当前位置: 仪器信息网 > 行业主题 > >

光合细菌培养基

仪器信息网光合细菌培养基专题为您整合光合细菌培养基相关的最新文章,在光合细菌培养基专题,您不仅可以免费浏览光合细菌培养基的资讯, 同时您还可以浏览光合细菌培养基的相关资料、解决方案,参与社区光合细菌培养基话题讨论。

光合细菌培养基相关的论坛

  • 细菌在培养基上生长特性

    1.固体培养基标本或液体培养物划线接种到固体培养基表面后,单个细菌经分裂繁殖可形成一个肉眼可见的细菌集团,称为菌落(colony)。(1)菌落的形态特征:大小、形状(露滴状、圆形、菜花样、不规则等)、突起或扁平、凹陷、边缘(光滑、波形、锯齿状、卷发状等)、颜色(红色、灰白色、黑色、绿色、无色、黄色等)、表面(光滑、粗糙等)、透明度(不透明、半透明、透明等)和粘度等。据细菌菌落表面特征不同,可将菌落分为3型: ①光滑型菌落(S型菌落):菌落表面光滑、湿润、边缘整齐,新分离的细菌大多呈光滑型菌落。②粗糙型菌落(R型菌落):菌落表面粗糙、干燥、呈皱纹或颗粒状,边缘大多不整齐。R型菌落多为S型细菌变异失去菌体表面多糖或蛋白质形成。R型细菌抗原不完整,毒力和抗吞噬能力都比S型细菌弱。但也有少数细菌新分离的毒力株就是R型,如炭疽孢杆菌、结核分枝菌等。③粘液型菌落(M型菌落):菌落粘稠、有光泽、似水珠样。多见于厚荚膜或丰富粘液层的细菌、结核杆菌等。(2)菌落溶血特征:菌落溶血有下列3种情况。①α溶血:又称草绿色溶血,菌落周围培养基出现1~2mm的草绿色环,为高铁血红蛋白所致;②β溶血:又称完全溶血,菌落周围形成一个完全清晰透明的溶血环,是细菌产生的溶血素使红细胞完全溶解所致;③γ溶血:即不溶血,菌落周围的培养基没有变化,红细胞没有溶解或缺损。(3)色素:有些细菌产生水溶性色素,使菌落和周围的培养基出现绿色、金黄色、白色、橙色、柠檬色等颜色,产生的色素有水溶性或脂溶性。(4)气味:某些细菌在培养基中生长繁殖后可产生特殊气味,如铜绿假单胞菌(生姜气味)、变形杆菌(巧克力烧焦的臭味)、厌氧梭菌(腐败的恶臭味)、白色假丝酵母菌(酵母味)和放线菌(泥土味)等。

  • 细菌柠檬酸利用试验用的培养基

    枸橼酸盐培养基( 1 )成分 氯化钠 5g 枸橼酸钠(无水) 2g 硫酸镁 0.2g 1.0 %溴麝香草酚蓝指示液 10ml 磷酸氢二钾 1g 琼脂 14g 磷酸二氢铵 1g 水 l000ml ( 2 )制法 除指示液和琼脂外,取上述成分,混合,微温使溶解,调pH 值使灭菌后为6.9 士0.1 ,加入琼脂,加热溶胀,然后加入指示液,混匀,分装于小试管中,121 ℃ 灭菌15 分钟,制成斜面.(3 )用途 用于鉴别细菌能否利用枸橼酸盐作为碳源和氮源而生长繁殖。 方法和结果观察:取可疑菌落或斜面培养物,接种于枸橼酸盐培养基的斜面上,一般培养48 ~ 72 小时,凡能在培养基斜面生长出菌落,培养基即由绿色变成蓝色者为阳性反应;无菌落生长,培养基仍绿色者为阴性反应,阴性反应者应继续培养观察至7 天。

  • 【原创大赛】细菌生化鉴定试验你了解几何?——三糖铁培养基的灵活应用

    细菌生化鉴定试验你了解几何?——三糖铁培养基的灵活应用摘要:糖类是细菌合成菌体成分必需的原料,各类细菌对各种糖类的分解能力也有差异,葡萄糖、乳糖、蔗糖是三糖铁培养基的三种糖,通过细菌对这三种糖的利用和分解产物做生化鉴定已经很有历史了。笔者通过对三糖铁培养基的应用,总结了三糖铁培养基在细菌鉴定中的灵活应用。总结:三糖铁培养基在肠道菌的鉴定中起到很重要的作用,只要灵活准确应用,将会在细菌的生化鉴定试验的第一步中起到关键性的作用。

  • 真菌培养基

    真菌培养基培养基真菌培养基的成分有碳源、氮源和其他营养物质。葡萄糖提供碳源,硝酸盐、亚硝酸盐、氨、尿素、氨基酸和其他化合物提供氮源。1.普通培养基(1)改良沙氏琼脂、多选择沙氏琼脂(Sabouraud dextrose agar , SDA): 含有放线菌酮和氯霉素,放线菌酮可抑制腐生性真菌(多数可能为条件致病菌),氯霉素可抑制大多数细菌(并非所有细菌) 。放线菌酮也抑制新型隐球菌、一些念珠菌、烟曲霉等。(2) 马铃薯葡萄糖培养基(potato dextrose agar , PDA) : 天然培养基。(3)脑心浸膏琼脂 临床常用脑心浸膏琼脂(brain-heart infusion agar , BHI) 分离深部真菌、双相真菌如皮炎芽生菌等,也可以在其中加入抗生素和血液制品。(4) 抑制性霉菌琼脂(inhibitory mold agar , IMA ) : 含有氯毒素,可抑制细菌的生长,是用于临床真菌培养标本初次增菌的理想培养基,常用于筛选放线菌酣敏感的真菌,如隐球菌、组织胞浆菌和接合菌等。2. 选择培养基(1)咖啡酸琼脂(CAA) : 用于鉴定新型隐球菌。由于该菌含有靛酚氧化酶,在CAA 培养基中菌落呈黑色。CAA 培养基对光敏感,应避光保存。(2) 鸟食琼脂(BA) : 用于从痰等标本中分离新型隐球菌。新型隐球菌在培养基上产生棕黑色色素,但是其他隐球菌在延长培养时也可产生色素。其他真菌也可在此培养基上生长,但不产生色素。(3) KT 培养基:由吐温、蛋白、烟酸和0.3 %水解酪蛋白氨基酸组成,用于皮炎芽生菌转相(为酵母相)培养时使用。(4) Kelley 琼脂:用于皮炎芽生菌( B. dermatitidis) 转相(为酵母相)时使用。(5) CHROM 琼脂: 念珠菌显色培养基。是一种用于鉴定培养念珠菌的培养基,不同念珠菌在此培养基上生长显不同颜色。

  • 【转帖】146种培养基配方(细菌培养基与植物培养基)!

    培养基及成分 1. Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2. Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 [Note]:When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 4. Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml [Note]:Boil the mixture in autoclave at 121℃ for 1 hr. distribute the medium into 18ⅹ18 mm tubes , each contains 10 ml of the liquid , then autoclave at 121℃ for 1 hr . again (15磅蒸煮1小时,分装入18ⅹ18毫米试管,每管深度达6厘米。15磅再次灭菌15小时。) 5. Lactic-bacteria Medium I (乳酸菌培养基 I ) Yeast extract (酵母膏) 7.5g Peptone (蛋白胨) 7.5g Glucose (葡萄糖) 10g KH2PO4 2g Tomato juice (西红柿汁) 100ml Tween (吐温) 80 0.5ml Distilled water (蒸馏水) 900ml pH 7.0 适用范围:植物乳杆菌(胚芽乳杆菌)、嗜热乳酸链球菌 6. Lactic-bacteria Midium Ⅱ (乳酸菌培养基 Ⅱ) Lacto-casein peptone (乳酪蛋白胨) 10g Beef extract (蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 5g Tween (吐温) 80 1g K2HPO4 2g Na-acetate (醋酸钠) 5g Diamine citrate (柠檬酸二胺) 2g MgSO4.7H2O 0.2g MnSO4.H2O 0.05g Distilled water (蒸馏水) 1000m pH 6.5-6.8 适用范围:植物乳杆菌(胚芽乳杆菌) 7. Peotone Glucose Yeast extract Medium PGY (蛋白胨、酵母膏、葡萄糖培养基) Peptone(蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 1g Distilled water (蒸馏水) 1L 8. Glycerol Agar (甘油琼脂) Peptone (蛋白胨) 5g Beef extract (酵母膏) 3g Glycerol (甘油) 20g Top water (自来水) 1000ml Agar (琼脂) 15g pH 7.0-7.2 9. Rhizobium medium (根瘤菌培养基)AS 9 Yeast eztract (酵母膏) 1g Soil eztract (土壤浸提液) 200ml Mannitol (甘露醇) 10g Agar (琼脂) 15g Distilled water (蒸馏水) 800ml pH 7.2 [Note]:Soil extract:Suspend 50g finely and dried gardon soil in 200ml of tap water. Autoclave at 121℃ for 1 hr. Decant through cotton-cloth, filler though paper, make up volume to 200ml. Resterilize for 20 minutes at 121℃ , then mixed with othringredients and distributed. (土壤浸提液的制法:取土壤50克,加水200毫升,15磅蒸煮1小时,经滤纸过滤后加水补足到200毫升。) 适用范围:大豆根瘤菌(慢生型)、豇豆慢生根瘤菌、花生根瘤菌、紫云英根瘤菌、 大豆根瘤菌(快生型)、大豆根瘤菌、豌豆根瘤菌、苜蓿根瘤菌、田菁根瘤菌 10. Mannitol Agar (甘露醇琼脂) Yeast extract (酵母膏) 5g Peptone (蛋白胨) 3g Mannitol (甘露醇) 25g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml

  • 培养基介绍

    培养基是发酵过程或动植物细胞大量培养中供微生物或动、植物细胞的生长、繁殖或积累代谢产物,以合成生物化工产品所必需的营养基质。培养基的选择应根据微生物生长代谢活动的需要,并有利于合成细胞物质和生物化工产品的生成。培养基中主要含有水、碳源(能源)、氮源、矿物质,有的还需要提供维生素等。在酶反应过程中,原料液中被转化的物质亦即酶的作用物,亦可称为底物。 培养基的选择一般尽可能要满足以下要求:①单位质量基质,应能产生最大量的生物物质或生物化工产品,并且要使所产生的生物物质或生物化工产品在发酵液中的浓度最高,产率最高,使不需要的其他代谢产物的生成,限在最低范围内。②培养基成本低、质量均一并随时保证提供使用。③培养基使用时,对通气、搅拌、后处理和三废治理等方面所产生的问题最少。 分类 按其组成成分分成三类:①天然培养基,全由天然产物组成,例如含淀粉、黄豆饼粉等天然物质;②复合培养基,由部分天然产物和部分已知成分的化合物组成,例如其中的氮源既有天然物质黄豆饼粉,又有合成化合物硫酸铵;③合成培养基,全由已知成分的化合物所组成,例如以纯的碳水化合物或碳氢化合物为碳源,以铵盐为氮源。天然培养基和复合培养基常用于工业生产,而合成培养基(偶尔包括复合培养基)则常用于试验。 按用途分类包括:①基础培养基,营养需求相似的一些生物其所需的营养物大体相同,因之可配制一种适合于它们共同需要的含有基本营养成分的基础培养基;②增殖培养基,又称丰富培养基,常用于菌种选育方面。它是由基础培养基,再加入特殊的营养物质,以使某种差异型微生物在其中迅速生长繁殖;③鉴别培养基,即在培养基中加入某种试剂,从而在培养过程中表现出特殊反应,用以鉴别不同类型的微生物,如无菌试验用的酚红肉汤培养基,就是一种鉴别培养基;④选择培养基,根据某些微生物具有特殊营养要求,或对某些化学物质具有抗性而设计的,例如在配方中加入某种化学药物,以限制对敏感菌的生长繁殖,而将对其不敏感的所需的微生物分离出来。如在分离酵母菌时,可加入青霉素、链霉素等以抑制细菌的生长。 培养基还可根据其形态分成液体或固体培养基。例如用于无菌试验的肉汤培养基为液体培养基。用于培养青霉菌孢子的小米或大米为固体培养基,在培养基中加入适量琼脂而形成的凝胶培养基,也称固体培养基。 成分 培养基的成分包括:碳源、氮源、矿物质,以及其他必需物质。这些成分通过生物反应过程,生成生物物质、生物化工产品,并放出CO2、H2O和热量。 培养基的成分还可以由发酵过程中所需的元素出发,如C、H、O、N、S、P、Mg、K等。此外,必要时还有一些需要量很少的微量元素,如Fe、Zn、Cu、Mn、Co、Mo、B等。在发酵过程中某些生物本身不能合成的物质,如氨基酸、维生素或核苷酸等,必要时亦作为营养物质加入到培养基中。 碳源 具有双重作用。生物在产生生物物质或生物化工产品过程中,它不仅为其提供碳源,也为其提供能源。碳水化合物是微生物发酵中的主要碳源,包括淀粉、葡萄糖、蔗糖和乳糖等。此外,植物油如豆油、棉籽油、玉米油等亦常被应用作为碳源。这类油常与表面活性剂合用,以消除发酵过程中所产生的泡沫。甲醇可用以生产单细胞蛋白。正烷烃类可用以生产有机酸、氨基酸和维生素等,甚至二氧化碳也可作为光合细菌的碳源。 氮源 包括无机氮源和有机氮源。无机氮源包括氨、铵盐及硝酸盐等,它们在被应用时应注意发酵中pH的变化;有机氮源包括氨基酸、蛋白质及尿素等,有机氮源的加入往往加快了生物的生长。因考虑到成本因素,一些有机氮源,如黄豆饼粉、花生饼粉、棉籽饼粉、玉米浆、鱼粉、酵母粉等常被选用。 培养基的组成中除了水分外,碳源和氮源的含量是最大的。碳源含量一般不超过10%,氮源含量较低,一般碳氮比应为3[

  • 培养基的分类

    (一)按培养基用途分 1.营养培养基。含微生物生长繁殖所需基本营养物质的培养基常用以牛肉浸粉、蛋白胨、氯化钠为基础,也可增加所需的其他营养物质,如血液等。琼脂是培养基中常用的凝固剂,以支撑细菌的生长形态形成菌落,它对细菌无营养价值。 2.增菌运送培养基。将可疑标本接种于运送培养基中。增菌培养基为液体,是扩大培养的手段,也是细菌生化反应的主要培养方法。 3.选择鉴别培养基。在培养基中加入指示剂或化学物质,抑制某些细菌生长而有助于需要的细菌生长,或通过指示剂颜色变化分离鉴别细菌。 4.特殊培养基。包括厌氧培养基及其他(抗生素效价测定和药敏试验)培养基。 (二)按培养基物理性状分 1.液体培养基。将营养物质溶解于液体中,调整pH灭菌后即为液体培养基。常用于细菌增菌或观察细菌的生化反应。 2.固体培养基。液体培养基中加入13~15g/L琼脂,溶化后凝固成固体培养基。制成平皿,用于分离培养、活菌计数、选择培养、药敏试验。固体培养基可在试管中制成斜面用于菌种传代和短期保存。 3.半固体培养基。液体培养基中加入2~5g/L琼脂。用于细菌动力观察和菌种保存

  • 影响培养基灭菌效果的因素

    培养基灭菌是否彻底,影响因素很多,除了培养基内杂菌的种类和数量,灭菌温度的高低,时间长短外,还取决于:1. 营养成分的保持湿热灭菌时,微生物被杀死的同时,培养基的营养成分也遭到了一定的破坏,特别是氨基酸和维生素。如在121℃,仅20min,就有59%的赖氨酸和精氨酸及其他碱性氨基酸被破坏,蛋氨酸和色氨酸也有相当数量被破坏。在热的作用下某些营养成分还可能因受热而相互之间发生反应,造成培养基中原有营养成分的数量变化,因而影响培养基质量。2. 微生物的耐热性细菌芽孢的热阻较大,灭菌所需要的时间取决于把细菌芽孢减少到所规定数目的时间。3. pH值pH值对微生物的耐热性影响很大。pH值介于6.0~8.0时,微生物最不易死亡。pH6.0时,微生物比较容易死亡,此时H+很容易渗入微生物的细胞,从而改变细胞的生理反应,促使其死亡。所以培养基的pH越低,所需的时间也越短。4. 培养基成分油脂、糖类及蛋白质等组成的高浓度有机物会包于细胞的周围形式一层薄膜、影响热的传导。而高浓度的盐类、色素则削弱其耐热性,灭菌较易。例如:大肠杆菌在水中加热至60-65℃便死亡,在10%糖液中需70℃加热4-6分钟才死亡,在30%糖液中需30分钟才死亡。一般糖类含量较多的时候最好选用115℃,30分钟;一般的培养基可选择121℃20分钟。5. 泡沫泡沫中的空气形成隔热层,使热量难以渗透进去,杀死其中的杂菌。6. 颗粒颗粒小,容易灭菌,颗粒大,则难灭菌。对于含有少量较大颗粒及粗纤维的培养基,可用粗滤的方法(不应影响培养基质量)予以除去,培养基结块会造成培养基灭菌的不彻底。7. 灭菌锅内空气是否排净这个是影响灭菌是温度和压力比例关系的要点,同样达到了相同的压力的情况下,如果空气未能排净,也就是说不是纯蒸汽灭菌,此时的温度不一定能达到目的要求,会严重影响灭菌效果。

  • 146种培养基配方[细菌培养基和植物培养基]

    培养基及成分 1、Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2、 Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 :When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 3、Azotobacter Medium (固氮菌培养基) KH2PO4 0.2g K2HPO4 0.8g MgSO4.7H2O 0.2g CaSO4.2H2O   0.1g Na2MoO4.2H2O Trace(微量) Yeast axtract(酵母膏) 0.5g Mannitol(甘露醇) 20g FeCl3 Tract(微量) Distilled water (蒸馏水) 1000ml Agar (琼脂) 15g Adjust (调) pH to 7.2 适用范围:固氮菌、胶质芽孢杆菌 4、Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml :Boil the mixture in autoclave at 121℃ for 1 hr. distribute the medium into 18ⅹ18 mm tubes , each contains 10 ml of the liquid , then autoclave at 121℃ for 1 hr . again (15磅蒸煮1小时,分装入18ⅹ18毫米试管,每管深度达6厘米。15磅再次灭菌15小时。) 5、Lactic-bacteria Medium I (乳酸菌培养基 I ) Yeast extract (酵母膏) 7.5g Peptone (蛋白胨) 7.5g Glucose (葡萄糖) 10g KH2PO4 2g Tomato juice (西红柿汁) 100ml Tween (吐温) 80 0.5ml Distilled water (蒸馏水) 900ml pH 7.0 适用范围:植物乳杆菌(胚芽乳杆菌)、嗜热乳酸链球菌 6、Lactic-bacteria Midium Ⅱ (乳酸菌培养基 Ⅱ) Lacto-casein peptone (乳酪蛋白胨) 10g Beef extract (蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 5g Tween (吐温) 80 1g K2HPO4 2g Na-acetate (醋酸钠) 5g Diamine citrate (柠檬酸二胺) 2g MgSO4.7H2O 0.2g MnSO4.H2O 0.05g Distilled water (蒸馏水) 1000m pH 6.5-6.8 适用范围:植物乳杆菌(胚芽乳杆菌) 7、Peotone Glucose Yeast extract Medium PGY (蛋白胨、酵母膏、葡萄糖培养基) Peptone(蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 1g Distilled water (蒸馏水) 1L 8、Glycerol Agar (甘油琼脂) Peptone (蛋白胨) 5g Beef extract (酵母膏) 3g Glycerol (甘油) 20g Top water (自来水) 1000ml Agar (琼脂) 15g pH 7.0-7.2 9、Rhizobium medium (根瘤菌培养基)AS 9 Yeast eztract (酵母膏) 1g Soil eztract (土壤浸提液) 200ml Mannitol (甘露醇) 10g Agar (琼脂) 15g Distilled water (蒸馏水) 800ml pH 7.2 :Soil extract:Suspend 50g finely and dried gardon soil in 200ml of tap water. Autoclave at 121℃ for 1 hr. Decant through cotton-cloth, filler though paper, make up volume to 200ml. Resterilize for 20 minutes at 121℃ , then mixed with othringredients and distributed. (土壤浸提液的制法:取土壤50克,加水200毫升,15磅蒸煮1小时,经滤纸过滤后加水补足到200毫升。) 适用范围:大豆根瘤菌(慢生型)、豇豆慢生根瘤菌、花生根瘤菌、紫云英根瘤菌、 大豆根瘤菌(快生型)、大豆根瘤菌、豌豆根瘤菌、苜蓿根瘤菌、田菁根瘤菌 10、 Mannitol Agar (甘露醇琼脂) Yeast extract (酵母膏) 5g Peptone (蛋白胨) 3g Mannitol (甘露醇) 25g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml 11、 Glucose Asparagine (葡萄糖、天门冬素琼脂) Glucose (葡萄糖) 10g Asparagine (天门冬素) 0.5g K2HPO4 0.5g Water (水) 1000ml pH 7.2-7.4 适用范围:刺孢小单孢菌绛红变种、紫色小单孢菌(绛红小单孢菌) 12、Gause′s Synthetic Agar (高氏合成一号琼脂) KNO3 1g Soluble starch(可溶性淀粉) 20g K2HPO4 0.5g MgSO4.7H2O 0.5g NaCl 0.5g FeSO4 0.01g Agar (琼脂) 20g water (水) 1000ml pH 7.2-7.4 适用范围:刺孢小单孢菌绛红变种、紫色小单孢菌(绛红小单孢菌)、白黄链霉菌、白色链霉菌、抗生链霉菌、双重轮丝链霉菌、产色链霉菌、烬灰链霉菌、天蓝色链霉菌、灭蚊链霉菌、红霉素链霉菌、青色链霉菌、球孢链霉菌、浅灰链霉菌、灰色链霉菌、吸水链霉菌、淡紫灰链霉菌、黄色长孢链霉菌、藤黄色链霉菌、细黄链霉菌、黑化链霉菌、玫瑰色链霉菌、华美链霉菌、嗜热链霉菌、委内瑞拉链霉菌、紫色直丝链霉菌、紫色链霉菌、绿色链霉菌 13、Wort Agar (麦芽汁琼脂) Dilute the world (without hop) to 12 Brix. Add 15g agar into 1000ml of the diluted word..Melt the agar by heating, then distribute the medium into tubes. Autoclave at 110 for 30 minutes. (将发酵啤酒的原料(未加酒花),稀释至12柏林,加琼脂15克,溶化后分装。15磅灭菌30分钟。) 适用范围:克鲁斯假丝酵母、郎比可假丝酵母、解脂假丝酵母、马其顿假丝酵母、拟热带假丝酵母、粗壮假丝酵母、皱褶假丝酵母、热带假丝酵母、产朊假丝酵母、阿舒假囊酵母、白地霉、果香地霉、地霉属、异常汉逊酵母、异常汉逊酵母变种、阿拉伯糖醇汉逊酵母、施氏汉逊酵母、菅囊

