当前位置: 仪器信息网 > 行业主题 > >

光谱成像技术

仪器信息网光谱成像技术专题为您整合光谱成像技术相关的最新文章,在光谱成像技术专题,您不仅可以免费浏览光谱成像技术的资讯, 同时您还可以浏览光谱成像技术的相关资料、解决方案,参与社区光谱成像技术话题讨论。

光谱成像技术相关的仪器

  • 卓立汉光所研发的高光谱成像仪主要由光源、光谱相机(即高光谱成像仪)、样品移动台等部件组成。HyperSIS高光谱成像系统工作原理如下(推扫型/推帚型):线光源照射在放置于X-Stage电控移动台上的待测物体(样品),样品上被线光源照射部分的影像通过镜头被高光谱成像仪捕获,在X轴向上被光谱仪分光,Y轴上直接成像,从而得到一维的影像以及光谱信息,由X-Stage电控移动台带动样品连续运行,从而能够得到连续的一维影像以及光谱信息,所有的数据被计算机软件所记录,可以方便的进行后续分析。【HyperSIS-高光谱成像分析仪型号列表】 型号 描述光谱范围(nm)扫描速度** (images/s)备注1HyperSIS-VNIR-QE增强型400-1000 9 系统包含:高光谱成像仪,CCD相机、光源、暗箱、数据采集软件、笔记本电脑 2HyperSIS-VNIR-PS高效型400-100011 3HyperSIS-VNIR-HS高速增强型400-1000334HyperSIS-VNIR-PFH标准型400-1000305HyperSIS-NIR 近红外增强型900-170060 6HyperSIS-SWIR短波红外增强型1000-2500100在整个系统中很重要的是各组件的选择以及电控移动台的配合,所选择的各个组件,均需要根据实际使用需要进行优化选择。系统组件选择需要特别考虑所检测的样品的大小,通常情况下,本系统的设计针对大小不超过200 mm (长)*200 mm (宽)*100 mm (高)的物体。若使用者对于系统外观及内部结构设计有特别需求,我公司也可根据实际需求,对现有设计进行适当更改,以满足使用者自身对系统的特别使用需求。【应用】用于农产品、水果、食品、药品等快速、无损检测分析 农产品检测 水果检测 肉类检测 食品药品检测
    留言咨询
  • 1、概述根系是植物地下部分为适应陆地生活长期进化而形成的营养器官,具有支撑地上部分的基本作用,不仅在水、矿物质和碳水化合物的吸收、转化和储存中发挥着重要的作用,还能够稳定植物体并与土壤形成物理和化学联系。有研究学者认为,优良根系的品种有利于提高产量稳定性、资源利用效率及对环境胁迫的抵抗力[1],根系也被作为育种目标。根系的形态,例如根长、根系体积、根系直径和根干物质,可以反映根系的健康情况。当植物受到胁迫时,根系会产生一系列生长和发育、形态、生物量以及生理生化代谢变化以适应胁迫条件。因此,更好地了解植物根系和根际过程有助于提高植物生产和可持续土壤管理的资源效率。根系研究的关键在于使植物“隐藏的一半”能被可视化和量化。 传统植物根系的研究方法包括挖掘法、定位法、土钻法等,通过挖根、洗根等操作后对根系进行形态学、生理生化等方面的研究,此类方法不仅破坏性大、耗时长、取样成本高,且存在一定的局限性[2]。近年来,无损成像方法在植物科学中变得越来越流行。传统上局限于RGB成像的高通量应用正在向更宽的光谱范围发展,从而能够对根际成分进行化学成像[3,4],也为地下根系的研究提供了新的途径。为了解决传统根系研究方法所存在的缺陷并方便对根系进行成像,市场上出现了一系列产品,如人工培养基(琼脂、发芽纸、水培等)培养植物幼苗的方法,但该方法植株的生长条件受到人们的质疑;微根窗技术是一种非破坏性、定点直接观察和研究植物根系的方法,是活体根系监测、根系动态生长监测最主要的方法之一。但该方法的缺陷在于窗面及观察深度都比较有限,且在根系生长过程中可能会产生大量细根围绕在玻璃管周围,影响观测的准确性[5-7]。因此,基于根窗技术,填土根箱成像系统应运而生,用于植物根系成像。基于根箱栽培的植物根系表型RGB成像存在一个缺陷,即需要依赖于根与土壤足够的对比度才能进行自动分割。而高光谱成像数据能够克服根与土壤分割困难的问题,能够对根系表型及生化性状成分进行成像分析。根系表型研究方法对比根系研究方法优点缺点代表性仪器挖掘法、土钻法经济成本低破坏性;耗时耗力;WinRhizo洗根图像分析系统微根窗法非破坏性;定点观测窗面尺寸小MS-190超高清微根窗相机系统根箱栽培法-RGB成像非破坏性;可实现高通量分析图像自动分割依赖于根与土壤的对比度PlantScreen高通量植物表型系统根箱栽培法-高光谱成像自动图像分割;可对根系成分进行化学成像经济成本略高RhizoTron植物根系高光谱成像分析系统基于此,易科泰生态技术公司结合近几年来国际先进高光谱成像技术创新应用(易科泰 SpectrAPP 项目)实验研究,开发了一款RhizoTron植物根系高光谱成像分析系统,该系统基于根窗技术,可对RhizoBox根盒培养的植物根系进行原位非损伤表型成像分析,具备多功能高光谱成像分析功能,可对植物根系进行高光谱和自发光荧光成像。能够实现植物根系进行原位表型高光谱成像分析和动态监测。可应用于植株根系成像分析、抗性筛选及遗传育种、病虫害胁迫及干旱研究、土壤结构及养分研究等领域。2、RhizoTron植物根系高光谱成像分析系统2.1 系统介绍RhizoTron植物根系高光谱成像分析系统可对生长于RhizoBox根盒(带根窗)的作物根系进行高光谱成像分析和UV激发生物荧光成像分析(选配),可选配Thermo-RGB成像分析及冠层表型成像分析。RhizoTron植物根系高光谱成像分析系统由主机系统和高光谱成像系统组成,其中主机系统包括系统平台(主机箱)、控制单元、样品托、数据处理服务器等组成;光谱成像系统由光谱成像单元(包括成像传感器、光源、云台等)和自动扫描轴组成。