当前位置: 仪器信息网 > 行业主题 > >

光谱采集

仪器信息网光谱采集专题为您整合光谱采集相关的最新文章,在光谱采集专题,您不仅可以免费浏览光谱采集的资讯, 同时您还可以浏览光谱采集的相关资料、解决方案,参与社区光谱采集话题讨论。

光谱采集相关的资讯

  • 中国药典《药品红外光谱集》标准谱图采集全攻略
    红外光谱仪是药物研究及生产必备的分析仪器之一,而粉末压片几乎是每个测试人员的必备技能。尽管压片工作看起来简单重复且没有太多的技术含量,但是想要采集到一张能够与药典标准红外谱图相媲美的谱图数据却并不是一件轻松的事情。2023 年 10 月,中国药典《药品红外光谱集》(2023 年版)正式发布。安捷伦技术人员经过多年的工作经验的积累,将通过红外谱图评价标准、红外实验室基本要求、仪器准备、粉末压片标准工作流程、粉末压片制样过程注意事项以及谱图常见问题解析等六个方面对标准红外谱图采集流程进行详细介绍。红外谱图评价标准高质量红外光谱图通常需要满足以下条件:基线平直且纵坐标在 85-100%T 之间最强吸收峰纵坐标在 5-15%T 之间在 2200-2400 cm-1 处没有 CO2 吸收峰干扰在 3400 cm-1 及 1600 cm-1 附近区域没有水峰干扰光谱信噪比好且谱线平滑下图为使用 Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图。图 1. Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图红外实验室基本要求使用红外光谱仪的用户实验室应具备以下条件:实验室温度控制在 25℃ 左右,湿度控制在 50% 以下,并保证日常恒温恒湿要求用于仪器波数准确度及光度精度验证的标准聚苯乙烯(PS)薄膜储备溴化钾、氯化钾及石蜡油等常规试剂,并放置在干燥皿内备用用于样品压片制备过程中的红外烘烤灯红外压片机、模具及配套的压片工具仪器准备安捷伦 Cary630 FTIR 光谱仪体积小巧、性能稳定,且满足《中国药典》对红外光谱仪的所有指标要求。仪器采用主机与附件分体式的设计,用户可根据测试需求及样品类型选择合适的附件。药物粉末压片测试时,可选择主机搭配透射样品仓附件实现 400-4000 cm-1 范围内红外谱图的采集。仪器软件为符合 21 CFR Part11 法规要求的 MicroLab PC 软件,为药物研发及药物质控实验室提供最安全的数据完整性保证。粉末压片时,测试条件如下:仪器分辨率:2 cm-1波长范围:400-4000 cm-1扫描次数:32 次药物粉末压片标准工作流程取 1-2 mg 样品与 100-200 mg 干燥后的溴化钾粉末(取决于药物红外吸收的强弱特性,二者比例可适当调整)放入玛瑙研钵中混合研磨,直至得到均匀、超细的颗粒。组装压片磨具,将底部压头光面朝上放入模具中。将样品缓慢加入模具中并使其均匀地散布在底面压头上。把上压头光面向下放入模具,压上压杆。将模具放入压片机中压制,压力调整到 20 MPa 左右,保持 1-2 min。转动卸压阀,缓慢卸掉压力并取出模具。用压头反向取出片子并检查片子的均匀程度和透明度。将样品放入样品支架并置于样品仓内进行测量。粉末压片制样过程注意事项为了能够获得效果良好的谱图,注意事项总结如下:1溴化钾及氯化钾粉末易吸水,日常应放置在干燥皿中保存。使用前须在 120℃(或 150℃)干燥箱中恒温干燥 2 小时以上。2为避免颗粒散射造成的基线倾斜问题,样品及试剂颗粒应进行充分研磨至 2.5um 以下,以研磨过程中粉末不再有颗粒感为宜。3如样品和试剂在研磨过程中发生离子交换,则需要更换试剂类型或改用糊法进行测试。4如果压出的片子易碎,请确认是否与加入粉末太少、压力过大或压力保持时间太长有关,可通过增加粉末体积或降低压力等方式来避免这种情况。5如果片子与模具粘合在一起、脱模困难,需要确认是否由样品易吸水或比较粘稠的特性引起。若是样品特性原因,可适当减少样品加入量;若是室内湿度过大或模具未清洗干净引起,可降低室内湿度或在红外烘烤灯下制备样品以及深度清洗模具等来优化。谱图常见问题解析获得红外谱图后,分析谱图可发现制样过程中存在的问题并优化制样过程。经常遇到的几种情况分别为:1加入样品量不合适谱图吸收峰的强弱,可判断加入的样品量的多少。如图 2 所示,光谱 1 中所有峰为尖峰,但吸收峰强度较弱,可判定为加入样品量不足;光谱 2 中多个峰平顶饱和,可判定为加入样品量过多。根据峰强度的强与弱,可通过减少或者增加样品加入量来优化。图 2. 光谱 1 中加入样品量太少,吸收较弱;光谱 2 中加入样品量太多,峰饱和2基线倾斜透过率光谱越高波数越向下倾斜,如图 3 所示。通常是样品与试剂研磨不充分,光在样品上发生散射造成的。图 3. 研磨不充分样品谱图对比如图 4 所示,分别制备不同颗粒粒度样品的溴化钾压片并采集红外谱图。从图中可以看出,随着颗粒粒径减小,透射谱图基线的倾斜问题得到明显改善。图 4. 不同颗粒粒度样品的溴化钾压片谱图3样品与试剂发生离子交换在样品压片过程中,试剂与样品可能发生离子交换。如一些有机盐,可选择更换试剂类型或者采用糊法的方式来避免。以盐酸氯酯醒为例,如使用 KBr 作为研磨试剂,则会发生离子交换导致谱图发生变化,此时可选用 KCl 为研磨试剂进行压片。如图 5 所示,可以看到分别使用两种试剂压片后的谱图差异。图 5. 分别使用 KBr 及 KCl 作为研磨试剂进行盐酸氯酯醒压片后采集的红外谱图4二氧化碳干扰峰影响用户经常会发现在 2200-2400 cm-1 处出现杂峰,这主要是因为空气中二氧化碳浓度变化引起的,如图 6 所示。从图中可见,此特征峰有时为正峰,有时候为倒峰,造成这种差异的原因是扫描背景谱图与扫描样品谱图时环境中二氧化碳的浓度发生了变化。所以在进行红外谱图采集的过程中,工作人员应尽量避免对着样品仓的位置呼气,同时要尽量降低背景与样品扫描的时间差。图 6. 二氧化碳对光谱影响示意图结 语以上经验总结,希望能够对日常工作中需要使用红外光谱仪的用户带来一些启发。通过对工作细节的优化,能够轻松获得一张可与药典中标准红外谱图相媲美的结果。如果您对安捷伦 Cary630 FTIR 红外光谱仪感兴趣的话,可通过点击以下链接获取相关资料。https://www.agilent.com/cs/library/technicaloverviews/public/te-cary630-material-id-5994-4992zh-cn-agilent.pdf
  • 290万!四川大学多光谱全景采集分析系统采购项目
    项目编号:SCLT20220184项目名称:四川大学多光谱全景采集分析系统采购项目预算金额:290.0000000 万元(人民币)最高限价(如有):290.0000000 万元(人民币)采购需求:详见附件。合同履行期限:交货期为合同签订后90个工作日内完成安装、调试。本项目( 不接受 )联合体投标。
  • 好消息 | 双利合谱用户采集软件可以免费升级了!
    尊敬的各位专家、学者、新老客户: 您们好,感谢你们一直以来对双利合谱产品的支持与厚爱。随着高光谱技术的发展,越来越多来自不同领域的专家学者开始关注高光谱、了解高光谱、应用高光谱。在庆祝卓立汉光关联公司之双利合谱公司成立三周年之际,为了让来自不同领域的学者能更好地了解和应用高光谱技术,双利合谱公司从即日起开始对已购买的GaiaField等产品的用户进行免费的采集软件更新服务了,如需要进行软件更新的客户,请直接给我们留言,留言内容包括:单位、姓名、购买产品、电话、邮箱等信息,我们看到后会第一时间与您联系,谢谢~ 四川双利合谱科技有限公司
  • 刑侦新产品:立体足迹激光扫描采集分析仪
    在近日召开的陕西省刑事新技术培训班上,一款名为“立体足迹激光扫描采集分析仪”的刑事技术新产品在会上进行了功能展示,引起在座基层刑事技术民警的浓厚兴趣,大家在展台亲手操作使用设备,他们认为,推广此项技术对提高办案质量和办案速度势必起到积极作用。此前,该仪器在全国第六届好痕迹检验技术研讨会上得到足迹专家的一致好评,目前已获我国独立知识产权最高级别的发明专利。  以往,在国际上,提取立体足迹通常采用是高灌注法,不但效率低,而且需要操作者具有一定的提取经验,尤其是在针对雪地、灰尘等软基客体的足迹时,难度更大,一单提取失败无法挽救,是现场的重要物证遭受损失。立体足迹激光 扫描采集分析仪的问世,掀开了刑事技术研究崭新的一页,该设备的非接触提取和数字化处理取代了百年来一直靠手工制模提取和经验型检验的模式,为刑侦专家快速有效处置案件事故提供先进实用的科技手段。该分析仪的主要技术特点是:  实现数字化无损提取现场立体足迹  该仪器能够快速、准确、无损地提取现场立体足迹。利用现代激光扫描三位测量和计算机技术,实现了对现场立体足迹原物大、原始形态的数字化采集、存储和传输,直接记录并显示足迹各部位的三维数据,如足迹重压点位置及深度、鞋底磨损形态及范围等。亦可用于提取轮胎等其他立体痕迹。采集设备与足迹不直接接触,从根本上解决了外界对足迹的干扰破坏,真正实现了原始无损提取,避免了“实物填充法”带来的人为破坏和变形,以及后期材料干缩、裂纹等问题,为综合利用提供了条件,为准确 检验鉴定奠定了基础。  多功能数字化辅助检验工具  利用软件模拟比较显微镜原理,研究出立体足迹辅助检验专家传统,设计出双视窗检验、三维重建显示、重压点检验自动搜索、磨损面检验、坐标网络、深度伪彩三维贴图、标注方式长度角度面积的双视窗数据同步对比测量等 一系列专业化设计的辅助检验工具。首次实现了对现场足迹的重压点和磨损变形的辅助检验。使经验专家型进入了数字化定量检验。坐标检验和网络格检验工具,给各类足迹特征检验提供了一个快捷有效的检验手段,尤其是游动式坐标检验工具,可把0点定在任一特征位置,依此扩展进行定量化检验,使检验更加灵活、方便和实用。  机械化还原现场立体足迹  系统根据三维测量数据,直接计算出雕刻机加工代码,利用三维雕刻机,直接对高密度板等板材加工雕刻,实现对立体足迹的加工还原。既可还原造型客体(鞋底)模型,也可还原承受客体(凹痕)模型,还原足迹具有高精度、不变形、易保存,经久、耐磨、抗摔,便于携带等优点。  今年6月,应湖北省公安刑警总队痕迹室之约,研制单位技术人员携带该设备赶到武汉,会同五位全国著名足迹专家,利用该仪器对震惊全国的“12.7”案件的现场证据进行检验分析,因嫌疑人在逃,嫌疑人家里遗留的鞋子与现场遗留的足迹缺乏行走的样本比较,五位足迹专家意见不一致。之前,因该案件现场能提取的足迹痕迹和其他有价值的痕迹、线索有限,使安检一度进展不顺利。技术人员使用该仪器吧现场提取的足迹痕迹检材和嫌疑人家里提取的鞋子进行扫描分析,并把结果送给专家进行研判,使专家意见得到统一,锁定了犯罪嫌疑人。
  • 钢研纳克获“全谱线阵CCD采集系统及其方法”发明专利
    钢研纳克检测检测技术有限公司(原北京纳克分析仪器有限公司)2010年9月申请的“全谱线阵CCD采集系统及其方法”发明专利顺利通过中华人民共和国国家知识产权局审核,专利证书于2012年3月下发。 该专利是一种全谱线阵CCD采集系统及其方法,适用于金属材料光谱分析测试领域。系统包括,参数配置系统、CCD采集系统、USB传输系统以及用户界面软件系统。用户界面系统发出指令,首先配置系统参数,包括CCD采集次数和单次积分时间,模数转换器的增益和偏置。然后开始采集,把光信号转换成电信号,模拟信号转成数字信号。再由USB传输系统将数字信号传输到计算机中,通过软件计算拟合成元素含量的图像。本发明的优点在于,能够做到多个CCD同时采集,高速传输;采用同轴电缆来传输CCD模拟信号,抗干扰能力强;对金属材料进行重复多次激发采集,采集结果稳定,重现性高。
  • 191.5万 上海技物所中标上海测绘院高光谱数据采集项目
    上海全面推进数字化转型,全力打造具有世界影响力的国际数字之都。长三角示范区“智慧大脑”已列入上海新基建示范工程方案,以数字化转型进一步赋能城市治理与区域发展。蓝绿空间,是长三角生态绿色一体化发展示范区的底色,通过数据能对生态空间进行更深尺度的监测。上海市测绘院地理信息管理与应用处处长毛炜青举例,运用波段多、范围广、分辨率高的高光谱影像数据,聚焦水、林、土、气、农等生态要素管理,能清晰了解森林覆盖率、河湖水面率等“大指标”,还能实现“精细化”,划分地物类别、监测水质水色、识别树种分类、分析农作物长势。“示范区的绿色生态,我们用数据一起守护。”今年3月上海市测绘院发起了长三角一体化示范区高光谱数据采集项目招标,预算总计195万元。6月10日,中国科学院上海技术物理研究所中标该项目,成交金额为191.5万元。以下为项目详细信息:项目编号:JY-Z220087(招标文件编号:JY-Z220087)项目名称:长三角一体化示范区高光谱数据采集项目供应商名称:中国科学院上海技术物理研究所中标(成交)金额:191.5000000(万元)服务范围:对长三角生态绿色一体化发展示范区(面积约1000km2)进行机载高光谱数据采集,同步/准同步在地面采集控制点数据、典型地物光谱数据、大气参数数据和水质数据。结合获取到的机载高光谱数据及地面采集数据,对高光谱数据进行处理,生成0-5级的数据产品、专题应用产品图件等成果。服务要求:在整个作业过程中,实行 二级检查一级验收制度 。由作业员首先进行自查自校,再由作业组进行检查,之后提交质检部门检查。然后编写技术总结和检查报告。投标人委托有测绘产品质量检验资质的第三方按标准要求对提交的成果成图资料进行质量检验,并出具检验报告。最后按要求将所有成果资料提交招标人。获得所有成果资料后,招标人组织专家召开项目验收会,完成最终验收。仪器信息网将于2022年7月19-22日举办“第十一届光谱网络会议(简称iCS2022)”,该会议邀请了上海技术物理研究所王建宇院士讲解题为“高光谱技术发展与空间应用展望”,请大家持续关注仪器信息网网络讲堂。
  • 沃特世于HUPO 2016推出新型质谱采集模式
    沃特世推出新型质谱采集模式,推动蛋白质组学和脂类组学研究发展  沃特世质谱技术研究人员Bob Bateman和John Hoyes荣获HUPO科学技术奖  中国台湾台北市,2016年9月20日 – 沃特世公司(纽约证券交易所代码:WAT)近日于国际人类蛋白质组研究组织(HUPO)第15届国际大会上推出全新的数据采集模式SONAR?,该模式专为Xevo® G2-XS四极杆飞行时间(QTof)质谱仪(MS)而开发,提供全新的非数据依赖型采集(DIA)方案获取MS/MS数据。这项技术能够帮助分析科学家们提升实验室工作效率,同时让他们对生成的结果更有信心。借助SONAR数据采集模式,科学家们只需执行一次进样即可完成复杂样品中脂质、代谢物和蛋白质的定量和鉴定,免去了采用MS/MS方法分析时通常需要额外进行方法开发的麻烦。  沃特世在HUPO国际大会期间隆重介绍了这一新型MS采集模式。会议同时表彰了沃特世公司的高级质谱技术专家Bob Bateman和John Hoyes为推动质谱技术发展所作的杰出贡献。  在现代蛋白质组学实验中,基于DIA的质谱技术是分析人员获取包含大量数据的样品谱图时常用的一项技术。随着蛋白质组学和脂类组学研究的不断发展,科学家们越来越追求针对性更强的实验,来定量分析特定的肽和蛋白质,这就需要进行额外的方法开发和重复分析。面对越来越复杂的样品,沃特世新推出的SONAR数据采集模式能够提供更丰富的信息,同时提升数据的清晰度。  沃特世公司的组学业务开发高级经理David Heywood表示:“如今的蛋白质组学研究已十分成熟,科学家们已经能够收集到蛋白质的大部分相关信息。现在,他们希望实现的目标是先针对某种蛋白质或特定的肽提出假设,然后采用靶向MS/MS定量方法就这种假设观点展开研究,而无需额外开发新的方法或实验。现在,借助SONAR数据采集模式,科学家们可以完成一站式分析并具有更高的选择性。这种模式可兼容高速UPLC分离,工作流程更加高效,通过一次进样即可完成更准确的定性和定量分析。”  沃特世科学家荣获HUPO国际大会表彰  此次HUPO国际大会还向沃特世公司的技术研究顾问Bob Bateman和质谱技术总监兼首席科学家John Hoyes颁发了HUPO科学技术奖,以表彰他们为推动蛋白质组学研究技术发展与开发QTof质谱仪所作出的杰出贡献。  HUPO执行委员会在颁奖辞中表示:“QTof串联质谱仪在其问世初期对蛋白质组学的发展产生了巨大影响,这类质谱仪与纳升级液相色谱(LC)联用后,能够在蛋白质组分析中表现出无与伦比的性能。”Waters® (Micromass® )Q-Tof?质谱仪自1996年进入市场以来不断进行技术创新,继上一次集成离子淌度分离技术之后,此次又增添了全新的SONAR MS数据采集模式。  SONAR为MS数据采集模式带来有效的性能提升  SONAR在选择性方面实现的提升主要得益于质谱仪四极杆的运行方式。在SONAR模式下,四极杆并不会始终保持打开状态传输所有离子,而是扫描指定的质量范围,每次扫描可捕获200张谱图。这种四极杆运行方式让SONAR能够兼容快速的超高效液相色谱(UltraPerformance Liquid Chromatography® ,UPLC® )分离,从而提高实验室分析通量。过去可能会发生色谱共洗脱的化合物现在可以通过四极杆实现分离并单独记录下来,数据库的搜索效率将随之得到提高。SONAR通过一次进样即可同时采集定量和定性数据。  HUPO国际大会于9月18日至22日在台北国际会议中心召开,期间将举办多场以SONAR技术为主题的研讨会。  SONAR数据可整合至Waters Progenesis® 和Symphony?软件分析工作流程,还可兼容Skyline等第三方软件包。由MassLynx® 软件控制的Waters Xevo G2-XS QTof质谱仪现已整合SONAR模式。  关于沃特世公司(www.waters.com)  沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。###  Waters、SONAR、Xevo、Micromass、Q-Tof、UltraPerformance LC、UPLC、Progenesis、Symphony和MassLynx是沃特世公司的商标。
