pa-GFP-LCL1(NESm)光激活前后的3D动态监测和量化分析。(a) pa-GFP-LCL1(NESm)被双光子激活后的单光子荧光显示了双光子激活荧光增强和激活后核内荧光极其缓慢的下降,反映了pa-GFPLCL1(NESm)的核限制 (b,c) At2g38360-DsRed (转染标记) 和 pa-GFP-LCL1(NESm) 的双光子荧光3D图像 (b) 光激活前的核内 pa-GFP (c) 数据获取后300s的时间点。

  • 标签蛋白有哪些?如何选择标签蛋白?

    [font=宋体][font=宋体]蛋白质的检测在生物科学研究中占据着至关重要的地位。其中,免疫分析方法被广泛应用,包括[/font][font=Calibri]Western Blot[/font][font=宋体]、酶联免疫吸附试验([/font][font=Calibri]ELISA[/font][font=宋体])和免疫沉淀法([/font][font=Calibri]IP[/font][font=宋体])等。这些方法依赖于抗原[/font][font=Calibri]-[/font][font=宋体]抗体间的特异性反应,通过注射目标蛋白作为抗原至动物体内,产生免疫反应后分离抗体,进而进行检测。尽管应用广泛,但这种方法的缺点在于每次更换目标蛋白时都需要制备对应的抗体,操作繁琐且成本高昂。[/font][/font][font=宋体] [/font][font=宋体]融合标签技术的出现为蛋白质免疫分析带来了通用化和便利化。通过将特定的标签与目标蛋白融合,两者实现共同表达。通过对融合标签的检测,我们可以了解目标蛋白的表达情况。这种蛋白标签技术利用基因克隆手段,将具有特定功能的多肽、蛋白质结构域甚至完整蛋白质与目标蛋白结合,广泛应用于目标蛋白的表达、纯化、检测和跟踪等方面。经过长期研究,已经发展出一些成熟的检测标签技术。这些标签不仅简化了实验操作,降低了成本,而且为蛋白质研究提供了强有力的工具。下面就挑几个来介绍一下:[/font][font=宋体] [/font][b][font=宋体]①[/font][font=宋体][font=Calibri]His[/font][/font][font=宋体][font=Calibri]-tag[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]His[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]标签[/b][/url]是当前最为热门的标签蛋白之一。[/font][font=Calibri]His6[/font][font=宋体]是指六个组氨酸残基组成的融合标签([/font][font=Calibri]HHHHHH[/font][font=宋体]),可插入在目的蛋白的[/font][font=Calibri]C[/font][font=宋体]末端或[/font][font=Calibri]N[/font][font=宋体]末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析([/font][font=Calibri]IMAC[/font][font=宋体]),对重组蛋白进行分离纯化。[/font][/font][font=宋体] [/font][b][font=宋体]②[/font][font=宋体][font=Calibri]Flag-tag[/font][/font][/b][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/flag-tag-protein-expression][b]Flag[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/flag-tag-protein-expression][b]标签蛋白[/b][/url]为编码[/font][font=Calibri]8[/font][font=宋体]个氨基酸的亲水性多肽([/font][font=Calibri]DYKDDDDK[/font][font=宋体]),同时载体中构建的[/font][font=Calibri]Kozak[/font][font=宋体]序列使得带有[/font][font=Calibri]FLAG[/font][font=宋体]的融合蛋白在真核表达系统中表达效率更高。 [/font][/font][font=宋体] [/font][b][font=宋体]③[/font][font=宋体][font=Calibri]AviTag[/font][/font][/b][font=宋体][font=宋体]是一个[/font][font=Calibri]15[/font][font=宋体]个氨基酸的短肽,具有一个单生物素化赖氨酸位点,与已知天然可生物素化序列完全不同,可以加在目标蛋白的[/font][font=Calibri]N[/font][font=宋体]端和[/font][font=Calibri]C[/font][font=宋体]端。融合表达后,可被生物素连接酶生物素化,为了纯化重组蛋白选用低亲和性的单体抗生物素蛋白或抗生物素蛋白衍生物,除了用于蛋白质分离纯化,还用于蛋白质相互作用研究。[/font][/font][font=宋体] [/font][b][font=宋体]④[/font][font=宋体][font=Calibri]SNAP-Tag[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]SNAP-Tag[/font][font=宋体]是从人的[/font][font=Calibri]O6[/font][font=宋体]-甲基鸟嘌呤[/font][font=Calibri]-DNA[/font][font=宋体]甲基转移([/font][font=Calibri]O6-alkylguanine-DNA-alkyltransferase[/font][font=宋体])获得。[/font][font=Calibri]SNAP[/font][font=宋体]所带的活性巯基位点接受了苯甲基鸟嘌呤所携带的侧链苯甲基基团,释放出了鸟嘌呤。这种新的硫醚键共价结合使[/font][font=Calibri]SNAP[/font][font=宋体]所带的目的蛋白携带上了苯甲基基团所带的标记物。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]检测:生物素或各种颜色荧光的底物(如荧光素、若丹明)可渗透进入细胞,方便快捷地进行活细胞内[/font][font=Calibri]SNAP-Tag[/font][font=宋体]融合蛋白的标记与检测。它们也可特异性地标记大肠杆菌,酵母和哺乳动物等细胞抽提液或已经纯化的蛋白液中的[/font][font=Calibri]SNAP-tag[/font][font=宋体]融合蛋白。 [/font][/font][font=宋体] [/font][b][font=宋体]⑤[/font][font=宋体][font=Calibri]GST[/font][font=宋体](谷胱甘肽巯基转移酶)[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]GST[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]标签蛋白[/b][/url]本身是一个在解毒过程中起到重要作用的转移酶,它的天然大小为[/font][font=Calibri]26KD[/font][font=宋体]。[/font][font=Calibri]GST[/font][font=宋体]融合表达系统广泛应用于各种融合蛋白的表达,可以在大肠杆菌和酵母菌等宿主细胞中表达。结合的融合蛋白在非变性条件下用[/font][font=Calibri]10mM[/font][font=宋体]还原型谷胱甘肽洗脱。[/font][font=Calibri]GST[/font][font=宋体]标签可用酶学分析或免疫分析很方便的检测。标签有助于保护重组蛋白免受胞外蛋白酶的降解并提高其稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纯化:该表达系统表达的[/font][font=Calibri]GST[/font][font=宋体]标签蛋白可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶亲和树脂进行纯化。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]如果要去除[/font][font=Calibri]GST[/font][font=宋体]融合部分,可用位点特异性蛋白酶切除。[/font][/font][font=宋体] [/font][b][font=宋体]⑥[/font][font=宋体][font=Calibri]GFP[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]GFP[/font][font=宋体](绿色萤光蛋白)是由下村修等人在水母中发现的。它在蓝色波长范围的光线激发下,会发出绿色萤光。[/font][font=Calibri]GFP[/font][font=宋体]标签可位于蛋白质的[/font][font=Calibri]C[/font][font=宋体]端或[/font][font=Calibri]N[/font][font=宋体]端,该系统已广泛应用于各种细胞类型,包括细菌、酵母和哺乳动物细胞等,相应的[/font][font=Calibri]GFP[/font][font=宋体]标签抗体也被广泛应用。[/font][font=Calibri]GFP[/font][font=宋体]在检测蛋白表达、蛋白和细胞荧光示踪、研究蛋白质之间相互作用和构象变化中,起到了重要的作用。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]该如何选择表达克隆的标签[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、首先,需要确定融合标签的目的[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白纯化[/font] [font=宋体]:标签的普遍用途是蛋白纯化。小分子[/font][font=Calibri]6XHis Tag[/font][font=宋体]常被用于细胞内源蛋白的纯化。[/font][font=Calibri]6XHis Tag[/font][font=宋体]也广泛应用于大肠杆菌的蛋白纯化。可是哺乳动物细胞中因非分泌蛋白自身存在高组氨酸背景,因此极少使用[/font][font=Calibri]6XHis Tag[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Western Blot[/font][font=宋体]检测:若需要做[/font][font=Calibri]Western Blot[/font][font=宋体]实验来检测细胞裂解物中蛋白的表达,你可以选择有匹配的抗体的小分子标签。[/font][font=Calibri]FLAG Tag[/font][font=宋体]以其分子量小以及拥有许多与之匹配的商业化的抗体等优势,成为[/font][font=Calibri]Western Blot[/font][font=宋体]实验中常用的[/font][font=Calibri]Tag[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫沉淀反应:[/font][font=Calibri]FLAG Tag[/font][font=宋体]其分子量小以及拥有大量相匹配的商业用抗体等优势成为免疫沉淀反应中最常用的[/font][font=Calibri]Tag. [/font][font=宋体]其他常用的标签有:[/font][font=Calibri]HA[/font][font=宋体]和[/font][font=Calibri]cMyc.[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫共沉淀。首先,裂解您的样本,以释放蛋白。向试管中添加裂解液的同时,加入靶向融合标签的抗体,抗体会识别融合标签。然后抗体与蛋白[/font] [font=Calibri]A [/font][font=宋体]或 [/font][font=Calibri]G [/font][font=宋体]偶联微珠结合,后者拉出您的目标蛋白,以及与之复合的其他蛋白。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]活细胞成像:荧光蛋白([/font][font=Calibri]Fluorescent Proteins, FPs[/font][font=宋体])是活细胞成像常用的标记蛋白。其中最常用的是绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])和它的衍生物([/font][font=Calibri]CFP, YFP, etc.[/font][font=宋体]),以及一些红色变体,如[/font][font=Calibri]dTomato[/font][font=宋体]和[/font][font=Calibri]mCherry.[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、考虑融合标签的影响[/font][/font][font=宋体] [/font][font=宋体]任何一类标签处于氨基酸序列的任一位置,都具有影响目的蛋白表达或功能的可能性。最主要原因是标签可能会干扰蛋白的正确折叠,致使目的蛋白失活或形成包涵体。其次,标签可能会中断亚细胞定位信号,这种情况下,蛋白能够正确翻译和折叠,但在细胞内所处的位置是错误的。因此,您需要知道添加的标签对目的蛋白的表达是否有影响。[/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、考虑是在[/font][font=Calibri]N-[/font][font=宋体]端还是[/font][font=Calibri]C-[/font][font=宋体]端标记[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]N-[/font][font=宋体]端或[/font][font=Calibri]C-[/font][font=宋体]端标记的选择还需要根据蛋白结构、定位等特性。然而,倘若你没有确切的蛋白结构,或蛋白功能域图谱,建议分别构建[/font][font=Calibri]N-[/font][font=宋体]端标记和[/font][font=Calibri]C-[/font][font=宋体]端标记的表达克隆,以检测哪个更有效。[/font][/font][font=宋体] [/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-expression][b]重组蛋白表达[/b][/url]技术现已在生物学各个具体领域应用广泛,尤其是蛋白质的大规模生产和体内功能研究都需要应用重组蛋白表达载体。[/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 【原创大赛】近红外光谱快速检测人血白蛋白原液蛋白质含量的建模研究