  • 发酵培养基的配制

    首先需了解微生物需要的营养物质。 (1)微生物需要的营养物质营养物质应满足微生物的生长、繁殖和完成各种生理活动的需要。它们的作用可概括为形成结构(参与细胞组成)、提供能量和调节作用(构成酶的活性和物质运输系统)。微生物的营养物质有六大类要素,即水、碳源、氮源、无机盐、生长因子和能源。① 水水是微生物的重要组成部分,在代谢中占有重要地位。水在细胞中有两种存在形式:结合水和游离水。结合水与溶质或其他分子结合在一起,很难加以利用。游离水(或称为非结合水)则可以被微生物利用。② 碳源碳在细胞的干物质中约占50%,所以微生物对碳的需求最大。凡是作为微生物细胞结构或代谢产物中碳架来源的营养物质,称为碳源。作为微生物营养的碳源物质种类很多,从简单的无机物(CO2、碳酸盐)到复杂的有机含碳化合物(糖、糖的衍生物、脂类、醇类、有机酸、芳香化合物及各种含碳化合物等)。但不同微生物利用碳源的能力不同,假单孢菌属可利用90种以上的碳源,甲烷氧化菌仅利用两种有机物:甲烷和甲醇,某些纤维素分解菌只能利用纤维素。大多数微生物是异养型,以有机化合物为碳源。能够利用的碳源种类很多,其中糖类是最好的碳源。异养微生物将碳源在体内经一系列复杂的化学反应,最终用于构成细胞物质,或为机体提供生理活动所需的能量。所以,碳源往往也是能源物质。自养菌以CO2、碳酸盐为唯一或主要的碳源。CO2是被彻底氧化的物质,其转化成细胞成分是一个还原过程。因此,这类微生物同时需要从光或其他无机物氧化获得能量。这类微生物的碳源和能源分别属于不同物质。③ 氮源凡是构成微生物细胞的物质或代谢产物中氮元素来源的营养物质,称为氮源。细胞干物质中氮的含量仅次于碳和氧。氮是组成核酸和蛋白质的重要元素,氮对微生物的生长发育有着重要作用。从分子态的N2到复杂的含氮化合物都能够被不同微生物所利用,而不同类型的微生物能够利用的氮源差异较大。固氮微生物能利用分子态N2合成自己需要的氨基酸和蛋白质,也能利用无机氮和有机氮化物,但在这种情况下,它们便失去了固氮能力。此外,有些光合细菌、蓝藻和真菌也有固氮作用。许多腐生细菌和动植物的病原菌不能固氮,一般利用铵盐或其他含氮盐作氮源。硝酸盐必须先还原为NH+4后,才能用于生物合成。以无机氮化物为唯一氮源的微生物都能利用铵盐,但它们并不都能利用硝酸盐。有机氮源有蛋白胨、牛肉膏、酵母膏、玉米浆等,工业上能够用黄豆饼粉、花生饼粉和鱼粉等作为氮源。有机氮源中的氮往往是蛋白质或其降解产物。氮源一般只提供合成细胞质和细胞中其他结构的原料,不作为能源。只有少数细菌,如硝化细菌利用铵盐、硝酸盐作氮源和能源。④ 无机盐无机盐也是微生物生长所不可缺少的营养物质。其主要功能是:① 构成细胞的组成成分;② 作为酶的组成成分;③ 维持酶的活性;④ 调节细胞的渗透压、氢离子浓度和氧化还原电位;⑤ 作为某些自氧菌的能源。磷、硫、钾、钠、钙、镁等盐参与细胞结构组成,并与能量转移、细胞透性调节功能有关。微生物对它们的需求量较大(10-4~10-3 mol/L),称为“宏量元素”。没有它们,微生物就无法生长。铁、锰、铜、钴、锌、钼等盐一般是酶的辅因子,需求量不大(10-8~10-6 mol/L),所以,称为“微量元素”。不同微生物对以上各种元素的需求量各不相同。铁元素介于宏量和微量元素之间。在配制培养基时,可通过添加有关化学试剂来补充宏量元素,其中首选是K2HPO4和MgSO4,它们可提供需要量很大的元素:K、P、S和Mg。微量元素在一些化学试剂、天然水和天然培养基组分中都以杂质等状态存在,在玻璃器皿等实验用品上也有少量存在,所以,不必另行加入。⑤ 生长因子一些异养型微生物在一般碳源、氮源和无机盐的培养基中培养不能生长或生长较差。当在培养基中加入某些组织(或细胞)提取液时,这些微生物就生长良好,说明这些组织或细胞中含有这些微生物生长所必须的营养因子,这些因子称为生长因子。生长因子可定义为:某些微生物本身不能从普通的碳源、氮源合成,需要额外少量加入才能满足需要的有机物质,包括氨基酸、维生素、嘌呤、嘧啶及其衍生物,有时也包括一些脂肪酸及其他膜成分。各种微生物所需的生长因子不同,有的需要多种,有的仅需要一种,有的则不需要。一种微生物所需的生长因子也会随培养条件的变化而变化,如在培养基中是否有前体物质、通气条件、pH和温度等条件,都会影响微生物对生长因子的需求。从自然界直接分离的任何微生物,在其发生营养缺陷突变前的菌株,均称为该微生物的野生型。绝大多数野生型菌株只需简单的碳源和氮源等就能生长,不需要添加生长因子;经人工诱变后,常会丧失合成某种营养物质的能力,在这些菌株生长的培养基中,必须添加某种氨基酸、嘌呤、嘧啶或维生素等生长因子。⑥ 能源能源是指为微生物的生命活动提供最初能量来源的营养物或辐射能。化能异养型微生物的能源即碳源;化能自养型微生物的能源都是还原态的无机物,如NH4+、NO2-、S、H2S、H2、Fe2+等,它们分别属于硝化细菌、亚硝酸细菌、硫化细菌、硫细菌、氢细菌和铁细菌等。一种营养物常有一种以上营养要素的功能,即除单功能营养物外,还有双功能,甚至三功能营养物。辐射能是单功能;还原态无机养分常是双功能的(NH4+既是硝化细菌的能源,又是它的氮源)甚至是三功能的(能源、氮源和碳源);有机物常有双功能或三功能作用。(2)配制培养基必须遵循的原则微生物的培养基通常指人工配制的适合微生物生长繁殖,或积累代谢产物的营养基质。广义上说,凡是支持微生物生长繁殖的介质或材料,均可作为微生物的培养基。一个适当的培养基配方,对发酵产品的产量和质量有着极大的影响。针对不同微生物,不同的营养要求,可以有不同的培养基。但它们的配制必须遵循一定原则。① 营养物质应满足微生物的需要。不同营养类型的微生物对营养的需求差异很大,应根据菌种对各营养要素的不同要求进行配制。② 营养物的浓度及配比应恰当。营养物浓度太低,不能满足微生物生长的需要;浓度太高,又会抑制微生物生长。糖和盐浓度高有抑菌作用。碳氮比(C∶N,以还原糖含量与粗蛋白含量的比值表示):一般培养基为C∶N=100∶0.5~2。在设计培养基配比时,还应考虑避免培养基中各成分之间的相互作用,如蛋白胨、酵母膏中含有磷酸盐时,会与培养基中钙或镁离子在加热时发生沉淀作用;在高温下,还原糖也会与蛋白质或氨基酸相互作用而产生褐色物质。③ 物理、化学条件适宜。pH:各种微生物均有其生长繁殖的最适pH,细菌为7.0~8.0,放线菌为7.5~8.5,酵母为3.8~6.0,霉菌为4.0~5.8。对于具体的微生物菌种,都有各自的特定的最适pH范围,有时会大大突破上述界限。在微生物生长繁殖过程中,会产生能够引起培养基的pH改变的代谢产物,尤其是不少微生物有很强的产酸能力,如不适当地加以调节,就会抑制甚至于杀死其自身。在设计培养基时,要考虑培养基的pH调节能力。一般应加入缓冲液或CaCO3,使培养基的pH稳定。其他:培养基的其他理化指标,如水活度、渗透压也会影响微生物的培养。在配制培养基时,通常不必测定这些指标,因为培养基中各种成分及其浓度等指标的优化,已间接地确定了培养基的水活度和渗透压。此外,各种微生物培养基的氧化还原电位等也有不同的要求。④ 培养目的:培养基的成分直接影响培养目标。在设计培养基时,必须考虑是要培养菌体,还是要积累菌体代谢产物;是实验室培养,还是大规模发酵等问题。用于培养菌体的种子培养基营养成分应丰富,氮源含量宜高,即碳氮比值应低;相反,用于大量积累代谢产物的发酵培养基,氮源应比种子培养基稍低;当然,若目的产物是含氮化合物时,有时还应该提高培养基的氮源含量。在设计培养基时,还应该特别考虑到代谢产物是初级代谢产物,还是次级代谢产物。如果是次级代谢产物,还要考虑是否需加入特殊元素(如维生素B12中Co)或特殊的前体物质(如生产青霉素G时,应加入苯乙酸)。在设计培养基,尤其是大规模发酵生产用的培养基时,还应该重视培养基组分的来源和价格,应该优先选择来源广、价格低廉的培养基。(3)几种培养基的配制原则① 种子培养基:适用于微生物菌体生长的培养基,目的是为下一步发酵提供数量较多,强壮而整齐的种子细胞。一般要求氮源、维生素丰富,原料要精。② 发酵培养基:用于生产预定发酵产物的培养基,一般的发酵产物以碳源为主要元素。发酵培养基中的碳源含量往往高于种子培养基。如果产物的含氮量高,应增加氮源。在

  • 【分享】几种培养基配方(细菌培养基与植物培养基)

    培养基及成分 1. Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 2. Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 :When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌 4. Corn Meal Medium (玉米粉培养基) Maize flour (玉米粉) 5g Peptone (蛋白胨) 0.1g Glucose (葡萄糖) 1g Tap water (自来水) 1000ml :Boil the mixture in autoclave at 121℃ for 1 hr. distribute the medium into 18ⅹ18 mm tubes , each contains 10 ml of the liquid , then autoclave at 121℃ for 1 hr . again (15磅蒸煮1小时,分装入18ⅹ18毫米试管,每管深度达6厘米。15磅再次灭菌15小时。) 5. Lactic-bacteria Medium I (乳酸菌培养基 I ) Yeast extract (酵母膏) 7.5g Peptone (蛋白胨) 7.5g Glucose (葡萄糖) 10g KH2PO4 2g Tomato juice (西红柿汁) 100ml Tween (吐温) 80 0.5ml Distilled water (蒸馏水) 900ml pH 7.0 适用范围:植物乳杆菌(胚芽乳杆菌)、嗜热乳酸链球菌 6. Lactic-bacteria Midium Ⅱ (乳酸菌培养基 Ⅱ) Lacto-casein peptone (乳酪蛋白胨) 10g Beef extract (蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 5g Tween (吐温) 80 1g K2HPO4 2g Na-acetate (醋酸钠) 5g Diamine citrate (柠檬酸二胺) 2g MgSO4.7H2O 0.2g MnSO4.H2O 0.05g Distilled water (蒸馏水) 1000m pH 6.5-6.8 适用范围:植物乳杆菌(胚芽乳杆菌) 7. Peotone Glucose Yeast extract Medium PGY (蛋白胨、酵母膏、葡萄糖培养基) Peptone(蛋白胨) 10g Yeast extract (酵母膏) 5g Glucose (葡萄糖) 1g Distilled water (蒸馏水) 1L 8. Glycerol Agar (甘油琼脂) Peptone (蛋白胨) 5g Beef extract (酵母膏) 3g Glycerol (甘油) 20g Top water (自来水) 1000ml Agar (琼脂) 15g pH 7.0-7.2 9. Rhizobium medium (根瘤菌培养基)AS 9 Yeast eztract (酵母膏) 1g Soil eztract (土壤浸提液) 200ml Mannitol (甘露醇) 10g Agar (琼脂) 15g Distilled water (蒸馏水) 800ml pH 7.2 :Soil extract:Suspend 50g finely and dried gardon soil in 200ml of tap water. Autoclave at 121℃ for 1 hr. Decant through cotton-cloth, filler though paper, make up volume to 200ml. Resterilize for 20 minutes at 121℃ , then mixed with othringredients and distributed. (土壤浸提液的制法:取土壤50克,加水200毫升,15磅蒸煮1小时,经滤纸过滤后加水补足到200毫升。) 适用范围:大豆根瘤菌(慢生型)、豇豆慢生根瘤菌、花生根瘤菌、紫云英根瘤菌、 大豆根瘤菌(快生型)、大豆根瘤菌、豌豆根瘤菌、苜蓿根瘤菌、田菁根瘤菌 10. Mannitol Agar (甘露醇琼脂) Yeast extract (酵母膏) 5g Peptone (蛋白胨) 3g Mannitol (甘露醇) 25g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml 11. Glucose Asparagine (葡萄糖、天门冬素琼脂) Glucose (葡萄糖) 10g Asparagine (天门冬素) 0.5g K2HPO4 0.5g Water (水) 1000ml pH 7.2-7.4 适用范围:刺孢小单孢菌绛红变种、紫色小单孢菌(绛红小单孢菌) 12. Gause′s Synthetic Agar (高氏合成一号琼脂) KNO3 1g Soluble starch(可溶性淀粉) 20g K2HPO4 0.5g MgSO4.7H2O 0.5g NaCl 0.5g FeSO4 0.01g Agar (琼脂) 20g water (水) 1000ml pH 7.2-7.4