  • 赛默飞推出质谱用蛋白质组学数据独立采集控制软件
    应用于Thermo Scientific Q Exactive质谱仪的新型控制软件能够在同一台仪器上实现DIA和目标定量中国上海,2012年9月28日 &mdash &mdash 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)推出用于 Thermo Scientific Q Exactive 高性能四极杆-轨道阱 LC-MS/MS 的全新数据独立采集(DIA)蛋白质组学功能。新型 DIA 功能使 Q ExactiveTM 质谱仪选择宽广的 m/z 窗口并在该窗口中裂解所有母体,从而采集样品中所有离子的 MS/MS 谱图,使仪器能够在单次运行中对样品中几乎所有已检测的肽段进行定量。与其他具有DIA 功能的质谱仪平台不同的是,那些仪器需要切换到三重四杆仪器进行目标肽段定量,而Q Exactive LC/MS 能够使用户在同一台仪器上执行 DIA 和目标定量实验。在 Q Exactive 质谱仪上采集的 DIA 数据能够由 Thermo Scientific Pinpoint 软件 1.3 进行处理。DIA 采集策略将另一个多重检测方法添加至 Q Exactive 仪器,该方法允许用户在全 MS 和 MS/MS 模式中多重检测多达 10 个母离子。Q Exactive 质谱仪通过降低目标肽段的干扰提供高达 140,000 的超高分辨率,由此提高选择性并最终获得更为准确的定量信息,对在DIA 实验中定量分析感兴趣蛋白质/肽段尤其有用。Q Exactive 仪器提供与选择反应监测(SRM)相当的定量性能。&ldquo 新一代高通量定量蛋白质组学正飞速发展&rdquo ,赛默飞市场总监 Andreas Huhmer 如是说,&ldquo 多重检测策略如数据独立采集方法在将定量蛋白质组学提升至新高度中发挥至关重要的作用,组合式轨道阱的独特设计将对推动这一技术的发展起重要作用。&rdquo 对于希望采用 DIA 功能的 Q Exactive LC/MS客户,仪器控制软件以开发人员套件形式给予提供。Q Exactive 仪器是首台将四极杆母离子选择性和高分辨率精确质量(HR/AM)Orbitrap质量分析相结合的商业化仪器,旨在提供高置信度定性和定量工作流程。赛默飞以新术语&ldquo Quanfirmation&rdquo 描述仪器在单次运行中进行化合物识别、定量和确认的能力。若要获取用于 Q Exactive 的新型 DIA 功能的更多信息,请登录网站http://www.thermo.com.cn/Product5729.html;www.thermoscientific.com/qexactive ,或致电1-800-532-4752 或发送邮件至analyze@thermo.com。关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安等地设立了分公司,目前已有2000名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 新简易采集装置联接质谱实现雾霾微生物分析
    虽然大风再次“拯救”了被雾霾围困的北京,但这种渐成常态化的大气污染现象,对人们身体健康已经造成了越来越严重的影响。  据研究显示,雾霾中含有多达1000多种微生物,包括真菌、病毒、细菌等,会造成呼吸障碍、微生物感染、过敏性反应等伤害,易对老人、小孩及体质较弱人群产生健康危害。  近日,记者从复旦大学和上海海洋大学获悉,该研究团队发明了一种简易的采集装置,可用于雾霾、气溶胶中的微生物样品采集,结合质谱分析技术,实现了对雾霾传播的微生物分析与鉴定。该成果发布在美国化学会《Analytical Chemistry》(分析化学)杂志上。  据悉,常规的气溶胶微生物的采样方法依靠多级采样器,受限于仪器昂贵一般约数千元、携带不便约10公斤左右、采样时间较长约2小时以上、需要外接电源等因素,无法进行简单快速的采样分析。常规的多级采样器在环境监测、医疗卫生等领域的有害气体收集方面存在着广泛的应用。   据上海海洋大学博士卞晓军介绍,复旦大学和上海海洋大学的研究团队合作研发的基于螺旋气流微流控芯片的简易采样器,由微流控芯片、微型气泵、可充电锂电池、稳流阀等部件组成,利用气流在双螺旋通道的离心力对微生物样品进行分离捕获。  该简易采样器的主要部件是螺旋式鱼骨形微流控芯片。螺旋式的微通道给气流施加了较强的离心力,有利于气溶胶中的微生物附着在芯片通道中 鱼骨形的结构设计能够将气流由平流转化为湍流,增加了气溶胶中的微生物与芯片的接触几率。  “相比于传统的空气多级采样器,该简易采样器材料成本约150元,采样时间短缩至半小时之内,不依赖于外接电源,仅仅2.5公斤便于携带。”卞晓军说。  目前,科研人员正在应用该简易采样器对上海地区的雾霾微生物进行大规模采集分析,以及微生物实验室环境中有害生物气溶胶进行监测。未来,有望应用于野外农田采样、战地反恐采样、配合无人机高空采样等。
  • 使用非数据依赖采集法实现氢/氘交换质谱数据自动化分析
    HDX-MS是一种基于蛋白质主链酰胺氢原子与氘水中氘原子交换而获取有关蛋白质高阶结构和动态信息的方法。该技术可以帮助研究蛋白质折叠机制、发现配体结合位点、突出变构效应,在生物医药行业中发挥重要作用。尽管HDX-MS在蛋白质分析中频繁使用,但它通常无法进行高通量分析,且受限于大于150 kDa蛋白的分析。此外,HDX-MS生成复杂的同位素峰型常伴有谱图重叠现象,导致氘代值被错误计算。随着样品复杂性的增加,这一问题会更加加剧。目前,数据处理的方法涉及到手动检查原始数据以筛选谱图,并丢弃有任何信号问题的肽段图谱。然而这种方法随着样品分子量和复杂程度的增加变得难以执行,且容易受到人为错误的干扰(图1)。因此迫切需要一种可以消除手动筛选数据的负担,同时能够兼容更复杂的谱图(来自复杂混合物或整个细胞裂解液样品的谱图)。本文作者使用了一种自动化HDX数据分析的方法,利用data independent acquisition(DIA)采集方法同时从MS1和MS2领域获取氘代数据,并开发了AutoHX软件来挖掘和分析HDX数据。图1.传统HDX-MS数据采集与分析流程和本文使用的数据采集和分析流程比较。针对使用HDX-MS时,碰撞诱导解离(CID)碎裂模式产生的肽段碎片会伴随着气相中的氘重组现象(即scrambling现象),会影响残基水平氘代值的准确测量这一问题,作者定量研究了HDX-MS2数据的特性。作者发现,scrambling与离子传输和碎裂能量有关,且在高传输效率的条件下scrambling较严重,因此首先使用较为温和的离子传输参数和碎裂能量能够降低scrambling程度。随后作者建立了可描述碎片氘代值与该肽段可碎裂位点数量之间的线性关系(图2)。随着碎片离子长度的增加,相应的碎片离子氘代值会线性增加,因此通过回归计算可以计算出整个肽段的氘代率。这种方法不仅利用了CID产生的碎片信息,同时更为准确的计算出肽段的氘代值,排除了肽段谱图重叠对计算氘代值的干扰。图2.在一条给定肽段中,HD scrambling中,氘代值与碎片长度的关系。接着作者提出使用DIA方法来获取HX-MS2实验中MS1和MS2域的氘化数据,以实现在不同质谱平台采集数据、采集复杂样品的信息、分析自动化数据,且使得通过CID产生的MS2中提取肽段氘代值成为可能。首先作者设置了尽可能小的DIA窗口,并使用了较大的窗口重叠区域,以最小化MS2谱图的复杂性并确保每条氘代肽段至少有一个窗口(图3)。同时,作者开发了一个名为AutoHX的软件(作为Mass Spec Studio中的插件),该软件自动选择理想的DIA窗口,并从MS1数据计算前体肽段的氘代值,以及从MS2数据计算所有碎片的氘代值。同时改进了HX-PIPE(为HDX-MS量身定制的搜索引擎),使其搜库结果直接应用于AutoHX的分析。随后AutoHX使用了一系列过滤器来从数据集中解析低质量信号,然后使用基于RANSAC的谱图分析器,为所有肽段及其碎片匹配最佳同位素集合,并绘制动力学曲线图。该方法显著提高了肽段序列覆盖的冗余度(图4),从而提高了测量质量。图3. DIA窗口设计示意。图4. 基于DIA采集模式得到的序列覆盖(糖原磷酸化酶B,phosphorylase B)与基于传统HDX-MS中MS1采集模式的结果比对。接着,软件会通过MS1和MS2数据收集到的肽段前体离子和肽段碎片离子的信息,计算出相应的氘代值,同时将所有重复组计算出的氘化值集合成一个分布(通常为正态分布),并从该正态分布中,选择最接近平均值的组合,即为精确的氘代值,利用每个时间点的氘代值生成HDX动力学曲线(图5)。作者将手动筛选检查的数据与自动分析法获得的氘代数据进行了比对,结果具有一致性,验证了自动化方法的准确性和可靠性(图6)。同时在做同一样本不同状态HDX比较实验时,AutoHX可以生成氘代差异的显著性差异分析图(Woods plot)(图7),用于比较不同状态下的蛋白结构和构象差异。图5. 氘代曲线的组合方式。图6.手动MS1数据分析和AutoHX自动计算的氘代率对比。图7.氘代差异分析流程示意图。最后作者用两个蛋白体系验证了该方法的实用性和可靠性。第一个体系为DNA聚合酶ϴ (Pol ϴ )与其抗生素药物novobiocin结合的结构变化。通过比较手动处理与自动化处理的数据,作者发现生成的氘代差异图结果相似,提示该方法具有较好的准确性,并能够定位结合带来的氘代上升和下降区域(图8)。第二个体系是DNA依赖性蛋白激酶(DNA-PKcs)与选择性抑制剂AZD7648的结合。使用AutoHX软件处理了六个HDX-MS实验的数据,快速生成了Woods图,发现大部分可检测到的稳定性增加集中在FAT和激酶结构域(图9b),还包括药物结合位点的铰链环区域(图9c),揭示了药物结合位点及其引起的动态性变化。这部分研究结果展示了自动化数据分析在药物结合研究中的有效性,特别是在分析大型蛋白质复合物和难以纯化的蛋白质时,为药物开发和疾病治疗提供了有价值的信息。图8.手动处理与自动处理的Pol ϴ 与novobiocin-bound Pol ϴ 的HDX数据作差对比。图9. DNA-PKcs+AZD7648的自动化HDX分析流程结果。总的来说,该研究开发了AutoHX软件,通过自动化数据分析和基于DIA的HX-MS2工作流程,显著提高了氢/氘交换质谱技术在蛋白质结构和药物结合分析中的效率与应用范围,使得这一领域技术更加易于使用并可供更广泛的科研社区应用。该工作的亮点,从实验设计上:考虑到了目前HDX-MS流程——数据采集、数据分析——中存在的瓶颈与局限。从方法学考察层面:方法验证科学严谨、周到。从技术上:大大降低了人工处理HDX-MS数据的成本,提高了检测能力,有提高检测通量的潜力。从科学思维上:利用了scrambling的规律,将普遍的问题转化成了机遇。HX-DIA提供了一个概念上的转变,降低了该技术的使用门槛,使该技术“平民化”。本文发表在Nat. Commun.上,题目为“Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology”,作者是加拿大卡尔加里大学的David C. Schriemer。
  • 沃特世推出新型质谱采集模式,推动蛋白质组学和脂类组学研究发展
    沃特世质谱技术研究人员Bob Bateman和John Hoyes荣获HUPO科学技术奖 沃特世公司(纽约证券交易所代码:WAT)近日于国际人类蛋白质组研究组织(HUPO)第15届国际大会上推出全新的数据采集模式SONAR™ ,该模式专为Xevo G2-XS四极杆飞行时间(QTof)质谱仪(MS)而开发,提供全新的非数据依赖型采集(DIA)方案获取MS/MS数据。这项技术能够帮助分析科学家们提升实验室工作效率,同时让他们对生成的结果更有信心。借助SONAR数据采集模式,科学家们只需执行一次进样即可完成复杂样品中脂质、代谢物和蛋白质的定量和鉴定,免去了采用MS/MS方法分析时通常需要额外进行方法开发的麻烦。 沃特世在HUPO国际大会期间隆重介绍了这一新型MS采集模式。会议同时表彰了沃特世公司的高级质谱技术专家Bob Bateman和John Hoyes为推动质谱技术发展所作的杰出贡献。在现代蛋白质组学实验中,基于DIA的质谱技术是分析人员获取包含大量数据的样品谱图时常用的一项技术。随着蛋白质组学和脂类组学研究的不断发展,科学家们越来越追求针对性更强的实验,来定量分析特定的肽和蛋白质,这就需要进行额外的方法开发和重复分析。面对越来越复杂的样品,沃特世新推出的SONAR数据采集模式能够提供更丰富的信息,同时提升数据的清晰度。 沃特世公司的组学业务开发高级经理David Heywood表示:“如今的蛋白质组学研究已十分成熟,科学家们已经能够收集到蛋白质的大部分相关信息。现在,他们希望实现的目标是先针对某种蛋白质或特定的肽提出假设,然后采用靶向MS/MS定量方法就这种假设观点展开研究,而无需额外开发新的方法或实验。现在,借助SONAR数据采集模式,科学家们可以完成一站式分析并具有更高的选择性。这种模式可兼容高速UPLC分离,工作流程更加高效,通过一次进样即可完成更准确的定性和定量分析。” 沃特世科学家荣获HUPO国际大会表彰此次HUPO国际大会还向沃特世公司的技术研究顾问Bob Bateman和质谱技术总监兼首席科学家John Hoyes颁发了HUPO科学技术奖,以表彰他们为推动蛋白质组学研究技术发展与开发QTof质谱仪所作出的杰出贡献。 HUPO执行委员会在颁奖辞中表示:“QTof串联质谱仪在其问世初期对蛋白质组学的发展产生了巨大影响,这类质谱仪与纳升级液相色谱(LC)联用后,能够在蛋白质组分析中表现出无与伦比的性能。”Waters(Micromass)Q-Tof™ 质谱仪自1996年进入市场以来不断进行技术创新,继上一次集成离子淌度分离技术之后,此次又增添了全新的SONAR MS数据采集模式。 SONAR为MS数据采集模式带来有效的性能提升SONAR在选择性方面实现的提升主要得益于质谱仪四极杆的运行方式。在SONAR模式下,四极杆并不会始终保持打开状态传输所有离子,而是扫描指定的质量范围,每次扫描可捕获200张谱图。这种四极杆运行方式让SONAR能够兼容快速的超高效液相色谱(UltraPerformance Liquid Chromatography,UPLC)分离,从而提高实验室分析通量。过去可能会发生色谱共洗脱的化合物现在可以通过四极杆实现分离并单独记录下来,数据库的搜索效率将随之得到提高。SONAR通过一次进样即可同时采集定量和定性数据。 HUPO国际大会于9月18日至22日在台北国际会议中心召开,期间将举办多场以SONAR技术为主题的研讨会。 SONAR数据可整合至Waters Progenesis和Symphony™ 软件分析工作流程,还可兼容Skyline等第三方软件包。由MassLynx软件控制的Waters Xevo G2-XS QTof质谱仪现已整合SONAR模式。 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 我国农业土壤信息采集设备研制获得新进展