    【原创大赛】近红外光谱快速检测人血白蛋白原液蛋白质含量的建模研究

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速检测人血白蛋白原液蛋白质含量的建模研究摘要:本研究建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析模型,对浓缩液蛋白含量进行快速及有效的测定。在实验室条件下配置不同浓度的蛋白样品,建立用于蛋白含量测定的定量分析模型,以实现浓缩液蛋白含量的快速及有效的判断。关键词:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术;人血白蛋白;定量分析模型1材料1.1 试剂供试品:人血白蛋白原液;生理盐水。1.2 仪器和软件AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国Thermo Fisher scientific公司);内径4×50 mm的玻璃小管(Kimble Chase,德国); MATLAB 2015a(美国Mathworks公司);PLS_Toolbox工具箱(美国Eigenvector Research公司)。2方法2.1 蛋白含量的测定及样品溶液的配制2.1.1 蛋白质含量的测定取生产过程中超滤浓缩后的人血白蛋白原液为实验供试品,用半微量凯氏定氮法测定蛋白质浓度,浓度应不低于26.5%。2.1.2样品溶液的配制根据试验需要,将供试品溶液用生理盐水进行稀释得到多个不同蛋白质浓度的实验样品。2.2 样品光谱的采集本实验使用AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],采用透射分析模块,采用仪器自带的RESULT-Intergration软件编写采集光谱的工作流程。光谱分辨率为8 cm-1,扫描范围为10000-4000 cm-1,扫描次数为32次,用偏最小二乘回归(Partial Least Squares Regression, PLSR)方法建立定量模型。2.3 校正集和验证集的划分校正集中的样品应包含使用该模型预测的未知样品的所有化学成分。且校正集中的样品的化学成分浓度范围应覆盖使用该模型预测的未知样品中可能存在的浓度范围。而且验证集中的样品应涵盖使用模型分析的待测样品中的化学组成,测定浓度范围也应尽可能覆盖该模型分析的待测样品可能存在的浓度范围,且分布均匀。所以,需要选择合理的样品集划分方法,以提高模型的应用性及准确性。2.4 预处理方法的选择为了消除噪声和产生的基线漂移,提高模型的预测能力,得到稳健的模型,需要在模型建立前对样品的原始光谱进行预处理,常用的谱图处理方法有均值中心化(Mean Center)、标准化(Auto scale)、平滑和导数等。导数是常用的基线校正和光谱分辨预处理方法,但也会放大噪声的信号,降低光谱的信噪比;为消除光谱变换带来的噪声,常对原始光谱进行平滑后求导,能有效提高信噪比;均值中心化可增大不同样品之间的差异,从而使模型的稳健性和预测能力得到提高;标准化可以使光谱中所有波长变量的权重相同,增加光谱之间差异化,适合于低浓度成分的建模。本研究中对Auto scale、Mean Center、一阶导数(First Derivative,FD)SG13点平滑、二阶导数(Second Derivative,SD)SG13点平滑等预处理方法进行了考察,以模型的RMSEP为指标,选择最合适的预处理方法。2.5 光谱区间的选择[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]信息十分复杂,在建立校正模型的过程中选择有效的建模变量是十分必要的。本研究选用间隔偏最小二乘法(Interval Partial Least Squares Regression, iPLS)),以RMSECV值为评价标准,选择变量区间以建立最佳的定量模型。3 实验结果3.1 蛋白质含量的测定结果采用半微量凯氏定氮法进行蛋白含量的测定,测定得到17个样品的蛋白含量。用生理盐水稀释样品,共得到49个不同蛋白质含量的样品。3.2 样品的原始光谱图1为49个蛋白样品的原始光谱,原始光谱图中可见各样品的光谱差异不明显,因此需要使用化学计量学方法对样品光谱进行处理。[align=center][img=,494,237]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151606_01_1626619_3.png[/img][/align][align=center]图1 样品原始光谱图[/align]3.3 校正集和验证集的划分结果本研究采用Kennard-Stone(K-S)分类的算法,按照2:1的比例进行样品集的划分,划分为33个校正集样品和16个验证集样品。图2为校正集样品和验证集样品的主成分得分图,图中灰色点为校正集样品,红色点为验证集样品,从主成分得分图中可以看出,校正集样品和验证集样品分布比较均匀,且验证集样品比较均匀的分布在校正集样品之间,符合理想校正集和验证集的要求。[align=center] [img=,467,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151608_01_1626619_3.png[/img][/align][align=center]图2 样品主成分得分图[/align]3.4 光谱预处理的结果建模过程中,分别采用各种方法对光谱数据进行预处理,包括标准化(Auto scale)、均值中心化(Mean Center)、一阶导数(First Derivative,FD)、SG13点平滑、二阶导数(Second Derivative,SD)等处理方法,以RMSEP作为评价模型的参数,通过对比预处理后的建模结果,选出最合适的预处理方法。表1列出了预处理后各模型的评价参数,通过比对,可以较直观的选出一阶导数SG13点平滑和Mean Center的组合为最佳预处理方法。图3所示为用经过一阶导数SG13点平滑和Mean Center 预处理后的光谱所建立的模型的结果,从图3中可以看出,建模效果较好,预测能力较高,Rc2=0.994,Rp2=0.986,RMSEC=0.1993%,RMSEP=0.2585%,RMSECV=0.2518%。[align=center]表1 不同预处理后各模型参数[/align][align=center][img=,629,241]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151613_01_1626619_3.png[/img][/align][align=left]FD+SG:一阶导数+SG13点平滑[/align][align=left]SD+SG:二阶导数+SG13点平滑[/align][align=center][img=,572,305]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151616_01_1626619_3.png[/img][/align][align=center]图3 一阶导数+SG平滑+ Mean Center[/align]3.5 光谱区间的选择结果通过筛选光谱区间,可以选择与样品白蛋白含量相关性大的光谱变量进行建模,去掉大量无关信息,减少模型的计算量,使得模型的效果更好。本实验采用iPLS进行变量的选择。将光谱进行SG13点平滑+一阶导数+ Mean Center预处理后,分别采用Forward iPLS和Reverse iPLS方法选择最佳的光谱区间,改变窗口宽度,分别选择最佳变量,以RMSECV为标准选择谱区。3.5.1Forward iPLS选择波段采用FiPLS的方法以RMSECV为标准选取最佳的光谱区间,分别选择50、100、200个变量进行自动选择,如表2所示窗口宽度为100个变量时建模结果较佳,结果图4所示。[align=center]表2 Forward iPLS结果[/align] [align=center][img=,645,163]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151618_01_1626619_3.png[/img][/align][align=center][img=,517,246]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151619_01_1626619_3.png[/img][/align][align=center]图4 Forward iPLS波段结果图[/align]由图4中可以看出,绿色部分为建模的波段,图5为建模预测结果图。[align=center][img=,551,291]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151620_01_1626619_3.png[/img] [/align][align=center]图5 Forward iPLS建模结果图[/align]3.5.2 Reverse iPLS选择波段采用Reverse iPLS的方法选取最佳的光谱区间,同样,分别选择50、100、200个变量进行自动选择,如表3所示窗口宽度为50个变量时建模结果较佳,波段选择结果如图6所示。[align=center]表3 Reverse iPLS结果[/align][align=center][img=,652,456]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151622_01_1626619_3.png[/img][/align] [align=center]图6 Reserve iPLS 选波段结果图[/align]如图6中所示,其中绿色部分为建模波段,图7为预测结果。[align=center][img=,520,228]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151624_01_1626619_3.png[/img][/align][align=center]图7 Reserve iPLS 建模结果图[/align]通过采用Forward iPLS和Reservei PLS波段选择方法建立PLSR模型,经过两种方法中选择的最优变量的对比(见表4),选择窗口宽度为100变量的Forward iPLS变量选择方法建立的模型最佳。最终建立的PLSR模型结果:模型的参数为Rc2=0.997,Rp2=0.987,均方根误差RMSEC=0.1394%,RMSEP=0.2560%,RMSECV= 0.1831%,建模结果较好。[align=center]表4不同变量选择方法的建模结果[/align][align=center][img=,641,142]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151629_01_1626619_3.png[/img][/align]3.6 一级数据与预测值比较对16个验证集样品的传统方法获得的蛋白含量和NIRS蛋白含量预测值进行偏差分析,结果见表5所示。蛋白含量一级数据和预测值的平均偏差和相对平均偏差的计算公式见式1和式2,蛋白含量NIRS的预测值和一级数据间的平均偏差为0.17,相对平均偏差为0.81,两者都较低,说明了NIRS和传统的凯氏定氮法结果相差较小,表明NIRS用于蛋白含量测定的准确性和可靠性。[align=center][img=,372,89]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151631_01_1626619_3.png[/img][/align]式中yi, actual为传统凯氏定氮方法得到的一级数据值,yi, predicted为NIRS得到的预测值,n为验证集样品数量。[align=center]表5 验证集样品方法结果比较表[/align][align=center][img=,585,86]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151632_01_1626619_3.png[/img][/align]3.7 预测值的精密度通过重复测量光谱计算,建立的蛋白含量校正模型的预测精密度。随机选取验证集样品中的1号、15号、35号、42号和47号样品,每个样品重复测量10次,然后采用建立的蛋白含量模型采集以上样品的光谱,得到样品的预测值。然后计算每个样品预测值的平均值、标准偏差和相对标准偏差,用这些指标来表示预测的精密度,结果见表6。如表中所示, RSD值均在1.0%以下,远远低于5.0%,证明了模型的精密度良好。[align=center]表6 模型精密度考察结果[/align][align=center][img=,584,394]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151636_01_1626619_3.png[/img][/align]4结论和讨论本研究建立了人血白蛋白生产过程中蛋白含量测定的近红外定量模型,用于人血白蛋白原液蛋白质含量的测定,为下一步原液的生产配制提高依据。首先,取生产过程中的样品17个,用凯氏定氮法测得各个样品的蛋白含量,然后在实验室条件下,用生理盐水配制成49个不同浓度的蛋白样品。对49个样品进行[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集,然后对样品进行校正集和验证集的划分,对光谱进行预处理方法和不同的变量选择方法进行了考察;采用Kennard-Stone(K-S)分类的算法,按照2:1的比例进行样品集的划分,优先选出Mean Center +一阶导数SG13点平滑的预处理方法,并采用窗口宽度为100变量的Forward iPLS变量选择方法选出变量区间,最终建立最佳的近红外定量模型。最终建立的PLSR模型结果:Rc2=0.997,Rp2=0.987,均方根误差RMSEC=0.1394%,RMSEP=0.2560%,RMSECV= 0.1831%。除此之外,对模型进行了重复性考察,从结果可知模型具有较好的重复性。在模型的建立中,选用Kennard-Stone(K-S)分类的算法进行样品集的划分,通过PCA分析得到具有代表性的校正集和验证集样品。在预处理方法的选择中,分别选用Autoscale、Mean Center、SG平滑一阶导数以及各预处理方法的组合进行预处理方法的考察,其中SG平滑中,不同的窗口宽度会对平滑产生不同的效果,窗口宽度越宽平滑效果越好,但也会丢掉有用的信息,经过考察选择13点平滑时结果较佳。参考文献吴清, 周法根. 脑梗死治疗中白蛋白应用价值的探讨 . 心脑血管病防治, 2005, 5(2): 49-50.王华平, 米宇俊. 人血白蛋白治疗肾综合征出血热低血压休克患者疗效观察 . 医师进修杂志, 2001, 24(8):20-21.郑红光, 杨志藩, 关欣. 静脉输注人血白蛋白对肾病综合征的正负临窗效应观察 . 中国实用内科杂志, 2003, 23(1):25-27.刘丽萍. 人血白蛋白在肝硬化资料中的应用 . 中国医院用药评价与分析, 2013, 13(5):388-390.常花蕾, 史涛. 人血白蛋白临床不合理应用及改进措施 . 中国药物应用与监测, 2014, 11(1): 52-54.孙世光, 余明莲, 王建民, 张国辉. 人血白蛋白的临床应用误区及其对策 .解放军药学学报, 2009, 25(4):366-368.

  • 蛋白修饰与蛋白质鉴定

    现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和进行蛋白质鉴定蛋白翻译后修饰。分泌蛋白和膜相关蛋白附着于细胞膜上的或将被排泄出去的蛋白质是由细胞内质网膜上附着的核糖体合成。附着有核糖体的内质网被称为糙面型内质网。这类蛋白质都含有一个N-末端(或氨基端),我们称之为信号序列或信号肽。这个信号肽通常情况下含有13-36个主要疏水性残基,同时它含有多蛋白复合物,我们称之为信号识别粒子(SRP)。这种信号肽在通过内质网膜之后会被去除。信号肽的去除过程是在信号肽酶催化作用下完成的。含有一个信号肽的蛋白质被称为前蛋白,有别于原蛋白。然而,某些用于分泌的蛋白在分泌之后会进一步被蛋白水解,因此包含有原蛋白的序列。这类蛋白质被称为前原蛋白。蛋白水解性裂解许多蛋白质在翻译之后会经历水解性裂解过程。其中最为简单的形式是去除起始蛋氨酸。许多蛋白质合成了不活跃的前体细胞,这些细胞只能在合适的生理条件下通过限制性蛋白水解过程产生活性。在凝血过程中使用到的胰腺酶和酶类就是后者的例证。多肽去除时产生活性的不活跃的前体蛋白,我们称之为原蛋白。前原蛋白的翻译后加工过程的一个复杂的例子就是脑垂体分泌合成的前阿黑皮素原的裂解过程(有关前阿黑皮素原的讨论,见肽类激素页)。这类前原蛋白经过复杂的裂解,根据合成的前阿黑皮素原的细胞定位而不同,其路径也有所不同。另一个前原蛋白的例子就是胰岛素。由于胰岛素是由胰腺分泌的,因此它有一个前肽。随着含24个氨基酸的信号肽的裂解,这类蛋白也折叠成了胰岛素原。胰岛素原进一步分裂,产生活跃的胰岛素,它包含两个肽链,由二硫键进行连接。但仍有其他的蛋白(酶类)被合成为非活跃的前体细胞,被称为酶原。酶原在蛋白水解性裂解时会产生活性,在凝血串联蛋白质链的若干蛋白质中都会发生这种现象。甲基化作用蛋白翻译后的甲基化过程主要发生在氮原子和氧原子上。活性甲基供体是活性腺苷甲硫胺酸(SAM)。最常见的甲基化作用发生在赖氨酸残基的ε-amine上。脱氧核糖核酸组蛋白中赖氨酸残基的甲基化作用可调节核染色质结构,因此可调节其转录活性。赖氨酸原本被认为是一种常设共价标记,可提供长期信号,甚至包括转录记忆时的组蛋白依赖机制。然而,最近的临床研究表明赖氨酸甲基化作用与其他共价修饰体相似,作用时间短,并能通过反脱甲基化活动进行动态调节。最近的组学研究发现表明,赖氨酸残基的甲基化作用不仅发生在核染色质层面,而且还通过修订转录因子影响基因表达。组氨酸的咪唑环,精氨酸的胍基部分以及谷氨酸盐和天冬氨酸盐的R组酰胺(R-group amides )上,都发现了额外的氮甲基化作用。谷氨酸盐和天冬氨酸盐的R组羧化物也会发生氧甲基化作用并形成甲基酯。蛋白可能在半胱氨酸的R[