2.2 功能特点1)基于RhizoTron根窗技术的高光谱成像分析技术,配有植物培养模块,由样品托盘、适配器、不同规格尺寸RhizoBox根系观测培养根盒组成,或自己制作培养根盒;可选配多通道智能LED培养台2)标配为60度倾斜自动扫描成像(与植物培养角度一致),同时对RhizoBox根系和幼苗进行高光谱成像分析和RGB成像分析,可选配其它角度如45度、70度和90度(垂直扫描成像)3)可对根系进行UV-MCF紫外光激发生物荧光高光谱成像,以研究分析根系活动及根系与土壤互作关系、荧光假单胞菌等AvrahamAlonyandRaphaelLinker,2013);或选配根系Thermo-RGB成像分析4)可选配顶部冠层RGB成像分析、红外热成像分析、高光谱成像分析、叶绿素荧光成像分析(可选配适于正常培养盆的样品托)5)可选配iPOT数字化植物培养盆或RhizoBox根系培养盒,持续监测土壤水分温度、重量、植物生长、光合效率、PI(performanceIndex)、茎流等生理生态指标,可自动采集土壤渗漏水并进行土壤营养盐分析6)模块式结构,具备强大的系统扩展功能,系统平台自动万向脚轮,方便移动7)可远程控制(选配)、自动运行数据采集存储等功能2.3 技术指标1)控制单元为嵌入式操作系统,可进行双重控制(触控屏+PC端全中文GUI软件),实现远程操控相机及平台2)自动扫描轴推扫速度与精度:1-40mm/s,移动精度1mm,有效扫描范围:标配100cm3)高光谱成像(标配400-1000nm,可选配900-1700nm)可成像分析植被生理生化指标、健康指数、光合利用效率、植被胁迫、水分、氮素等指数。配备PhenoRoot根系分析软件,如需对地上部分进行同时分析,可选配SpectrAPP分析软件4)标配RGB彩色成像:分辨率2448×2048像素,配备专业植物根系分析软件5)SpectrAPP高光谱成像分析软件:进行光谱融合、ROI选区分析、光谱分析、频率直方图、自动识别不同波段峰值,可分析近百种光谱指数,根据需求定制添加光谱指数,同时能够分析根系表型数据6)PhenoRoot根系分析软件,可分析根长、根系最大宽度、凸包面积、根系总长、根系面积(生物量)、根系剖面分析(根系密度)等7)Thermo-RGB成像融合分析(选配),包括Thermo-RGB融合分析软件,红外热成像分辨率:640×512像素;测量温度范围:-25℃-150℃;光谱范围:7.5-13.5μm8)多通道智能LED培养台,RGBW四通道智能调整LED光源,0-100%可调,可模拟昼夜节律、不同光配方等,最大光强300μmol/m2s 9)叶绿素荧光成像单元(选配),专业高灵敏度叶绿素荧光成像CCD,帧频50fps,分辨率720×560像素,像素大小8.6×8.3µ m,可自动运行Fv/Fm、Kautsky诱导效应、荧光淬灭分析、光响应曲线等protocols,自动测量分析50多个叶绿素荧光参数,包括:Fv/Fm、Fv’/Fm’、Y(II)、NPQ、qN、qP、Rfd、ETR等,自动形成叶绿素荧光参数图10)系统平台规格:标配约145cm×60cm×160cm(长×宽×高)、重量约50kg 3、应用案例3.1 甜菜根系RGB及高光谱成像分析:以甜菜为实验对象进行了实验,对其根系进行RGB成像和高光谱成像(900-1700nm),分别进行了形态分析和生化性状进行分析[8]。1)形态分析:以手动分割作为参考,使用RGB和高光谱图像跟踪甜菜根系的生长、形态和结构,发现基于RGB自动分割并不能很好的区分老根和土壤,跟踪根系总根长误差为6.94%;高光谱成像通过光谱比率获得根系的二值图像进而对根系长度进行分析,误差仅为1.5%。使用紫外灯(UV)与模拟太阳光照射得到的根系可视化图像,发现在明亮背景下UV图像更易识别根系。左:RGB原始图像;中:(A)使用绘图板手动分割根系,(B)顶部分割不良的旧根轴区域,(C)图像底部正确分割的新根轴,(D)基于RGB获得的二值图像;右:基于高光谱获得的二值图像 UV和模拟太阳光根系可视化图像。(A): UV;(B): 模拟太阳光2)生化性状分析:对不同发生位置及成熟度的根系和土壤的平均光谱进行分析,发现三种根系光谱曲线存在显著差异,且1100nm附近新侧根与主根出现吸收峰,而老根并未出现。但老根与土壤反射曲线趋势较一致,在水分吸收区域(1450nm)附近,根系光谱斜率高于土壤。同时,它使用不同含水量土壤校准根盒的平均光谱进行校准,从而绘制根箱上水分分布图。3.2小麦根系RGB及高光谱成像分析以小麦为实验对象,对植株进行扦插处理,扦插后14、28、47、94、101和201天对根箱的上三分之一进行高光谱成像(900-1700nm)和RGB成像,分别进行了形态分析和生化性状进行分析[9]。1)形态分析:使用WinRhizo对根长度进行结构量化,以手动分割作为参考,分别使用高光谱图像和RGB图像对根系可见根长度进行预测,结果表示,基于RGB分割为83.4%,光谱分割为77.0%。但两种分割方法的斜率没有显著差异(P=0.225)。表明两种方法在预测此处使用的基质的可见根长度方面具有相似的性能。2)生化性状分析:基于光谱特征,使用决策树模型对根像素的径级类别进行预测,其训练集为r=0.86,验证集r=048;基于一阶导数差分光谱(1649-1447nm)构建根系腐烂时间指数模型,使用修剪后28天和101天的光谱数据作为验证集,其r2=0.96。 3.3 土壤含水量估测及根腐病识别以甜菜为实验对象对其根系进行高光谱成像(900-1700nm),同时测定与实验相同土壤的根箱中的不同土壤含水量及高光谱成像,以此作为训练集对含水量模型进行训练,对根箱的每个土壤像素的含水量进行预测;以油用萝卜作为实验对象,使用化学计量分析对根系不同时间后腐烂的光谱特征进行识别,通过光谱的时间变化推断根系腐烂情况[10]。3.4不同基因型扁豆霉菌根腐病的RGB和高光谱成像评估以不同基因型扁豆为实验对象,分别进行RGB成像和高光谱成像(550-1700nm),研究高通量表型技术评估霉菌根腐病的严重程度,以快速鉴别耐药基因型。设置对照组和实验组,培养14日后实验组接种黄芽孢杆菌,对照组施以清水。接种14日后使用0-5疾病评分量表对根系进行评分,作为地面参考数据[11]。霉菌根腐病严重程度量图RGB图像:通过提取特征变量对植物生物量研究,发现投影面积与植物生物量有很强的相关性,与地下生物量相关性高达0.9,地上生物量相关性为0.84;对根系病害程度进行预测,发现其R2达到0.67,而通过地上部特征变量进行预测,其R2仅达到0.23。高光谱图像:通过提取感兴趣区的光谱,发现从地上样品的高光谱反射曲线来看,健康和感染的样品光谱反射曲线相差较小,而根系的光谱曲线差异较显著。使用归一化差异光谱指数(NDSI)对根系疾病程度进行预测,其R2达到0.54,使用地上部光谱特征进行预测,其R2仅为0.27。