    863课题“车载农田土壤信息快速采集关键技术与产品研发”取得阶段成果  装备现代化和生产精准化是我国现代农业发展的必由之路。由于农田信息采集技术发展相对滞后,已经影响到我国精准农业的发展。发达国家精准农业发展始于外围技术特别是高技术的推动,信息采集主要采用接触式传感技术和非接触式遥感技术。相关仪器设备虽然精度很高,但价格昂贵,适用于科研而不适用于农业。开发廉价、适用、可靠的农田信息采集技术及相关仪器设备不仅是我国精准农业发展的需要,而且也是国际农业发展的需求。  “十一五”期间,课题总体执行情况良好,取得了多项重大成果。开发了车载和定点网络式土壤信息复合传感器,在国际上首次实现了土壤水分/盐分/压实度的复合车载测量以及对容重和水热特性的连续原位监测,得到国际同行的高度赞誉。研制了车载农田土壤信息快速采集设备,实现了不同土质农田0~2m土样的快速采集、GPS定位和信息存储,采样效率较国外同类产品提高一倍以上。基于光谱分析的农田信息采集技术和设备实现了多项重要突破,在国际上首次建立了土壤红外光声光谱测试和信息管理系统;基于激光吸收光谱技术的氨挥发快速测定设备成功应用于2008北京奥运期间奥体场馆附近NH3的连续监测;基于近红外光谱的便携式多波段土壤氮素测定仪,精度达到国外同类产品水平,而成本仅为其5%。获得具有完全自主知识产权的灵活低成本无线传感器网络平台(FLOWS),产品性能达到国际先进水平,成本降低一半。以上述成果为代表的多项技术和设备均达到或超过了国外同类产品的性能,同时显著降低了生产成本,为我国农田土壤信息快速采集技术和装备跻身世界水平奠定了坚实基础,为精准农业的大力发展提供了高技术保障。课题获得车载、便携、定点网络式土壤信息快速采集系统及相关设备样机44台套,专利19项(含美国专利1项),登记软件著作权9项。制定标准3项(含1项国际标准)。发表SCI和EI论文35篇。培养博硕士研究生44名。  研发的系列农业土壤信息采集设备均已在大田中得到了系统验证,一些产品还得到推广示范。如氨挥发快速测定系统在2008年北京奥运会期间城市氨气检测等方面得到了成功应用。课题成果的进一步推广和应用将解决土壤信息快速获取所面临的技术瓶颈,极大地推动我国农业生产的数字化和精准化水平,为建设粮食高产、资源高效节约型农业奠定技术基础,为国家1000亿斤增粮计划的实现和未来粮食的持续生产做出重要贡献。
  • 病毒气溶胶采集富集仪
    仪器名称病毒气溶胶采集富集仪单位名称检验检疫科学研究院联系人胡孔新联系邮箱kongxinhu@sina.com成果成熟度□正在研发 □已有样机 □通过小试 □通过中试 &radic 可以量产合作方式&radic 技术转让 &radic 技术入股 &radic 合作开发 &radic 其他成果简介:&mdash &mdash &ldquo 国家重点新产品&rdquo ,拥有自主知识产权的环境微生物气溶胶监测系统&mdash &mdash 专业针对空气病毒性微生物监测设计,现场实现目标浓缩富集,提升敏感性,超越现有空气微生物采样器&mdash &mdash 温湿度环境小气候数据同时采集&mdash &mdash 系统的收集、富集、样品处理、检测技术方案&mdash &mdash 轻巧、便于携带、友好软件智能控制符合国际ISO14698-1及GB/T:25916.1-2010: 洁净室及相关受控环境生物污染控制通用标准,是大型集会、公共场所、禽畜养殖场、生物反恐、生物安全、食品、制药、化妆品、医药等领域里对空气有机污染监测的理想设备。通过①计算机3D辅助制作符合流体动力学的气液混合装置、②表面活性剂样本处理技术、③磁珠富集、核酸提取技术一体化以及④病毒检测配套方法四个关键方面创新设计,解决了生物气溶胶采集效率问题,整合了收集、富集、核酸提取和目标检测等技术环节,提高了气溶胶回收率和监测敏感性,适用于各种类型的实验分析。收集、富集生物气溶胶同时监测环境温、湿度数据,彻底抛开传统Anderson法,且收集效果远远优于Anderson法,与后续检测技术对接程度及敏感性优于现有国内外采样器。智能控制、设计精美、外观紧凑,携带方便,高效、可靠收集、富集空气中的生物颗粒(病毒、细菌、真菌、花粉等&hellip )。主要特点:1. 大体积液体样品收集气溶胶,防止大体量空气采集导致气溶胶再流失;现场浓缩成小体积样品,提高监测敏感性,避免现场大体积收集管过多,减轻工作量。2. 配套广谱和特异监测目标富集试剂,样品后续处理高度灵活,可满足多种分析检测技术,如免疫测定、PCR、颗粒微生物计数、分离培养及显微镜观察等,提升检测敏感性和现场操作简便性。3. 便携供电长达2h以上,体积小、外观紧凑,设计精美,标准支架、手提箱方便携带,设备坚固耐用可适用于各种恶劣环境。4. 自动进行温度、湿度监测,可连续提供小体积液体样品。5. 机器主要部件可拆分并进行灭菌或清洗、消毒。主要技术参数:型号BIO-Capturer-5病毒气溶胶采集富集仪应用传染病监测、动物疫病监测、卫生监督、生物反恐原理液体包裹收集,磁珠修饰富集温度监控有湿度监控有智能化控制触屏人机界面颗粒尺寸1um空气流速30-40L/min实时监控采集时间设定1-999min可调采样体积设定1-9999L可调采集液体积20ml+/-5回收样品体积100&mu L(配套广谱和特异微生物目标富集试剂)电池持续时间2h电压要求12VDC主机重量3kg噪声&le 70dB功耗<40W工作环境温度+5℃ to +50℃+0℃ to +50(可选冬季温度防护箱)储藏环境温度-20℃ to 70℃国际同领域生物气溶胶监测仪器类比分析:产品设备国别知识产权大体积采集外接电源自备电源智能控制气体定量精确定量温湿度监测目标富集小样品回收配套试剂敏感性提升10-100倍SKC BIO-SAMPLER美国&radic &radic &radic × × × × × × × × × Coriolis空气采样器法国&radic &radic &radic &radic &radic &radic × × × × × × BIO-Capturer病毒气溶胶采集富集仪中国&radic &radic &radic &radic &radic &radic &radic &radic &radic &radic &radic &radic 数据展示:气溶胶采集、富集效果评价实验以10倍系列稀释流感病毒H3N2气溶胶模拟采集、富集实验,分别以统一条件real-time PCR方法对直接收集液样品、广谱富集磁珠处理后样品、特异富集磁珠处理后样品进行检测分析,评价采集、富集效果。结果显示:特异富集处理后,灵敏度高出至少2个数量级;广谱富集处理灵敏度高出至少1个数量级。(如下图所示)。应用前景: 该仪器可应用于: 各级出入境口岸,包括口岸场所及国际航行交通工具等卫生监督、生物反恐、传染病监测; 禽畜养殖场、市场等动物疫病环境监测; 各级疾病预防控制中心、医疗机构传染病监测、内部感染监控; 邮政处理场所、人口密集的公共场所、重大集会场所等反生物恐怖监测; 科研院所生物安全实验室等感染性生物气溶胶泄漏的监控; 其他存在有机污染的生物气溶胶环境监测领域等。知识产权及项目获奖情况:科技部、环保部、商务部、质检总局四部委认定&ldquo 国家重点新产品&rdquo 证书相关知识产权列表:知识产权类别知识产权名称状态实用新型专利生物气溶胶采集富集装置;授权专利号:ZL201220127837.9国家发明专利病毒性气溶胶采集富集仪,授权专利号:ZL201210089458.X国家发明专利用于固相膜免疫分析方法流动相的样本处理制剂,授权专利号:ZL200410091168.4国家发明专利一种特异性检测流感病毒合成多肽授权专利号:ZL201010233015.4专利技术:液面包裹喷气口,高效气溶胶粒子采集、易清洗采样头设计专利技术:高效/简便富集操作、回收浓缩小样品、对接分子生物学、免疫学检测成熟方法专利技术:系统、完整的病毒生物气溶胶现场监测解决技术方案与配套试剂
  • 河流微塑料|从采集到分析,轻松“一网打尽”
    导读 微塑料是一种新兴的污染物,具有与其它污染物相似的普遍性和生态毒性,微塑料的尺寸范围大、分布广、环境干扰影响大,所以快速采集、处理、分析微塑料组分,对于环境污染治理有很重要的意义。微塑料的危害 《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》对“重视新污染物治理”提出了有关要求。新污染物虽然在环境中浓度较低,但具有器官毒性、神经毒性、生殖和发育毒性、免疫毒性、内分泌干扰效应、致癌性、致畸性等多种生物毒性,同时具有较强的生物持久性、明显的生物富集性、难以监测等特性,对人体健康和生态环境构成危害。 现阶段国际上主要关注的新污染物包括:微塑料、环境内分泌干扰物(EDCs)、全氟化合物等持久性有机污染物、抗生素等四大类。作为四大类新型污染物之一的微塑料等细颗粒物,可以吸附重金属和有机污染物的载体,其危害性更为复杂。 下面小编为您介绍河流中微塑料从采集到样品前处理方法以及使用岛津傅立叶变换红外光谱仪(IRSpirit)快速进行分析的过程。 微塑料的采集 目前海水和淡水中微塑料采集一般采用具有不同孔径网目的拖网,使用拖网需要船只,对流域面积也有一定要求。采用一种新型微塑料采集装置Albatross(株式会社Pirika),解决了昂贵的租船费用以及狭窄地点和流速慢的河流难以取样的限制问题,可以在任何地点轻松使用的采集装置,仅需3分钟即可完成收集微塑料样品,成本低、使用方便。 图1 微塑料采集装置Albatross图2(a) 河流A中的采集过程图图2(b) 河流B中的采集过程图3 采集的微塑料样品 微塑料的前处理 首先将采集到的样品过2mm和0.1mm目筛,在通过0.1mm目筛捕集的样品中加入30%的双氧水(H2O2),溶解杂质,然后用纯水清洗样品,去除H2O2,加入5.3mol/L的碘化钠水溶液(NaI),进行比重分离。 图4 前处理流程 微塑料的分析 在收集的微塑料中,随机选了一颗微塑料使用岛津小巧型IRSpirit进行红外分析,光学显微镜观察图像和红外测定结果如下: 图5 收集的部分微塑料图6 光学显微镜下微塑料图像图7 FTIR的测定结果 岛津塑料分析系统包括了多种类型塑料的红外谱图,这些塑料经过了0小时(未照射)到使用Iwasaki Electric Co., Ltd.生产的超加速老化仪最长550小时(相当于紫外线照射约10年)照射。以上测定结果和紫外线照射550小时老化的PE匹配。检测到图中⻩框所示的3400cm-1附近的O-H伸缩振动、1750 cm-1附近的C=O伸缩振动引起的吸收,因此,可以推测出该微塑料暴露在环境中由于紫外线照射引起的氧化老化。另外,根据图中蓝框所示的1050cm-1附近的吸收峰,判断可能存在硅酸盐等。 结语 采用新型微塑料采集装置Albatross(株式会社Pirika),仅需3分钟即可完成收集微塑料样品,成本低、使用方便。针对采集的微塑料样品进行前处理,使用岛津傅立叶变换红外光谱仪(IRSpirit)可实现快速分析。 本文来源于:藤里砂(岛津制作所全球应用技术开发中心),河流中采集的微塑料的前处理方法和FTIR的分析方法。本文内容非商业广告,仅供专业人士参考。
  • 托普云农“高通量植物表型采集分析平台”荣获CISILE 2024 “自主创新金奖”
    5月29-31日,第二十一届中国国际科学仪器及实验室装备展览会(CISILE 2024)在北京盛大开幕。展会同期,CISILE 2024“自主创新金奖”正式揭晓,托普云农自主研发制造的“高通量植物表型采集分析平台”凭借表型指标覆盖广、解析精度高、效率高等创新优势一举摘得此荣誉。CISILE“自主创新金奖”由中国仪器仪表行业协会于2006年设立,旨在鼓励弘扬自主创新精神,推动我国科学仪器及实验室装备制造领域高质量发展。托普云农“高通量植物表型采集分析平台”此次荣获CISILE 2024“自主创新金奖”,评选过程历时数月,由业内重点科研院所科研人员、企业研发人员和行业管理专家组成评审团队,经协会初审、专家会审、专家现场评审及名单公示等严谨流程,最终从数以千计的科学仪器设备中脱颖而出,可谓含金量十足。国产化替代,填补国内相关领域短板随着智慧农业快速发展,智能育种、种质资源高效鉴定已成为国内外众多农业高校、科研机构加速布局的前沿科研领域之一。而其中,对种质资源的表型特征进行高精准、高效率、高通量鉴定是提升科研效率的关键。过去,植物表型研究领域的关键装备、核心算法被欧美日澳等发达国家垄断,托普云农自主研发制造的“高通量植物表型采集分析平台”从各类传感器、成像单元等硬件到AI模型算法、操作系统等软件,均实现了100%国产化,并且在表型指标覆盖量、表型解析精度、解析效率等方面优势明显,有力填补了国内植物表型研究领域关键装备空白。经科技成果鉴定,该成果总体达到了国内领先水平,逐步向国际前沿技术水平迈进。高通量植物表型采集分析平台采用单箱体-多成像单元集成融合模式,通过自动化传送单元将植物传送到箱体内部,并依靠多维传感融合图像成像单元、边缘计算与解析单元、数据管理单元对植物形态、生理等表型指标进行高通量、高精度、无损化数据采集和多维度数据解析,广泛用于精准育种、抗逆种质筛选、植物生长与营养分析、病虫害抗性分析等场景。120+表型指标,覆盖植物全生育期高通量植物表型采集分析平台集成了可见光二维、可见光三维、高光谱等成像模块,整合多种传感器,能够获取植物全生育期高通量表型信息,覆盖不同生境下植物器官、单株、群体的形态、生理等120多种表型指标,超越国外主流同类型装备。基于托普云农专业的AI算法服务团队,高通量植物表型采集分析平台能够为用户提供指标参数定制化服务,可根据个性化分析需求构建相应的分析模型,满足更多科研场景应用。同时,平台设计具有良好的可扩展性,可以根据科研需求进行功能扩展和升级,如定制箱体尺寸、新增成像单元等。高精度三维重构,表型解析更精准在二维、高光谱成像基础上,高通量植物表型采集分析平台增设三维重构与分析单元,通过创新的图像采集方式结合全自研算法,实现对植物快速、准确的高精度三维重构,大大提升了植株株高、冠幅、生物量、卷叶程度等表型参数的解析精度。例如,反映植物长势的生物量指标,国外产品往往采用二维成像投影面积来表征,高通量植物表型采集分析平台则通过三维体积来表征,在精准度方面更上一层楼。采集分析同步完成,解析效率显著提升在生物育种、种质资源鉴定等场景中,研究人员经常需要快速鉴定大量不同品种植株的表型差异,这就对植物表型解析效率提出了较高要求。托普云农率先打造出集表型数据采集与解析于一体的植物表型智能解析平台TP-AIPheno,创新性地将数据采集与解析流程集成在同一软件中实现,显著提升了平台的表型解析效率。目前,高通量植物表型采集分析平台的可见光二维、高光谱模块的单株植物解析用时小于5秒,可见光三维重构模块的单株植物重构和解析共计用时小于7分钟,助力科研人员显著提升科研分析效率。兼顾便捷与安全,营造优质操作体验以往,我国科研人员使用国外的植物表型分析设备,不仅操作界面复杂,而且部分功能需要用户自主编程才能实现。而托普云农自主研发的高通量植物表型采集分析平台通过智能化、自动化设计,营造了一个高度便捷化的操作体验:植物传送、图像采集、数据分析全流程自动化,大大简化人工操作;用户界面简洁友好,快速呈现分析结果,支持一键导出和历史图像调阅,进一步降低使用门槛;平台配备必要的安全装置和数据保护措施,确保了操作安全性和数据安全性。当前,托普云农“高通量植物表型采集分析平台”已拥有9项国家专利,其中6项为发明专利。同时,基于托普云农自主研发及100%国产化优势,该平台较之同类型进口产品成本降低50%以上。科技创新是企业发展的不竭动力。作为国内先行的智慧农业综合服务商、全国专精特新重点“小巨人”企业,托普云农始终坚持“信息技术与农业专业深度融合,硬件与软件双向协同”的双轮驱动战略,积极引进行业尖端人才,推动农业智能装备国产化替代。当前,托普云农已自主研发气象环境、土壤、植物生理等多领域农业传感器30余种,创新升级技术,研发、迭代智能硬件装备200余种,赋能农业科研、种业、生产、管理、服务等全产业链应用场景。同时,托普云农成立智能实验室,开展智能识别、农业行业预测等一系列农业AI算法深度研究,推动科研成果向产业生产力落地转化。未来,托普云农会持续聚焦科技创新,围绕新一代农业传感器、AI模型算法、植物表型解析平台、小型智能农业机器人等关键技术领域展开科研攻关,不断打破国外产品技术垄断,为农业强国建设贡献托普力量。
  • 样品该如何采集与保存呢