  • 【资料】乳清蛋白的介绍

    乳清蛋白定义:一种存在于几乎所有哺乳动物乳汁中的蛋白质,由123个氨基酸残基组成,其氨基酸序列和立体结构均与溶菌酶同源,是乳糖合酶的一个亚基。 所属学科:生物化学与分子生物学(一级学科);氨基酸、多肽与蛋白质(二级学科) 乳清蛋白主要成分  β-乳球蛋白   具备最佳的氨基酸比例,支链氨基酸含量极高,对促进蛋白质合成和减少蛋白质分解起着重要的作用,有助于健身爱好者塑造优美体型。   α-乳白蛋白   是必需氨基酸和支链氨基酸的极好来源,也是唯一能与金属元素和钙元素结合的乳清蛋白成分。最近的研究更发现,它可能具有抗癌功能。此外乳白蛋白在氨基酸比例结构方面,以及在功能特性上与人乳都非常相似的。临床研究显示,富含α-乳白蛋白的婴儿配方奶粉是安全的。   免疫球蛋白   具有免疫活性,能够完整地进入近端小肠,起到保护小肠粘膜的功能。   乳铁蛋白   抗氧化,消灭或抑制细菌,促进正常细胞生长,提高免疫力。   作为乳清蛋白(优恩乳清蛋白)特有的一种蛋白质组分,乳铁蛋白可以为运动员带来几种重要的益处。牛奶乳铁蛋白在成年人体内是以完整蛋白质的形式被吸收的,其健康益处包括潜在抗菌活性和抗病毒特性,防止致病微生物在肠道内生长,刺激免疫系统和调节组织损伤造成的炎症。乳铁蛋白在铁和骨骼代谢方面的重要作用是运动员尤为关心的。   在乳清中发现的乳铁蛋白被证实对骨骼代谢也具有直接的益处。在细胞培养研究中,乳铁蛋白具有促进造骨细胞和软骨细胞增殖的功能,并能增加其生理含量,这一效果超过其他骨骼生长因子,如IGF-1和TGFb。乳铁蛋白在骨骼代谢中具有合成的作用对于骨骼健康和预防骨质疏松症具有重要意义。   并且,肌体内的氧气输送离不开铁。乳铁蛋白(铁传递蛋白的一种)的一个重要功能是使血液中的细胞结合铁。乳铁蛋白阻隔并溶解铁,从而控制肠道代谢中的可利用铁。因此,乳铁蛋白在维持血红细胞、血色素和氧气运输的健康调节方面也担当重要作用。

  • 【转帖】细胞膜蛋白激光检测技术研制成功

    将在药物开发进程中发挥重要作用2011年03月26日 来源: 科技日报 作者: 常丽君  本报讯 据每日科学网近日报道,美国范德堡大学研究人员开发出一种新型激光技术,可检测细胞膜上的蛋白质和其它多种生物分子之间的相互反应。这种检测将在药物开发进程中发挥重要作用。   人类细胞中约有7000种蛋白质,其中30%在细胞膜上,控制细胞分子运作机制的信号有60%—70%由这些膜蛋白产生,因此当前市场上约一半的药物都是瞄准细胞膜蛋白。但因为膜蛋白很难提纯,科学家在研究它们的结构时面临很多困难。现有的检测膜手段大多是将膜蛋白从其所处环境中分离,或用不同方式如荧光标签加以修改,以分析它们的活性。这些方法不仅昂贵耗时,还可能会影响目标膜蛋白的功能。  范德堡大学化学生物研究院化学教授达里尔·波恩霍普领导的研究小组和斯克里普斯研究院合作,开发了一种名为“后向散射干涉仪”(BSI)的新型激光技术,能精确检测出膜蛋白和自然界中各种分子之间的结合力。  BSI操作起来很简单,只要把两种分子混合装入一个充满液体的显微镜小盒中,用一束类似于条形码扫描仪的红色激光照射,就能测出它们之间的结合力。小盒的几何形状调整合适后,激光就会产生干涉图案,而这种干涉图案对分子之间的反应非常敏感。如果分子开始互相作用,图案就开始变换。  为了检验BSI的准确性,研究人员制造了一种含有GM1小蛋白质的合成膜,霍乱毒素要进入细胞,主要结合对象就是这种小蛋白质。他们把霍乱毒素B和这些膜混合,检测出的结合力结果与用其他方法所得到的结果一致。为了进一步确认,他们还用了一种和胸腺癌相关的天然分离膜和3种分别与疼痛、发炎和神经传导素GABA(用于放松、睡眠和调节紧张)相关的蛋白质膜进行检验,把包含这些蛋白质的膜和对应结合分子相混合,用BSI技术测得的值也和用其他方法得到的结果一样。  此外,该技术进入商业化也前景广阔,范德堡大学对新型激光检测技术已申请了专利,并已获得3项批准。他们还专门成立了一家分子传感公司对新技术进行独家开发。

  • FITC标记蛋白步骤及常见问题解析

    [font=宋体][font=宋体]荧光素异硫氰酸酯([/font][font=Calibri]FITC[/font][font=宋体])是一种常用的荧光染料,它可以与蛋白质分子中的氨基、巯基或羟基等基团结合,从而实现对蛋白质的标记。[/font][font=Calibri]FITC [/font][font=宋体]标记的蛋白质可以用于免疫荧光、流式细胞术等实验中,具有很高的灵敏度和特异性。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]下面是[/font] [font=Calibri]FITC [/font][font=宋体]标记蛋白的一般步骤:[/font][/font][/b][font=宋体]①准备蛋白质溶液:将需要标记的蛋白质溶解在适当的缓冲液中,使其浓度达到适当的标记浓度。[/font][font=宋体][font=宋体]②准备 [/font][font=Calibri]FITC [/font][font=宋体]溶液:将 [/font][font=Calibri]FITC [/font][font=宋体]溶解在 [/font][font=Calibri]DMSO [/font][font=宋体]中,制成浓度为 [/font][font=Calibri]1mg/mL [/font][font=宋体]的储备液。使用前,将储备液稀释到适当的标记浓度。[/font][/font][font=宋体][font=宋体]③标记反应:将蛋白质溶液和 [/font][font=Calibri]FITC [/font][font=宋体]溶液混合,使蛋白质与 [/font][font=Calibri]FITC [/font][font=宋体]的摩尔比为 [/font][font=Calibri]1:10 [/font][font=宋体]至 [/font][font=Calibri]1:50[/font][font=宋体]。在反应体系中加入适量的缓冲液,使总体积为 [/font][font=Calibri]100uL [/font][font=宋体]左右。[/font][/font][font=宋体][font=宋体]④反应条件:将反应体系置于室温或 [/font][font=Calibri]37[/font][font=宋体]°[/font][font=Calibri]C [/font][font=宋体]下孵育 [/font][font=Calibri]1-2 [/font][font=宋体]小时,以促进标记反应的进行。[/font][/font][font=宋体]⑤终止反应:标记反应结束后,加入适量的终止液(如甘氨酸或硼酸缓冲液),以终止反应。[/font][font=宋体][font=宋体]⑥纯化标记蛋白:为了去除未结合的 [/font][font=Calibri]FITC[/font][font=宋体],可以使用凝胶过滤、透析或离心等方法对标记蛋白进行纯化。[/font][/font][font=宋体][font=宋体]⑦储存标记蛋白:将纯化后的标记蛋白储存于适当的缓冲液中,在 [/font][font=Calibri]4[/font][font=宋体]°[/font][font=Calibri]C [/font][font=宋体]下避光保存。[/font][/font][font=宋体][font=宋体]需要注意的是,[/font][font=Calibri]FITC [/font][font=宋体]标记蛋白的效率和特异性可能会受到多种因素的影响,如蛋白质的性质、缓冲液的组成、标记条件等。因此,在进行 [/font][font=Calibri]FITC [/font][font=宋体]标记蛋白实验时,需要对每种蛋白质进行优化,以获得最佳的标记效果。同时,在实验过程中应注意避免荧光染料的淬灭和光漂白,以保证实验结果的准确性。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]fitc[/font][font=宋体]标记蛋白常见问题解析:[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]哪些因素可能会影响[/font] [font=Calibri]FITC [/font][font=宋体]标记蛋白的效率和特异性?[/font][/font][font=宋体][font=宋体]①蛋白质的性质:不同的蛋白质具有不同的化学性质,例如等电点、亲水性、分子量等,这些性质可能会影响蛋白质与 [/font][font=Calibri]FITC [/font][font=宋体]的结合效率和特异性。[/font][/font][font=宋体][font=宋体]②缓冲液的组成:缓冲液的 [/font][font=Calibri]pH [/font][font=宋体]值、离子强度、添加剂等都会影响蛋白质与 [/font][font=Calibri]FITC [/font][font=宋体]的结合效率和特异性。[/font][/font][font=宋体]③标记条件:标记反应的温度、时间、摩尔比等条件也会影响标记效率和特异性。[/font][font=宋体][font=宋体]④未结合的 [/font][font=Calibri]FITC[/font][font=宋体]:未结合的 [/font][font=Calibri]FITC [/font][font=宋体]可能会与蛋白质发生非特异性结合,从而影响标记的特异性。[/font][/font][font=宋体]⑤荧光染料的淬灭和光漂白:荧光染料在光照下容易发生淬灭和光漂白,这可能会影响标记蛋白的荧光强度和稳定性。[/font][font=宋体][font=宋体]因此,在进行[/font] [font=Calibri]FITC [/font][font=宋体]标记蛋白实验时,需要对每种蛋白质进行优化,以获得最佳的标记效果。同时,在实验过程中应注意避免荧光染料的淬灭和光漂白,以保证实验结果的准确性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]fitc[/font][font=宋体]标记蛋白注意事项有哪些?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①光照控制:整个标记过程应在避光条件下进行,以减少[/font][font=Calibri]FITC[/font][font=宋体]荧光淬灭的可能性。使用黑色或不透明的容器存储和操作试剂,并确保实验室内光线柔和且避免直射阳光。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②温度和[/font][font=Calibri]pH[/font][font=宋体]值调控:在标记反应过程中,严格控制温度和[/font][font=Calibri]pH[/font][font=宋体]值。过高或过低的温度都可能影响[/font][font=Calibri]FITC[/font][font=宋体]与蛋白质的结合效果,而[/font][font=Calibri]pH[/font][font=宋体]值的波动也可能导致非特异性结合的增加。因此,应根据实验需求选择合适的反应条件,并进行严格的控制。[/font][/font][font=宋体] [/font][font=宋体]③蛋白质稳定性保护:在标记过程中,应采取措施保护蛋白质的稳定性。避免使用可能导致蛋白质变性或降解的试剂和条件,确保蛋白质在标记过程中保持其原有的结构和功能。[/font][font=宋体] [/font][font=宋体][font=宋体]④去除未结合[/font][font=Calibri]FITC[/font][font=宋体]的重要性:未结合的[/font][font=Calibri]FITC[/font][font=宋体]可能导致背景荧光增强,从而影响实验结果的准确性。因此,在标记后应彻底去除未结合的[/font][font=Calibri]FITC[/font][font=宋体]。这可以通过多次透析或离心等方法实现,确保标记后的蛋白质纯净且荧光信号清晰。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/recombinant-protein-expression-service][b]重组蛋白服务[/b][/url],更多[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]重组蛋白标签[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-tag[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 跨膜蛋白与通道蛋白的区别:跨膜蛋白制备平台详解