  • 影响培养基灭菌效果的因素

    培养基灭菌是否彻底,影响因素很多,除了培养基内杂菌的种类和数量,灭菌温度的高低,时间长短外,还取决于:1. 营养成分的保持湿热灭菌时,微生物被杀死的同时,培养基的营养成分也遭到了一定的破坏,特别是氨基酸和维生素。如在121℃,仅20min,就有59%的赖氨酸和精氨酸及其他碱性氨基酸被破坏,蛋氨酸和色氨酸也有相当数量被破坏。在热的作用下某些营养成分还可能因受热而相互之间发生反应,造成培养基中原有营养成分的数量变化,因而影响培养基质量。2. 微生物的耐热性细菌芽孢的热阻较大,灭菌所需要的时间取决于把细菌芽孢减少到所规定数目的时间。3. pH值pH值对微生物的耐热性影响很大。pH值介于6.0~8.0时,微生物最不易死亡。pH6.0时,微生物比较容易死亡,此时H+很容易渗入微生物的细胞,从而改变细胞的生理反应,促使其死亡。所以培养基的pH越低,所需的时间也越短。4. 培养基成分油脂、糖类及蛋白质等组成的高浓度有机物会包于细胞的周围形式一层薄膜、影响热的传导。而高浓度的盐类、色素则削弱其耐热性,灭菌较易。例如:大肠杆菌在水中加热至60-65℃便死亡,在10%糖液中需70℃加热4-6分钟才死亡,在30%糖液中需30分钟才死亡。一般糖类含量较多的时候最好选用115℃,30分钟;一般的培养基可选择121℃20分钟。5. 泡沫泡沫中的空气形成隔热层,使热量难以渗透进去,杀死其中的杂菌。6. 颗粒颗粒小,容易灭菌,颗粒大,则难灭菌。对于含有少量较大颗粒及粗纤维的培养基,可用粗滤的方法(不应影响培养基质量)予以除去,培养基结块会造成培养基灭菌的不彻底。7. 灭菌锅内空气是否排净这个是影响灭菌是温度和压力比例关系的要点,同样达到了相同的压力的情况下,如果空气未能排净,也就是说不是纯蒸汽灭菌,此时的温度不一定能达到目的要求,会严重影响灭菌效果。

  • 弧菌分离培养基

    碱性琼脂 用于霍乱弧菌分离培养蛋白胨10g ,氯化钠5g,牛肉膏3g ,脂20g ,蒸馏水1L 。将前4 种成分混合于水中,加热溶解,校正pH 至8.4 ,分装后121℃ 灭菌15min ,倾注平板。凡急性患有水样便标本做增菌培养的同时,应直接取标本接种到碱性琼脂平板或亚碲酸钾琼脂平板上。置35 ℃ 培养12-16h ,观察结果。霍乱弧菌生长较快,菌落大而扁平,呈青灰色,半透明,光滑湿润。在亚碲酸钾琼脂上菌落呈灰黑色。 各实验室凡自配培养基或商品培养基,在使用前可用标准菌株生长对照,临床实验室可送防疫部门所设立的专门检验机构进行目的菌监测,质量可靠者方可使用。EL-Tor弧菌生长良好;大肠埃希菌ATCC25922 生长抑制。 置4℃ 冰箱,1 周内用完2 碱性胆盐琼脂 用于霍乱弧菌分离培养蛋白胨10g ,牛肉膏5g,氯化纳5 -10g ,琼脂20g,胆盐(牛、猪)2.5g,蒸馏水1L。 将上述成分称量混合于水中加热溶解,校正pH 至8.4 ,分装121 ℃ 灭菌15min ,倾注平板。取粪便标本或增菌培养物1 接种环接种平板,置35 ℃ 温箱培养16-18h 。霍乱弧菌迅速生长,其它细菌生长较缓慢。在16-18h 后,霍乱弧菌的菌落,直径可达2mm左右,呈扁平,青灰色,半透明,光滑湿润,易挑起。其它细菌菌落小而凸起,不透明,或有色素。同碱性琼脂置冰箱,1 周内用完。3 庆大霉素琼脂用于霍乱弧菌分离培养。 蛋白胨10g ,牛肉浸膏3g ,氯化钠g,构椽酸钠10g,无水亚硫酸钠3g ,蔗糖(或白糖)10g ,琼脂15-20g 庆大霉素、多粘菌素B “双抗液”2 ml,蒸馏水1L 。将上述成分(除“双抗液”外)称量混合于水中,加热溶解,校正pH 至8.4 ,分装灭菌121 ℃ 15 min ,待冷却至50 ℃ 后,每100ml内加“双抗液”0.2ml,另加5g / L 亚碲酸钾溶液0.1ml,再倾注平板。最后每毫升培养基内含有庆大霉素0.5U ,多粘菌素B6U 。将粪便标本或增菌培养物划线接种到该平板上,置35 ℃ 培养16-18h。 由于该培养基抑制性强,其它非弧菌科细菌被抑制,而霍乱弧菌生长迅速,16h 菌落可达2mm,菌落青灰色半透明,扁平,光滑湿润。若培养时间长,菌落略黄色、隆起,中心厚而不透明。霍乱弧菌(小川、稻叶)生长良好,培养18-24h 菌落直径2.5-3.0mm;大肠埃希菌和变形杆菌生长抑制。置4 ℃ 冰箱内,1 周内用完。注:(1)该培养基国内有商品出售,多数产品已加入庆大霉素,使用时,应详阅说明书。(2)“双抗液”配制:98ml 工灭菌蒸馏水中加庆大霉素(25 000U / ml)1ml,多粘菌B 或抗敌E ( 300 000U / ml)1ml4 ℃ 冰箱保存,1 月用完。4 四号琼脂用于霍乱弧菌分离培养 蛋白胨10g ,氯化钠5g,牛肉浸膏3g ,亚硫酸钠(无水)3g ,枸椽酸钠10g ,猪胆汁粉5g,十二烷硫酸钠20g,利凡诺(雷佛奴尔)3g ,琼脂粉12g ,庆大霉素亚碲酸钾混合液1ml,蒸馏水1L。将前8种成分放入玻璃或搪瓷容器内(严禁用铝制容器等金属容器),加入蒸馏水,加热溶解混合后,调整至pH8.0 ,然后按12%加入琼脂,煮沸至琼脂溶化后,冷至60 ℃ 左右,按每100ml琼脂加入庆大霉素亚碲酸钾混合液(1ml 40 000U 庆大霉素加79ml蒸馏水混合后,加入0.8g 亚碲酸钾溶解混合即成,每毫升含500U 庆大霉素和10g / L 亚碲酸钾)0.1ml,摇匀,倾注平板。 取待检标本划线接种平板,置35 ℃ 培养过夜。8h 后即可初步观察结果。24h 培养后,霍乱弧菌呈中心黑色、较大而扁平的菌落。配成的培养基呈亮黄色透明;EL-Tor弧菌稻叶型生长良好;EL-Tor弧菌小川型生长良好;大肠埃希菌ATCC25922 抑制生长。注:(1)庆大和亚碲酸钾混合液应新鲜配制并置冰箱保存。(2)雷佛奴尔应避光保存,而且每批均应预试后方可使用。成品培养基应避光保存。

  • 【求助】关于培养基灭菌的问题

    我是做一次性卫生用品微生物检测的,问题有三:1、今天听老板说培养基可能适用干热灭菌法?说是160℃下4小时,我的疑问是有这种方法吗?培养基的营养成份会不会被破坏掉。如果有这种方法,具体操作是怎样的?适用什么条件?有无正式的出处,比如某标准或某权威书?2、在GB15979-2002上规定,乳糖发酵管等需要在115℃下灭15min,由于我们只做大肠的第一步,量又不多,如果每次这样灭很费时间,可不可以与细菌的营养琼脂培养基一直作121℃下15min?3、我来这个单位时,原来的人就是先用微波炉将培养基作初步溶解(我们的培养基已经是分类别的粉状,只需要溶解灭菌就可以直接用了),然后再分装灭菌,我认为这样不好,而且GB上也没看到这样规定,请问可以这样操作吗?以上三个问题,请行家为我答疑,谢谢!

  • 培养基污染

    最近一段时间在实验室做的培养基经常会被一种细菌污染,不知是怎么污染进去的,这种菌可以在培养基表面和培养基内部生长,呈现出不同的形态,可以污染PDA,牛肉膏蛋白胨,LB培养基,其中在PDA中污染尤为严重,在PDA中加入抗生素后,未见污染用于接种真菌,而牛肉膏蛋白胨却是不是污染(同一批不全部污染),用于接种细菌的培养基有不能加抗生素,如何避免该菌的污染呢?