    样品采集通常简称采样,是一种取样的方式,是一种科学的研究方法。我们实验流程的第一步就是样品采集,这一步也是至关重要的。为了我们实验结果的准确性,一定要正确选择采样方法和容器,执行采样操作规程哦~样品采集样品采集是指从待测样品库中抽取数量一定的具有代表性的样品作为检测分析的材料。在分析测量过程中,只有采集到合理且正确的样品,才有可能取得到有用的数据,得到正确可靠的结论。关于样品采集,有四大原则:代表性原则、典型性原则、适时性原则、程序原则。样品保存从样品的采集到样品的分析测定这一段时间里,由于空间、时间的变化,有可能会导致样品中的某些物理参数和化学组分发生变化,以致于检测失败或数据不准确。如何减少这些变化,保证检测结果的可靠性准确性呢,就需要采取一定的措施,尽快检测或者妥善保存。常见的保存方法有三种:1、密封保存法对于含水分或者具有挥发性的样品,放置在密闭的容器中,防止样品风化、挥发;对于需要干藏的样品来说,也可以有效的防止外源的空气与水分侵入,污染样品。2、化学保存法在样品中加入某些物质来保证样品的性质稳定。常见的有加生物抑制剂、酸(碱)化,可以有效的防止生物作用、防止样品物理性质改变等。需要注意的是加入的物质不应干扰其他组分的测定。3、冷藏保存法将样品放置在光暗处或者是冰箱中,可以有效的抑制样品中的生物活动,防止外源微生物污染样品导致变质,同时也可以减缓样品自身的物理作用与化学速度。样品的采集和保存是整个样品分析检测过程中最为关键的部分,如何采集正确的样品、防止污染、防止被测组分的损失,显得尤为重要。根据不同的样品、不同的分析项目及分析方法,我们可以采用不同的采样方法和保存方法来对样品进行采样与保存哦。
  • 火种采集三大技术展现科技大冬会魅力
    新华社哈尔滨12月10日电(记者邹大鹏)“爬壁机器人在垂直的墙壁上吸附灵活移动、机器人灵巧手像人手一样精准、火箭尾火精准地点燃火种盆,这三大技术集中展示了哈尔滨世界大冬会科技盛会的魅力!”哈尔滨工业大学校长王树国在火种采集仪式后,向记者解密这三大技术亮相哈尔滨大冬会的“出炉”过程。   王树国告诉记者,这次的火种采集凸显了一种科技精神,无论是爬壁机器人还是机器人灵巧手都是由大学生创造的,都代表着这些领域的最高水平,他们为大冬会奉献了一份闪光的礼物。   “哈尔滨工业大学在航天研究领域有很多科研成果,这是一次集中展示。”王树国介绍说,以爬壁机器人为例,它自身有一定的重量,还要在垂直的墙面上吸附,上下左右移动,吸附是一个很大的问题。如果吸附太紧,机器人爬行移动就会很困难,反之,吸附太松就会从墙面上掉下来,机器人这些看似简单的动作蕴藏着很多领域的高端技术。同样,机器人灵巧手像人的手指一样,它的内部有很多传感器等原件,是科技的高度集成产物,代表着这一领域的世界最高水平。   此外,24枚火箭发射也很成功,这些火箭是中国长二乙火箭的缩比模型,而用火箭尾火点燃取火盆,这种创意也是大学生的独特设计,这些青年人在高科技中展示着青春的朝气和智慧。   王树国说,大学生运动会不只是一种简单的开展体育运动的比赛,而是倡导社会更文明、更高尚的社会文化活动,这次火种采集是中国年轻一代对自身形象的一次集中展示。
  • 赛默飞推出数据非依赖采集(DIA)解决方案
    2015年6月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日全新升级数据非依赖采集(DIA)解决方案,通过有效结合传统蛋白质组学“鸟枪法”(Shotgun)和质谱定量“金标准”选择反应监测/ 多反应监测(SRM/MRM)的优势和特点,为用户呈现全新的质谱分析体验,还有强大的蛋白质组学定量策略。随着生命科学的快速发展,蛋白质组学的关注焦点和研究趋势已经逐渐从定性转向定量。定量蛋白质组学是对细胞、组织蛋白质组学乃至完整生物体的蛋白质表达量及差异进行分析,对于生物过程机理的探索和临床诊断标志物的发现与验证具有重要意义。基于静电场轨道阱Orbitrap的数据非依赖采集(Data Independent Acquisition, DIA)是赛默飞为用户带来的一项全新的、全息式的质谱技术。DIA将质谱整个全扫描范围分为若干个窗口,高速、循环地对每个窗口中的所有离子进行选择、碎裂、检测,从而无遗漏、无差异地获得样本中所有离子的全部碎片信息。DIA就像地毯式轰炸,无遗漏地打击全部目标。赛默飞建立的专门针对基于Orbitrap的数据非依赖采集(DIA)解决方案,工作流程统一、方法成熟、简单易用,适用于任何复杂生物学样本和临床样本的高通量蛋白质组学定量分析。整套解决方案包括了方法设置与数据采集、数据分析、应用实例、文献资料以及更多DIA相关信息资源和产品信息。对于临床研究中的数量庞大的高度、高度复杂的、不稳定的样本,DIA提供条件统一、无差别的质谱采集方法,能够在样本信息“完全未知”的情况下,对样本进行高通量、高速度采集,获得数据之后再进行深入解析和挖掘,是临床蛋白质组学实验的利器。对于生物学研究中的分析重点——多个时间点或多种条件下蛋白表达量的变化趋势,DIA的灵敏度、精确度和重现性为获得准确、可靠的定量结果提供了有力保障。产品链接:Q Exactive系列Orbitrap超高分辨质谱仪(Q Exactive, Q Exactive Plus, Q Exactive HF)http://www.thermoscientific.cn/products/orbitrap-lc-ms.htmlOrbitrap Fusion“三合一”系列Orbitrap超高分辨质谱仪http://www.thermoscientific.cn/product/orbitrap-fusion-tribrid-mass-spectrometer.htmlEasy-nLC纳升超高效液相色谱仪http://www.thermoscientific.cn/product/easy-nlc-1000-liquid-chromatograph.htmlUltiMate? 3000 RSLCnano纳升超高效液相色谱仪http://www.thermoscientific.cn/product/dionex-ultimate-3000-rslcnano-system.htmlProteome Discoverer蛋白质组学分析软件(http://portal.thermo-brims.com/)Pierce? Peptide Retention Time Calibration Mixture标准肽段混合物(Catalog No. 88320 & 88321)http://www.lifetechnologies.com/order/catalog/product/88320?CID=search-product 解决方案下载链接:http://www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LCMS/documents/DIA-solution.pdf-------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 水样的采集与保存,做好水质检测的第一步
    在水质检测的过程中,水样的采集和保存是水质分析的重要环节。要想获得准确、全面的水质分析资料,首先必须使用正确的采样方法和水样保存方法并及时送样分析化验,正确的采样和保存方法是获得可靠检测结果的前提。水样采集和保存的主要原则:(1)水样必须具有足够的代表性;(2)水样必须不受任何意外的污染。既然水样的采集和保存这么关键,那对于水样的采集和保存,有什么样的要求呢?又有哪些是需要注意的?一、水样的采集1、首先要选择好具体的采样位置,避免周围环境对采样器或采样装置进水口的污染,包括采样者手指污染的可能性也要防止。图片源于网络特别是采集微生物指标的水样,使用前要求严格无菌,因此就要对容器进行干热或湿热灭菌处理。曾有朋友弱弱抱怨,这些前处理工作不仅增加了工作量,也增加了实验室的仪器维护、安全保障等压力。事实上,这些工作并非一定如此。因为,必要的是灭菌的容器,而不是容器灭菌工作。清时捷无菌采样袋,预先灭菌,即开即用2、采样前,应让水放流数分钟,特别是采集自来水或具有抽水设备的井水时,以冲去水管或采样装置管线并积留的杂质。3、水样采得后应立即在盛水器(水样瓶)上贴上标签或在水样说明书上作好详细记录。水样说明书内容应包括水样采集的地点、日期、时间、水源种类、水体外观、水位高度、水源周围及排出口的情况、采样时的水温、气温,气候情况,分析目的和项目、采样者姓名等等。图片源于网络二、水样的保存水样采集后,应尽快进行分析检验。某些项目还要求现场测定(如水中的溶解氧、二氧化碳、硫化氢、游离氯等)。但由于各种条件所限(如仪器、场地等),往往只有少数测定项目可在现场进行(温度、电导率、pH值等),大多数项目仍需送往实验室内进行测定。因此,水样的保存是个很重要的问题。水样在采集后,如不妥善保存,水中所含物质发生物理的、化学的和生物学的变化是很普遍的。对于水样保存的方法主要有以下几种:1、冷藏或冰冻保存原则上讲,从采样到分析的时间间隔应越短越好。水样若不能及时进行分析,一般应保存在5℃以下(大约3~4℃左右为宜)的低温暗室内。这样可使生物活性受到抑制,生物化学作用显著降低。2、加入保存药剂水样保存的另一种方法是加入保存药剂。加入的方法可以是在采样后立即往水样中投加化学药剂,也可以是事先将化学药剂加到盛水器里。对保存药剂的一般要求是,有效、方便、经济并且应对测定无干扰和无不良影响。不同水样和不同的被测物要求使用不同的保存药剂。三、采样的注意事项1.微生物:同一水源、同一时间采集几类检测指标的水样时,先采集供微生物学指标检测的水样。采样时直接采集,不得用水样刷洗已灭菌的采样袋,并避免手指或其他物品对袋口的沾污。2.理化指标:采样前先用水样荡洗采样器、容器和塞子2-3次。3.水龙头水的采集:应注意采样时间,夜间可能析出可沉渍于管道的附着物,取样时应打开龙头放水数分钟,排除沉积物。采集用于微生物学指标检验的样品前应对水龙头进行消毒。4.采样时不得搅动水底沉积物。5.注明水样编号、采样者、日期、时间及地点。以上关于水样采集及保存的简单分享。如果大家在水质检测中有其他的疑问,欢迎您给我们留言,也可拨打“400-660-7869”联系我们。●往期推荐 ●● 水厂加氯消毒工艺改进,看看绍兴市上虞区水司是怎么做的!● 我国自来水处理工艺常见问题及解决措施,你了解么?● 农村饮水安全问题,你那里解决了吗?● 南方暴雨引发洪涝,灾区饮用水安全该如何做好?长按关注清时捷公众号微信号 : sinsche-com联系热线:400-660-7869
  • Cytek 发布全新自动上样器,实现无人值守高通量样本采集【附】适配流式细胞仪一览
    近日,Cytek 推出一款全新的自动样本上样器 – Automated Sample Loader (ASL)。全新Cytek ASL可完美结合Cytek Aurora和Northern Lights流式细胞分析系统,提供多种高通量上样模式,帮助科研人员简化实验流程,解放劳动力,提高工作效率。“软硬”结合,进一步提高实验室生产力Cytek ASL为Cytek流式用户带来更多功能体验,用户可以选择40管管架、96孔标准板或96孔深孔板进行上样分析,并能在几秒钟内实现不同上样模块间的切换。Cytek同期推出新版SpectroFlo软件,新版软件不仅可支持ASL,还带来全新用户界面和管理选项,包括优化的实验创建、数据分析和数据管理等功能模块。“我们的全新上样器简化了样本获取的过程,帮助了科研人员大大缩短从提出生物学问题到获得解答所需的时间。”Cytek Biosciences首席执行官蒋文斌博士表示:“这也使得Cytek Aurora和Northern Lights系统适用于更加广泛的应用场景和更多实验室——包括那些有管式上样需求的和运行大量样本的实验室。配备40管管架、96孔标准板和96孔深孔板的多种上样选择,Cytek ASL不仅为我们的全光谱分析(Full Spectrum Profiling,FSPTM)系统用户打开了广阔的应用天地,同时进一步推动Cytek成长为细胞分析市场完整解决方案的供应商。ASL的主要特点和优势有:无人值守的高通量样本采集,提高实验室生产力;完美结合Cytek流式细胞分析仪,简化工作流程;优化样本混匀条件,满足多种管式和板式上样需求;完全可自定义的设置,适于广泛的应用检测场景;减少手动上样带来的错误和误差。科研、临床检测两不误Cytek全光谱流式细胞技术能够检测标记在细胞上的每个荧光分子的全光谱信号,这项先进技术使Cytek Aurora系统能够在单管样本中一次性检测超过40种不同的荧光标记,帮助科学家进行更为深入和全面的科学探索。Cytek全光谱分析系统匹配全新 ASL,使研究人员可进行更高通量的样本检测,实现更为广泛的应用。全新ASL加上之前推出的cFluor™ 系列专有试剂和Aurora CS全光谱流式细胞分选仪,Cytek已成功完成角色转变,成为细胞分析市场完整解决方案的优秀供应商。在中国,除了能满足科研用户的需求,针对有高通量检测需求的临床用户,Cytek全新ASL 作为其临床型流式细胞分析仪器 NL-CLC的配套产品,已申请并获批可用于临床检测。适配仪器一览:Cytek Aurora 全光谱流式细胞仪(点击查看参数报价详情)Aurora 可配置高达 4 色激光 ,3个散射光和 48 个荧光检测通道 ,能够满足所有实验室的需求一一无论是简单的实验还是复杂的多色分析。独特的革新光路设计为各种应用提供了前所未有的灵活性 ,Aurora 可以使用大量新的荧光染料组合而无需为每个应用重新设置仪器。先进的光学系统和低噪音的电子系统带来了超强的灵敏度和分辨率。拥有专利技术的平顶光束设计 ,结合独特的液流系统 ,充分保证了高流速采集样本的出色性能。Aurora CS全光谱流式细胞分选仪该流式细胞分选仪采用Cytek独特的全光谱分析技术(Full Spectrum Profiling, FSP™ ),Aurora CS可在单细胞水平提供超高分辨率的数据结果,帮助科学家和研究人员将复杂实验简单化,轻松解决最具挑战性的细胞分析,如高自发荧光的细胞分析、或关键生物标志物表达水平低的细胞分析等。使用Aurora CS,研究人员可以从微孔板或试管中轻松分选活细胞或其他颗粒,用于下游分析实验,如单细胞RNA测序、蛋白质组学和细胞生物学研究等。临床型流式细胞分析仪器 NL-CLC(点击查看参数报价详情)Cytek全光谱流式细胞仪 NL-CLC 在2019年获得上海药品监督管理局II类医疗器械注册证的批准,成为当时国内首个获批可用于临床检测的光谱流式细胞仪。在临床应用方面,Cytek为临床用户提供仪器+试剂+软件的整体解决方案。不同于其它流式细胞仪,NL-CLC独创的全光谱检测和分析技术摒弃了传统的仅能检测狭窄信号范围的滤光片,采用了已报专利申请的光学接收模块来获取全光谱信号,不再受荧光染料的局限,轻松实现更多颜色组合的搭配方案,可将基于传统流式的多管实验减少至一管或两管,在很大程度上帮助临床科室节省人力财(材)力以及时间成本,大大提升工作效率。更重要的是,在提高检测灵敏度的同时,最大程度的节省了珍贵的临床样本。
  • 产品推介 | “足帮帮”3D脚型扫描仪,从采集到应用,只需要一个它
    “足帮帮”是一款基于三维视觉技术打造的3D脚型扫描仪,能快速完成高精度足部模型重建的程序。“足帮帮”力图通过技术和市场应用的融合合作,打通足部三维数据的高效采集及数据应用链条,助力医疗健康产业的方案升级。01先临三维“足帮帮”3D脚型扫描仪先临三维“足帮帮”3D脚型扫描仪能采用结构光三维扫描技术,快速获取完整的足部三维数据,并输出高精度的3D模型,还能融合3D检测、结合AR体验以及大数据等技术,是一项可靠的数字化手段,在医疗康复领域中有广阔的应用前景。02“足帮帮”的核心优势特点及优势扫描速度快 3秒快速扫描,减少人体活动对测量精度的影响。数据精度高 人体足部的测量精度达±0.5mm。操作简单 设备集成度高,可一键扫描。高兼容性 可无线连接Pad、手机、电视等多种显示终端。安全光源 使用非接触式蓝光扫描,扫描过程对人体无害。03“足帮帮”的医疗应用场景“足帮帮”能够高效获取足部3D数据,包括尺寸、足弓,足跟形状,以及足底受力区域的相关信息,还能集成足部康复云平台—扫描—设计—打印—线上跟踪等模块。在医疗场景中,可实现患者3D数据的建档,科学矫治方案的指定,并进行治疗前后的数据对比。同时帮助医疗机构建立如糖尿病足、内外翻足等专项数据库,配合行业科研和医疗方案升级。“足帮帮”的具体应用“足帮帮”在儿童足部健康监测中可发挥重要作用。儿童的成长发育过程快速,在这个过程中,经常会出现鞋子不合脚的情形,对于孩子的足部发育造成不良影响,长期鞋子偏大容易造成儿童走路拖拉,前脚掌不离地等不良习惯,鞋子偏小则会造成高弓足、指甲受伤、拇趾外翻、影响血液循环等。“足帮帮”可以通过足部扫描帮助家长及时发现儿童足部健康问题并及早干预。关注足部健康随着大众健康消费需求的爆发,人们对于足部的健康不断关注,“足帮帮”实现了从数据获取以及应用的完整闭环中扮演着至关重要的角色。先临三维一直致力于高精度3D数字化技术的普及化应用,推广“足帮帮”,是先临三维推进高精度3D数字化技术普及的一项重要实践,深化了3D数字化技术在医疗健康领域的应用。先临三维也将持续努力,以高精度3D数字化技术为更多行业赋能,以科技的力量助力创造更健康的品质生活!