    [font=宋体]跨膜蛋白是生物体内广泛存在的一类蛋白质,它们在细胞膜上以不同的方式与其相互作用,从而发挥各种生物学功能。根据不同的结构和功能,[/font][b][font=宋体]跨膜蛋白可以分为三种类型:通道型跨膜蛋白、受体型跨膜蛋白和泵型跨膜蛋白。[/font][/b][font=宋体] [/font][font=宋体][font=宋体]通道型跨膜蛋白是跨膜蛋白中最为简单的类型,它们主要的功能是在细胞膜上形成一些具有选择性通透性的孔道,使得离子和小分子物质能够通过。通道型跨膜蛋白具有多个跨膜域,通常由[/font] [font=宋体]α 螺旋和 β 折叠两种二级结构组成。α 螺旋通道如 [/font][font=Calibri]K+ [/font][font=宋体]通道能够容纳阳离子,β 折叠如离子泵[/font][font=Calibri]Na+/K+-ATPase [/font][font=宋体]能够承载各种离子。[/font][/font][font=宋体] [/font][font=宋体]受体型跨膜蛋白是一类比较复杂的蛋白质,它们能够接受信号分子的结合,从而调节细胞内的生物学路径。受体型跨膜蛋白通常由单个跨膜域和两个不同构的端基组成,其中一个端基是细胞外的受体结构域,能够特异性地与信号分子结合;另外一个端基是细胞内的调节结构域,能够将受体活性传递到细胞内部。受体型跨膜蛋白具有多种作用方式,如酪氨酸激酶受体,转录因子受体等。[/font][font=宋体] [/font][font=宋体][font=宋体]泵型跨膜蛋白是一类能够通过能量输入来驱动物质运输的蛋白质。它们能够将离子或者小分子物质从低浓度区域转运到高浓度区域,从而维持细胞内的化学平衡和稳态。泵型跨膜蛋白一般由多个跨膜域组成,并能借助外源性能量如[/font][font=Calibri]ATP[/font][font=宋体]进行运输。常见的泵型跨膜蛋白有[/font][font=Calibri]Na+/K+-ATPase, H+/K+-ATPase[/font][font=宋体]等。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州提供跨膜蛋白制备平台,包括:[/font][font=Calibri]VLP[/font][font=宋体]技术平台[/font][font=Calibri]/[/font][font=宋体]去垢剂技术平台[/font][font=Calibri]/Nanodisc[/font][font=宋体]技术平台。[/font][/font][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体][font=宋体]利用[/font][font=Calibri]VLP[/font][font=宋体]平台制备跨膜蛋白具有以下优势:[/font][/font][font=宋体]? 全长跨膜蛋白,保持完整的天然构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测、抗体筛选等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州搭建了基于[/font][font=Calibri]HEK293[/font][font=宋体]表达系统的[/font][font=Calibri]VLP[/font][font=宋体]([/font][font=Calibri]virus-like particle[/font][font=宋体])技术平台,能够将目的膜蛋白完整展示在[/font][font=Calibri]VLP[/font][font=宋体]表面,使其能够像普通蛋白一样进行检测,义翘神州目前可以为客户提供膜蛋白定制服务,助力药物研发进程。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体]去垢剂技术平台的优势:[/font][font=宋体]? 可精确定量[/font][font=宋体]? 胶束为膜蛋白疏水基团提供保护并稳定构象[/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测等[/font][/font][b][font=宋体] [/font][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体][font=Calibri]SMA-Nanodisc[/font][font=宋体]技术平台的优势:[/font][/font][font=宋体]? 可精确定量[/font][font=宋体][font=宋体]? [/font][font=Calibri]SMA[/font][font=宋体]共聚物包裹的膜蛋白稳定性更好,有助于更好地研究膜蛋白的结构和功能[/font][/font][font=宋体][font=宋体]? 适用于动物免疫、[/font][font=Calibri]ELISA[/font][font=宋体]检测、[/font][font=Calibri]SPR/BLI[/font][font=宋体]检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测及细胞实验等[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

  • 重组蛋白资源常见问题解析

    [font=宋体][font=宋体]重组蛋白是由操作基因[/font][font=Calibri]-[/font][font=宋体]重组基因编码的蛋白,由特异性重组表达系统生产。重组基因是一种新的遗传组合,其中插入了来自不同分子或来自其他物种的一个或多个[/font][font=Calibri]DNA[/font][font=宋体]片段或基因。与天然蛋白相比,重组蛋白可以相对轻松地实现大量生产。[/font][/font][font=宋体] [/font][font=宋体]重组蛋白在细胞因子和生长因子的研究、酶和激酶的研究以及补体系统功能等生物过程方面发挥着重要作用。此外,重组蛋白被称为高效药物,不会产生脱靶副作用,比小分子药物的开发时间更短。[/font][font=宋体] [/font][b][font=宋体]下面是关于重组蛋白资源常见问题解析:[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]蛋白为什么要冻干?冻干对蛋白的影响有哪些?[/font][/font][font=宋体]蛋白质对热敏感,冻干能使绝大部分蛋白质的活性保留下来,提高蛋白的稳定性并延长保存时间,同时降低运费。[/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]冻干前为什么向蛋白溶液中加保护剂?一般冻干保护剂有哪几种?[/font][/font][font=宋体][font=宋体]保护剂是用来在冻干和储存过程中保护蛋白的。常用的保护剂或稳定剂有糖类,多元醇,聚合物,表面活性剂,某些蛋白和氨基酸等。我们通常加[/font][font=Calibri]8%[/font][font=宋体](质量比体积)的海藻糖和甘露醇作为冻干保护剂。海藻糖可明显阻止蛋白质二级结构改变以及冻干过程中蛋白质的伸展和聚集;甘露醇也是一种普遍应用的冻干保护剂和填充剂,可以降低某些蛋白的冻干后聚集情况。[/font][/font][font=宋体][font=宋体]温馨提示:对于大多数蛋白,重悬后在[/font][font=Calibri]4[/font][font=宋体]℃仅能短期保存[/font][font=Calibri]([/font][font=宋体]约[/font][font=Calibri]1[/font][font=宋体]周[/font][font=Calibri])[/font][font=宋体]。如想长期保存,请先配制成稀释液[/font][font=Calibri]([/font][font=宋体]其中必须含有载体蛋白,如[/font][font=Calibri]0.1%BSA[/font][font=宋体],[/font][font=Calibri]5%HSA[/font][font=宋体],或[/font][font=Calibri]10%FBS)[/font][font=宋体],然后分装冻存于[/font][font=Calibri]-20[/font][font=宋体]℃或[/font][font=Calibri]-80[/font][font=宋体]℃。一定要避免反复冻融,因每次冻融均会引起蛋白的部分失活。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]如何重构冻干粉?[/font][/font][font=宋体]请查看您的货物随附的分析证书以获取有关重构的确切说明,因为并非所有产品都在相同条件下重构。一般来说,我们建议使用无菌水进行复溶。将推荐体积的无菌水加入小瓶中,轻轻摇晃以完全溶解蛋白质。不要涡旋。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]为什么我的管内几乎看不见蛋白产品?[/font][/font][font=宋体][font=宋体]蛋白产品中不含载体蛋白或其它添加物[/font][font=Calibri]([/font][font=宋体]如牛血清白蛋白[/font][font=Calibri](BSA)[/font][font=宋体],人血清白蛋白[/font][font=Calibri](HSA)[/font][font=宋体]和蔗糖等,并以最低含盐量的溶液进行冻干时,常常不能形成白色网架结构,而是微量的蛋白在冻干过程中沉积在管内,形成很薄或肉眼不可见的透明蛋白层。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5.[/font][font=宋体]应如何确定细胞因子的种属交叉活性?[/font][/font][font=宋体][font=Calibri]1)[/font][font=宋体]除少数例外,大多数人类细胞因子对小鼠细胞均有活性。[/font][font=Calibri]2)[/font][font=宋体]许多小鼠细胞因子也可作用于人类细胞,但比活性可能低于对应的人类细胞因子。[/font][font=Calibri]3)IL-7[/font][font=宋体]等为数不多的人类细胞因子作用于小鼠细胞时比对应的小鼠细胞因子活性更强。[/font][font=Calibri]4)[/font][font=宋体]干扰素,[/font][font=Calibri]GM-CSF,IL-3[/font][font=宋体]和[/font][font=Calibri]IL-4[/font][font=宋体]等细胞因子种属特异,对非同源细胞几乎没有活性。[/font][font=Calibri]5)[/font][font=宋体]相反,成纤维细胞生长因子[/font][font=Calibri](FGFs)[/font][font=宋体]和神经营养素[/font][font=Calibri](neurotrophins)[/font][font=宋体]高度保守,在不同动物种属细胞上均具有很好的活性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6.[/font][font=宋体]什么是载体蛋白?[/font][/font][font=宋体][font=宋体]载体蛋白如[/font][font=Calibri]HSA[/font][font=宋体]或[/font][font=Calibri]BSA[/font][font=宋体]用于提高重组蛋白的稳定性,并有助于避免产品粘在小瓶壁上。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7.[/font][font=宋体]我应该如何储存重组蛋白?[/font][/font][font=宋体][font=宋体]对于长期储存,蛋白质溶液应与载体蛋白(例如[/font][font=Calibri]0.1%BSA[/font][font=宋体]或[/font][font=Calibri]0.1%HSA[/font][font=宋体])分装保存,并在[/font][font=Calibri]-20[/font][font=宋体]°[/font][font=Calibri]C[/font][font=宋体]下冷冻保存。请记住,每个冷冻[/font][font=Calibri]/[/font][font=宋体]解冻循环都可能导致蛋白质变性。除非分析证书上另有说明,否则大多数重组蛋白的保质期为一年。如果将它们保存在分析证书上所述的最佳存储条件下,则提供此保证。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]8.[/font][font=宋体]如何确定重组蛋白的数量?为什么我的检测产生的蛋白质数量与您的结果不同?[/font][/font][font=宋体][font=宋体]我们通过[/font][font=Calibri]BCA[/font][font=宋体]、[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、[/font][font=Calibri]HPLC[/font][font=宋体]等方法确定重组蛋白的数量。不同的测定产生不同的量化结果。有时,如果您进行不同的检测,差异可能会很大。蛋白质也有可能在储存过程中形成聚集体,在重组和离心后导致损失。我们对每批产品进行质量控制测试,但是,同一批次中的一些小瓶可能与其他小瓶不同(这种情况很少发生)。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]9.[/font][font=宋体]如何区分重组蛋白、融合蛋白和天然蛋白[/font][/font][font=宋体][font=宋体]重组蛋白是利用基因工程技术产生的,通常是由转基因动物的乳腺产生,其作为生物制药在医学领域中作用显著。利用基因工程技术,可以使哺乳动物本身变成[/font][font=宋体]“批量生产药物的工厂”。方法:是将药用蛋白基因与乳腺蛋白基因的启动子等调控组件重组在一起,通过显微注射等方法,导入哺乳动物(哺乳动物才会泌乳)的受精卵中,然后,将受精卵送入母体内,使其生长发育成转基因动物。转基因动物进入泌乳期后,可以通过分泌的乳汁来生产所需要的蛋白质药品,因而称为动物乳腺生物反应器或乳房生物反应器。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]融合蛋白又称为[/font][font=宋体]“标签蛋白”,常用的标签有[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]Strep[/font][font=宋体]标签。融合蛋白是通过[/font][font=Calibri]DNA[/font][font=宋体]重组技术将要表达的目的蛋白基因和表达载体上融合蛋白基因相连,通过这种方式表达出来的蛋白质,就是既含有目的基因蛋白又含有融合基因蛋白的重组蛋白。融合蛋白表达是重组蛋白表达的一种策略,融合表达是一种方法。[/font][/font][font=宋体] [/font][font=宋体]天然蛋白质是在自然界中存在的,不经过人工的任何修饰或加工,比如大豆中的蛋白质和病毒表面的蛋白质。[/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/protein-review][b]重组蛋白资源[/b][/url]详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font]