3.5 油菜重金属铅(Pb)含量的高光谱估测以油菜为实验对象,对叶片和根系分别进行高光谱成像,对根系图像进行比值运算(根部:861.96/480.46nm),油菜叶片和根的分割阈值t分别为1.3和1.6,使根系与背景进行图像分割。分别建立支持向量机(SVM)和SAE深度神经网络对样品中的铅(Pb)含量建立模型并预测,发现SAE深度神经网络模型精度较高。在SAE模型的基础上使用迁移学习的方法得到T-SAE模型,并对油菜叶片和根系中的Pb含量进行预测,发现其精度有所提升,油菜叶片达到0.92,根系达0.93。基于此可以发现高光谱成像技术结合深度神经网络能够对油菜植物中的重金属Pb进行定性定量检测[12]。3.6 野生植物幼苗根系高光谱成像分析易科泰EcoTech实验室技术人员以一株野生型元宝槭幼株为样本,采集900-1700nm高光谱数据,并对其进行光谱成像分析及根系形态分析。4、参考文献[1] Kutschera, L. Wurzelatlas mitteleuropä ischer Ackerunkrä uter und Kulturpflanzen. DLG-Verlags-GmbH, Frankfurt am Main (1960).;Kenrick, P., & Strullu-Derrien, C.[2] Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. TrendsPlant Sci. 2013 18:428–39.[4] Pierret A. Multi-spectral imaging of rhizobox systems: new perspectivesfor the observation and discrimination of rhizosphere components. Plant Soil. 2008 310: 263–8.[3] Vamerali T, Ganis A, Bona S, Mosca G. An approach to minirhizotron root image analysis[J]. Plant and Soil, 1999, 217( 1/2) : 183-193.[4] Johnson M G, Tingey D T, Phillips D L, Storm M J. Advancing fine rootresearch with minirhizotrons [J].Environmental and Experimental Botany, 2001, 45( 3) : 263-289.[5] Gernot B , Mouhannad A , Alireza N , et al. RGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setupand Imaging Protocols. [J]. Journal of visualized experiments : JoVE, 2017, (126).[6] Gernot B, Alireza N, Thomas A, et al. Hyperspectral imaging: a novel approach for plant root phenotyping.[J]. Plantmethods, 2018, 14(1).[7] Gernot B , Mouhannad A , Alireza N . Root System Phenotying ofSoil-Grown Plants via RGB and Hyperspectral Imaging. [J].Methods in molecularbiology (Clifton, N.J.), 2021, 2264245-268.[8] Advanced Imaging for Quantitative Evaluation of Aphanomyces RootRot Resistance in Lentil[J]. Frontiers in Plant Science, 2019, 10.[9] Nakaji T, Noguchi K, Oguma H. Classification of rhizosphere components using visible–near infrared spectral images. Plant Soil. 2008 310: 245–61.
    留言咨询
  • 多光谱成像无人机SEN-P903采用多光谱技术,实现对水体监测可视化多光谱成像无人机SEN-P903由无人机搭载多光谱相机,通过前沿的科学技术实时监测河道、湖体水质,分析水质优劣情况分布,其多光谱技术(Multispectral):是指能同时获取多个光学频谱波段(通常大于等于3个),并在可见光的基础上向红外光和紫外光两个方向扩展的光谱探测技术。常见实现方法是通过各种滤光片或分光器与多种感光胶片的组合,使其在同一时刻分别接收同一目标在不同窄光谱波段范围内辐射或反射的光信号,得到目标在几张不同光谱带的照片,实现对河道、湖体等水域水质状况进行立体可视化的精准监测。应用领域:&bull 水质监测 &bull 河道生态 &bull 灾害评估 &bull 资源调查 &bull 应急监测产品特点 &bull 多光谱技术 多个光学频谱波段(通常大于等于3个),通过各种滤光片或分光器与多种感光胶片的组合,使其在同一时刻分别接收同一目标在不同窄光谱波段范围内辐射或反射的光信号。 &bull 智能拼接专业分析 数据回传矫正拼接,自研计算模型波段运算精细化分析技术参数:
    留言咨询