  • 培养基结核杆菌的固体培养基

    培养结核杆菌的培养基,从性状上分主要有固体培养基、液体培养基、半流体培养基、固液双相培养基等类型,这些培养基各有特点。  1.1 固体培养基 最常用的是罗氏(Lownstein-Jenson,L-J)培养基,也是最具代表性的一种,其他的还有小川辰次(Tatsujiogawa)鸡蛋培养基和Middle brook 7H10、7H11等琼脂培养基等。在固体培养基中,由于可以直接观察菌落的形态并可做鉴别用,因此常用于临床标本的分离培养、鉴别、保存菌种及对抗结核药物的敏感性测定等方面,缺点是结核菌生长缓慢。  1.2 液体培养基 常用的有苏通(Sauton)培养基、Middle brook 7H9等液体培养基。结核杆菌在液体培养基中能够更广泛的接触营养成分,因此在液体中生长相对较快,主要在液体表面生长,搅动时下沉至管底,可获得大量的结核杆菌。主要缺点是:在对临床标本的收集、采样、运输方面有不利的一面;不能根据肉眼观察菌落形态;培养基污染机会多,影响结核杆菌的生长,污染时不易与结核杆菌鉴别,需涂片染色镜检判断结核杆菌是否生长。  1.3 半流体培养基 改良苏通半流体琼脂培养基是一种人工综合培养基,基质透明,呈半流体状态,生长的结核杆菌形成白色颗粒状菌落悬浮于培养基中段,便于观察。  1.4 固液双向培养基 Septi-Check AFB双相培养基是国外应用较早的一种培养基,采用BD专利式封闭式固液双相一体化培养基设计。液相为Middle brook 7H9分枝杆菌专用增菌培养基,可迅速繁殖分枝杆菌,固相为3种固体培养基平面:Middle brook 7H11和改良的L-J培养基用于及时将增菌肉汤内分枝杆菌进行分离纯化以获得单个菌落,巧克力琼脂用于早期发现污染菌,避免时间浪费。由于有液相作为基础,因此结核杆菌生长较快,也是一种非常有效的培养基。国内有用平菇制备的平菇双相培养基是利用平菇浸出液为基础,加小牛血清、琼脂等成分而配制的一种培养基,根据琼脂的量不同制成液相、固相培养基。在国内应用较少,主要特点是成本低,制备简单,适合于基层使用,有一定的研究价值。

  • 培养基的灭菌方法

    灭菌是指杀死或消灭一定环境中的所有微生物,灭菌的方法分物理和化学灭菌法两大类。本实验主要介绍物理方法的一种,即加热灭菌。 加热灭菌包括湿热和干热灭菌两种。通过加热使菌体内 蛋白质凝固变性,从而达到杀菌目的。蛋白质的凝固变性与其自身含水量有关,含水量越高,其凝固所需要的温度越低。在同一温度下,湿热的杀菌效力比干热大,因为在湿热情况下,菌体吸收水分,使蛋白质易于凝固;同时湿热的穿透力强,可增加灭菌效力。 2.1 湿热灭菌 煮沸消毒法 :注射器和解剖器械等均可采用此法。先将注射器等用纱布包好,然后放进煮沸消毒器内加水煮沸。对于细菌的营养体煮沸约15~30min,对于芽孢则需煮沸约1~2h。 高压蒸汽灭菌法:高压蒸汽灭菌用途广,效率高,是微生物学实验中最常用的灭菌方法。这种灭菌方法是基于水的沸点随着蒸汽压力的升高而升高的原理设计的。当蒸汽压力达到1.05kg/cm2时,水蒸气的温度升高到121℃,经15~30min,可全部杀死锅内物品上的各种微生物和它们的孢子或芽孢。一般培养基、玻璃器皿以及传染性标本和工作服等都可应用此法灭菌。 2.2 操作方法和注意事项 加水:打开灭菌锅盖,向锅内加水到水位线。立式消毒锅最好用已煮开过的水,以便减少水垢在锅内的积存。注意水要加够,防止灭菌过程中干锅。 装料、加盖:灭菌材料放好后,关闭灭菌器盖,采用对角式均匀拧紧锅盖上的螺旋,使蒸汽锅密闭,勿使漏气。 排气:打开排气口(也叫放气阀)。用电炉加热,待水煮沸后,水蒸气和空气一起从排气孔排出,当有大量蒸汽排出时,维持5min,使锅内冷空气完全排净。 升压、保压和降压:当锅内冷空气排净时,即可关闭排气阀,压力开始上升。当压力上升至所需压力时,控制电压以维持恒温,并开始计算灭菌时间,待时间达到要求(一般培养基和器皿灭菌控制在121℃,20min)后,停止加热,待压力降至接近“0”时,打开放气阀。注意不能过早过急地排气,否则会由于瓶内压力下降的速度比锅内慢而造成瓶内液体冲出容器之外。 灭菌后的培养基空白培养:灭菌后的培养基放于37℃培养箱中培养,经24h培养无菌生长,可保存备用;斜面培养基取出后,立即摆成斜面后空白培养;半固体的培养基垂直放置凝成半固体深层琼脂后,空白培养。 2.2 干热灭菌法 通过使用干热空气杀灭微生物的方法叫干热灭菌。一般是把待灭菌的物品包装就绪后,放入电烘箱中烘烤,即加热至160~170℃维持1~2h。 干热灭菌法常用于空玻璃器皿、金属器具的灭菌。凡带有胶皮的物品,液体及固体培养基等都不能用此法灭菌。 2.2.1 灭菌前的准备 玻璃器皿等在灭菌前必须经正确包裹和加塞,以保证玻璃器皿于灭菌后不被外界杂菌所污染。常用玻璃器皿的包扎和加塞方法如下:平皿用纸包扎或装在金属平皿筒内;三角瓶在棉塞与瓶口外再包以厚纸,用棉绳以活结扎紧,以防灭菌后瓶口被外部杂菌所污染;吸管以拉直的曲别针一端放在棉花的中心,轻轻捅入管口,松紧必须适中,管口外露的棉花纤维统一通过火焰烧去,灭菌时将吸管装入金属管筒内进行灭菌,也可用纸条斜着从吸管尖端包起,逐步向上卷,头端的纸卷捏扁并拧几下,再将包好的吸管集中灭菌。 2.2.2 干燥箱灭菌 将包扎好的物品放入干燥烘箱内,注意不要摆放太密,以免妨碍空气流通;不得使器皿与烘箱的内层底板直接接触。将烘箱的温度升至160~170℃并恒温1~2h,注意勿使温度过高,超过170℃,器皿外包裹的纸张、棉花会被烤焦燃烧。如果是为了烤干玻璃器皿,温度为120℃持续30分钟即可。温度降至60~70℃时方可打开箱门,取出物品,否则玻璃器皿会因骤冷而爆裂。 用此法灭菌时,绝不能用油、蜡纸包扎物品。 2.2.3 火焰灭菌 直接用火焰灼烧灭菌,迅速彻底。对于接种环,接种针或其它金属用具,可直接在酒精灯火焰上烧至红热进行灭菌。此外,在接种过程中,试管或三角瓶口,也采用通过火焰而达到灭菌的目的。

  • 【求助】如何选择微生物培养基

    微生物培养基在资料上有很多类:http://wenku.baidu.com/view/8b6d9262caaedd3383c4d3ee.html 同一类微生物又有不同培养基供选择:http://www.hopebiol.com/medium.asp。那用选择培养在培养分离各种细菌的时候怎么选用培养基配方呢?例如培养高盐浓度下球衣细菌的选择培养基?

  • 【分享】配制培养基的原则

    1、选择适宜的营养物质总体而言,所有微生物生长繁殖均需要培养基含有碳源、氮源、无机盐、生长因子、水及能源,但由于微生物营养类型复杂,不同微生物对营养物质的需求是不一样的,因此首先要根据不同微生物的营养需求配制针对性强的培养基。自养型微生物能从简单的元机物合成自身需要的糖类、脂类、蛋白质、核酸、维生素等复杂的有机物,因此培养自养型微生物的培养基完全可以(或应该)由简单的无机物组成。例如,培养化能自养型的氧化硫硫杆菌(Thiobacillusthiooxdans)的培养基组成见表3.9。在该培养基配制过程中并末专门加入其他碳源物质,而是依靠空气中和溶于水中的CO2为氧化硫硫杆菌提供碳源。就微生物主要类型而言,有细菌、放线菌、酵母菌、霉菌、原生动物、藻类及病毒之分,培养它们所需的培养基各不相同。在实验室中常用牛肉膏蛋白胨培养基(或简称普通肉汤培养基)培养细菌,用高氏I号合成培养基培养放线菌,培养酵母菌一般用麦芽汁培养基,培养霉菌则一般用查氏合成培养基。

  • 细菌培养基

    Acetobacter Medium (醋酸菌培养基) Glucose (葡萄糖) 100g Yeasst extract (酵母膏) 10g CaCO3 20g Agar (琼脂) 15g Distilled water (蒸馏水) 1000ml Adjust (调) pH to 6.8 适用范围:恶臭醋酸杆菌混浊变种 . Nutrient Agar (营养肉汁琼脂) Pepton (蛋白胨) 5g Beef extract (牛肉膏) 30g NaCl 5g Agar (琼脂) 15g Distilled water (蒸馏水) Adjust (调) pH to 7.0-7.2 :When cultivation of Bacillus,5mg of to MnSO4.H2O may be added . It is favorable to promote spore formation . 适用范围:产气气杆菌、粪产碱杆菌、蜡状芽孢杆菌、蜡状芽孢杆菌蕈状变种、地衣形芽孢杆菌、巨大芽孢杆菌、多粘芽孢杆菌、尘埃芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、枯草芽孢杆菌深黑变种、苏云金芽孢杆菌、苏云金芽孢杆菌蜡螟亚种(青虫菌)、苏云金芽孢杆菌戈尔斯德变种、苏云金芽孢杆菌猝倒亚种、产氨短杆菌、黄色短杆菌、谷氨酸棒状杆菌、北京棒杆菌、大肠埃希氏菌(大肠杆菌)、铜绿假单胞菌(绿脓杆菌)、凸形假单胞杆菌、荧光假单胞菌、弯曲假单胞菌、恶臭假单胞菌、假单胞杆菌、藤黄八叠球菌、亚黄八叠球菌、尿素八叠球菌、金黄色葡萄球菌、运动发酵单孢菌

  • 培养基的成分

    培养基的成分还可以由发酵过程中所需的元素出发,如C、H、O、N、S、P、Mg、K等。此外,必要时还有一些需要量很少的微量元素,如Fe、Zn、Cu、Mn、Co、Mo、B等。在发酵过程中某些生物本身不能合成的物质,如氨基酸、维生素或核苷酸等,必要时亦作为营养物质加入到培养基中。 碳源 具有双重作用。生物在产生生物物质或生物化工产品过程中,它不仅为其提供碳源,也为其提供能源。碳水化合物是微生物发酵中的主要碳源,包括淀粉、葡萄糖、蔗糖和乳糖等。此外,植物油如豆油、棉籽油、玉米油等亦常被应用作为碳源。这类油常与表面活性剂合用,以消除发酵过程中所产生的泡沫。甲醇可用以生产单细胞蛋白。正烷烃类可用以生产有机酸、氨基酸和维生素等,甚至二氧化碳也可作为光合细菌的碳源。 氮源 包括无机氮源和有机氮源。无机氮源包括氨、铵盐及硝酸盐等,它们在被应用时应注意发酵中pH的变化;有机氮源包括氨基酸、蛋白质及尿素等,有机氮源的加入往往加快了生物的生长。因考虑到成本因素,一些有机氮源,如黄豆饼粉、花生饼粉、棉籽饼粉、玉米浆、鱼粉、酵母粉等常被选用。 培养基的组成中除了水分外,碳源和氮源的含量是最大的。碳源含量一般不超过10%,氮源含量较低,一般碳氮比应为3~4:1。碳、氮源含量不能过高的原因是避免产生基质或产物对反应的抑制和因渗透压过高引起细胞失水而死亡。 矿物质 培养基中 Mg、P、K、S、Ca、Cl常是主要的矿物质的组成成分,其他如Co、Cu、Fe、Mn、Mo及Zn也往往不可少,但需要量很小,可从其他主要培养基成分中得到。如是使用合成培养基就需要把这些微量元素加进去。它们不仅为生物生长所必需,也是为了得到某些产物所必不可少者。例如生物合成青霉素或头孢菌素需要一定量的硫;生物合成维生素B1需要一定量的钴。 维生素 某些生物在培养过程中需要某些维生素,往往在天然培养基中已经提供了必要的维生素,但在某些特殊情况下需单独加入维生素。例如在谷氨酸生产过程中需加入生物素,某些植物细胞培养中需要硫胺素(维生素B1)。 缓冲剂 由于发酵过程中pH对形成生物产物的影响很大,为维持稳定的pH,常采用缓冲剂,例如碳酸钙或磷酸盐。后者除能调节pH外,还为培养基提供磷源。