  • 一种新型的重组蛋白A柱

    一种新型的重组蛋白A柱

    http://simg.instrument.com.cn/bbs/images/brow/em09511.gif一种新型的重组蛋白A柱 洗脱条件温和,充分防止蛋白变性蛋白A是一种金黄色葡萄球菌细胞壁蛋白质,能特异性地与人和哺乳动物抗体(主要是IgG)的Fc区结合。因而,将蛋白A与琼脂糖凝胶以一定的方式结合,可制备用于抗体纯化的亲和填料。早期的蛋白A柱结合的都是天然蛋白A。天然蛋白A由5个IgG结合域和其它未知功能的非Fc结合域组成,分子量约42KD,结构如图一所示。这种柱子对IgG的亲和能力很强,可以吸附大量的lgG。但同时,天然蛋白A的其他非结合域会和非目标蛋白结合,这样被洗脱下来的蛋白质纯度不够,会影响到后续的试验。为了解决这些问题,科学家们运用基因工程技术,克隆出蛋白A的基因,并对其进行改造,除去了一些不重要的非结合域。偶联这种重组蛋白A的琼脂糖凝胶柱在蛋白质纯化中,的确是提高了产物的纯度。目前,市场上绝大部分重组蛋白A柱都是这种产品。但是,纯化时所用的洗脱液一般为pH=2.7的甘氨酸溶液,如果洗脱效果不是很理想,还要降低pH,采用pH=1.9的甘氨酸溶液。由此可见,此法洗脱条件比较剧烈,最后收集的蛋白质很有可能变性,或者是复性困难。 这种洗脱条件剧烈的柱子结合的重组蛋白A一般具有5个串联结构域:E、D、A、B、C。虽然每个域均可以和IgG的Fc段结合,但不同的域结合强度略有差异。因此洗脱条件不均一,而且经常需要较低的pH值。GE的重组蛋白A柱即为这种类型,如图二所示。考虑到减少串联结构域的个数,并且采取同型结构域串联,就可以避免不同结构域与抗体Fc 段亲和性的差异从而使洗脱条件温和而均一,Putus研制出了含有三个串联B结合域的重组蛋白A,如图二所示。同时,我们用Putus重组蛋白A柱和GE重组蛋白A柱纯化人血浆,纯化的结果用于比较两种纯化柱的纯化效果,结果如图三所示。GE Putus 图二、重组蛋白A结构示意图待纯化样品:人血浆实验材料:GE公司的重组蛋白A柱(E、D、A、B、C结构域串联,见图二)Putus公司的重组蛋白A柱(3个B结构域串联,见图二)实验方法:分别按照每个公司的说明书来操作,洗脱条件分别为pH值3.0和4.5, SDS-PAGE检测结果如下: 上图从左边起,泳道1为标准蛋白Marker,泳道2为经过GE填料洗脱后抗体,泳道3为经过Putus填料洗脱抗体,泳道4为人血浆。从图中,我们可以看出,与GE 重组蛋白A填料从人血浆纯化抗体纯度比较,拥有3个同型结构域的Putus填料可以获得同样纯度的抗体。但是,后者的洗脱条件仅为4.5,高于前者的洗脱条件3.0。由此可见,使用具备较少B结构域的重组蛋白A柱也能获得高纯度的IgG,并且洗脱条件温和,能防止蛋白质聚集,保护蛋白质活性。http://cp00a3cee71b5f96adf6e669b5d7f56a9f11.jpg/http://C:\Documents and Settings\adim\桌面\001.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_632703_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187444_1672347_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/12/200912021052_187445_1672347_3.jpg

  • 饮酒前最好喝些含富含蛋白的饮品

    饮酒前最好喝些牛奶、酸奶、豆浆等含富含蛋白的饮品,因为蛋白通过与酒精进行络合,可以阻滞胃部对部分酒精的吸收。并且这些食物含大量蛋氨酸和胆碱等,可以起到保护肝脏的作用。

  • β-乳球蛋白属于乳白蛋白还是属于乳球蛋白里面的一种成分?

    β-乳球蛋白属于乳白蛋白还是属于乳球蛋白里面的一种成分?最近看到有两种版本,其一,说是属于乳白蛋白里面的一种成分,乳白蛋白包括α-乳白蛋白、β-乳球蛋白和血清白蛋白。乳球蛋白即免疫球蛋白。其二,乳白蛋白包括α-乳白蛋白和血清白蛋白,乳球蛋白包括β-乳球蛋白和免疫球蛋白。现在不知道哪种说法对,请各位指教!!!谢谢!!!

  • 多肽蛋白偶联

    多肽蛋白偶联

    蛋白多肽多肽:多肽是α-氨基酸以肽键连接在一起而形成的化合物,是蛋白质水解的中间产物。由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。通常由10~100氨基酸分子脱水缩合而成的化合物叫多肽,它们的分子量低于10,000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质。蛋白质:生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。是α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合合而成的高分子化合物。蛋白偶联KLH/BSA/Ovalbumin etc 偶联小肽/半抗原必须耦合到载体蛋白(KLH,BSA,Ova),才可以获得高效的抗体。一般来说,多肽可以与蛋白偶联的条件如下:1 有一个自由的氨基或羧基2 半胱氨酸上的-SH也可以与载体蛋白偶联目前我公司提供高质量的偶联载体蛋白(KLH,BSA,OVA)[img=,690,300]https://ng1.17img.cn/bbsfiles/images/2019/02/201902191022256586_4193_3531468_3.jpg!w690x300.jpg[/img]我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。请移步百度搜“[b]合肥国肽生物[/b]”即可

  • 尿微量蛋白(尿微量白蛋白/蛋白尿)试验

    尿微量蛋白(尿微量白蛋白/蛋白尿)试验(也称“白蛋白试验”,“尿微量白蛋白”和“蛋白尿”试验)何为尿微量白蛋白(白蛋白)试验?尿微量白蛋白试验是对尿液中的蛋白质进行测定的筛选试验。人体血液中有一种蛋白质称为白蛋白。在正常情况下,几乎无法在尿液中检测到。只有在肾脏受损,尤其是损伤早期,它可以优先于其他肾损伤标志物在尿液中被检测出,因此,尿微量白蛋白在诊断肾脏疾病、早期肾损伤等方面具有重要意义。此项试验有何目的?蛋白质是人体的基本构成“材料”,具备一些重要的功能和作用,可结合营养物质将其运输至各个组织,,并将人体中循环的体液量维持在适当水平。肾脏功能正常时,蛋白质几乎无法通过肾脏进入尿液(仅会排出血液循环产生的废料)。然而,如果人的肾功能受损或衰竭,该肾脏对蛋白质的过滤能力将有所下降,因而一些蛋白质将会透过肾脏而出现在尿液中,称为尿微量蛋白。尿微量白蛋白与蛋白尿有何不同?白蛋白是一种大量存在于血液中的典型蛋白质。因其分子个头小,当肾脏功能出现问题时,白蛋白是能够率先通过肾脏进入尿液的几种蛋白质之一。尿液中出现少量白蛋白的情况称为尿微量白蛋白。若肾脏功能受损严重,尿液中的白蛋白数量呈现出增长趋势,这种症状被改称为蛋白尿。尿微量白蛋白/蛋白尿有何症状?病症早期,并无明显症状或征兆显现。随着肾功能衰竭的加重,大量蛋白质出现在尿液中,手脚、腹部和面部可能出现肿胀。如果蛋白尿的情况加重,可能会造成永久性肾功能损伤,有些病人可能需要做透析或肾移植。不论上述症状是否存在,尿蛋白测定是确定有多少蛋白质进入尿液的唯一办法。蛋白尿还可能引发心血管疾病。血管受损除了会引发肾脏疾病外,还可能会造成窒息和心力衰竭。患蛋白尿(症)的高危人群有哪些?患有糖尿病、高血压、心血管疾病和其他类型肾脏疾病等慢性病的病人易出现蛋白尿。老年人、肥胖人群以及有肾脏疾病家族史的人群。其

  • 咨询 迪马科技的蛋白分析柱子

    RT 咨询 迪马科技的蛋白分析柱子http://simg.instrument.com.cn/bbs/images/brow/em09501.gif最近想做蛋白的液相http://simg.instrument.com.cn/bbs/images/brow/em09502.gif能否推荐一款柱子呢保护柱 也说一下吧http://simg.instrument.com.cn/bbs/images/brow/em09505.gif我们是重组的胶原蛋白 蛋白的分子量在9万7左右 http://simg.instrument.com.cn/bbs/images/brow/em09511.gif想要柱子的范围在20万内 官人能不能推荐一款柱子 http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif

  • 蛋白胨和胰蛋白胨

    本文引用自cheney《蛋白胨和胰蛋白胨简介》蛋白胨是将肉、酪素或明胶用酸或蛋白酶水解后干燥而成的外观呈淡黄色的粉剂,具有肉香的特殊气息。蛋白质经酸、碱或蛋白酶分解后也可形成蛋白胨。蛋白胨富含有机氮化合物,也含有一些维生素和糖类。它可以作为微生物培养基的主要原料,在抗生素、医药工业、发酵工业、生化制品及微生物学科研等领域中的用量均很大。不同的生物体需要特定的氨基酸和多肽,因此存在着各种蛋白胨,一般来说,用于蛋白胨生产的蛋白包括动物蛋白(酪蛋白、肉类)和植物蛋白(豆类)等两种。能为微生物提供C源、N源、生长因子等营养物质。因此,蛋白胨从来源上可分为动物性蛋白胨和植物性蛋白胨。胰胨、肉胨、骨胨等都是动物性蛋白胨,而大豆蛋白胨等则是植物性蛋白胨。动物性来源的蛋白胨还有:蚕蛹蛋白胨、血液蛋白胨等。   不同来源的蛋白质和不同的水解条件,其水解物中组成可千差万别。所以胨往往是一个复杂的多肽混合物。可溶于水,过热不凝固,在饱和硫酸铵中不发生沉淀但可为蛋白质沉淀剂所沉淀。可用作微生物和动物细胞培养基、特种功能性食品和化妆品的配料,也有用作啤酒等产品的稳定剂。胰蛋白胨,又称胰酪蛋白胨(Casein Tryptone)、胰酶消化酪蛋白胨(Pancreatic digest of casein),是一种优质蛋白胨,是以新鲜牛肉和牛骨经胰酶消化,浓缩干燥而成的浅黄色粉末。具有色浅、易溶、透明、无沉淀等良好的物理性状。含有丰富的氮源、氨基酸等,可配制各种微生物培养基,用于细菌的培养、分离、增殖、鉴定,以及无菌试验培养基、厌氧菌培养基等细菌生化特性试验用培养基的配置。胰蛋白胨还广泛应用于高品质的抗生素、维生素、医药工业,氨基酸、有机酸、酶制剂、黄原胶等发酵工业,生化制品及微生物学科研等领域中的用量均很大,临床用于抗炎消肿,工业上用于皮革制造,生丝处理,食品加工。在国际市场上,胰蛋白胨也属于货紧价昂的短线品种之一。   胰酪蛋白胨质量标准及其检验标准:   常规各项理化指标:   1. 澄清度(磷酸盐、碱性沉淀):无沉淀、澄清   2. 2%水溶液:透明   3. 酸碱度:6-7   4. 氨基氮:≥3%   5. 色氨酸:≥0.8%   6. 胨含量:≥80%   7. 总氮:≥13%   8. 水份:≤5%   9. 灰份:≤6%   10. 氯化钠:≤0.2%胰蛋白胨特指用胰蛋白酶酶解酪蛋白生成的蛋白胨产物,与一般蛋白胨的区别在于酶解工艺处理上,属于水解度更高、胨分子量更小更均衡的蛋白胨。