  • 平台介绍:质谱流式的超高检测通道数量的优势在组织成像研究中最大化,其性能远远超越了传统的免疫组化或者免疫荧光技术。质谱流式系统的检测通道多达135个,目前单次检测即可获得组织切片样本上4-37种蛋白标记物的图像数据,充分满足研究人员未来不断增长的实验需求;并在最大限度上利用单个样本进行数据采集和分析,非常适用于珍贵的稀有样本;更重要的是,该方法有效地避免了因连续切片造成的样本间差异以及由于连续染色造成的数据间差异;此外,通过保留组织结构和细胞形态学信息,研究人员可以在组织微环境下从亚细胞水平获得全新的研究视角。平台优势:传统免疫组化质谱免疫组化通道最多10色拥有135个通道,目前最多可同时检测37个抗体串色荧光串色严重,信号相互叠加,染料灵敏度及浓度直接影响图像真实性通过质谱收集金属离子转换为图像信号,信号精准不重叠,真实可靠背景有些组织内含有内源性过氧化物酶,有些组织存在自发荧光,两种情况都引起高背景金属螯合物与细胞组分的非特异性结合极低,作为标记的镧系金属元素,在细胞中的含量基本为零,背景极低染色流程目前两种方法:一种是每张切片染3色,制作多张切片染色;另一种是一次染3色,然后洗掉,再染3色,然后洗掉再染,反复操作每张切片最多可结合37个抗体,同时染色,仅需一张切片,节约样品,节省时间应用领域:1. 肿瘤微环境相关因子检测2. 机体免疫功能检测3. 细胞信号通路相关因子检测4. ......我们的优势:1. 提供从Panel设计到数据分析的质谱成像应用完整解决方案2. 优质的项目服务,成熟的实验流程,严格的质控管理服务流程:销售与老师进行沟通,明确需求 销售与技术部门沟通,出具方案 签署合同 收取样品 检查切片细胞情况 扫描分析并出具报告
    留言咨询
  • HyperspecVNIR-SWIR Co-aligned全波段机载高光谱成像仪的光谱范围为400-2500nm,即一台仪器中覆盖常用的所有波段范围。VNIR-SWIR Co-aligned内部集成有VNIR和SWIR两套高光谱成像仪,其中,VNIR (400-1000nm)的感光元件为低功耗的CMOS传感器,其分辨率为640 x 480,像元尺寸为7.4μm*7.4μm;SWIR(900-2500nm)的感光元件为制冷型MCT传感器,其分辨率为640 x 480,像元尺寸为15μm*15μm。而分光光路均基于Headwall公司专利技术——全息反射衍射光栅,不仅保证了极低杂散光和成像畸变,同时也具有极高的热稳定性和信噪比。 另外,VNIR-SWIR Co-aligned结构紧凑,是一套完整的turnkey解决方案,其尺寸仅为:27.2cm*20.8cm*16.5cm,重量3kg,除了成像光谱仪外,同时集成有高精度的GPS/IMU传感器和嵌入式控制PC,高光谱数据和姿态信息将实时保存在嵌入式PC中。 VNIR-SWIR Co-aligned让用户无需再考虑复杂的硬件系统集成,专注于飞行计划的制定和高光谱数据的后期处理。 技术参数全波段高光谱成像光谱仪 -技术参数光谱范围VNIR(400-1000nm)SWIR(900-2500nm)光学设计高效像差校正同心光学成像系统光谱通道数270267像元尺寸(μm)7.415色散/像元(nm/像元)2.26光谱分辨率FWHM(nm)68空间通道数640光圈f/2.5狭缝宽度(μm)20探测器CMOS斯特林制冷型MCT最大帧频(Hz)350200相机bit位数1216内存(G)480480尺寸(mm)272 × 208 × 165重量(kg)2.83
    留言咨询
  • AMS-14 具有独特设计的高清传感器和图像采集方式,能够同步获取具有极高分辨率的14通道光谱图像数据,每个通道图像高达7.5MP像素;可用于农业遥感、环境遥感、林业勘查、精准农业、农业危害(如害虫、疾病、胁迫及营养缺乏等),可集成于自动化农业设施,开展自动机器视觉识别和机器学习等应用。AMS-14 使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,7R还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。 AMS-14高分辨率多光谱相机 主要特点: 所有光谱波段的连续数字对齐,无论飞行高度是多少 能捕捉单个像素1mm甚至0.5mm的高分辨率多光谱图像 能够进行人工智能分析、机器学习和分类 镜片全部由玻璃和金属制成,极高的保真度,不受环境的影响 拥有更广泛的动态范围,更多的波段和更高的分辨率 克服了同步和视差等普通多光谱相机设计的典型问题 传感器可拍摄4K级多光谱高清视频 传感器带可根据客户需求定制(滤镜部分有起订量要求)技术指标AMS-14高分辨率14通道多光谱成像仪通道数14个光谱波段405nm、430nm、450nm、490nm、525nm、550nm、560nm570nm、630nm、650nm、685nm、710nm、735nm、850nm光谱带宽25nm通过效率>95%单通道图像750万像素(2780x2650 pixels)镜头规格21.8mm/F5.6光学畸变1%FOV32°GSD2.3cm@100m、4.6cm@200m探测器单一探测器>6000万有效像素成像辅助多轴防抖功能位数≥14bit视频可录制4K视频数据3840 x 2160,1.65 MP per band对焦范围2.5m~无穷远通讯Wi-Fi Compatible, 802.11b/g/n (2.4GHz band) HDMI micro connector (Type-D) MULTI / MICRO USB TERMINAL NFC软件功能自动裁切、计算植被指数、.Tiff格式转换、自动校准、各通道数据批处理
    留言咨询
  • 6X 机载多光谱成像仪是一款操作简易、数据结果可快速输出的科研级机载多光谱产品,可满足多种应用领域的多光谱数据使用需求,该成像仪由同步触发的5个的320万像素全局快门光谱通道和一个2010万像素的RGB通道组成,每个通道都配备了高性能的光谱采集模块,因而可快速获取8通道的高辐射精度高质量多光谱影像数据。6X机载多光谱成像仪配备了高性能定制化处理器,用于处理数据,适用于机载计算机视觉和机器学习。仪器将主要的后处理操作(如图像波段配准和校正)集成到传感器的工作流程中,使其即时输出可用的数据,在野外即可实时获取可用的多光谱数据。关键性能和优势 实时图像处理分析 光照传感器内置GPS 快速输出数据结果 3 fps高速数据采集 兼容MavLin通信协议 多款无人机直接集成 影像色彩选择性校正 操作简易使用方便
    留言咨询