  • 【分享】不同厂家生产的营养琼脂培养基对菌落计数结果的影响

    [color=#c001cb][size=4][color=#000000][back=rgb(245, 100, 254)] 去年下半年做了些实验,把实验数据和各位交流一下.由于食品菌落总数[/back][back=rgb(245, 100, 254)]测定[/back][back=rgb(245, 100, 254)]已改用平板计数琼脂,水质,公共场所等样品还是用原来的营养琼脂,因此内容有点滞后,仅供参考,举一反三吧![/back][back=rgb(245, 100, 254)] 先说一下结论:营养琼脂[/back][back=rgb(245, 100, 254)]质量[/back][back=rgb(245, 100, 254)],样品本身的菌相及其细菌损伤状态是影响菌落总数结果的三个重要因素。[/back][back=rgb(245, 100, 254)] 再说一下[/back][back=rgb(245, 100, 254)]讨论[/back][back=rgb(245, 100, 254)]:[/back][back=rgb(245, 100, 254)] 速冻食品和鸡精在[/back][back=rgb(245, 100, 254)]生产[/back][back=rgb(245, 100, 254)]过程中分别经过冷冻和干燥处理,河水中的细菌则遭受紫外线照射等,导致这三类样品中不同程度地含有损伤的活菌,即亚致死性损伤细菌。由于不同类别的样品菌相构成不一样,加上引起细菌损伤的因素不同,导致细菌损伤的数量、部位和程度不同。因此,不同类别样品中存在的损伤性细菌具有各自相应的特点,对营养琼脂[/back][back=rgb(245, 100, 254)]培养基[/back][back=rgb(245, 100, 254)]的营养要求和理化指标等条件也存在一定的差异性。此次实验结果也表明:三类存在损伤性细菌的样品分别在某一种不同的营养琼脂培养基上生长最好,没有一种营养琼脂培养基能满足各类样品中细菌的最佳生长要求。[/back][back=rgb(245, 100, 254)] 损伤性细菌已引起国际普遍关注。几乎所有各种食品[/back][back=rgb(245, 100, 254)]加工[/back][back=rgb(245, 100, 254)]过程,均可引起食品中细菌遭受损伤。对于含有损伤性细菌的样品,所得样品的菌落计数,以及[/back][back=rgb(245, 100, 254)]卫生[/back][back=rgb(245, 100, 254)]指标菌和致病菌的[/back][back=rgb(245, 100, 254)]检测[/back][back=rgb(245, 100, 254)],若不考虑受伤细菌因素并探讨其相应有效的[/back][back=rgb(245, 100, 254)]检验[/back][back=rgb(245, 100, 254)]方法,则取得的结果将有脱离实际的危险 。SN/T1538.1-2005《培养基制备指南第一部分:[/back][back=rgb(245, 100, 254)]实验室[/back][back=rgb(245, 100, 254)]培养基制备质量保证通则》中也明确指出:如果食品中含有受损的[/back][back=rgb(245, 100, 254)]微生物[/back][back=rgb(245, 100, 254)]细胞,还应考虑培养基在受损[/back][back=rgb(245, 100, 254)]微生物[/back][back=rgb(245, 100, 254)]恢复方面的适用性。而不同厂家生产的营养琼脂培养基所含有的营养成份存在较大差异,对损伤细菌具有的恢复能力不同。同时,培养基中可能含有的抑制损伤细菌生长的因素不同,如PH值等,对损伤细菌生长的影响较大。可见,对营养琼脂质量和性能进行评价时,应充分考虑到检测样品的菌相及可能存在的损伤性细菌等因素。仅仅采用单一的、处于正常生长状态的标准菌株来评价营养琼脂的质量,存在一定的局限性。[/back][/color][back=rgb(245, 100, 254)][color=#000000] 此次实验中将营养琼脂培养基对不同类别样品菌落总数结果计算计数分值,其中三种培养基的计数总分值较高,并且比较接近,分别为77、74、69.5,可以认为这三家厂家生产的营养琼脂培养基总体质量接近,适宜多数细菌生长。而有一种培养基对各类样品的计数分值均非常低,提示该厂家生产的营养琼脂培养基可能存在质量问题,对细菌的生长存在较大的影响[/color]。[/back][/size][/color]

  • 【分享】SDA培养基配方

    [配法] 麦芽糖40g,蛋白胨10g,琼脂20g,蒸馏水1L。 (本培养基如不加入琼脂,即为沙保罗液体培养基) 将上述成分溶于水,加热溶解,调pH至6.0±0.2,分装三角瓶或试管中,118℃灭菌15min,倾注平板或置斜面,无菌试验后备用。注:⑴ 本培养基如不加入琼脂,即为沙保罗液体培养基,供真菌及念珠菌的增菌培养用。⑵ 增加氯霉素0.05~0.125mg/ml或放线菌酮0.5mg/ml,可抑制细菌和污染的霉菌及隐球菌生长。此二种药均耐热,可直接加入培养基内高压灭菌。⑶ 添加酵母浸膏5mg/ml,可促进皮肤癣菌生长。增加维生素B 0.1mg/ml,可促进紫色癣菌和断发癣菌生长。⑷ 将麦芽糖减少到20g/L,为沙保罗20g/L麦芽糖琼脂培养基,可供诱导真菌产生孢子用。⑸ 该培养基呈酸性,应提高20%的琼脂用量。

  • 培养基的制备与灭菌

    一、实验目的1、了解并掌握培养基的配制、分装方法;2、掌握各种实验室灭菌方法及技术。二、实验原理 培养基是供微生物生长、繁殖、代谢的混合养料。由于微生物具有不同的营养类型,对营养物质的要求也各不相同,加之实验和研究的目的不同,所以培养基的种类很多,使用的原料也各有差异,但从营养角度分析,培养基中一般含有微生物所必需的碳源、氮源、无机盐、生长素以及水分等。另外,培养基还应具有适宜的pH值、一定的缓冲能力、一定的氧化还原电位及合适的渗透压。琼脂是从石花菜等海藻中提取的胶体物质,是应用最广的凝固剂。加琼脂制成的培养基在98~100℃下融化,于45℃以下凝固。但多次反复融化,其凝固性降低。任何一种培养基一经制成就应及时彻底灭菌,以备纯培养用。一般培养基的灭菌采用高压蒸汽灭菌。三、实验材料 1、器皿及材料 天平、称量纸、牛角匙、精密pH试纸、量筒、刻度搪瓷杯、试管、三角瓶、漏斗、分装架、移液管及移液管筒、培养皿及培养皿盒、玻璃棒、烧杯、试管架、铁丝筐、剪刀、酒精灯、棉花、线绳、牛皮纸或报纸、纱布、乳胶管、电炉、灭菌锅、干燥箱。 2、药品试剂 蛋白胨、牛肉膏、NaCl、K2HPO4、琼脂、NaNO3、KCl、MgSO4、FeSO4、蔗糖、麦芽糖、木糖、葡萄糖、半乳糖、乳糖、土豆汁、豆芽计、磷酸铵、5%NaOH溶液、5%HCl溶液。 3、流程 称药品→溶解→调pH值→融化琼脂→过滤分装→包扎标记→灭菌→摆斜面或倒平板。 四、实验步骤 1 培养基的制备 1.1 称量药品 根据培养基配方依次准确称取各种药品,放入适当大小的烧杯中,琼脂不要加入。蛋白胨极易吸潮,故称量时要迅速。 1.2 溶解 用量筒取一定量(约占总量的1/2)蒸馏水倒入烧杯中,在放有石棉网的电炉上小火加热,并用玻棒搅拌,以防液体溢出。待各种药品完全溶解后,停止加热,补足水分。如果配方中有淀粉,则先将淀粉用少量冷水调成糊状,并在火上加热搅拌,然后加足水分及其它原料,待完全溶化后,补足水分。 1.3 调节pH 根据培养基对pH的要求,用5%NaOH或5%HC1溶液调至所需pH。测定pH可用pH试纸或酸度计等。 1.4 溶化琼脂 固体或半固体培养基须加入一定量琼脂。琼脂加入后,置电炉上一面搅拌一面加热,直至琼脂完全融化后才能停止搅拌,并补足水分(水需预热)。注意控制火力不要使培养基溢出或烧焦。 1.5 过滤分装 分装时注意不要使培养基沾染在管口或瓶口,以免浸湿棉塞,引起污染。液体分装高度以试管高度的1/4左右为宜。固体分装装量为管高的1/5,半固体分装试管一般以试管高度的1/3为宜;分装三角瓶,其装量以不超过三角瓶容积的一半为宜。 1.6 包扎标记 培养基分装后加好棉塞或试管帽,再包上一层防潮纸,用棉绳系好。在包装纸上标明培养基名称,制备组别和姓名、日期等。 1.7 灭菌 上述培养基应按培养基配方中规定的条件及时进行灭菌。普通培养基为121℃20min,以保证灭菌效果和不损伤培养基的有效成份。培养基经灭菌后,如需要作斜面固体培养基,则灭菌后立即摆放成斜面,斜面长度一般以不超过试管长度的1/2为宜;半固体培养基灭菌后,垂直冷凝成半固体深层琼脂。1.8 倒平板 将需倒平板的培养基,于水浴锅中冷却到45~50℃,立刻倒平板。2、灭菌方法 灭菌是指杀死或消灭一定环境中的所有微生物,灭菌的方法分物理和化学灭菌法两大类。本实验主要介绍物理方法的一种,即加热灭菌。 加热灭菌包括湿热和干热灭菌两种。通过加热使菌体内 蛋白质凝固变性,从而达到杀菌目的。蛋白质的凝固变性与其自身含水量有关,含水量越高,其凝固所需要的温度越低。在同一温度下,湿热的杀菌效力比干热大,因为在湿热情况下,菌体吸收水分,使蛋白质易于凝固;同时湿热的穿透力强,可增加灭菌效力。 2.1 湿热灭菌 煮沸消毒法 :注射器和解剖器械等均可采用此法。先将注射器等用纱布包好,然后放进煮沸消毒器内加水煮沸。对于细菌的营养体煮沸约15~30min,对于芽孢则需煮沸约1~2h。 高压蒸汽灭菌法:高压蒸汽灭菌用途广,效率高,是微生物学实验中最常用的灭菌方法。这种灭菌方法是基于水的沸点随着蒸汽压力的升高而升高的原理设计的。当蒸汽压力达到1.05kg/cm2时,水蒸气的温度升高到121℃,经15~30min,可全部杀死锅内物品上的各种微生物和它们的孢子或芽孢。一般培养基、玻璃器皿以及传染性标本和工作服等都可应用此法灭菌。 2.2 操作方法和注意事项 加水:打开灭菌锅盖,向锅内加水到水位线。立式消毒锅最好用已煮开过的水,以便减少水垢在锅内的积存。注意水要加够,防止灭菌过程中干锅。 装料、加盖:灭菌材料放好后,关闭灭菌器盖,采用对角式均匀拧紧锅盖上的螺旋,使蒸汽锅密闭,勿使漏气。 排气:打开排气口(也叫放气阀)。用电炉加热,待水煮沸后,水蒸气和空气一起从排气孔排出,当有大量蒸汽排出时,维持5min,使锅内冷空气完全排净。 升压、保压和降压:当锅内冷空气排净时,即可关闭排气阀,压力开始上升。当压力上升至所需压力时,控制电压以维持恒温,并开始计算灭菌时间,待时间达到要求(一般培养基和器皿灭菌控制在121℃,20min)后,停止加热,待压力降至接近“0”时,打开放气阀。注意不能过早过急地排气,否则会由于瓶内压力下降的速度比锅内慢而造成瓶内液体冲出容器之外。 灭菌后的培养基空白培养:灭菌后的培养基放于37℃培养箱中培养,经24h培养无菌生长,可保存备用;斜面培养基取出后,立即摆成斜面后空白培养;半固体的培养基垂直放置凝成半固体深层琼脂后,空白培养。 2.2 干热灭菌法 通过使用干热空气杀灭微生物的方法叫干热灭菌。一般是把待灭菌的物品包装就绪后,放入电烘箱中烘烤,即加热至160~170℃维持1~2h。 干热灭菌法常用于空玻璃器皿、金属器具的灭菌。凡带有胶皮的物品,液体及固体培养基等都不能用此法灭菌。 2.2.1 灭菌前的准备 玻璃器皿等在灭菌前必须经正确包裹和加塞,以保证玻璃器皿于灭菌后不被外界杂菌所污染。常用玻璃器皿的包扎和加塞方法如下:平皿用纸包扎或装在金属平皿筒内;三角瓶在棉塞与瓶口外再包以厚纸,用棉绳以活结扎紧,以防灭菌后瓶口被外部杂菌所污染;吸管以拉直的曲别针一端放在棉花的中心,轻轻捅入管口,松紧必须适中,管口外露的棉花纤维统一通过火焰烧去,灭菌时将吸管装入金属管筒内进行灭菌,也可用纸条斜着从吸管尖端包起,逐步向上卷,头端的纸卷捏扁并拧几下,再将包好的吸管集中灭菌。 2.2.2 干燥箱灭菌 将包扎好的物品放入干燥烘箱内,注意不要摆放太密,以免妨碍空气流通;不得使器皿与烘箱的内层底板直接接触。将烘箱的温度升至160~170℃并恒温1~2h,注意勿使温度过高,超过170℃,器皿外包裹的纸张、棉花会被烤焦燃烧。如果是为了烤干玻璃器皿,温度为120℃持续30分钟即可。温度降至60~70℃时方可打开箱门,取出物品,否则玻璃器皿会因骤冷而爆裂。 用此法灭菌时,绝不能用油、蜡纸包扎物品。 [/siz