  • 【原创】功能性蛋白

    功能性蛋白及一例分析自19世纪中叶荷兰化学家Gerardus Mul-der从动物组织和植物体中提取出蛋白质以来,人们发现了越来越多的蛋白质,据估计生物界中蛋白质的种类可达1010~1012之多;在这如此众多的蛋白质中,功能性蛋白发挥着极其重要的生理功能 。功能性蛋白也有人称其为活性蛋白。它们的特点是都有识别功能,能与其他分子特异性结合.完成各种复杂的生命活动:在结构上主要是一些球状蛋白质。1 功能性蛋白的种类按其作用方式不同可分为酶蛋白、运输蛋白、运动蛋白、免疫球蛋白、毒蛋白、激素蛋白(1)酶蛋白: 细胞的生长和繁殖、代谢物的合成和分解、能量的产生和利用,这些过程所需要的物质都是通过无数的生物化学反应来提供的.而这些反应又都是在一类特殊蛋白质—酶蛋白的催化下完成的。酶的催化效率极高,且具有高度的专一性,也正是这种高度的专一性使一种特定的酶只能作用于一种或少数几种结构相似的化合物,这就要求有各种不同的酶去作用于不同的化合物。在酶的作用下,生物细胞才得以合成各种复杂的化合物,也才能使各种大分子物质被分解、吸收和利用.且这些反应都要在适合于生物体本身的温度、压力和pH值等非常温和的条件下进行,能使生物细胞按照这种方式进行化学变化是蛋白质最重要的功能之一。常见的酶蛋白如淀粉酶使淀粉分解形成葡萄糖,蛋白酶、肽酶使蛋白质分解为氨基酸;溶菌酶使细菌细胞壁中的肤聚糖被破坏;凝血系统酶的有序作用使凝血过程得以有条不紊地进行.合成酶能合成多种体内所需要的大分子物质。应用举例:由于近年来鱼粉资源价格上涨,冷向军等人通过向鱼粉含量较低(10﹪)的饲料个添加蛋白酶AG使鱼的前肠蛋白酶有显著提高。同样有实验证明在玉米-豆粕型粮食中添加蛋白酶可以改善肉鸡的生长性能,提高蛋白质的消化率。(2)运输蛋白:有些蛋白质起载体的作用可以运输特定的物质到达必须的部位,使其完成特定的功能,这种蛋白质称为运输蛋白。如哺乳动物的血红蛋白能将氧从氧气充裕的肺内运送到各个组织中去:血清蛋白能与游离脂肪酶等多种物质结合,并将这些物质在脂肪组织与身体的其他部位间运送(最典型的β1-脂蛋白可随血流运输脂肪),铁传递蛋白能传递血液中的铁。无脊椎动物体内的血蓝蛋白,大豆根瘤中的豆血红蛋白也起着输送氧气的作用。另外还有一些能携带物质通过细胞膜进出细胞的蛋白质,如细菌过膜运输中的载体蛋白等,它们都属于运输蛋白。(3)运动蛋白:参与运动功能的蛋白质种类较多如脊椎动物中骨骼肌的主要成分就是肌动蛋白和肌球蛋白,肌肉的收缩就是靠着这两种互相联系的平行丝状蛋白相对滑动来完成的;细菌的运动器官——鞭毛也是由鞭毛蛋白组成的;绿藻的运动也离不开蛋白质;有丝分裂的完成,精子的运动等都与运动蛋白有关,所以绝大多数生物的运动和收缩过程都是运动蛋白参与的结果。应用举例:邱永忠等人在研究烟草花叶病毒(TMV)在植物细胞间的运动时发现用体外定位突变引起L株上,被点突变的DNA体外转录成RNA后感染感病烟草,结果定位突变的L株表型30kD蛋白基因四种位点不同的移码突变和一种基因中间大部分缺失的突变体均使病毒不能感染植株。这证明TMV 30kD蛋白与病毒运动有关,而与病毒复制无关。同时因为胞间连丝一般只能让小于1kD的分子通过,其通透范围远小于病毒颗粒,也小于折叠的病毒核酸分子,Wolf等实验证明正时因为30kD蛋白才使得植株分子半径扩散了三倍多。(4)免疫球蛋白:指具有抗体活性的动物蛋白。主要存在于血浆中,也见于其他体液、组织和一些分泌液中。脊椎动物的免疫系统能抵抗外来的入侵物质,如病毒、细菌以及其他机体的细胞,当外来的这些入侵物质(抗原)进入机体后就会激发机体的免疫系统而产生特异性的免疫球蛋白(抗体),通常每一种抗体对于相应的某一特定抗原具有高度的专一性,抗原与抗体结合形成抗原-抗体复合物.使入侵物质——抗原失活而排出体外,从而消除外来物质对机体的干扰。由此看来蛋白质不仅参与了高等动物的免疫反应,而且起着重要的作用,由于抗原和抗体结合的高度专一性,必然有数量众多的抗体作用于不同的抗原物质,据估计抗体的类型可能有10O万种,即免疫球蛋白可能有100万种之多。(5)毒蛋白:动物、植物和微生物都可以产生某些特殊的物质来防御敌害,这些物质中绝大多数是蛋白质类物质,由于它们对高等动物具有毒性,故称为毒蛋白。蝎类能产生毒性很强的蝎毒蛋白.用来攻击敌害,保护自己;蛇类产生的神经毒素和心赃毒素其主要成分也是小分子量的蛋白质;毒蘑菇中的相当一部分蘑菇毒素也是蛋白质;细菌产生的毒素,毒性极强的肉毒梭菌毒素(人的致死量小于19m)和破伤风痉挛毒素、白喉杆菌毒素等外毒素均是蛋白质。应用举例:王峰等人研究核糖体失活蛋白(RIPS)是一类能够抑制细胞核糖体合成蛋白质,从而导致宿主死亡的毒蛋白,广泛存在于植物、细菌中。发现其在在细胞内的转运途径研究很多,目前较为清楚的是逆向转运途径,其中以蓖麻毒素、志贺菌毒素、霍乱毒素为代表,大体过程为:内吞一内吞小体一高尔基体一内质网一胞液。(6)激素蛋白:是由特殊细胞所产生的一类物质,它们通过与靶细胞或系统内其它器官的相互作用来发挥其代谢上的功能,其实许多激素本身就是蛋白质,这样的蛋白质称为激素蛋白,它们在生物合成上具有重要的功能。如胰高血糖素、胰岛素、胃泌素、生长激素、促甲状腺激素、促肾上腺皮质激素和促脂解激素等均是蛋白

  • 重组蛋白是什么?融合蛋白和重组蛋白的区别

    [font=宋体][b]什么是重组蛋白?[/b][/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]重组蛋白[/b][/url]的产生是应用了重组[/font][font=Calibri]DNA[/font][font=宋体]或重组[/font][font=Calibri]RNA[/font][font=宋体]的技术从而获得的蛋白质。体外重组蛋白的生产主要包括四大系统:原核蛋白表达,哺乳动物细胞蛋白表达,酵母蛋白表达及昆虫细胞蛋白表达。生产的蛋白在活性和应用方法方面均有所不同。根据自身的下游运用选择合适的蛋白表达系统,提高表达成功率。[/font][/font][font=宋体] [/font][font=宋体][b]融合蛋白和重组蛋白的区别[/b][/font][font=宋体][font=Calibri]1[/font][font=宋体]、重组蛋白[/font][/font][font=宋体]重组蛋白是指应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子。融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。[/font][font=宋体][font=Calibri]2. [/font][font=宋体]融合蛋白[/font][/font][font=宋体][font=宋体]融合蛋白是指通过重组[/font][font=Calibri]DNA[/font][font=宋体]技术将你要表达的目的蛋白基因同表达载体上融合蛋白基因相连,这样表达出的蛋白质就会是同时具有目的基因蛋白和融合基因蛋白两个部分的重组蛋白。[/font][/font][font=宋体][font=宋体]融合蛋白与重组蛋白不是一个层次上对立的概念,融合蛋白表达只是重组蛋白表达的一种策略,融合表达是一种方法。因为融合表达具有表达效率高、产物稳定而且水溶性好、易于鉴定和纯化等优点,现已被广泛采用。融合蛋白又称标签([/font][font=Calibri]Tag[/font][font=宋体]),常用的[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]GST[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体]总结:在生物制药领域,重组蛋白具有较高的活性和纯度,更易吸收,安全性也更高的特点。重组蛋白的利用率也更高。[/font][font=宋体] [/font][font=宋体]为了生产重组蛋白,基因被分离并克隆到表达载体中。重组蛋白的生产需要蛋白表达系统、蛋白纯化系统和蛋白识别系统。[/font][font=宋体] [/font][font=宋体][b]获取重组蛋白的基本步骤:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]目标基因的扩增。[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]插入克隆载体。[/font][/font][font=宋体][font=Calibri]3.[/font][font=宋体]亚克隆到表达载体中。[/font][/font][font=宋体][font=Calibri]4.[/font][font=宋体]转化到蛋白表达宿主中[/font][font=Calibri]([/font][font=宋体]细菌[/font][font=Calibri]([/font][font=宋体]大肠杆菌[/font][font=Calibri])[/font][font=宋体]、酵母细胞、哺乳动物细胞或杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫细胞系统[/font][font=Calibri])[/font][font=宋体]。[/font][/font][font=宋体][font=Calibri]5.[/font][font=宋体]重组蛋白鉴定试验[/font][font=Calibri](Western blot[/font][font=宋体]或荧光[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]6.[/font][font=宋体]大规模生产。[/font][font=Calibri]([/font][font=宋体]大规模发酵[/font][font=Calibri])[/font][/font][font=宋体][font=Calibri]7.[/font][font=宋体]分离和纯化。[/font][/font][font=宋体] [/font][font=宋体]需要考虑多种因素:[/font][font=宋体][font=Calibri]1.[/font][font=宋体]选择哪个宿主系统?[/font][/font][font=宋体][font=Calibri]2.[/font][font=宋体]如何分离和纯化重组蛋白?[/font][/font][font=宋体] [/font][font=宋体]选择适当的表达宿主或使用正确的纯化方法并不容易,应考虑目标重组蛋白的性质。下面列出了一些重要因素:[/font][font=宋体] [/font][font=宋体]? 膜结合[/font][font=宋体]? 溶解度[/font][font=宋体]? 单或多结构域[/font][font=宋体][font=宋体]? 大小[/font][font=Calibri]([/font][font=宋体]分子量[/font][font=Calibri])[/font][/font][font=宋体]? 表达位置[/font][font=宋体] [/font][font=宋体][font=宋体]对于大多数没有足够经验来表达和分离重组蛋白的人来说,重组蛋白的生产是非常耗时的。许多生物公司为各种不同规模的重组蛋白表达提供良好的服务,例如义翘神州[/font][font=Calibri]([/font][font=宋体]参考重组蛋白生产的详细服务清单)[/font][/font][font=宋体] [/font][font=宋体]义翘神州提供重组蛋白和[url=https://cn.sinobiological.com/resource/protein-review/fusion-protein][b]融合蛋白[/b][/url]等相关信息,详情可以关注[/font][font=宋体][font=宋体]融合蛋白:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fusion-protein[/font][/font][font=宋体] [/font][font=宋体][font=宋体]重组蛋白生产:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font]

  • 蛋白浓度测定方法:技术、应用与进展

    蛋白浓度测定方法:技术、应用与进展

    [b][font=宋体]一、引言[/font][/b][font=宋体] [/font][font=宋体]蛋白质浓度测定是生物化学实验中的一项基本操作,对于了解蛋白质的性质、评估实验效果以及开展生物学研究具有重要意义。本文将详细介绍蛋白浓度测定的方法、技术原理、最新进展及其在生物医学研究中的应用。[/font][font=宋体] [/font][b][font=宋体]二、蛋白浓度测定方法概述[/font][/b][font=宋体] [/font][font=宋体][font=宋体]①紫外[/font][font=Calibri]-[/font][font=宋体]可见分光光度法[/font][/font][font=宋体]原理:利用蛋白质中特定氨基酸(如酪氨酸、色氨酸)在紫外光区的吸收特性,通过测量吸光度值来计算蛋白质浓度。[/font][font=宋体] [/font][font=宋体]应用:适用于大多数蛋白质的测定,尤其在实验室中广泛使用。[/font][font=宋体] [/font][font=宋体]②荧光光谱法[/font][font=宋体]原理:利用荧光染料与蛋白质结合后产生的荧光光谱,通过测量荧光强度来计算蛋白质浓度。[/font][font=宋体] [/font][font=宋体]应用:适用于具有荧光特性的蛋白质,具有高灵敏度。[/font][font=宋体] [/font][font=宋体]③圆二色光谱法[/font][font=宋体]原理:利用圆二色光谱分析蛋白质的构象变化,从而推算蛋白质浓度。[/font][font=宋体] [/font][font=宋体]应用:常用于研究蛋白质的构象变化和稳定性。[/font][font=宋体] [/font][font=宋体]④电泳法[/font][font=宋体]原理:利用电泳技术将蛋白质分离,通过测量电泳带亮度或面积来计算蛋白质浓度。[/font][font=宋体] [/font][font=宋体]应用:常用于蛋白质分离和纯度鉴定。[/font][font=宋体] [/font][b][font=宋体]三、进展与技术优化[/font][/b][font=宋体] [/font][font=宋体][font=宋体]①表面增强拉曼散射([/font][font=Calibri]SERS[/font][font=宋体])技术[/font][/font][font=宋体]原理:利用金属表面增强拉曼散射效应,提高信号强度,从而提高检测灵敏度。[/font][font=宋体] [/font][font=宋体]应用:适用于痕量蛋白质的检测,具有高灵敏度和高分辨率。[/font][font=宋体] [/font][font=宋体]②纳米孔测序技术[/font][font=宋体]原理:利用纳米孔测序技术对蛋白质进行测序,通过电导变化检测蛋白质序列信息。[/font][font=宋体] [/font][font=宋体]应用:有助于蛋白质的精准鉴定和分子结构研究。[/font][font=宋体] [/font][font=宋体][b]四、[/b][/font][b][font=宋体]实际应用案例分析[/font][/b][font=宋体] [/font][align=center][img=蛋白浓度测定案例,690,310]https://ng1.17img.cn/bbsfiles/images/2024/01/202401231537106869_2656_5907840_3.png!w690x310.jpg[/img][font=宋体] [/font][/align][font=宋体][font=宋体]详情可以关注义翘神州更多[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白资源[/b][/url]详情:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 膜蛋白的类型及功能详解