  • 光电离质谱成像仪 MSI DPI-A产品介绍质谱成像技术(MSI)是基于质谱发展起来的一种分子成像新技术。MSI通过直接扫描生物样本,可以同时获得多种分子的空间分布特征。光电离质谱成像仪 MSI DPI-A 是基于专利技术( DESI/PI,即带电液滴解析/后光电离质谱成像技术,专利号:ZL201810935962.4)研发的一款用于空间分子成像的装置,该成像仪的关键是在DESI喷雾装置后引入一套光电离系统和高效离子传输管道,可通过开、关光电离源,实现对多种极性和非极性组分的高灵敏度空间成像。该成像仪可适配于主流质谱仪(Agilent、Thermo Fisher、Waters等),对动/植物组织、各种物体表面及内部分子进行空间成像。光学成像和质谱分子成像对比显微镜光学成像看外观,质谱的分子成像看本质光学影像看似一样,但质谱成像显示生物标志物只在特点区域分布 光电离质谱成像仪 MSI DPI-A产品特点分子成像技术一次性对所有质谱信号成像组织切片成像植物叶/根/茎切片成像软电离成像待测物无极性歧视扫描速度快光电离质谱成像仪 MSI DPI-A产品优势与其它成像技术相比,ProC-MSI-DPI-A光电离质谱成像系统成像技术具有:(1) 免标记:无需放射性同位素或荧光标记 (2) 高通量:可以对上千种生物分子同时进行原位成像分析 (3) 信息丰富:可以同时获得生物分子的结构、丰度和空间分布信息。目前国际上普遍使用的DESI成像源只能对极性较强的组分进行成像,有极性歧视(影响多种极性和非极性组分的准确度)和较强的离子抑制(干扰使待分析物的响应信号被抑制,需要对样品净化),不适于所有的待测物体系。与之相比,本公司基于DESI的二次光电离质谱成像技术(DESI-PI-MSI)光电离成像源不仅可以将小鼠、植物组织等切片中的非极性化合物进行成像,还可以进一步提升极性成分的信号强度,从而大大高了成像信噪比。与传统DESI技术相比, 使用DESI/PI后信号强度可提高1-3个量级,大大提升了待测物尤其是非极性成分的检出和成像能力。图1 利用Omni PI成像源与市售其他成像源获得的质谱 图和成像图比较图2 利用Omni PI源在国际顶尖期刊《分析化学》 发表的封面论文光电离质谱成像仪 MSI DPI-A系统组成整个系统由一台高分辨率飞行时间质谱仪和一台分子成像仪集成一体,为国内首创质谱仪规格参数:质量检测范围20-10000 amu 检测限0.05ppb质量分辨率 10000自动数据采集及分析程序成像仪规格参数尺寸:300(w)x200(h)x150(d)空间分辨率:10-200微米,可进行原位检测成像速率:50像素/秒解析源:DESI+PI电离源:后光电离光电离质谱成像仪 MSI DPI-A应用领域代谢组学:蛋白质组学、代谢物的空间分布变化、病理学诊断:疾病标志物的发现、疾病的早期诊断、临床病理研究、细菌分析、微生物成像、确定肿瘤的级别、激素受体状况、基因芯片检测、细胞生物学、微生物生态学药物代谢动力学:新药研发、药物及代谢物在不同时间不同器官的代谢过程、药物定量、药物发现及分布研究、草药混合物植物代谢:代谢物的空间分布变化、植物代谢研究工业领域:化工原料、包装材料、染料、化妆品、材料基质、食品成分分析法医学:法医鉴定、指纹扫描、毛发、组织中的滥用物质及代谢物 毒理学环境化学考古学光电离质谱成像仪 MSI DPI-A应用范例1.小鼠大脑成像DESI/PI产生更多、更强的待测物质谱信号,如乙醇胺、GABA、肌酸、腺嘌呤、谷氨酰胺、谷氨酸、胆固醇、PC脂、GalCer脂质、PE脂质、MAG脂质等(如上图所示)2.小鼠乳腺癌成像研究 原位质谱成像方法(aa-DESI/PI),以小鼠乳腺癌组织作为模型开展成像研 究,有助于深入揭示肿瘤复杂的代谢过程。3.药物研究在药物研发(Discovery及R&D)过程中,必须详细了解药物的药理学、毒性和分布。质谱成像是无须标记,可用于可视化生物组织中内源性化合物、药物、脂质、蛋白质、肽和药物输送系统的二维(和三维)分子分布。因此,该技术不仅能够收集药物和代谢物分布数据,还能收集药效学和生物标志物信息,这些信息在药物开发的多个阶段都非常有价值。在给药后6小时,药物浓度在不同区 域的分布可见降低4、植物叶片成像及代谢研究在已知植物种群中,有约 200,000 个植物代谢物的化学结构被鉴定出来。植物代谢物的成分分析和空间成像对探讨植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。质谱成像是近年来涌现出的分子成像技术,具有免荧光标记、不需要复杂样品前处理等优点。然而,由于植物角质层和表皮蜡的存在,常规MALDI和DESI等软电离技术很难穿透角质层作用于叶肉组织,从而无法对植物叶片中的代谢物进行直接成像MSI DPI-A质谱成像源仪的解吸电喷雾电离/二次光电离(DESI/PI)质谱成像平台(Analytical Chemistry,2019,91,6616-6623)结合多孔聚四氟乙烯印迹技术,实现对多种植物叶片中代谢物的空间成像。5、黑色素细胞痣诊断和形成机制操作流程特征性脂质标志物在表皮、痣和皮下组织中分布的箱线图四例样本成像图胆固醇合成酶(HMGCR)及转运酶(TSPO)的IHC图表明,两者均在黑素细胞痣区域高表达,这表明黑素细胞痣中胆固醇的积累是由HMGCR和TSPO酶的共同作用 产生的.6.卷烟叶的成像六种代表性化学物质的质谱成像图7.茶叶成像DESI/PI 在可视化极性和非极性代谢物的空间分布植物成像的一个好例子。植物中的代谢物已经通过不同的MSI成像技术.作为消费最广泛的仅次于水的饮料世界,茶富含多种生物活性物质成分。例如,儿茶素占新鲜茶叶的干重的30%,健康茶有很多益处。然而,由于它们的极性低, DESI 对这些儿茶素的电离效率很差。茶的两个连续鲜叶芽横截面植物分别通过DESI/PI和DESI进行分析。中性儿茶素包括 (-)-表儿茶素 (EC),(-)-表儿茶素没食子酸酯 (ECG),和 (-)-表没食子儿茶素没食子酸盐 (EGCG) flavan-3-ols 可以被检测和成像由 DESI/PI 提供。ECG 和 EGCG 是热不稳定的化合物,以及它们的片段([M + H - C7H6O5]+)分别在 m/z 272.07 和 289.07 处检测到。这DESI / PI质谱进一步证明了分配EC、ECG 和 EGCG 的标准。我们的结果表明,DESI/PI 可以增加中性物种的检测灵敏度,也拓宽了DESI 在可视化非极性生物分子中的适用性植物组织的MSI,可以被认为是一种有效的中度侧向 MALDI 和替代技术解析度。茶叶咖啡因在叶中脉富集、茶氨酸在叶柄富集并延伸至中脉和叶尾,为咖啡因主要在茶叶中脉合成和茶氨酸在茶叶根部合成并转运至叶片的生物合成位点及转运路径提供了强有力证据。两个连续新鲜叶芽的平均质谱图获得的茶树横截面(减去背景)以甲醇/甲苯/FA (v:v:v = 70:30:1)作为溶剂的 DESI/PI和 DESI以甲醇/FA (100:1) 为溶剂,分别在正离子模式。(A) 叶芽组织的最优图像的茶。 (B-F) m/z 184.07 处一些代表性峰的 MS图像,195.09、272.07、289.07 和 291.09 由 DESI/PI 获得。(G-H) 质谱DESI 获得的 m/z 184.07 和195.09 处的两个峰的图像。白色比例尺对应于 1 mm非标订制及其他产品我们还提供非标飞行时间质量分析器和各种催化、高/压热解反应器、光电离源、电离腔、JSR反应器、分子泵、MCP微通道板、数据采集卡等质谱仪专用备件订制服务。