  • 智能数据采集FLASHIda应用于自上而下蛋白质组学分析
    大家好,本周为大家分享一篇发表在Nature communications上的文章,FLASHIda enables intelligent data acquisition for top–down proteomics to boost proteoform identification counts [1],文章的通讯作者是德国图宾根大学的Oliver Kohlbacher教授。自上而下蛋白质组学(TDP)能够对完整的proteoform进行全面和深入的分析,目前已广泛应用于生物医学研究领域。proteoform在不同的生物系统中具有高度异质性,proteoform水平的信息可以为了解生物生化功能或疾病表型提供重要的信息。近年来,随着TDP样品处理方法、分离技术、碎裂技术和生物信息学方法的进步,proteoform变得更容易被检测和表征。在复杂样本的大规模研究,如微生物或人类细胞裂解液中,proteoform的鉴定数量已达到4000-6000(对应500-1000个蛋白质)。在单次TDP实验中,在大肠杆菌裂解液中可以鉴定出约800种proteoform,在人脑样本中可以鉴定出约1800种proteoform。由于proteoform的多样性和复杂性,完整蛋白质的DDA采集是非常重要的。然而目前的仪器软件在DDA采集中实施的碎裂技术优化主要针对自下而上蛋白质组学(BUP),而不是TDP。尽管这些方案在BUP研究中有效地捕获了各种高质量的肽段离子,但这些选择标准对于TDP中的proteoform离子选择并不是最优的。与BUP中的肽段离子相比,单个proteoform由于其高质量和高电荷会产生许多峰,Top-N采集往往会导致从一个丰度较高的proteoform中选择多个峰,而不是从多个不同的proteoform中进行选择,这会导致proteoform的覆盖率较低。此外,基于强度进行选择可能不会选到能产生多种独特片段的高质量前体。目前,大多数大规模TDP研究使用具有特定调优参数的DDA采集,例如,Top-N采用相对较低的N值(3-5)和相对较高的隔离窗口(1.2-15 Th,超宽隔离)。然而对所选前体离子的分析表明,对proteoform的选择依然不理想。因此,采用更智能的数据采集方式(Intelligent data acquisition,IDAs)是非常有必要的。本文中作者提出了一种用于TDP的基于机器学习的智能在线数据采集算法FLASHIda,该算法可以确保实时选择不同proteoform的高质量前体,最大化TDP中的proteoform覆盖。FLASHIda通过iAPI与tribrid Thermo Scientific质谱仪连接,允许对MS数据进行实时访问。在LC-MS运行期间,将实时去卷积算法和评估前体同位素质量的机器学习技术结合,非冗余选择高质量前体离子,从而提高蛋白质的覆盖率。FLASHIda流程如图1所示,该算法能在20毫秒内处理每个MS全扫描,并优化下一个采集周期,以最大限度地提高采集中的异型多样性。FLASHIda包括以下3个关键步骤,第一步是将输入的m/z-强度谱转换为mass-quality谱图,第二步是在转换谱图中选择前体离子,最大化唯一识别的proteoform离子数量,最后,动态确定每个选定质量的电荷态和隔离窗口大小,以尽量减少噪声或共洗脱的干扰。确定的隔离窗口m/z范围通过Thermo iAPI连接提供给仪器。  图1.FLASHIda总览  在对大肠杆菌裂解液的分析中,与标准DDA模式相比,FLASHIda在三分之一的仪器时间内将proteoform鉴定数量从800增加到1500,或产生几乎相同的鉴定数量。此外,FLASHIda能够灵敏地绘制翻译后修饰和检测化学加合物。作为仪器的软件扩展模块,FLASHIda可以方便地用于复杂样品的TDP研究,以提高proteoform的鉴定率。  图2. Proteoform分析  这项研究展示了IDA在TDP研究中的应用,目前作者依然在开发该算法的不同变体,用于靶向proteoform分析,深度表征,甚至从头测序。此外,由于FLASHIda能够选择无干扰的前体离子,因此它可以用于提高proteoform定量准确性。作者预计,未来在FLASHIda内开发的高级数据采集方法将有助于通过TDP探索proteoform的异质性。  撰稿:张颖编辑:李惠琳  原文:FLASHIda enables intelligent data acquisition for top–down proteomics to boost proteoform identification counts  李惠琳课题组网址www.x-mol.com/groups/li_huilin   参考文献  Jeong K, Babović M, Gorshkov V, Kim J, Jensen ON, Kohlbacher O. FLASHIda enables intelligent data acquisition for top-down proteomics to boost proteoform identification counts. Nat Commun. 2022 Jul 29 13(1):4407.
  • 关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告
    近日,上海市环境科学学会和浙江省生态环境监测协会发布关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告,根据《上海市环境科学学会团体标准管理办法》《浙江省生态环境监测协会团体标准管理办法(试行)》的要求,《生态环境监测现场移动端数据采集规范》(T/SSESB 8-2023 T/ZJEEMA 0005-2023)团体标准按照规定程序编制,经专家组审查通过,现批准发布,发布日期为2023年9月25日,自2023年10月1日起实施。规范中对现场移动端和现场监测仪器发展现状进行阐述,并列出常用仪器名称和主要功能,如下所示:此外,规范还在功能要求中强调,现场移动端的功能应能覆盖场监测业务全流程,具体包括:任务下载。现场移动端应具备下载和查看现场监测方案或采样计划的功能,信息内容包括被测对象基本信息、任务名称和编号、监测类别、监测点位、监测项目、监测周期和频次、样品类别和数量、采样和分析方法、质量保证与控制要求、样品运输保存要求、监测人员。适用时还应包括生产工艺和污染治理设施信息、执行标准及限值、监测仪器设备、监测点位示意图、分包项目等内容。仪器出入库管理。现场移动端应具备通过射频识别(RFID)、扫码等方式采集现场监测仪器信息的功能,包括但不限于任务名称和编号、出入库日期和时间、使用时长、使用人等。适用时还应采集仪器检定校准和期间核查、日常维修维护等内容。点位布设。现场移动端应具备通过电子监测点位示意图、地理信息定位、扫码等方式记录监测点位信息的功能。适用时还应通过照相、文字补充描述等方式采集点位信息。样品采集和测试。(1)现场移动端应具备通过无线模块、串口等方式采集现场监测仪器数据的功能,包括但不限于现场监测过程参数、测试结果、仪器使用前后关键性能指标核查信息、仪器状态和质控信息。对于无法通过仪器采集的数据和信息,可采用手工录入方式。(2)现场监测仪器通讯协议要求应符合附录A要求,监测因子和信息编码应符合附录B要求,现场监测仪器软件宜具备监测流程管理和控制功能。(3)通过现场移动端或LIMS中预设的原始记录表单,将现场监测过程中采集的数据自动生成相关记录,原始记录表单的格式和内容应符合实验室管理体系要求。(4)可通过现场移动端添加现场质控样品。样品流转。现场移动端应具备样品流转记录功能,样品流转信息包括但不限于监测任务基本信息、样品类别、样品名称、数量、性状、采样人或送样人、保存剂、保存温度和避光情况等。适用时还应采集样品运输轨迹和时间等信息。任务上传。现场监测任务完成后,现场移动端中该任务下的所有采集的数据均应上传至LIMS,包括监测数据、质控数据、仪器信息、地理位置信息、监测点位示意图等。详细内容见附件:关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告.pdf上海市环境科学学会关于《生态环境监测现场移动端数据采集规范(征求意见稿)》团体标准公开征求意见的函.pdf
  • 基于小型光谱仪构建新型光谱分析技术——《寻找光谱仪器创新的力量》系列约稿
    作为最早问世的仪器分析技术之一,光谱分析技术走过了百年历史,已经逐步发展为一种特征明显、应用广泛的仪器分析方法。百余年来,光谱技术发展的一个显著特点就是持续不断地追求分析性能的提升,导致光谱仪器越来越复杂和精密。所以大型光谱仪通常都是通用型的,一台仪器可以做种类不同的样品,不同样品的分析方法也可能有所不同,因此对仪器使用的环境要求和人员要求都比较高,仪器的价格也较高。近一二十年来,光谱仪器领域出现了一个可喜的发展趋势,各式各样的小型光谱仪器不断涌现。与大型光谱仪比较,这类仪器的体积显著减小,价格急剧下降,仪器的工作方式,如分光方式、光电转换模式都发生了根本性的变化,有些甚至颠覆了传统光谱仪器的理念。我国对光谱仪器的开发工作起步较晚,基础薄弱,尤其在核心部件的研发方面,比如光栅、检测器、干涉仪等,至今也没有推出自主品牌的质高价廉的产品,目前依然依赖进口。开展高性能光谱仪器的开发,包括开发光谱仪器的核心部件当然非常重要,是国家战略,是避免被卡脖子的必要措施。但开发和应用小型光谱仪器也应该作为我国光谱技术发展的一个方向,甚至我觉得应该更受重视。我国国民经济各个领域对光谱仪器的需求巨大,但这种需求是应用层面的,应用驱动的光谱分析技术更受欢迎。科研创新的力量是应用,光谱仪器发展和创新的力量也是应用。在应用层面小型光谱仪器具有得天独厚的优势。小型光谱仪器,或称为光纤光谱仪,小巧、价廉、使用方便,可自由搭配,当然性能一般不及大型光谱仪器,所以作为通用型仪器,小型光谱仪使用的优势不明显。但作为专用的分析仪器,如果能与应用完美结合,充分发挥其独特的优势,能起到大型仪器不易做到的作用。鉴于小型光谱仪使用灵活,其理想的用处就是与应用相结合,发展特定检测对象专用的仪器设备,或某行业/领域专用的仪器设备,前景美好。这类仪器容易做到:多种功能一体化,操作一键化,分析流程傻瓜式,发展潜力巨大。完整的分析检测过程包括样品前处理,分析仪器测量,以及数据处理等几个步骤。如果在硬件和软件上能设计实现这三个功能一体化的检测系统,就解决了用户在应用层面的所有关注的问题,也能改变传统仪器分析方法对仪器、样品处理和操作人员的严格要求,减小了人力、物力、财力成本,甚至可以实现一键化或傻瓜式的仪器操作。我们课题组采用小型光谱仪设计了一套多功能光谱检测设备(如图1所示)。用医用注射器吸取被测样品溶液以及衍生化试剂,在注射器内对被测组分进行衍生化以增强荧光信号强度;在注射器头位置接一个放置尼龙膜的小型膜固相萃取器件,通过推注射器活塞杆将样品衍生化产物富集到尼龙膜上;取出尼龙膜放在专门设计的荧光光谱测量装置上,荧光激发光源采用LED灯,用小型光谱仪测量荧光光谱。整个装置体积小,价格低廉,可以实现物质的高灵敏检测。该设备已经用在伏马毒素和磺胺类药物的检测中。图1 膜富集多功能荧光光谱检测设备我们还针对中药提取的监测问题发展了一套过程的光谱监测系统。从提取罐上连接一个管路,通过可以正反两个方向转动的动力泵把提取液吸入管路,为了防止提取罐中的残渣进入管路发生堵塞现象,以及对光谱测量的影响,在管路适当位置安装过滤装置;吸入管路的溶液可流入流通池进行光谱采集;采用小型光谱仪在流通池位置测量光谱,甚至可以采用多种光谱仪采集不同种类的光谱信号;光谱测量结束后动力泵反转将提取液反向推动流回提取罐,这时流动的提取液可以清洗流通池、管路和过滤装置,达到自清洁的作用。这套系统实现了在线过程监测中采样、过滤、光谱采集、清洗等多个功能。一个周期可在1分钟内完成,大大提高了在线过程光谱监测的速度,而且可以实现整个过程的自动化。(作者:杜一平 华东理工大学化学与分子工程学院)《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》把创新放在了具体任务的第一位,全文160余次提到了“创新”关键词。2022年第十三届全国人民代表大会第五次会议上,国务院总理李克强所作的政府工作报告中,亦明确指出要坚持创新驱动发展。对科学仪器产业而言,“创新”更是至关重要。近年来,我国对科学仪器的创新和研发高度重视,先后设立了“科学仪器基础研究专项”、“国家重大科研仪器设备研制专项”和“国家重大科学仪器设备开发专项”等科研计划等。2021年11月,北京“十四五”规划也指出要支持开展关键仪器设备研发,支持挖掘一批服务于重大科技基础设施的定制化科学仪器和设备,重点突破研发新一代光谱等关键技术。不断高攀的前沿研究是创新,差异化的产品发展也是创新。为了展现光谱仪器的创新成果,分享光谱仪器研发和应用中的创新思维,共同促进光谱仪器产业化的创新发展,仪器信息网特别策划《寻找光谱仪器创新的力量》活动,邀请从事光谱仪器及应用开发的专家学者一起分享创新成果,并探讨创新的方法和思维。更多详情请点击》》》
  • 数据采集神器-奥豪斯SPDC软件
    SPDC软件是一款免费的奥豪斯自主研发的数据采集工具,支持RS232接口或以太网连接,对单台奥豪斯天平或秤的称重数据进行实时采集至Excel,方便数据分析和处理。数据采集平台SPDC软件适配奥豪斯的天平,水分仪,工业称重,pH电化学等产品。数据接口默认设置相同,软件自动识别COM端口号码。运行SPDC软件,可在几秒内完成连接配置,轻松开始数据采集。灵活的数据采集能力支持自动和手动数据传输,满足不同的数据采集需求。方便在线实时监控数据变化。自动打印:只需开启天平或者工业秤的自动打印功能,即可实现称重数据的自动传输,大大节省数据采集时间。手动打印:手动打印键可实现打印单个称重信息或者完整的打印条信息。打印条信息包括:日期和时间、天平ID、天平名称、用户名、称量结果等,符合数据追溯的要求。免费搭建实验数据MS EXCEL平台,为后期实验数据分析做好准备SPDC数据采集软件支持支持多种数据导出格式,包括MS Excel,Access, Text和 Word。数据采集导入Excel后,可以直接用Excel自带函数做数据分析。另外,SPDC还具有导入数据至自定义单元格的功能,即直接导入已经做好的实验表格,提升了数据录入的效率,减少出错的机会。如何获取SPDC 软件奥豪斯网站提供免费软件下载,或者售后服务热线:4008-217-188指导安装。如何使用SPDC软件奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 微型光谱仪之LIBS光谱系统