  • 【分享】微生物实验室常见培养基的用途

    1、 1、血琼脂平板:适用于各类细菌的生长,一般细菌检验标本的分离都应接种到血平板上。其中肉浸液琼脂中加兔血(对嗜血杆菌生长更好)或羊血均可。用血量为5%--7%.在血平板上除可以观察菌落的形态外,还可判断溶血情况,菌落周围的培养基内红细胞完全破坏为β-溶血环,菌落周围呈绿色为α-溶血。2、巧克力平板:该平板是用马血、羊血或兔血制备,因其含有X和V因子,嗜血杆菌、奈瑟菌等生长良好,血液标本培养增菌后有细菌生长,若移种该平板上有利于分离出更多的细菌。3、中国蓝平板或伊红美兰平板:可抑制革兰氏阳性细菌,是较好的弱选择性培养基,有选择性促进革兰氏阴性菌生长。发酵型革兰氏阴性杆菌因分解乳糖能力不同,在此种平板上的菌落颜色不同,便于鉴别菌种。该培养基不含胆盐,与SS平板配对用于大便中志贺氏菌和沙门氏菌的分离培养最为理想。4、麦康凯平板:该培养基中含有胆盐,为中等程度选择性,抑菌力略强,有少数阴性菌不生长。在麦康凯平板能否生长是非发酵菌鉴定的一个依据,如果用麦康凯平板作为原始标本分离的培养基时,应注意观察该标本在血平板上的细菌分离情况,以免遗漏部分被抑制生长细菌。5、SS平板:因含胆盐较高,有较强的抑菌力,用于志贺氏菌和沙门氏菌的分离培养。在目前商品培养基中,不同厂家的产品抑菌力不同,使用时应注意,选择性过强可影响检出率,所以最好是加上一种弱选择性平板同时培养。6、碱性琼脂或TCBS或庆大霉素琼脂或4号琼脂:用于分离培养霍乱弧菌及其他弧菌。选择其中1-2种作为常规检验用就行了,这几种培养基对肠道非致病菌的抑制力各不相同,使用时应有所了解。7、M-H琼脂平板(水解酪蛋白琼脂):专用于抗菌药物敏感试验。8、营养琼脂平板:用于纯化菌种和保存菌种,以及卫生细菌学方面的细菌总数测定培养基。9、营养肉汤:用于标本及各类细菌的增菌。10、TTC沙氏培养基:(氯化三苯四氮唑培养基)用于检测酵母菌和酵母样真菌分离。11、Cary-Blair运送培养基:用于空肠弯曲杆菌、霍乱弧菌、沙门氏菌和志贺氏菌的保存运送培养基,但在该采样管中的标本只能保存72小时。12、S.F培菌液(亚硒酸盐培菌液):用于肠道致病菌的增菌培养。注意该培养基灭菌后PH为7.1,有棕黄色沉淀物出现,不宜高压蒸汽灭菌,增菌培养时标本约占培养液体积的10%,培养时间不超过24小时,此培养基储存时不超过两个星期。