    [b][font=宋体]什么是膜蛋白?[/font][/b][font=宋体]膜蛋白是一类广泛存在于生物体细胞膜上的蛋白质分子。它们在维持细胞结构完整性、调控物质运输和信号传导等方面起着重要作用。根据蛋白分离的难易及在膜中分布的位置,膜蛋白基本可分为三大类:外在膜蛋白或称外周膜蛋白、内在膜蛋白或称整合膜蛋白和脂锚定蛋白。膜蛋白包括糖蛋白,载体蛋白和酶等。[/font][font=宋体] [/font][font=宋体][font=宋体]通常在膜蛋白外会连接着一些糖类,这些糖相当于会通过糖本身分子结构变化将信号传到细胞内。研究膜蛋白结构的技术包括[/font][font=Calibri]X[/font][font=宋体]射线衍射等,常用于重组膜蛋白的表达系统有真核表达系统。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的类型:[/font][/b][font=宋体]目前存在不同类型的膜蛋白,例如:[/font][font=宋体]①整合膜蛋白[/font][font=宋体]②外周膜蛋白[/font][font=宋体]③脂质结合蛋白[/font][font=宋体]④两性蛋白[/font][font=宋体] [/font][b][font=宋体]膜蛋白的特点:[/font][/b][font=宋体][font=宋体]膜蛋白有多种形状和大小,执行多种任务,但它们总是依赖于一些关键特征。[/font] [font=宋体]膜蛋白的一些区别特征如下。[/font][/font][font=宋体]①跨膜域: 跨膜结构域是延伸到脂质双层全长的蛋白质片段。 疏水性氨基酸残基是这些结构域的共同特征,它们介导与膜磷脂疏水性尾部的相互作用。[/font][font=宋体]②疏水和亲水区域: 膜蛋白包含疏水和亲水结构域,使它们能够与脂质双层和两侧的水环境进行交流。[/font][font=宋体]③选择性:膜蛋白的一个共同特征是它们能够调节某些分子或离子的通过。 通常是蛋白质的独特结构和电荷决定了它的选择性。[/font][font=宋体]④受体位点: 当膜蛋白上的受体区域与各自的目标分子或离子结合时,这些区域就会被激活。 大多数时候, 分子 或由受体检测到的离子在受体上具有与该位点结构或化学相容的结合位点。[/font][font=宋体]⑤构象变化: 当膜蛋白结合特定分子或离子时,它通常会发生构象变化,从而引发生物反应或允许蛋白质将结合的分子转运穿过膜。[/font][font=宋体]⑥锚固:多种机制,包括与其他蛋白质的相互作用和与膜中脂质分子的结合,可用于将膜蛋白锚定到细胞膜。[/font][font=宋体]⑦糖基化:碳水化合物链通过称为糖基化的过程与几种膜蛋白结合。 这种改变可以作为防止蛋白水解的保护措施,并作为细胞中下游蛋白质的信号。[/font][font=宋体][font=宋体]跨膜结构域、疏水和亲水区域、选择性、受体位点、构象变化、锚定和糖基化都是膜蛋白的特性,对它们在细胞膜中的功能至关重要。[/font] [font=宋体]由于这些特性,膜中的蛋白质能够运输分子、发送信号、提供结构支持和催化反应。[/font][/font][font=宋体] [/font][b][font=宋体]膜蛋白的功能:[/font][/b][font=宋体]①运输功能[/font][font=宋体]膜转运蛋白分为载体蛋白和通道蛋白两种。主动运输和协助扩散都需要载体蛋白。水分子进去细胞时需要水通道蛋白,还有一种离子通道蛋白,需要注意的是通过通道蛋白进出细胞因为不需要能量所以属于协助扩散。[/font][font=宋体] [/font][font=宋体]②识别功能[/font][font=宋体] [/font][font=宋体]两个不相邻细胞间信息交流是通过信号分子(如激素、神经递质、淋巴因子等)来完成的,而细胞膜上能与信息分子结合的便是细胞膜上的特异性受体。[/font][font=宋体] [/font][font=宋体][font=宋体]细胞与细胞之间可以通过相互接触而相互识别,例如精子与卵细胞的相互识别,效应[/font][font=Calibri]T[/font][font=宋体]细胞与靶细胞之间的相互识别就是依靠糖蛋白来完成的[/font][/font][font=宋体] [/font][font=宋体]③催化功能[/font][font=宋体] [/font][font=宋体][font=宋体]膜蛋白可能是某些反应所需要的酶。例如[/font][font=Calibri]Na+-K+[/font][font=宋体]泵中存在[/font][font=Calibri]ATP[/font][font=宋体]水解酶;光反应、有氧呼吸之所以在膜上发生的原因之一就是膜上存在反应所需的相关酶。[/font][/font][font=宋体] [/font][font=宋体]④抗原功能[/font][font=宋体] [/font][font=宋体][font=宋体]表面抗原能和特异的抗体结合,如人细胞表面有一种蛋白质抗原[/font][font=Calibri]HLA[/font][font=宋体],是一种变化极多的二聚体。不同的人有不同的[/font][font=Calibri]HLA[/font][font=宋体]分子,器官移植时,被植入的器官常常被排斥,这就是因为植入细胞的[/font][font=Calibri]HLA[/font][font=宋体]分子不为受体所接受之故。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白制备[/b][/url]平台及跨膜蛋白详解:详情可查看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【“仪”起享奥运】来源不同的蛋白质---植物蛋白,动物蛋白

    [font=宋体, SimSun][size=15px]蛋白质按来源可以分为动物蛋白和植物蛋白,两者所含的氨基酸是不同的。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]一般说,植物蛋白和动物蛋白从本质上没有太大的区别,但是在氨基酸组成和数量上有一定的不同。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]尽管植物蛋白取材来源广泛,但其蛋白的种类和相对数量与人体的要求有一定差距。[/size][/font][font=宋体, SimSun][size=15px][/size][/font][font=宋体, SimSun][size=15px]例如,植物蛋白中缺乏免疫球蛋白[i][/i],谷类中则相对缺乏赖氨酸等。植物蛋白的消化、吸收要比动物蛋白差,但是植物蛋白的优势是不含有胆固醇。动物蛋白相对与人类的营养结构比较吻合,其蛋白质的种类和结构更加接近人体的蛋白结构和数量,而且一般都含有人体必需的8种氨基酸(特别是蛋制品和奶制品),所以动物蛋白质比植物蛋白质营养价值高。[/size][/font]

  • GST标签蛋白纯化原理、应用及常见问题解析

    [font=宋体][font=Calibri]GST[/font][font=宋体]标签蛋白纯化原理:[/font][/font][font=宋体][font=宋体]谷胱甘肽[/font][font=Calibri]-S-[/font][font=宋体]转移酶[/font][font=Calibri](GST)[/font][font=宋体]是一个由[/font][font=Calibri]211[/font][font=宋体]个氨基酸组成的大小为[/font][font=Calibri]26kDa[/font][font=宋体]序列,它是另一种广泛使用的可提高靶蛋白的溶解度亲和标签。[/font][font=Calibri]GST[/font][font=宋体]标签与固定化的谷胱甘肽具有亲和力,常用于原核表达。它可以与一个蛋白的[/font][font=Calibri]N[/font][font=宋体]端或[/font][font=Calibri]C[/font][font=宋体]端融合。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]谷胱甘肽亲和是一种有效的一步纯化[/font][font=Calibri]GST([/font][font=宋体]谷胱甘肽[/font][font=Calibri]S-[/font][font=宋体]转移酶[/font][font=Calibri])[/font][font=宋体]标签蛋白的方法。[/font][font=Calibri]GST[/font][font=宋体]可作为一种可溶性蛋白在大肠杆菌细胞质中大量表达,并具有完全的酶活性。此外,许多在大肠杆菌中表达时不溶的真核蛋白,在表达为[/font][font=Calibri]GST[/font][font=宋体]标签蛋白时被证明至少部分可溶。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]谷胱甘肽[/font][font=Calibri]S-[/font][font=宋体]转移酶([/font][font=Calibri]GST[/font][font=宋体])的应用:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]谷胱甘肽[/font][font=Calibri]S-[/font][font=宋体]转移酶([/font][font=Calibri]GST[/font][font=宋体])是具有多基因、多功能的[/font][font=Calibri]II[/font][font=宋体]相代谢酶家族成员,广泛存在于动物、植物、昆虫、真菌、酵母和各种细菌中。能够催化还原型谷胱甘肽与各种亲电化合物进行亲核加成反应,从而使其极性提高,易于从尿液中排出。因此,[/font][font=Calibri]GST[/font][font=宋体]家族蛋白是一类在外源化合物生物转化、保护机体免受过氧化作用损害和药物代谢过程中的一类极为重要的多功能蛋白质。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]在生物研究领域,来源于日本血吸虫的谷胱甘肽巯基转移酶([/font][font=Calibri]GST[/font][font=宋体])标签,是目前应用最为广泛的融合标签之一。融合标签技术是利用[/font][font=Calibri]DNA[/font][font=宋体]重组技术将某种标签编码基因融合于目的基因的[/font][font=Calibri]3[/font][font=宋体]′端或[/font][font=Calibri]5[/font][font=宋体]′端,再通过适宜的宿主来表达融合蛋白。表达的融合蛋白可以通过其融合标签与包被在固相基质上的特异性配基结合,从而纯化出融合蛋白。[/font][font=Calibri]1988[/font][font=宋体]年,[/font][font=Calibri]Smith[/font][font=宋体]和[/font][font=Calibri]Johnson[/font][font=宋体]首次提出[/font][font=Calibri]GST[/font][font=宋体]融合蛋白的亲和纯化法,此后广泛使用。目前,国内外纯化[/font][font=Calibri]GST[/font][font=宋体]融合蛋白的主要方法是亲和纯化法。[/font][font=Calibri]GST[/font][font=宋体]标签蛋白亲和纯化,其配基通常是[/font][font=Calibri]GST[/font][font=宋体]的底物谷胱甘肽([/font][font=Calibri]GSH[/font][font=宋体]),通过酶与底物的特异性结合来实现[/font][font=Calibri]GST[/font][font=宋体]蛋白的分离纯化。其原理是:在固相基质上通过巯基结合一个谷胱甘肽,然后利用谷胱甘肽与谷胱甘肽巯基转移酶之间的特异性作用力,使得带[/font][font=Calibri]GST[/font][font=宋体]标签的融合蛋白与基质上的谷胱甘肽结合,达到分离纯化的目的。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]自[/font][font=Calibri]GST[/font][font=宋体]融合蛋白亲和纯化法问世以来,[/font][font=Calibri]GST-pull down[/font][font=宋体]技术也随即成为一种研究蛋白质与蛋白质之间相互作用的热门手段。该技术的原理是:利用重组技术将诱饵蛋白与[/font][font=Calibri]GST[/font][font=宋体]标签融合表达,融合表达的蛋白经纯化后与待测蛋白共同孵育,并用[/font][font=Calibri]GST[/font][font=宋体]琼脂糖凝胶或[/font][font=Calibri]GST[/font][font=宋体]琼脂糖磁珠将其分离下来,再通过[/font][font=Calibri]SDS-PAGE[/font][font=宋体]鉴定待测蛋白与诱饵蛋白的相互作用。这种方法简单易行,操作简单。此外,[/font][font=Calibri]GST[/font][font=宋体]标签还有助于对目标蛋白的检测。[/font][/font][font=宋体] [/font][font=宋体][b][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression]GST[/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression]标签蛋白纯化[/url]常见问题解答:[/font][/b][/font][font=宋体] [/font][font=宋体][font=宋体]为什么使用[/font][font=Calibri]GST[/font][font=宋体]标签来表达和生产蛋白?[/font][/font][font=宋体][font=宋体]在蛋白[/font][font=Calibri]N[/font][font=宋体]端添加[/font][font=Calibri]GST[/font][font=宋体]标签有利于通过[/font][font=Calibri]GSH[/font][font=宋体]亲和树脂对其进行检测、分离和纯化。更重要的是,由于[/font][font=Calibri]GST[/font][font=宋体]是具有很好的溶解性的高表达的蛋白,将难以表达的蛋白与[/font][font=Calibri]GST[/font][font=宋体]标签相融合,有时可以显著提高重组蛋白的表达量和溶解性。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]纯化后如何裂解[/font][font=Calibri]GST[/font][font=宋体]标签?[/font][/font][font=宋体][font=宋体]在某些应用(如蛋白的结晶)中需要去除[/font][font=Calibri]GST[/font][font=宋体]标签。为了裂解[/font][font=Calibri]GST[/font][font=宋体]标签,需要在标签和蛋白之间设计一个蛋白酶裂解位点。在 [/font][font=Calibri]GST[/font][font=宋体]标签后面的[/font][font=Calibri]EK[/font][font=宋体]裂解位点[/font][font=Calibri](GST-EK[/font][font=宋体]位点[/font][font=Calibri]-[/font][font=宋体]蛋白结构[/font][font=Calibri])[/font][font=宋体]可以使[/font][font=Calibri]GST[/font][font=宋体]标签和裂解位点完全去除,在[/font][font=Calibri]GST[/font][font=宋体]标签的特异裂解后不留下任何额外的氨基酸。[/font][/font][font=宋体] [/font][font=宋体][b][font=Calibri]GST[/font][font=宋体]标签纯化蛋白的优劣势?[/font][/b][/font][font=宋体] [/font][font=宋体]优势:[/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]适用范围广,可在不同宿主中表达;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]增强外源蛋白可溶性;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]可用不同的蛋白酶进行去除;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4. [/font][font=宋体]有助于保持蛋白的抗原性与生物活性,提高外源蛋白的稳定性;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5. [/font][font=宋体]特异性好,纯化方便且温和。[/font][/font][font=宋体] [/font][font=宋体]劣势:[/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]分子量较大,可能会影响蛋白质的功能和下游实验;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]仅能纯化可溶性蛋白,若蛋白不可溶,则很难用变性的方法纯化。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以关注:义翘神州[/font][font=Calibri]GST[/font][font=宋体]标签[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression[/font][/font]