    1、技术简介  在高强度的激光作用 下,被测材料表面就会有几微克的物质被喷射出来,这个过程通常被称为激光剥离,同时材料表面还会产生寿命短但亮度很高的等离子体,其瞬间温度可达 10,000℃ 。在这个热等离子体中,喷射出来的物质离解成激发态的原子和离子。在激光脉冲结束后,由于等离子体以超音速向外扩展所以迅速地冷却下来。在这段时间内, 处于激发态的原子和离子从高能态跃迁到低能态,并发射出具有特定波长的光辐射。用高灵敏度的光谱仪对这些光辐射进行探测和光谱分析分析,就可以得到被测材料的元素构成信息。  激光诱导击穿光谱(LIBS)是一种原子发射光谱。可以对固相、液相和气相基体中几乎所有元素进行定性和定量的分析。不同于传统的检测方法,LIBS在检测过程中无需进行复杂的样品制备。为了达到这个目的,LIBS激光脉冲发射并汇聚于样品表面一点,样品被激光加热到气态继续吸收能量成为等离子态,等离子体背景辐射快速衰减导致等离子特征谱线突出,光谱仪开始积分获得测量结果。对产生的对应元素发射谱进行分析。元素发射谱的波长与元素的种类直接相关,而元素谱线的强度则和元素的含量相关。图1 激发诱导击穿光谱检测原理图 图2 激发等离子体与能级图  2、应用说明  激光诱导击穿光谱技术系统在进行元素分析的时候,需要样品量极少,对样品的破坏性小,可以对固相,液相,气象的样品进行测量 具有自清洁能力,几乎不需要样品制备 可以实现快速实时在线分析 具有遥测能力,可实现有毒、强辐射等恶劣环境中的远距离、非接触性测量 具有宽光谱多种元素同时测量,ppm量级探测灵敏度,可对痕量元素进行探测。多通道光谱仪,凭借其高效的外部同步时钟,完美的协同了所有通道实现精确的延迟采集,准确的在原子激发辐射突出时采集到完整的原子谱线信号。同时,多通道光谱仪可以应客户的需求在180-1037nm的范围内自由的配置光谱仪的通道数量和盖范围,系统自带的高效时钟可以完美的同步所有通道,并同时实现精确触发两台外部设备。  自然环境:土壤污染分析,工业生产环境监测,金属、煤炭等材料分析,宝石鉴定等   安防检测:爆炸物分析,生化武器分析   基础研究:等离子体发光测量,生物柴油火焰分析   航空航天:火星探测应用   医学诊断:骨骼,牙齿等相关分析分析癌症细胞,抗糖尿病药物分析等。  3、典型产品和配置  LIBS光谱技术系统配置:  1. 多通道光谱仪:超宽光谱范围,优异的紫外响应方便轻元素测量 短时间,最短1ms积分时间,通道间积分抖动± 10ns以内 高分辨,最高可达0.035nm光谱分辨率,精准延时触发控制 多扩展,两路可控延时触发接口。图4 多通道光谱仪  2. 样品仓:安全防护具有1064nm激光安全防护窗、电动激光安全锁、仓门自动安全锁、E-stop 双光纤收集光路,支持两路45度收集通道。可单独使用抗紫外光纤作为紫外通道,,同时选择使用普通可见光纤作为可见通道,增强系统的紫外探测能力。气氛保护机制能够自动充气开关控制和流量调整。能够排出测量产生的烟尘污染,延长光路寿命并且提高测试稳定性。图5 样品仓  3. 激光器  4. 采样附件(光纤等)  5. 光谱仪控制软件图6 LIBS典型配置  典型配置  典型产品:多通道光谱仪,样品仓,激光器  4、应用文章  4.1 土壤与农作物污染检测图7 土壤与农作物检测光谱图  4.2 古玩真伪鉴定图8 LIBS古玩真伪检测  4.3 金属和煤炭测量图9 金属煤炭检测光谱  4.4 等离子体发光测量图10 等离子体发光  4.5 生物柴油火焰检测图11 生物柴油检测图  4.6 检测抗糖尿病药物中的有效成分图12 抗糖尿病药物成分检测  4.7 LIBS在火星探测中的应用图13 LIBS检测火星元素光谱图  4.8 珠宝真伪的检测图14 真伪珠宝检测光谱图  4.9 工业废水检测图15 工业废水检测光谱图  4.10 爆炸物检测图16 爆炸物检测  4.11 核废料/放射性物质检测(来源:海洋光学)
  • 文献分享 | 基于宽隔离窗口采集的单细胞蛋白质组学
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼齐英姿Literature sharing本次我们分享两篇文章,分别于2022年09月和2022年10月发表于bioRxiv [1-2],文章内容为在单细胞蛋白质组学领域,使用基于PD3.0_CHIMERYS检索及质谱宽隔离窗口采集的方法,搭配全新的μPAC 色谱柱的赛默飞综合解决方案,提升单细胞蛋白质鉴定的性能。接下来我们分别进行具体的介绍。基于DDA采集模式与单细胞组学的低离子数目的特点,采用更大的隔离窗口,增加共隔离的离子数目,这是一种被认为是类似于结合了传统的DDA与DIA的采集方法,文献中将这个方法称之为宽隔离窗口采集(wide window acquisition ,WWA)策略(如图1所示)。图1:wide window acquisition (WWA)宽隔离窗口采集策略(点击查看大图)PD软件3.0版本自2022年年中发布以来,其对DDA蛋白质组学数据的性能提升有目共睹;如需CHIMERYS的介绍,可具体参考以下链接《好风凭借力:CHIMERYS实现蛋白质组学数据的性能飞跃》——赛默飞orbitrap组学俱乐部公众号点击图片可查看基于AI算法的CHIMERYS搜索引擎,可在一张二级谱图中解析出多个PSMs,擅长于解析WWA采集得到的更加复杂的二级谱图。作为 LC-MS/MS的重要组成部分的低流速液相色谱,对减少样品的复杂度、增加蛋白质组学的鉴定方面的贡献尤为重要,通常我们可以通过拉长色谱梯度等方法来实现更好的分离,而这也会引入包括峰展宽在内的灵敏度的降低及检测通量的降低等问题。而新发布的微柱蚀刻技术的μPAC系列色谱柱,具有高度有序的排列,有助于更加优异的峰宽表现且减小柱残留,低背压的设计也使其可以使用更大的流速,可以更快的上样、清洗及平衡色谱柱,从而增加检测通量(赛默飞提供的综合解决方案如图2所示)。图2:结合了低流速液相色谱、质谱及分析软件的完整综合解决方案(点击查看大图)► ► ► 不同的色谱柱性能比较在色谱柱的比较中,与传统的填充柱相比,作者对比了110cm的第二代μPAC色谱柱与其他两款填充型色谱柱(50cm及25cm),如图3所示,上样量为12.5ng Hela肽段,30min有效梯度,采用1Th的采集窗口,第二代μPAC色谱柱可以得到蛋白水平66%和肽段水平140%的提升。而比较不同的μPAC色谱柱(5.5cm原型柱、50cm Neo柱和110cm二代柱),使用复杂样品(HeLa, yeast, 和 E. coli按照8:1:1混样),10ng-400ng的上样区间,蛋白鉴定结果如图3所示。50cm的Neo色谱柱,在30min及60min梯度上具有优异的表现,特别是在低上样量的条件下。我们需要的样品的通量(梯度时间)及样品的复杂度则决定了WWA方法对单细胞样品的适用性,样品通量是单细胞蛋白组学领域的重要关注点,使用5.5cm色谱柱搭配高流速,可实现到~100spd的水平。图3:不同的色谱柱性能比较(点击查看大图)► ► ► 隔离窗口的优化在WWA方法中,若使用了>4m/z的较宽的母离子隔离窗口,使得临近的母离子被共同碎裂,这时二级谱图会形成类似于DIA采集方法的混合谱,这种方法不仅能增加鉴定数,还能提高鉴定时对低丰度肽段的灵敏度;对不同大小的隔离窗口进行优化,在250pg到400ng的上样区间中,可以看到,更宽的隔离窗口更适合较小上样量的结果,如250pg和1ng的上样量下,隔离窗口12m/z和8m/z为最适效果。搭配于CHIMERYS的检索方法,更大的隔离窗口所提供的谱图复杂度,使得对低丰度肽段有更好的挖掘,拓宽了鉴定的丰度的动态范围。图4:不同上样量条件下隔离窗口的优化(点击查看大图)在质谱方法中,单细胞的样品由于离子数更少,往往需要更高的最大离子注入时间,比如几百个毫秒,这会导致二级谱图数的降低,从而显著的影响鉴定量。此时我们也可以配合使用更高的分辨率,可以识别更加复杂的离子,也就是说,我们可以使用更大的隔离窗口来提供更多的离子进行累积,并且通过高分辨率来识别这些离子,而后我们可以通过PD3.0 CHIMERYS引擎来对这些复杂的混合谱图进行检索。使用经典的窄隔离窗口采集方法,与传统的MS Amanda 2.0 引擎相比,CHIMERYS引擎可提升鉴定量2.6倍;而再加成上宽隔离窗口的WWA采集方法后,则可达到4.6倍的提升水平。图5:CHIMERYS搜索引擎提升蛋白质组学鉴定深度(点击查看大图)另一篇文献中,作者使用0.2ng Hela肽段,对不同的隔离窗口、最大离子注入时间、分辨率等参数进行优化,发现在MS2分辨率为45k和60k时,我们能够得到最多的PSMs鉴定数。在隔离窗口为8或者12Th时,会得到最好的结果。0.2ng Hela的上样量,WWA模式可达到2,396个蛋白鉴定,比普通DDA模式鉴定量增加39%。图5:采用0.2ngHela肽段及40min对WWA模式质谱采集参数进行优化(点击查看大图)在短梯度模式下,峰容量降低,使其谱图的复杂度更高。基于CHIMERYS的破解高度复杂的混合谱的能力,使得更快的色谱分析成为可能。在使用12Th的隔离窗口与60k MS2分辨率的组合条件下,可得到最好的鉴定能力。使用此参数组合,更快的20min的鉴定量仅比40min少了10%(3160 vs 3524)。这说明,在并未显著影响蛋白质组学鉴定量的条件下,WWA的采集方法适用于更快速的梯度分离。由于WWA采集方法被认为是类似于结合了传统的DDA与DIA的方式,故文章对不同的采集模式进行了比较;在单细胞水平的比较中(10个Hela细胞及7-10个K562细胞),使用相同的118ms和60K分辨率的二级参数,定性深度的比较中,WWA采集方法可得到最多的鉴定。图6:不同的采集模式(DIA, DDA 及 WWA)比较(点击查看大图)► ► ► 结语WWA采集方案的提出,为我们进行快速的、更高深度的单细胞蛋白质组学提供了新的思路:基于赛默飞综合解决方案,我们从全新的Vanquish neo低流速液相色谱、μPAC色谱柱、宽隔离窗口的质谱采集策略以及全新的基于AI算法的CHIMERYS搜索引擎,全方面提升单细胞蛋白质组学鉴定深度。如需合作转载本文,请文末留言。
  • CR1000数据采集器中标中国矿业大学
    2015年5月份,我公司销售的美国Campbell公司生产的CR1000中标中国矿业大学,已经供货。 CR1000数据采集器是Campbell数据采集器里面性价比最高的一款。它提供传感器的测量、时间设置、数据压缩、数据和程序的储存以及控制功能,由一个测量控制模块和一个配线盘组成,具有强大的网络通讯能力。CR1000数据采集器的扫描速率能够达到100Hz,拥有模拟输入、脉冲计数、电压激发转换、数字等多个端口,外围接口有CS I/O、RS-232以及SDM等,采用12VDC外接可充电电池供电。对于低温的环境,用户还可以选择低温型的CR1000-XT数据采集器。CR1000所具有的高精度性、高适应性、高可靠性以及合理的价格等特点,使其成为科研、商业与工业系统应用的理想选择。目前,CR1000数据采集器已在气象观测、农业研究、土壤水分研究、风力观测、道路气象站、工业产品测试、通量观测、涡动协方差系统等众多领域得到了广泛应用标准的CR1000数据采集器包含4M的数据和程序存储空间,可通过外接存储模块和CF存储卡来实现大容量数据存储。数据和程序保存在非失意性闪存和内存里。锂电池装在内存和实时时钟上。当首选电池(BPALK,PS100)电压降至9.6V以下时,CR1000也能够延缓执行操作,从而减少不准确测量的可能性。CR1000可以通过外围设备扩展从而形成一个数据采集系统。很多CR1000系统可以构建一个网络从而形成当地或整个地区的监测网络。 数据存储为表格形式 l PakBus? 操作系统l 软件支持:LoggerNet3.4/4.0,PC4001.2,或者ShortCut2.2l 支持 CR1000KD手持式显示器(选配),读数方便l CSI/O和RS-232串行接口l 内部温度补偿,实时时钟,超时和温度变化实时校准l 当CR1000从主电源上分离后,使用内部锂电池支持SRAM存储和时钟以确保数据、程序和精确的时间l 具有强大的网络通讯功能,【主要性能】l 最大扫描速率:100Hzl 模拟输入:16个单端(或8个差分)通道l 脉冲通道:2个l 工作温度:标准为-25℃至+50℃,可扩展-55℃至+85℃l 内存:标准为4M内存,可扩展至2G,额外数据存储使用CFM100存储模块和一个CF存储卡。l 13-bit模拟数字转换l 16-bit H8S Hitachi微型控制器,32-bit内部CPU
  • 纳米组学:基于纳米技术的血液循环癌组的多维采集