  • 双歧杆菌高密度培养的补料培养基及补料方法

    双歧杆菌高密度培养的补料培养基及补料方法

    [align=center]双歧杆菌高密度培养的补料培养基及补料方法[/align][align=center]季学猛[/align][align=center](南开大学 医学院, 天津 300071)[/align]摘 要:双歧杆菌在维护宿主健康方面具有重要作用,因此对其高密度培养条件的探索具有重要意义。目前,双歧杆菌的高密度培养主要受到培养基组分和培养条件的优化的影响。这里报道了一种用于双歧杆菌高密度培养的补料培养基及补料方法。该方法使用补料与碱泵耦合的方法进行补料,通过控制发酵培养基的pH值来调节补料培养基的补入量。此外,本研究还进行了补料培养基的优化实验,通过调整氢氧化钠和葡萄糖浓度的比例,比较了不同补料培养基的发酵性能。实验结果表明该补料培养基及补料方法适用于两歧双歧杆菌、青春双歧杆菌、动物双歧杆菌、长双歧杆菌等多种双歧杆菌,而且能够达到较高的活菌密度。本研究提出的补料培养基及补料方法可为双歧杆菌的高密度培养提供有效的解决方案。关键词:双歧杆菌;高密度培养;补料培养基;补料方法;碱泵耦合中图分类号:G482[color=gray] [/color]文献标识码:A[align=center]A supplementary culture medium and supplementation method for high-density cultivation of Bifidobacterium[/align]JI Xuemeng(School of Medicine, Nankai University, Tianjin 300071, China)Abstract: Bifidobacterium plays a significant role in maintaining host health, making the exploration of high-density cultivation conditions crucial. Currently, the high-density cultivation of Bifidobacterium is mainly influenced by the optimization of culture medium components and cultivation conditions. Here, we report a supplementary culture medium and supplementation method for high-density cultivation of Bifidobacterium. The method utilizes coupling of supplementation with an alkaline pump to control the supplementation rate of the culture medium by adjusting its pH value. Furthermore, optimization experiments of the supplementation culture medium were conducted by varying the ratio of sodium hydroxide to glucose concentrations, comparing the fermentation performance of different supplementation culture media. Experimental results demonstrate that this supplementation culture medium and supplementation method are applicable to various Bifidobacterium strains such as Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium animalis, and Bifidobacterium longum, achieving high viable cell densities. The proposed supplementation culture medium and supplementation method in this study offer an effective solution for high-density cultivation of Bifidobacterium.Key words: Bifidobacterium high-density cultivation supplementary culture medium supplementation method alkaline pump coupling双歧杆菌广泛分布于动物和人类的肠道中,已经发现双歧杆菌在维护宿主健康方面起着极其重要的作用,双歧杆菌作为益生菌的功能特性已经引起了越来越多的关注[sup][back=yellow][1-3][/back][/sup]。双歧杆菌的益生菌制剂有潜力通过选择和加强有益菌群来调节肠道微生物群的组成和微生物平衡,从而更有利于人体健康。双歧杆菌制剂已被报道能改善肥胖相关特征、缓解便秘和增强免疫力[sup][back=yellow][4-6][/back][/sup]。双歧杆菌已经成为国内外正在快速发展的微生态制剂中的主要菌种之一。努力探索双歧杆菌的高密度生长条件,对于提高该菌的生产效率和应用推广具有重要意义。双歧杆菌的高密度培养条件的摸索主要涉及培养基组分和培养条件的优化。目前,MRS培养基是最常用的双歧杆菌等乳酸菌培养基,被广泛地用于双歧杆菌的发酵中[sup][back=yellow][7][/back][/sup]。双歧杆菌的最适生长 pH 值在 6.0-7.0 之间[sup][back=yellow][8][/back][/sup],然而,由于双歧杆菌发酵过程中会产生有机酸等代谢副产物,导致培养过程中培养基的 pH 值不断地降低,限制细菌的生长[sup][back=yellow][9-11][/back][/sup]。为解除酸等代谢副产物对双歧杆菌生长的限制,一些创新型的发酵培养方法已经被提出,比如细胞周期培养、透析培养、细胞固定培养和嵌入法[sup][back=yellow][12-15][/back][/sup]。然而,这些方法在工业应用中受到了各种因素的限制。目前,分批的发酵罐内恒定pH培养方法仍然是主流,在发酵中通过添加碱性溶液来控制培养基的pH值,以减轻酸性生长抑制。在解除酸性生长抑制后,双歧杆菌的生长还受到渗透压和底物不足的限制[sup][back=yellow][16][/back][/sup]。许多营养物在高浓度下导致的高渗透压对细胞有抑制作用,而为了达到高细胞密度,又必须供给大量的营养物质。因此,为了双歧杆菌培养中有效地利用底物,必须优化培养过程以解决底物浓度和渗透压之间的矛盾。将浓缩营养物以与其消耗速率成比例地加入反应器中是一种有效的解决底物浓度和渗透压之间的矛盾的方法,为此产生了多种形式的补料喂养模型:间歇喂养,恒定喂养和指数喂养[sup][back=yellow][17-19][/back][/sup]。在间歇补料喂养中,通过周期性检查并补充生长基质中的葡萄糖含量达到稳定葡萄糖浓度的目的,然而,这种补料模型决定了必然需要大量人力。而且在对数生长阶段,细菌细胞快速消耗葡萄糖,因此在任何两个测量间隔期间可能发生底物缺乏,可能会导致补料不及时,进而影响细菌的生长。在恒定补料喂养中,饲料介质以恒定的流速持续添加到发酵培养基中。这种方法优点是减少了人力需求。但是,益生菌对葡萄糖的消耗速率不是恒定的,这就导致了低喂养速率可能导致细菌生长的底物不足,而高喂养速率会引起过量底物积累,也会抑制细菌生长。对于指数喂养模型,在益生菌前期生长阶段,指数喂养能够很好的耦合细菌对数生长。然而,在细菌对数生长后期,细菌生长速率趋缓,而流加速率继续指数增加会导致底物浓度迅速增加,进而对细菌菌株的生长能力造成不良影响。因此,指数喂养模型也不是合理的方法。综上所述,在益生菌菌株生长期间,这些方法均不能准确控制生长介质中的葡萄糖含量。目前,针对双歧杆菌等厌氧菌发酵过程中产酸,而且产酸与消耗的碳源成正比的特性[sup][back=yellow][20][/back][/sup],通过将补料与碱泵偶联,可实现了补碱的同时补加碳源。然而,补料与碱泵偶联对于发酵罐技术要求高,该技术仍没有在实验室和工厂中得到广泛推广。1? 补料系统的设计为克服现有技术中的缺陷,这里提出了一种用于双歧杆菌高密度培养的补料培养基及补料方法,技术方案如下:一种用于双歧杆菌高密度培养的补料培养基,该补料培养基包括质量比为1:10的氢氧化钠与葡萄糖。其中氢氧化钠浓度小于等于50 g/L,葡萄糖浓度小于等于500g/L。可减少补料培养基中氢氧化钠、葡萄糖和溶氧氧化还原反应产生的副产物浓度。为了减少补料培养基中氢氧化钠、葡萄糖和溶氧的氧化还原反应,配制补料培养基的水应尽可能减少溶氧。可通过高温灭菌、煮沸、通氮气或通二氧化碳的方法减少溶氧。氢氧化钠和葡萄糖溶液应分别进行灭菌后进行混合。使用所述的补料培养基的补料方法,需将补料培养基通过碱泵与发酵培养基连接,根据所述的发酵培养基的pH值控制所述的补料培养基的补入量即成。碱泵的流速为5-10mL/min;碱泵的每次开启时间小于等于30s;发酵培养基的pH值的检测周期为20s。补料培养基补入后发酵培养基的pH值与补入前发酵培养基的pH值之差小于等于0.1。用于双歧杆菌高密度培养的发酵的方法包括如下步骤:(1)将双歧杆菌种子液接种至发酵培养基中进行发酵;(2)将补料培养基通过碱泵与发酵培养基连接,根据所述的发酵培养基的pH值控制所述的补料培养基的补入量;(3)在发酵过程中,间隔1小时对发酵培养基取样,检测580nm-620nm下的吸光度值,并检测葡萄糖浓度与活菌数目,当吸光度值大于0.5且相邻2次取样的吸光度值相等或降低即为发酵结束。2? 补料培养基的优化制备如下5种补料培养基,其中氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值分别为1:2、1:5、1:10、1:20、1:40,以比较发酵性能。发酵培养基组成如下:1000mL蒸馏水、14.3g大豆蛋白胨、16.7g酵母粉,10g葡萄糖,0.5g可溶性淀粉,1g氯化钠,1g磷酸氢二钾,1g磷酸二氢钾,0.01g FeSO4?7H2O,0.005g MnSO4,0.2gMgSO4,0.5g L-半胱氨酸,使用50g/L的氢氧化钠溶液调节pH至6.8;其中L-半胱氨酸配制为50g/L浓度,膜过滤除菌,在发酵培养基灭菌结束后再按照1/100(v/v)加入L-半胱氨酸。发酵罐通气孔中接入氮气,使得溶氧降至1mg/L以下;设置发酵参数:发酵温度设为37.0℃范围内,搅拌转速200r/min,培养基温度达到37.0℃后,在火焰圈的无菌环境下按照5%(v/v)的接种量加入种子液,同时,加入3滴消泡剂;开启发酵罐搅拌器,设置种子液加入后的培养基的当前pH值6.6为发酵设定pH值。补料设置参数:将补料培养基中碱泵利用软管连接,设置碱泵最大流速为10mL/min,设置碱液根据pH自动控制加入,设置碱泵启动参数为pH值小于6.55,设置每隔10秒测定一次pH值,设置每次碱泵开启时间15秒;发酵中,每隔3小时测OD,每隔5小时取样监测培养液葡萄糖浓度,检测到15小时。如[back=yellow]图1[/back]所示,发现在发酵前5小时,各补料培养基都可以维持葡萄糖浓度处于适宜双歧杆菌快速生长的浓度(灰色范围),而从发酵10小时开始,氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值为1:2的补料出现了葡萄糖浓度的下降,说明该碱碳比例在发酵后期不足以满足双歧杆菌开始生长对碳源的需求。同样的,从发酵10小时开始,氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值为1:40的补料出现了葡萄糖浓度的过高,说明该碱碳比例在发酵后期不足可能产生高渗透压,不适合双歧杆菌的生长。而氢氧化钠浓度(g/L)和葡萄糖浓度(g/L)比值1:5至1:20补料可以维持发酵过程中葡萄糖浓度的稳定。综合下来,我们发现了补料培养基中氢氧化钠浓度(C碱,g/L)和葡萄糖浓度(C料,g/L)的合适比值为1:5至1:20。[align=center][back=yellow]图1[/back] 不同配比的补料培养对发酵体系葡萄糖浓度的影响的柱状图[/align]3? 补料系统的应用实践3.1? 两歧双歧杆菌高密度培养如[back=yellow]图2[/back]所示,使用本方法,发酵体系中pH值始终保持在6.6±0.1,葡萄糖浓度始终维持在9-13g/L,发酵结束时,发酵液总体积达到4.9L,吸光度达到OD620 12.8,活菌密度最高达到 8.5±0.2 ×10[sup]9[/sup] cfu/mL。[back=yellow]图2[/back] 两歧双歧杆菌的高密度培养的曲线图3.2? 长双歧杆菌高密度培养如[back=yellow]图3[/back]所示,使用本方法,发酵体系中pH值始终保持在6.9±0.1,葡萄糖浓度始终维持在8.5-13g/L,发酵结束时,发酵液总体积达到4.4L,吸光度达到OD[sub]620[/sub] 9.2,活菌密度最高达到 6.4±0.2 ×10[sup]9[/sup] cfu/mL。[back=yellow]图3[/back] 长双歧杆菌的高密度培养的曲线图3.3? 青春双歧杆菌高密度培养如[back=yellow]图4[/back]所示,使用本方法,发酵体系中pH值始终保持在6.7±0.1,葡萄糖浓度始终维持在7-11g/L,发酵结束时,发酵液总体积达到4.6L,吸光度达到OD[sub]620[/sub] 15.3,活菌密度最高达到 1.2±0.1 ×10[sup]10[/sup] cfu/mL。[back=yellow]图4[/back] 青春双歧杆菌的高密度培养的曲线图3.4? 动物双歧杆菌的高密度培养如[back=yellow]图5[/back]所示,使用本方法,发酵体系中pH值始终保持在6.5±0.1,葡萄糖浓度始终维持在7-12g/L,发酵结束时,发酵液总体积达到4.2L,吸光度达到OD[sub]620[/sub] 20.5,活菌密度最高达到 1.7±0.1 ×10[sup]10[/sup] cfu/mL。[back=yellow]图5[/back] 动物双歧杆菌的高密度培养的曲线图4? 结语该研究提供了一种用于双歧杆菌高密度培养的补料培养基及补料方法,补料方法包括如下步骤:将补料培养基通过碱泵与发酵培养基连接,根据发酵培养基的pH值控制补料培养基的补入量即成。通过优化补料培养基及补料方法,无需发酵罐补料偶联技术便实现了根据pH值变化,利用碱泵自动补充碳源和碱液,实现了保持pH值和碳源浓度的稳定;该补料方法对发酵罐的设备技术要求低,操作简单,降低了发酵成本。参考文献(References):[1]杨硕,唐宗馨,段勃帆,陈禹含,郭欢新,孟祥晨.双歧杆菌及其制剂对炎症性肠病作用机制研究进展[J].食品科学,2023,44(05):275-281.[2]马岩,王中江,杨靖瑜,李哲,彭霞,单秀峰,李柏良,马微微.动物双歧杆菌乳亚种XLTG11对克林霉素诱导的抗生素相关性腹泻的改善作用[J].食品科学,2023,44(03):170-178.[3]李虔全,罗京,周江,刘亭,陈于彪,彭霞,杨建,胡闵山.孟鲁司特钠联合双歧杆菌四联活菌治疗儿童过敏性紫癜有效性Meta分析[J].海峡药学,2023,35(01):127-133.[4]石英,拉巴普尺,张丹瑛,翁书强,刘心怡,汪皓琪.双歧杆菌对高脂饮食诱导的C57BL/6小鼠非酒精性脂肪肝的影响[J].中国临床医学,2022,29(03):473-480.[5]陆敏,袁琳,胡娜,钟霄毓,姜逸,林敏,陆雄.双歧杆菌三联活菌对肥胖小鼠慢性低度炎症的影响[J].卫生研究,2022,51(05):797-802.DOI:10.19813/j.cnki.weishengyanjiu.2022.05.020.[6]李亦汉,王琳琳,赵建新,张灏,王刚,陈卫.两歧双歧杆菌CCFM1167通过提升肠道中乙酸水平以抑制炎症从而缓解便秘[J].食品与发酵工业,2023,49(06):35-41.DOI:10.13995/j.cnki.11-1802/ts.031238.[7]Umar Farooq. 小米膳食纤维作为主要碳源对益生菌生长和发酵过程中短链脂肪酸产量的影响研究[D].江南大学,2013.[8]杨玲,张栋,齐世华,马新颖,周帅康,艾连中,王世杰.两歧双歧杆菌TMC3115冻干菌粉生产工艺优化[J].乳业科学与技术,2021,44(05):12-17.DOI:10.15922/j.cnki.jdst.2021.05.003.[9]熊三玉. 两歧双歧杆菌驯化及培养条件优化的研究[D].中国海洋大学,2007.[10]冯诗诗. 长双歧杆菌F16的益生特性及其在酸浆豆腐制备中的应用[D].河南工业大学,2022.DOI:10.27791/d.cnki.ghegy.2022.000088.[11]武婷,郭帅,杨阳等. 动物双歧杆菌乳亚种Probio-M8在发酵山羊乳中的应用[C]//中国食品科学技术学会.第十七届益生菌与健康国际研讨会摘要集.[出版者不详],2022:149-150.DOI:10.26914/c.cnkihy.2022.018592.[12]赵春燕,张颖,王丹,刘臻.乳酸菌细胞固定化发酵的研究进展[J].中国酿造,2009(05):11-14.[13]李秀凉,雷虹,张龙丰,周东坡,平文祥.从L-乳酸菌酸菜发酵液中初步分离肽类抑菌物质[J].食品工业科技,2008(07):91-93.DOI:10.13386/j.issn1002-0306.2008.07.022.[14]邓鹏超. 乳酸菌的高密度培养及酸奶冻干发酵剂的研究[D].华中农业大学,2008.[15]于修鑑. 乳酸菌高密度培养及浓缩型发酵剂研究[D].南京工业大学,2004.[16]黄晓英. 传统发酵食品中具有抑菌特性乳酸菌的筛选、抑菌机理及其在泡菜发酵中的应用[D].西南民族大学,2022.DOI:10.27417/d.cnki.gxnmc.2022.000050.[17]彭海芬. 阿维拉霉素高产菌株的选育及其发酵条件优化[D].河南工业大学,2022.DOI:10.27791/d.cnki.ghegy.2022.000511.[18]吴斌.罗非鱼无乳链球菌SIP-pET32a基因工程菌高密度发酵工艺及SIP蛋白提取方及SIP蛋白提取方法研究[J].中国水产,2022(11):73-78.[19]熊华仪,陈曦,刘月锋,陈雄,李沛,王志.补料策略优化促进乳球菌HB03发酵合成Nisin[J/OL].食品科学:1-11[2023-05-18].http://kns.cnki.net/kcms/detail/11.2206.ts.20230428.1620.026.html[20]孙东霞,周子安,冯志合,胡修玉,祁光霞,董黎明.pH值调控柠檬酸污泥厌氧发酵产酸及碳源潜力研究[J].中国环境科学,2022,42(11):5198-5207.DOI:10.19674/j.cnki.issn1000-6923.20220620.001.收稿日期:2023-10-19 修改日期:第一作者简历:季学猛,硕士,实验师,研究方向为生物化工、机器学习;生物信息学。E-mail:jixuemeng@nankai.edu.cn。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制