    留言咨询
  • AirPhen植物多光谱成像 400-860-5168转1895
    AIRPHEN 由法国HI-PHEN公司研制生产,可用于地面植物多光谱成像分析及EcoDrone无人机多光谱遥感成像分析,其主要技术特点:1) 可见光-近红外6波段多光谱成像2) 可分析多种植物光谱反射指数包括:a) 简单比值指数b) 植被归一化指数NDVIc) 光化学反射指数PRId) 叶绿素指数CIe) 修正的叶绿素吸收反射指数MCARI(反映叶绿素含量)f) 归一化红边指数NDRE等3) 可嵌合红外热成像组成多光谱+红外热成像系统4) 可通过地面支架进行植物冠层多光谱成像5) 可方便安装到易科泰自主研发的EcoDrone专业无人机遥感平台(UAV-4或UAV-8)进行无人机多光谱遥感或多光谱与红外热成像综合遥感 主要技术指标1) 拍摄:6个同步全球快门传感器2) 图片尺寸:1280×960(tif,12bit)3) 获取速度:2帧/ 秒4) 波段范围:450-900nm、6波段(450/530/570/675/710/730/750/850),FWHM=10nm(可选配其它滤波器)5) 标配8mm光学镜头,视野33°x 25°,飞行高度100m视野60x40m、4.7cm像素分辨率6) 内置GPS7) 红外热成像:640x512分辨率,19mm光学镜头(视野32°x26°),快门同步化8) 数据存储:SD卡存储,32GB9) 低功耗:7W/H10) 重量:200g
    留言咨询
  • K6十通道多光谱成像仪每个模块均具有独立的Linux计算功能、独立传感器和板载存储器,可以与多种固定翼或多旋翼无人机搭载使用,满足不同的应用需求。一般对于较大的测量面积,如超过1平方公里,推荐使用轻小型固定翼无人机,如下图: K6能够快速捕捉图像,其内核支持PWM触发器,也可以使用继电器(电压)脉冲直接触发传感器;可以连接到自驾仪或CAN GNSS上的UAVCAN端口,通过飞行控制系统自动执行拍照命令,允许内核将数据值与图像数据同时保存于128G可拔插式microSD卡。K6具有多种配置组合,可以选择多种光谱通道,自由更换,以获取不同组合的光谱数据,详询,)K6 十通道多光谱仪成像仪 可选通道组合: 技术参数:K6十通道多光谱成像仪处理器Freescale i.MX 6 Dual Core ARM Cortex A9 1.2GHz探测器13.2MP像素(global,单通道);像元尺寸3.45×3.45μm探测器214.4MP像素(Bayer三通道);像元尺寸1.4×1.4μm触发PWM,Relay pulse(high-low)图像格式12bit RAW,16bit TIFF(per channel)帧频2fps(3.2MP RAW),1fps(14.4MP RAW)镜头视场角87°或41° HFOV地面分辨率4.3cm/px(3.2MP),2.0cm/px(14.4MP),(120m/400ft AGL)供电5.0VDC,4.0W (each)产地:美国
    留言咨询
  • AMS使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,AMS还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。技术指标AMS高分辨率10/14通道多光谱成像仪规格型号AMS-10AMS-14探测器面阵6000万像素6000万像素光谱通道数10个14个光谱波段(nm)405、430、450、550、560570、650、685、710、850405、430、450、490、525、550、560570、630、650、685、710、735、850图像分辨率/单通道1200万像素750万像素GSD@100m1.5cm1.72cm视频可录制4K视频数据3840 x 2160,1.65 MP per band软件功能自动裁切、计算植被指数、格式转换、自动校准、数据批处理
    留言咨询
  • AMS-10 具有独特设计的高清传感器和图像采集方式,能够同步获取具有极高分辨率的10通道光谱图像数据,每通道图像高达一千二百万像素;可用于农业遥感、环境遥感、林业勘查、精准农业、农业危害(如害虫、疾病、胁迫及营养缺乏等),可集成于自动化农业设施,开展自动机器视觉识别和机器学习等应用。AMS-10使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,7R还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。AMS-10高分辨率多光谱相机 主要特点: 所有光谱波段的连续数字对齐,无论飞行高度是多少 能捕捉单个像素1mm甚至0.5mm的高分辨率多光谱图像 能够进行人工智能分析、机器学习和分类 镜片全部由玻璃和金属制成,极高的保真度,不受环境的影响 拥有更广泛的动态范围,更多的波段和更高的分辨率 克服了同步和视差等普通多光谱相机设计的典型问题 传感器可拍摄4K级多光谱高清视频10个光谱通道: 405nm、430nm、450nm、550nm、560nm、570nm、650nm、685nm、710nm、850nm 每通道1200万像素;各通道同步成像 传感器带可根据客户需求定制(滤镜部分有起订量要求)
    留言咨询