    在过去的十年中,开发“简单”的血液测试并为个性化治疗提供设计,且无需侵入性肿瘤活检取样,使癌症筛查、诊断或监测成为可能,一直是癌症研究的核心目标。来自正在进行的生物标志物开发工作的数据表明,提高早期癌症检测分析的灵敏度和特异性需要多个标志物单独使用或作为多种方式的一部分。在血液中多个维度(基因组、表观基因组、转录组、蛋白质组和代谢组)的癌症相关分子改变以及整合所得的多组学数据有可能发现新的生物标志物并进一步阐明潜在的分子途径。在此,我们回顾了多组学液体活检方法的关键进展,并介绍了“纳米组学”标准模式:开发和利用纳米技术工具来富集并对血液循环癌组进行组学分析。  论文:Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome译名:纳米组学:基于纳米技术的血液循环癌组的多维采集  尽管癌症的治疗手段取得了日新月异的成果,但全球人口仍有六分之一的死亡是由癌症导致的。缺乏早期癌症检测工具是造成这种高死亡率的主要原因之一。能够在疾病早期检测血液中肿瘤特征的测试为癌症患者提供了巨大的、尚未开发的潜力,即在肿瘤变得无法治愈之前接受有效治疗。因此,液体活检技术正在迅速发展,不仅可以进行非侵入性肿瘤分析,还可以检测无症状个体的癌症发作。  基于使用组合治疗方式治疗癌症相似的基本原理(例如,手术、放疗和化疗),多种血液循环分析物作为“癌症指纹”的协同作用导致了在早期癌症检测中的范式转变。液体活检样本包含一系列蛋白质、核酸、循环肿瘤细胞(CTC)和细胞外囊泡(EV),它们从多个肿瘤部位进入血液循环,共同反映肿瘤生物学的空间和时间异质性。尽管关于分泌和循环肿瘤材料的动力学仍有待了解,但连续液体活检提供了纵向捕获系统性生物分子变化的可能性,因为它们在肿瘤进展的进化轨迹中动态发展。  检查各种血液成分中的多维分子变化(基因组、表观基因组、蛋白质组和其他)并整合由此产生的多组学数据集,不仅有可能阐明癌症特异性分子机制和潜在的治疗靶点,而且还可以发现新的用于早期癌症检测的生物标志物组合(图1)。迄今为止,由于液体活检分析物的浓度极低,尤其是在非转移性疾病患者中,对癌症组的综合分析范围上收到了限制,。事实上,基于血液的多组学生物标志物发现的主要瓶颈之一是单独富集和提取不同类型的液体活检分析物所需的大样本量(通常10-15 ml)。此外,多种分析物提取方案影响了所得组学数据集的分析重现性和可比性。  在此,我们评估了过去十年在早期癌症检测的多组学方法方面取得的进展。我们还介绍了“纳米组学”的概念,这是一种使用纳米技术来解决当前与血液循环癌组的富集和分析相关的技术限制的新兴范式。具体来说,纳米组学利用生物流体培养的纳米材料作为清除平台,在组学分析之前富集和分离癌症衍生的分析物,最终目标是识别用于早期癌症检测的新型多组学生物标志物组。  图1 多组学液体活检的转化潜力可以通过基于血液的液体活检捕获的肿瘤特异性信息的多个生物分子层的示意图。血液中存在的复杂生物分子特征突出了开发能够从单个血液样本中检测肿瘤特异性多组学特征的方法的机会。确定的多组学特征在癌症生物标志物和药物开发中具有潜在应用。  1.多组学生物标志物  目前,大多数液体活检测试基于蛋白质或游离DNA (cfDNA)分析物,临床上用于检测预后和预测性生物标志物主要是帮助选择最佳治疗策略。例如,血清癌抗原15-3常用于监测晚期乳腺癌患者的治疗反应,血浆cfDNA的EGFR突变检测可用于预测非小细胞肺癌患者对EGFR酪氨酸激酶抑制剂的反应性。随着此类检测在临床上的普及,正在进行的生物标志物发现工作正逐渐朝着开发用于癌症筛查和早期检测的多分析物检测方向发展。尽管评估单一蛋白质(例如,用于前列腺癌筛查的前列腺特异性抗原)或多种蛋白质(例如在已知盆腔肿块的女性的术前检查中用于卵巢癌检测的OVA1组)的分析已经成功应用于临床,(表观)基因组学方法目前仍在早期癌症检测领域占据主导地位。  循环肿瘤DNA (ctDNA)由封闭在CTC内或由于肿瘤细胞凋亡或坏死而释放到血流中,正在成为早期癌症检测的最有希望的生物标志物之一。尽管ctDNA仅占总cfDNA的一小部分,但下一代测序(NGS)方法能够放大ctDNA信号,因此优于基于质谱(MS)的蛋白质生物标志物发现方法。目前,超过30项正在进行的大型队列临床试验正在评估血液中基于ctDNA的生物标志物。单基因分析已逐渐演变为多基因NGS分析,最近又演变为多模式液体活检方法。不同类别的生物标志物分子的整合不仅有可能提高癌症检测的灵敏度和特异性,还可以将肿瘤定位在特定的解剖部位。  作为多癌症早期检测液体活检发展的领军技术,两种不同的多重生物标志物特征平台目前正在前瞻性临床研究中进行测试:CancerSEEK和GRAIL测试。 CancerSEEK测试使用蛋白质基因组生物标志物组,并在一项回顾性研究中进行了初步临床评估后,首次在通过基于选择性突变的血液采集和测试(DETECT-A)早期检测癌症研究中对没有癌症病史的患者进行了前瞻性评估。1005名临床检测到8种不同类型的非转移性癌症患者。最初的概念验证回顾性研究评估了一个包含16个基因和8种蛋白质的多分析物组,并证明了70%的中位测试灵敏度(在8种不同癌症类型之间以及疾病阶段之间存在相当大的差异)和超过99%的特异性。此外,监督机器学习算法的应用正确识别了63%的CancerSEEK测试呈阳性的患者的起源器官。随后的DETECT-A研究是第一个评估多分析物(16种基因和9种蛋白质)和多癌症血液检测的前瞻性和介入性试验,涉及10006名无已知癌症的女性(年龄65-75岁)报名时。研究期间共进行了96例癌症诊断,其中26例仅使用CancerSEEK血液检测,24例通过标准护理筛查检测,其余46例根据症状或其他方式检测。据报道,单独使用CancerSEEK测试对所有癌症类型的敏感性为27.1%,与标准护理测试结合使用时为52.1%。然而,应该注意的是,CancerSEEK测试依赖于诊断性PET-CT扫描来确认所有阳性病例并将癌症定位到特定的解剖部位。尽管如此,该试验表明,多分析物血液检测与PET-CT和标准癌症筛查方案相结合,不仅可以有效地纳入常规临床护理,还可以促进旨在治愈的手术。最新版本CancerSEEK的验证目前正在一项前瞻性观察研究中进行,该研究对1000名已知或疑似癌症患者和2000名未患癌症的人进行,命名为ASCEND(Detecting Cancers Earlier Through Elective Plasma-based CancerSEEK Testing–Ascertaining Serial Cancer Patients to Enable New Diagnostic)。  GRAIL测试使用基于血浆cfDNA中DNA甲基化模式的替代检测方法,该模式通过对超过100000个信息甲基化区域进行亚硫酸氢盐测序确定。该平台目前正在一项雄心勃勃的临床计划中进行多癌症筛查测试,其中包括五项前瞻性试验:循环无细胞基因组图谱(CCGA)研究(NCT02889978)、STRIVE (NCT03085888)、SUMMIT(NCT03934866)、PATHFINDER(NCT04241796)和PATHFINDER2 (NCT05155605)。基础CCGA研究表明,这种靶向DNA甲基化检测可以检测50多种癌症类型,同时还能以93%的准确度预测癌症信号起源的组织。在所有疾病阶段都检测到癌症(I-III期敏感性:43.9% I-IV期敏感性:54.9%),特异性超过99%。通过与英国国家卫生服务局的合作,最新版的GRAIL测试(Galleri)的临床和经济性能将在一项包括140000名50-77岁参与者的试点筛选研究中进行前瞻性评估。值得注意的是,CancerSEEK和GRAIL测试都被授予FDA突破性设备状态,突出了多分析物测试在早期检测多种癌症类型方面的巨大潜力。  除了无细胞基因组和蛋白质组癌症生物标志物之外,研究人员还尝试从血液中纯化和表征CTC和肿瘤衍生的EV用于实时监测治疗反应。CELLSEARCH系统是第一个获得FDA批准的平台,旨在捕获、纯化和枚举上皮来源的CTC,以预测转移性乳腺癌、结直肠癌或前列腺癌患者的预后。目前,计数极少的CTC(转移性疾病患者每毫升血液中通常为1-10个)是基于上皮标志物的表达,例如上皮细胞粘附分子(EpCAM)和细胞角蛋白8、18或19,并依赖于无法维持CTC活力的基于抗体的细胞捕获和染色方法。目前,CTC的临床效用仅基于计数,并且仅限于预测临床结果而不是实现癌症检测。然而,大量的CTC富集技术正在开发中,以实现异质CTC种群的顺序采样和分子谱分析。从散装细胞策略到对可行和完整的患者衍生CTC进行单细胞分析的转变推动了具有集成下游分子分析功能的微流体技术的发展,包括ClearCell FX1系统。  肿瘤分泌的EV不仅与肿瘤生长和转移有关,而且还可能稳定地封存癌症相关蛋白质、核酸和脂质的宝库。与CTCs相比,EVs在生物体液中的含量更高,尽管从生物体液的背景分子成分中重复分离和富集EVs仍然是众所周知的困难。 DNA条形码标记、3D纳米图案微流控芯片和无标记纯化平台(例如,通过超快分离系统(EXODUS)检测外泌体)只是目前正在开发的克服与传统超速离心相关在纯化效率、产量、速度和稳定性方面限制的基于抗体的EV纯化方案的几个例子。将生物分子或生物物理富集与在单个微流控平台(例如,外泌体模板等离子体技术TPEX)内对EV封存的生物标志物(例如蛋白质和microRNA)的多重检测相结合,在分离EV方面显示出来自非囊泡生物流体成分巨大的前景。  还尝试使用基于免疫亲和的微流体接口从单个样品中对CTC和EV进行双重隔离和分析。例如,双重用途的OncoBean (DUO)微流体装置已被证明能够从黑色素瘤患者的血液样本中同时分离CTC和EV,并使用多重实时定量逆转录 PCR (RT-qPCR) 测试对这些分析物进行分子分析,检测一组96个黑色素瘤相关基因的表达模式。使用单个设备或平台富集多种癌症分析物被认为是多组学液体活检领域的下一个前沿。  2.数据分析与整合  尽管组学数据集的可用性越来越高,但由于需要对多组学数据集进行计算操作和解释,所以将生物标志物发现转化为临床试验仍然具有挑战性。大规模的国际研究网络开始意识到在癌组整合层上捕获数据的巨大潜力。癌症基因组图谱 (TCGA)是2005年发起的泛癌基因组学联盟,现已扩展到多组学,包括超过2.5 PB的基因组、表观基因组、转录组和蛋白质组数据。美国国家癌症研究所的临床蛋白质组肿瘤分析联盟(CPTAC)是多机构倡议的另一个例子,旨在利用蛋白质组数据集的互补性,为不同癌症类型提供新的分子见解。  从单个患者样本中生成的多组学数据集的集成为发现血液中疾病特异性分子特征提供了巨大的潜力。然而,多组学数据分析比“单组学”分析更具挑战性,以下六个关键问题仍有待解决:(1)命名差异(例如,以基因为中心的与以蛋白质为中心的)和标识符弃用可能会无意中合并不同的分子种类 (2)每种数据模式都受制于其自身特定的噪声和分布特征,这需要在分析工作流程中使用大量相互依赖的软件工具 (3)开发和执行多组学工作流程需要广泛的领域知识 (4)工作流程复杂,难以优化,容易出错 (5)结果可能高度依赖于分析工作流程的设计 (6)复制和比较结果可能会因工作流程的细微变化而变得复杂。  目前已经开发了许多工作流程解决方案以实现多组学数据的关联,例如 GalaxyP和WINGS。但目前对于从此类数据集中选择关键生物标志物尚无共识。用于多组学数据分析和整合的可用工具和方法已在其他地方进行了彻底审查。  3.癌组的纳米富集  MS和NGS的技术进步极大地推进了血液中蛋白质组学特征的分析,但只有少数基于血液的癌症生物标志物测定已获得FDA批准。从血液中提取和纯化癌症相关分析物仍然是限制液体活检进入常规临床实践的主要瓶颈。  对新型早期检测生物标志物的探索引起了基于纳米技术平台的开发,这些平台旨在丰富血液癌组的不同成分(包括蛋白质、ctDNA、CTC和EV)。这些“纳米富集”策略中的大多数依赖于纳米粒子的高表面体积比以及它们的表面工程和功能化能力。所有这些利用纳米级技术或材料特性的策略都包含在纳米组学范式中。在这里,我们讨论了当前阻碍液体活检临床转化的技术挑战,并重点介绍了已用于克服这些挑战的纳米组学平台示例(表1)。  靶向纳米组学基于纳米颗粒表面的功能化,靶向部分作为特定癌症相关分析物的识别元素。相比之下,“非靶向纳米组学”方法依赖于癌症相关分析物在与生物流体孵育后非特异性吸附到纳米颗粒表面(图2)。已经开发了许多靶向纳米组学方法,主要用于富集EV和CTC(图2和3),而癌症分析物在生物流体孵育的纳米粒子表面的自发吸附仅在过去5年有使用,主要用于蛋白质和cfDNA的富集和分析(表1)。我们强调,尽管在免疫测定和生物传感器中加入基于纳米颗粒的探针经过广泛研究,但其不属于纳米组学方法的范围。这种生物传感器的输出信号是基于纳米颗粒-分析物复合物独特的光学和电化学特性,而不是基于纳米颗粒富集分析物的下游组学分析。  图2 纳米组学范式概述“纳米组学”方法的示意图,其中纳米材料被用作清除平台,以从生物体液中捕获、富集和分离癌症相关分析物以进行下游组学分析。“靶向纳米组学”需要使用靶向部分对纳米材料表面进行功能化捕获特定的癌症分析物,而“非靶向纳米组学”依赖于癌症分析物非特异性、自发吸附到纳米颗粒表面(称为生物分子电晕形成)。基于纳米材料的采集平台可以同时从单个外周血样本(以及可能的其他生物体液)中丰富癌症特异性基因组、转录组、蛋白质组和脂质组特征。纳米组学方法旨在应用生物-纳米界面获得的知识,以实现复杂生物流体的多组学分析,最终目标是推出用于早期癌症检测的新型多分析物生物标志物。cfDNA,循环游离DNA CTC,循环肿瘤细胞 EV,细胞外囊泡。  表1 使用纳米组学方法分析液体活检分析物的示例研究  ASGPR1,去唾液酸糖蛋白受体1 cfDNA,循环游离DNA CTC,循环肿瘤细胞 ddPCR,微滴数字PCR ELISA,酶联免疫吸附试验 EpCAM,上皮细胞粘附分子 EV,细胞外囊泡 ICC,免疫细胞化学 IHC,免疫组化 LC-MS/MS,液相色谱和串联质谱 nano-HB,纳米人字形结构 NP-HBCTC-chip,纳米颗粒人字形循环肿瘤细胞芯片 NSCLC,非小细胞肺癌 PEDOT,聚(3,4-乙撑二氧噻吩) PEG,聚乙二醇 PEI,聚乙烯亚胺 PIPAAm,聚N-异丙基丙烯酰胺 PLGA,聚乳酸共乙醇酸 PL,磷脂 qPCR,定量PCR RT-ddPCR,逆转录微滴数字PCR RT-qPCR,实时定量逆转录PCR SWATH-MS,连续窗口全理论碎片采集质谱 TROP2,肿瘤相关钙信号传感器2。  3.1 蛋白和ctDNA采集  在血液循环的生物分子中,蛋白质是细胞过程的生物学终点。因此,蛋白质在历史上作为最受关注的分子生物标志物。然而,直接从血液中发现新的蛋白质生物标志物由于高丰度蛋白(例如,白蛋白约占总蛋白质含量的50%)的压倒性掩蔽效应而变得错综复杂。尽管基于无标记MS的蛋白质组学取得了相当大的进步,但这种信噪比问题极大地阻碍了血液中疾病特异性蛋白质特征的识别。血浆免疫亲和消耗柱被广泛用于克服白蛋白掩蔽的问题,但会导致低分子量(LMW)蛋白质组(例如,60 kDa的蛋白质)以及高丰度载体蛋白的大量损失。  2003年首次提出使用富集纳米粒子来增强血液中LMW癌症蛋白质组的蛋白质组学分析,但这一概念仅在过去十年中才引起纳米科学界的兴趣(表1)。由 Liotta、Petricoin及其团队开发的Nanotrap技术使用核壳亲和诱饵水凝胶纳米粒子作为蛋白质收集器。与上述免疫亲和柱类似,Nanotrap技术能够将高丰度的高分子量(HMW)蛋白与LMW蛋白分离。具体来说,纳米颗粒的多孔外壳阻止HMW但不阻止LMW蛋白的进入,而内核包含共价连接的化学亲和诱饵,可捕获LMW蛋白以进行收获和后续分析。值得注意的是,虽然初步可行性研究证明了Nanotrap颗粒作为蛋白质生物标志物发现平台的潜在用途,但该技术主要用于捕获和富集已知的生物标志物蛋白质。  蛋白质在与生物体液一起孵育后自发且非靶向吸附到纳米颗粒表面,称为“蛋白冠”(框1),也已被用于蛋白质生物标志物的发现。在过去的十年中,我们了解到复杂的蛋白质电晕会在所有纳米级材料的表面上以不同程度迅速形成,这取决于它们的物理化学性质和表面特性。