  • 玩笑!——不含胶原蛋白的如何叫胶原蛋白产品?

    10月8日,有媒体报道称,经过第三方机构检测,市售的Fancl、Lumi、丸美、汤臣倍健、颜如玉、无限极、安婕妤等七款胶原蛋白产品均出现胶原蛋白含量不足的问题,其中汤臣倍健、颜如玉、无限极的三款产品甚至未能检出胶原蛋白的特征物“羟脯氨酸”。由此,业内再一次掀起有关胶原蛋白产品的讨论。由此,业内再一次掀起有关胶原蛋白产品的讨论,频频陷入舆论危机。同时还了解到目前胶原蛋白产品始终未有统一标准,特异性指标也未能明确。不过多方认可,目前胶原蛋白的检测标准主要是测羟脯氨酸的含量。琳琅满目的胶原蛋白产品中胶原蛋白的含量是否合格?如何检测?国家相关的标准状况怎样?

  • 抗体与蛋白的区别?抗体蛋白结构解析

    [font=宋体]抗体,作为一类特殊的蛋白质,在免疫系统中发挥着至关重要的作用,它们能够特异性地识别并中和外来病原体,如细菌和病毒。而蛋白质,作为生命活动的基础分子,具有多种多样的功能,从酶催化到结构支撑,无所不包。抗体与蛋白的区别在于,抗体是一类具有特定功能的蛋白质,而蛋白质则是更广泛的一类生物分子。本文将深入探讨抗体与蛋白的具体区别,并详细解析抗体蛋白的结构与功能,为读者提供一个全面而深入的理解。[/font][font=宋体] [/font][b][font=宋体]抗体与蛋白的区别?[/font][/b][font=宋体] [/font][font=宋体]定义:[/font][font=宋体][font=宋体]抗体([/font][font=Calibri]antibody[/font][font=宋体])是指机体由于抗原的刺激而产生的具有保护作用的蛋白质。它(免疫球蛋白不仅仅只是抗体)是一种由浆细胞(效应[/font][font=Calibri]B[/font][font=宋体]细胞)分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等的大型[/font][font=Calibri]Y[/font][font=宋体]形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其[/font][font=Calibri]B[/font][font=宋体]细胞的细胞膜表面。抗体能识别特定外来物的一个独特特征,该外来目标被称为抗原。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]抗体是一类能与抗原特异性结合的免疫球蛋白。抗体按其反应形式分为凝集素、沉降素、抗毒素、溶解素、调理素、中和抗体、补体结合抗体等。按抗体产生的来源分为正常抗体(天然抗体),如血型[/font][font=Calibri]ABO[/font][font=宋体]型中的抗[/font][font=Calibri]A[/font][font=宋体]和抗[/font][font=Calibri]B[/font][font=宋体]的抗体,和免疫抗体如抗微生物的抗体。按反应抗原的来源分为异种抗体,异嗜性抗体,同种抗体和自身抗体。按抗原反应的凝集状态分为完全抗体[/font][font=Calibri]IgM[/font][font=宋体]和不完全抗体[/font][font=Calibri]IgG[/font][font=宋体]等。抗体在医疗实践中应用甚为广泛。如用于疾病的预防、诊断和治疗方面都有一定的作用。临床上用丙种球蛋白预防病毒性肝炎、麻疹、风疹等,国际上用抗[/font][font=Calibri]Rh[/font][font=宋体]免疫球蛋白预防因[/font][font=Calibri]Rh[/font][font=宋体]血型不合引起的溶血症。诊断上如类风湿因子用于类风湿性关节炎,抗核抗体([/font][font=Calibri]ANA[/font][font=宋体])、抗[/font][font=Calibri]DNA[/font][font=宋体]抗体用于系统性红斑狼疮,抗精子抗体用于原发性不孕症的诊断等;治疗上如毒素中毒用抗毒治疗以及免疫缺陷性疾病的治疗等。[url=https://cn.sinobiological.com/resource/antibody-technical][b]抗体相关资源[/b][/url][/font][/font][font=宋体] [/font][font=宋体]蛋白:[/font][font=宋体][font=宋体]蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的[/font][font=Calibri]16%~20%[/font][font=宋体],即一个[/font][font=Calibri]60kg[/font][font=宋体]重的成年人其体内约有蛋白质[/font][font=Calibri]9.6~12kg[/font][font=宋体]。人体内蛋白质的种类很多,性质、功能各异,但都是由[/font][font=Calibri]20[/font][font=宋体]多种氨基酸([/font][font=Calibri]Amino acid[/font][font=宋体])按不同比例组合而成的,并在体内不断进行代谢与更新。点击查看:[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白相关资源[/b][/url][/font][/font][font=宋体] [/font][b][font=宋体]区别与联系:[/font][/b][font=宋体][font=宋体]蛋白质还是有一定的区别以及关联性的,虽然说抗体是蛋白质,但是蛋白质不一定是抗体。[/font] [font=宋体]主要是因为抗体是通过人体内的浆细胞所产生的,而且还可以喝相应的抗原特异性相互结合,这样在一定程度上就能发挥出蛋白质。[/font][/font][font=宋体] [/font][b][font=宋体]抗体[/font][font=宋体]蛋白[/font][font=宋体]结构[/font][font=宋体]解析[/font][font=宋体]:[/font][/b][font=宋体][font=宋体]抗体是一种免疫球蛋白,由[/font][font=Calibri]B[/font][font=宋体]淋巴细胞产生。抗体的单体是一个[/font][font=Calibri]Y[/font][font=宋体]形的分子,有[/font][font=Calibri]4[/font][font=宋体]条多肽链组成。其中包括两条相同的重链,以及两条相同的轻链,之间由双硫键连接在一起。每条重链[/font][font=Calibri]50kDa[/font][font=宋体],每条轻链[/font][font=Calibri]25kDa[/font][font=宋体],轻重链间存在二硫键链接。[/font][/font][font=宋体] [/font][font=宋体]轻链[/font][font=宋体][font=宋体]轻链包括可变区和恒定区,可变区约占轻链的[/font][font=Calibri]1/2[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]重链[/font][font=宋体][font=宋体]重链包括可变区和恒定区。根据重链的不同,可以将抗体分为不同的种类,例如哺乳动物[/font] [font=Calibri]Ig [/font][font=宋体]的重链有α、δ、ε、γ和 μ 五种[/font][font=Calibri],[/font][font=宋体]相对应可以将哺乳动物[/font][font=Calibri]Ig[/font][font=宋体]分为 [/font][font=Calibri]IgA[/font][font=宋体]、[/font][font=Calibri]IgD[/font][font=宋体]、[/font][font=Calibri]IgE[/font][font=宋体]、[/font][font=Calibri]IgG [/font][font=宋体]和 [/font][font=Calibri]IgM [/font][font=宋体]五类。[/font][/font][font=宋体] [/font][font=宋体]可变区[/font][font=宋体][font=宋体]抗体分子的[/font][font=Calibri]N[/font][font=宋体]端存在一段氨基酸序列变化较大的区域,该区域称为可变区。可变区中存在可以与抗原特结合的部位,即抗原结合位点。一个抗体有两个抗原结合位点,可以同时结合两个抗原分子。在可变区中有三个区域的序列高度变化,成为高变区([/font][font=Calibri]hypervariable region[/font][font=宋体],[/font][font=Calibri]HVR[/font][font=宋体])又称为抗原互补决定区([/font][font=Calibri]complementarity determining region[/font][font=宋体],[/font][font=Calibri]CDR[/font][font=宋体])。可变区主要通过其[/font][font=Calibri]3[/font][font=宋体]个[/font][font=Calibri]CHR[/font][font=宋体]区形成[/font][font=Calibri]3[/font][font=宋体]个环状结构与抗原特异性结合。可变区中非[/font][font=Calibri]CDR[/font][font=宋体]部分成为骨架区([/font][font=Calibri]framework region[/font][font=宋体],[/font][font=Calibri]FR[/font][font=宋体]),其氨基酸组成和排列变化相对[/font][font=Calibri]CDR[/font][font=宋体]较少。[/font][/font][font=宋体] [/font][font=宋体]恒定区[/font][font=宋体][font=宋体]抗体分子[/font][font=Calibri]C[/font][font=宋体]端氨基酸序列相对稳定,该区域称为恒定区。同一种抗体的恒定区是相同的。抗体轻链的恒定区由一个[/font][font=Calibri]Ig[/font][font=宋体]结构域构成;重链的恒定区由[/font][font=Calibri]3-4[/font][font=宋体]个串联的[/font][font=Calibri]Ig[/font][font=宋体]结构域及一个用于增加灵活性的铰链区构成。[/font][font=Calibri]IgA[/font][font=宋体]、[/font][font=Calibri]IgE[/font][font=宋体]、[/font][font=Calibri]IgG[/font][font=宋体]有三个结构域([/font][font=Calibri]CH1[/font][font=宋体]、[/font][font=Calibri]CH2[/font][font=宋体]、[/font][font=Calibri]CH3[/font][font=宋体]),[/font][font=Calibri]IgD[/font][font=宋体]、[/font][font=Calibri]IgM[/font][font=宋体]有四个结构域([/font][font=Calibri]CH1[/font][font=宋体]、[/font][font=Calibri]CH2[/font][font=宋体]、[/font][font=Calibri]CH3[/font][font=宋体]、[/font][font=Calibri]CH4[/font][font=宋体])。不同种类抗体的铰链区存在一定的差异,[/font][font=Calibri]IgA[/font][font=宋体]的铰链区较短,[/font][font=Calibri]IgD [/font][font=宋体]的铰链区较长,[/font][font=Calibri]IgM [/font][font=宋体]和[/font][font=Calibri]IgE [/font][font=宋体]无铰链区。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Fab[/font][font=宋体]片段[/font][/font][font=宋体][font=Calibri]IgG[/font][font=宋体]分子在木瓜蛋白酶的作用下可以被降解为两个[/font][font=Calibri]Fab[/font][font=宋体]段及一个[/font][font=Calibri]Fc[/font][font=宋体]段。[/font][font=Calibri]Fab[/font][font=宋体]段由抗体轻链的可变区、轻链的恒定区、重链的可变区及重链恒定区构成。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Fc[/font][font=宋体]段[/font][/font][font=宋体][font=Calibri]Fc[/font][font=宋体]段包含了所有抗体分子共有的蛋白质序列以及各个类别独有的决定簇。[/font][font=Calibri]Fc[/font][font=宋体]段有多种生物学活性,具有结合补体、结合[/font][font=Calibri]Fc[/font][font=宋体]受体、通过胎盘等作用。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/antibody-technical/antibody-structure-function][b]抗体的结构和功能[/b][/url]详情:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/antibody-structure-function[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制