  • AMS-10 具有独特设计的高清传感器和图像采集方式,能够同步获取具有极高分辨率的10通道光谱图像数据,每通道图像高达一千二百万像素;可用于农业遥感、环境遥感、林业勘查、精准农业、农业危害(如害虫、疾病、胁迫及营养缺乏等),可集成于自动化农业设施,开展自动机器视觉识别和机器学习等应用。AMS-10使用单一超大面阵探测器,避免了普通多光谱成像设备采用不同探测器(多个微型相机)带来的探测器响应不一致的问题;而且,传统的多光谱成像设备需要对各波段图像进行预处理,以保证通道间正确对齐,这无疑增加了工作量,影响了时效性。除了大面阵超高分辨率的优势,7R还具有工业级的成像系统和光学硬件,光学失真仅1%!而传统的多光谱相机(1.3MP或3.2MP)多数使用较高失真的低成本劣质光学器件,镜头失真经常超过15% ,因此需要先进行大量预处理之后才能开始分析数据。AMS-10高分辨率多光谱相机 主要特点: 所有光谱波段的连续数字对齐,无论飞行高度是多少 能捕捉单个像素1mm甚至0.5mm的高分辨率多光谱图像 能够进行人工智能分析、机器学习和分类 镜片全部由玻璃和金属制成,极高的保真度,不受环境的影响 拥有更广泛的动态范围,更多的波段和更高的分辨率 克服了同步和视差等普通多光谱相机设计的典型问题 传感器可拍摄4K级多光谱高清视频10个光谱通道: 405nm、430nm、450nm、550nm、560nm、570nm、650nm、685nm、710nm、850nm 每通道1200万像素;各通道同步成像 传感器带可根据客户需求定制(滤镜部分有起订量要求)
    留言咨询
  • GaiaSky系列机载光谱成像系统GaiaSky-mini 高光谱成像系统是针对小型旋翼无人机开发的高性价比机载高光谱成像系统。采用自有专利的内置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题。为高光谱成像技术在目标识别、伪装与反伪装领域,地面物体与水体遥测、现代精细农业等生态环境监测等领域的广泛应用奠定了基础。性能优势:可搭载于轻型旋翼无人机,经济化的系统与测试成本采用悬停拍摄方式,无需高精度惯导系统,图像实时自动拼接操作方便,无需专业无人机操控手,可实现单人操作图像实时回传,监控拍摄效果辅助取景摄像头实现真正的所见即所得可通过地面站实时观测飞机采样地点并可利用地面站设置逐点采 集的航线数据预览及矫正功能:辐射度校正、反射率校正、区域校正支持 批处理数据格式兼容Evince、Envi等第三方数据分析软件支持Win7-32位或64位系统产品列表型号水平分辨率垂直分辨率数据接口彩色/黑白帧频/行频GaiaSky20482048Color30fpsGaiaSky-M20482048Color25fpsGaiaSky-Micro20482048Color25fps典型应用飞行表演精细农业等
    留言咨询
  • GaiaSky系列机载光谱成像系统GaiaSky-mini 高光谱成像系统是针对小型旋翼无人机开发的高性价比机载高光谱成像系统。采用自有专利的内置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题。为高光谱成像技术在目标识别、伪装与反伪装领域,地面物体与水体遥测、现代精细农业等生态环境监测等领域的广泛应用奠定了基础。性能优势:可搭载于轻型旋翼无人机,经济化的系统与测试成本采用悬停拍摄方式,无需高精度惯导系统,图像实时自动拼接操作方便,无需专业无人机操控手,可实现单人操作图像实时回传,监控拍摄效果辅助取景摄像头实现真正的所见即所得可通过地面站实时观测飞机采样地点并可利用地面站设置逐点采 集的航线数据预览及矫正功能:辐射度校正、反射率校正、区域校正支持 批处理数据格式兼容Evince、Envi等第三方数据分析软件支持Win7-32位或64位系统产品列表型号水平分辨率垂直分辨率数据接口彩色/黑白帧频/行频GaiaSky20482048Color30fpsGaiaSky-M20482048Color25fpsGaiaSky-Micro20482048Color25fps典型应用飞行表演精细农业等
    留言咨询
  • ——单镜头多通道同步成像技术技术简介: S219是一款高度集成的成像光谱仪,内部整合了4组CCD,通过同一个镜头捕获图像信息,在相同的视场和时间内各波段的数据都能精确的获取,避免了以往多镜头结构的图像错位问题。设备易于使用,全局快门防止运动伪影,测量数据无需进行预处理。 具有4*125万像素的高分辨率探测器,使用一个镜头同时获取4~6个通道光谱图像,各通道同步测量,数据直接存储在内置SD卡上,整机机构紧凑,可以很容易地安装在无人机上使用。仪器特点:仪器特点主要应用※ 单镜头多通道同步成像※ 人性化操作控制界面※ 数据存储于SD卡※ 地面/机载两用※ 高速测量无伪影※ 大面积图像拼接※ 遥感应用※ 精准农业※ 环境遥感※ 过程控制※ 食品质量检测※ 考古发现※ 生物医学成像 S219成像光谱仪使用简单、波段可定制。通过可自由选择的光学滤光片能够满足多种光谱波段测量需求。 为解决多镜头式光谱仪的空间错位以及旋转滤光片式多光谱仪的波段延时问题, S219设计为单镜头多通道结构,它采用一支镜头搭配四组Si CCD探测器,可在同一时间获得4或6个相同视场范围内的光谱图像,后期无需复杂的图像配准,即可自动拼接获取大面积多光谱图像,通过仪器自带软件可自动输出NDVI等常见植被指数图像。技术参数:光谱特性光谱范围370-1100nm光谱图像4×125万像素通道宽度5-10nm通道数4-6硬件特性CPUARM 7探测器Si CCD数字分辨率10 bit测量时间 100μs通讯接口USB, GigE, Trigger高光谱成像速度5Cubes/s快门方式全局快门数据存储SD卡光学特性镜头视场角20mm镜头类型Nikon Objective接口F口产地:德国
    留言咨询