事实上,纳米粒子对血液蛋白的结合亲和力已被证明是由许多不同的因素决定的,包括它们的大小、表面电荷和功能化以及纳米粒子-生物流体的孵育条件(框1)。  对低丰度蛋白质的纳米颗粒电晕富集和分析进行体内研究,首先需要通过将脂质纳米颗粒静脉注射到荷瘤小鼠和卵巢癌患者体内。随后通过尺寸排阻色谱法从血液中回收电晕包被的纳米颗粒并从高丰度背景分子(没有诊断价值)中纯化纳米颗粒结合的蛋白,从而能够对血浆蛋白质组的LMW部分进行高分辨率分析。这项最初的范式转变工作引发了人们对体外形成的蛋白质电晕指纹作为一种新工具的临床开发的兴趣,该工具用于对从癌症患者队列中获得的血浆样本进行蛋白质组学分析。通过无标记蛋白质组学技术对“健康”和“患病”纳米颗粒电晕样本进行全面比较,可以识别多种以前未被识别的候选生物标志物蛋白(表1)。  在这些原理的基础上,Proteograph平台已被开发用于深度分析等离子体蛋白质组,该平台使用具有不同表面特性的有不同的电晕轮廓的磁性纳米粒子组合。由于2D和3D纳米材料是过量的,因此需要做更多的工作来研究各种类型的纳米颗粒的组合是否能在MS分析中显著“扩大”血液蛋白质组的覆盖范围。还存在从血浆样品中纯化和回收电晕涂层纳米颗粒、纳米颗粒制剂的合成和稳定性以及所需的样品量是可能阻碍此类生物流体预处理方案开发的一些亟需解决的技术挑战。  最近,纳米颗粒蛋白冠的形成在概念上已经转变为由蛋白质、脂质、多糖和核酸组成的多层分子自组装,称为“生物分子冠”(框1)。例如,我们展示了cfDNA与基于脂质的纳米颗粒在与人类血浆样本孵育时的相互作用。这一额外组学维度的发现以及在患有晚期卵巢癌的女性(与年龄匹配的未患癌症的女性相比)样本中发现的显著更高丰度的纳米粒子冠状cfDNA为进一步研究卵巢癌铺平了道路。有趣的是,对相同纳米颗粒电晕样本的蛋白质组学分析揭示了组蛋白中的癌症特异性升高,表明核小体介导的纳米颗粒cfDNA相互作用。虽然 microRNA(在蛋白质复合物中或封存在EV中)的纳米颗粒表面吸附仍有待研究,但这些发现突出了开发能够同时富集和纯化血浆蛋白和无细胞游离核酸的纳米蛋白质组收获平台技术的机会。  使用纳米粒子从血液中纯化cfDNA的替代方法只有少数正在探索中,包括阳离子磁性纳米线系统的开发。在一项原理验证研究中,这种纳米纯化方法在收集cfDNA以通过液滴数字PCR检测EGFR突变方面优于金标准QIAamp循环核酸试剂盒。此外,从非小细胞肺癌患者的血液中共同分离CTC和cfDNA证明使用单个纳米颗粒平台有富集多种分析物的潜力。其他证明金纳米粒子与甲基化DNA相互作用的研究也为利用生物纳米界面检测cfDNA中癌症特异性甲基化模式奠定了基础。  3.2 CTC和EV分离  将CTC和EV从癌症患者的血液中高效提取和纯化是液体活检分析物进行临床转化的关键,这给纳米技术人员带来了工程创新挑战。基于金标准CTC免疫捕获的方法无法收获功能上可行的CTC的异质群体。因此,目前CTC的临床应用只是基于它们在大量造血细胞中的检测和计数,并且仅在高负担、转移性疾病患者中进行。尽管血液中的EV数量更多,但它们的小尺寸和低密度带来了一系列独特的技术挑战。传统的台式EV纯化技术(如超速离心、聚合物诱导沉淀等)主要依赖于它们的物理特性,需要几个小时并无法区分癌症衍生的EV和非恶性细胞释放的EV。  已经进行了许多利用CTC和某些EV子集的癌症特异性的尝试,以使用纳米组学方法增强血液CTC和EV及其基因组、转录组和蛋白质组的捕获和分离。这些收获策略中的大多数需要用针对众所周知的CTC和EV表面抗原(如 EpCAM、HER2、CD9、CD81和CD63)的抗体涂覆纳米颗粒表面。已经开发了广泛的纳米技术来捕获血液CTC和EV(表1和图3),包括磁性、金、硅、二氧化钛(TiO2)和碳纳米材料平台,具有不同程度的设计复杂性和成功率。为了解决与CTC固有异质性相关的问题并提高捕获效率,还使用了不同抗体的混合物对相同的纳米颗粒平台进行功能化。例如,用抗体混合物标记的磁性纳米线已被证明能以100%的效率(29名患者中的29名)从250 µl血液样本中有效分离早期非转移性乳腺癌衍生的CTC。  抗体靶向纳米颗粒也已集成到微流体装置中,与标准的CTC或EV分离方法相比,该装置需要更少的样品量并具有更高的检测灵敏度,并且可以设计成多步功能(例如,分析物分离、鉴定和检测)。这种基于纳米颗粒的平台的例子包括Poudineh等人设计的基于磁性排序流式细胞仪的微流控芯片,以根据其表面蛋白表达表型分析CTC,以及Zhang等人开发的具有自组装3D人字形纳米图案的Nano-HB微流控芯片,用于检测卵巢癌患者血浆中低水平的肿瘤相关外泌体。结合纳米颗粒分离CTC或EV以及下游细胞内或囊泡组学分析的微流控芯片也在开发中,并逐渐演变为综合多物种分析平台。  纳米材料提供的多模态工程能力使其能够从复杂的生物流体中同时捕获和可视化癌症分析物,以及对捕获的分析物进行刺激响应分离和取样以进行进一步分析。多功能纳米颗粒平台的一个例子是由Zhou等人开发的发光聚乙二醇功能化免疫磁性纳米球,用于对从EpCAM+上皮癌患者的外周血样本中分离的CTC进行高分辨率可视化。量子点沉积在这些磁响应Fe3O4纳米颗粒上,除了与血液进行磁分离外,还可以实时监测CTC的回收过程。最后,使用含二硫键的接头将抗EpCAM抗体连接到这些纳米颗粒构建体的表面,使谷胱甘肽介导释放活化的CTC。  除了这些上皮标记依赖技术之外,还有研究利用CTC对裸碳基纳米颗粒表面的高亲和力的不依赖标记的方法,并有望捕获更广泛的CTC亚型,从而能够表征其独特的转移潜力。例如,在概念验证研究中,Loeian等人开发了一种碳纳米管CTC芯片,能够从4毫升或8.5毫升血液样本中根据细胞角蛋白8或 18、EGFR和HER2成功捕获具有各种表型的异质CTC,血液样本来自7名I-IV期乳腺癌患者获得的每毫升血液中0.5-28个CTC。从污染的白细胞中纯化并将粘附的CTC从纳米管CTC芯片中释放出来需要进行更多的优化工作,用于后续的组学分析。  因此,大量证据表明纳米技术解决方案可以增强血液循环癌组的采样。尽管如此,还需要对收获的CTC和EV进行下游蛋白质组学分析,以便在早期癌症检测的背景下充分实现纳米组学方法的承诺。  4.纳米组学的愿景和挑战  多组学液体活检分析的兴起正在逐渐改变我们捕获癌组复杂的方式。基于血液的癌症多组学分析有可能最终涵盖基因组学、表观基因组学、蛋白质组学、脂质组学和代谢组学特征,从而更深入地了解肿瘤发生并提高早期检测的敏感性(图1)。血液中液体活检分析物的含量极低,这要求开发新技术以使癌组富集,同时最大限度地减少所需的样本量。  本文介绍了纳米组学方法并将其定义为利用纳米技术从生物体液中分离分析物以进行后续(多)组学分析(图2)。纳米组学寻求应用在生物与纳米界面获得的知识,对血液和其他生物体液中存在的疾病特异性分析物或分析物特征进行全面分析。纳米组学的最终目标是产生具有高信息能力的综合多组学知识,并揭示新的分子生物标志物组。  基于纳米技术的平台在从血液中富集CTC和EV方面以及揭示过去隐藏的血液蛋白质组方面显示出了巨大的潜力。虽然靶向纳米组学方法(通过具有靶向部分的纳米颗粒的功能化)主要用于捕获血液CTC和EV,但最近利用纳米颗粒进行血液蛋白质组学分析的努力是基于蛋白质电晕形成的非靶向自发现象(框1)。根据这一策略,纳米颗粒充当捕获LMW血液蛋白质组的“纳米网”,从而解决了迄今为止困扰无标记蛋白质组学分析的信噪比挑战。  纳米技术界已经开始将目光投向明确表征的蛋白质冠之外,现在正在研究纳米粒子与共同构成所谓的生物分子冠的其他生物分子种类的自发相互作用,包括脂质、代谢物和cfDNA。生物分子电晕提供的复杂分子指纹为纳米技术人员提供了一个令人兴奋的机会,可以开发用于血液多组学分析的纳米级平台。尽管还有很多工作要做,但我们设想未来基于纳米颗粒的清除平台将同时从单个生物流体样本中捕获癌症特异性基因组、转录组、蛋白质组和脂质组信息(图2)。  纳米颗粒生物分子电晕作为在多个组学层发现生物标志物的有效工具可以部署在一系列生物标志物应用和紧迫的临床中。特别是对于早期疾病检测,纳米组学提供了一种综合解决方案:通过单次抽血分析整个循环癌组,同时还探索了在癌症中知之甚少的替代循环生物分子(如脂质和代谢物)的作用。与其他旨在捕获和量化已知癌症相关分析物的基于纳米颗粒的生物传感技术不同,纳米组学“采血”方法有可能加速生物标志物开发程序的发现阶段。为了推动这种基于血液的纳米级清除平台的发展,纳米科学界需要关注可供他们使用的大量纳米材料的转化潜力。  虽然纳米组学可以解决与液体活检分析相关的一些技术障碍,但其他方面的挑战正在成为阻碍癌症生物标志物临床转化的限制因素。这些障碍包括需要基于高维机器学习的生物信息学方法来整合从单个样本的多组学分析中获得的大型且不同的数据集,以及开发适用于临床使用的多分析物设备。事实上,英国癌症研究中心早期癌症检测路线图强调了在基础和分子生物学、分析技术和机器学习的交叉研究领域需要一种整体方法。从实验室过渡到临床需要合并包括学术研究、工业、研究资助者、监管机构和医疗保健专业人员在内的多部门网络。生物标志物开发的发现阶段通常在学术实验室中启动,并引导多个候选生物标志物的识别。将这些发现转化为具有多路复用能力的临床试验需要在大量患者中进行的分析和临床验证研究中投入大量资源。  最后但并非最不重要的一点是,生物标志物程序的验证阶段在很大程度上取决于样本的可用性,由于血液样本不是从患有此类癌症的患者身上常规收集,因而可能对早期癌症的研究提出特别的挑战。样本收集、处理和储存过程对验证阶段的分析重现性提出了额外的挑战。最后,癌症筛查方法的一个重要考虑因素是将液体活检分析与标准的基于成像的筛查实践相结合的价值。这种多模式早期检测方法最有可能提供有关肿瘤定位和大小的精确信息,并解决过度诊断的问题。  框1 纳米颗粒生物分子电晕“生物分子电晕”是指各种生物分子在与生物液体一起孵育时,在纳米颗粒表面上的自发吸附和自组装分层。蛋白质在纳米颗粒上的吸附被称为“蛋白质电晕”。生物分子电晕的组成受多种因素影响。具体而言,组成由纳米颗粒的各种物理化学性质以及纳米颗粒在生物流体中的孵育条件定义(图)。cfDNA,无细胞DNA。    图3 基于纳米材料的血液EV和CTC分离为促进血液样本中细胞外囊泡(EV)和循环肿瘤细胞(CTC)富集而开发的几种纳米技术的示意图摘要。大多数EV和CTC富集策略是基于具有特定靶向部分(通常是抗体)的纳米颗粒或纳米线的表面功能化 然而,也有人提出了无标记富集方法。针对CTC和EV的特定表面配体包括上皮细胞粘附分子(EpCAM)、HER2、CD9、CD63和CD81。PLGA,聚乳酸-羟基乙酸共聚物。  结论  我们可以清晰地看到来自液体活检样本的综合多组学特征是精准医学和早期癌症检测的未来。由于组学分析工具和基于机器学习的生物信息学方法的重大进步,液体活检有可能克服与组织活检取样相关的许多限制,包括更好地捕获和反映肿瘤异质性。使用纳米技术发现癌症生物标志物仍处于起步阶段,但使用纳米粒子作为血液循环癌组(蛋白质、ctDNA、CTC、EV等)的收获剂提供了巨大的潜力,并可能重新定义早期癌症检测的未来。我们在此定义的纳米组学方法利用生物-纳米界面处的靶向和非靶向相互作用来揭示潜在的新型多组学生物标志物组并破译嵌入组学数据中的多维信息。综合生物信息学数据分析工具的开发以及生物标志物程序验证阶段所需的人体生物样本和多分析物测试的可用性将是这种纳米组学范式临床转化的关键。  原文链接:  https://pubmed.ncbi.nlm.nih.gov/35739399/
  • 【行业应用】赛默飞发布最新数据非依赖采集应用报告
    赛默飞世尔科技(以下简称赛默飞)近日最新发布了两篇数据非依赖采集 (DIA) 应用报告,展示了超高场Orbitrap和翻译后修饰的DIA 分析性能。Orbitrap的强大性能使当前最热门的质谱采集技术之一DIA如虎添翼,引领定量蛋白质组学新发展。 应用一:超高分辨质谱一小时 DIA 定量 4000 个 Hela 蛋白本实验使用Thermo ScientificTM Q Exactiv HF 超高分质谱仪测试了超高场Orbitrap在DIA分析方面的性能。实验使用1小时梯度,分析仅500ng上样量的Hela细胞总蛋白裂解液,重复三针。结果显示,三针DIA分别定量到27558、27604、27483种肽段和4067、4080、4073种蛋白。谱图库中95%的蛋白都获得了可靠的DIA解析(Q0.01),灵敏度极高;峰面积cv值20%的肽段占90.3%,重现性极佳。 p=""应用方法下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LCMS/documents/DIA%20quantification%20of%204000%20proteins%20in%20Hela%20lysis.pdf应用二:精确修饰位点谱图库的建立与磷酸化蛋白质组的 DIA 解析PTM位点鉴定错误的概率较高,将位点错误的鉴定结果作为谱图库,会导致DIA解析结果的不可靠。实验使用Thermo ScientificTM Orbitrap Fusion三合一质谱仪,基于ptmRS/phosphoRS建立可靠的翻译后修饰DIA流程,突破了PTM DIA解析的瓶颈。使用phosphoRS/ptmRS筛选PTM定位准确的谱图,作为谱图库用于DIA,结果显示,具有精确PTM定位的谱图库中98.4%的磷酸化肽都获得了可靠的DIA解析(Q0.01),峰面积CV值20%的肽段占86.9%,实现了准确可靠的大规模PTM DIA定量。应用方法下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LCMS/documents/PTM%20site%20localization%20for%20phospho-proteome%20DIA.pdf 更多产品信息,请查看:Q Exactiv HF 超高分质谱仪测试了超高场Orbitrapwww.thermoscientific.cn/product/q-exactive-hf-hybrid-quadrupole-orbitrap.html Orbitrap Fusion三合一质谱仪www.thermoscientific.cn/product/orbitrap-fusion-tribrid-mass-spectrometer.html ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制