  • K4八通道多光谱成像仪每个模块均具有独立的Linux计算功能、独立传感器和板载存储器,可以与多种固定翼或多旋翼无人机搭载使用,满足不同的应用需求。一般对于较大的测量面积,如超过1平方公里,推荐使用轻小型固定翼无人机。 其内核采用功能强大的Dual Core ARM Cortex A9处理器,其组件设计为易于拆分,可根据用户的使用需求进行配置,还可以自行更换每个相机模块中的传感器、镜头和通道,以使图像的嵌入式数据与硬件配置相匹配。这可以降低整体产品成本,同时允许对已有产品保持更新。 K4能够快速捕捉图像,其内核支持PWM触发器,也可以使用继电器(电压)脉冲直接触发传感器。可连接到自驾仪或CAN GNSS上的UAVCAN端口,通过飞行控制系统自动执行拍照命令,允许内核将数据值与图像数据同时保存于128G可拔插式microSD卡。K4具有四种配置组合,具有不同的光谱通道:(也可以选择更多通道,自由更换,以获取不同光谱通道的数据)K4八通道多光谱仪成像仪 可选通道组合:通道组合一通道组合二通道组合三通道组合四475+550+850nm550+660+850nm475+550+850nm550+660+850nm490+615+808nm490+615+808nm490+615+808nm490+615+808nm395+870nm395+870nm任选两种From:405、450518、590、632、650、685、725、780、880、940、945nm任选两种From:405、450、518、590、632、650、685、725、780、880、940、945nmVisible RGBVisible RGB各通道曲线: 技术参数:K4 八通道多光谱成像仪处理器Freescale i.MX 6 Dual Core ARM Cortex A9 1.2GHz探测器13.2MP像素(global,单通道);像元尺寸3.45×3.45μm探测器214.4MP像素(Bayer三通道);像元尺寸1.4×1.4μm触发PWM,Relay pulse(high-low)图像格式12bit RAW,16bit TIFF(per channel)帧频2fps(3.2MP RAW),1fps(14.4MP RAW)镜头87°或 41° HFOV地面分辨率2.0cm/px(14.4MP),(120m/400ft AGL)端口USB2.0,UART,UAVCAN,PWM(in and out),I2C,Ethernet,GPIO,HDMI & SD Video扩展端口Side 40-pin Port,Bottom 60-pin "Expansion Port"存储Removable microSDXC (up to 128 GB)供电5.0VDC,4.0W(each)产地:美国
    留言咨询
  • 6X机载多光谱成像仪配备了高性能定制化处理器,用于处理数据,适用于机载计算机视觉和机器学习。仪器将主要的后处理操作(如图像波段配准和校正)集成到传感器的工作流程中,使其即时输出可用的数据,在野外即可实时获取可用的多光谱数据。技术参数6X机载多光谱成像仪探测器参数类别Mono×5RGB像素320万像素,global2010万像素HFOV47°47°光谱波段475nm,550nm,670nm,715nm,840nmRGB通道宽度5~10nm地面分辨率5.2cm/px (120m/400ft AGL)2.8cm/px (120m/400ft AGL)其他参数帧频3fps尺寸3.13 " x2.60 " x2.66 "重量280g功耗15W存储512 GB高速固态可选机载云台套件支持M300 RTK /M600 Rro / Matrice 200/210等无人机均可搭载
    留言咨询
  • GaiaField(Pro) 便携式高光谱系统是双利合谱自主研发设计、拥有独立技术知识产权的一款超便携式高光谱成像仪器,系统覆盖可见光到短波红外波段。内置处理器可通过手机、Ipad、笔记本电脑等终端设备的控制,使系统进行实时图像采集扫描、实时校准、实时结果输出,而在获得目标影像信息的基础上,还可以获得数百甚至上千波段的光谱信息,实现目标的“图谱合一”。GaiaField Pro便携式光谱成像系统有着轻便灵活,续航能力出色、智能化、数据分析处理功能齐全、能够实时监控、实时校准、实时输出反演结果等功能。广泛适用于户外和实验室内的应用需求。例如:目标探测与识别、**与反**等军事领域,地面物体与水体遥测( 水质监测)、现代精细农业( 植物表型监测) 等生态环境监测领域,刑侦、文物保护( 真伪鉴别)、生物医学( 细胞属性分类鉴别)、塑料垃圾( 分类与识别)、烟草烟叶的工业分选( 品质优选),化学气体燃烧火焰( 成分确定和判别)、地质矿石分析,油气岩层荧光分析、生物医学、材料性能检测等等领域。GaiaField Pro便携式光谱成像系统主要功能 集成高性能数据采集与分析处理系统(Pro版本) 高清辅助取景摄像头实现对拍摄区域的监控与图像采集 内建精准农业、军事等应用模型,实现实时模型分析功能(NDVI、**识别等) 支持用户自定义分析模型 目标光谱实时匹配搜索功能(灰布等自动识别) 内置电池 数据预览及校正功能:辐射度校正、反射率校正、区域校正、镜头校准、均匀性校准 镜头可更换 支持Android等智能手机、Ipad等无线操控(Wifi 模式)(Pro版本) 选配支持远距无线图像传输与遥控操作(串口模式) 数据格式 兼容Evince、Envi、SpecSight等数据分析软件 不同代际产品间兼容性强 实时校准及反演结果实时输出功能; 数据分析软件的良好切入,满足更多行业应用需求; 主要分三个主要版本(Pro为高配版、内置处理器;非Pro版本为通过笔记本电脑、计算机实现控制(中配版);Lite版本无自动调焦等功能);
    留言咨询
  • 10通道多光谱成像系统,是在RedEdge-MX基础上,新增RedEdge-MX Blue相机,组成同步10通道多光谱成像解决方案,用于高级别遥感和精准农业研究。本系统以新的RedEdge-MX Blue为特色,在原有5个标准波段基础上,加上一组新的滤波器,使更多、更详细的分析成为可能,如浅水环境监测和叶绿素效率及植物红边坡度的详细分析。1、主要特点:l 一次飞行同步获取10通道多光谱影像,飞行作业事半功倍l 同一无人机即可同时搭载RedEdge-MX和RedEdge-MX Blue,无需更换无人机平台l 结合下行光传感器和GPS进行流线型集成,确保精确的环境光校准l 双机共用一套DLS和GPS,节省成本和重量的同时,确保双机同时、同步、同光线l 可与EcoDrone UAS-4/8无人机平台组成即飞即用(Ready-to-fly)系统l 配备固定支架和快速安装连接器,可无需云台安装,兼容DJI等无人机平台l 利用新增的海岸蓝色波段监测浅水环境(气溶胶、浮质等)l 利用新增的红、绿及两个红边波段详细分析叶绿素效率或红边坡度l 两相机波段可任意互换使用,允许用户创建多种新的指数模型及详细分析 2、技术参数:重量508.8g(含两个传感器、双机安装板、DLS2、线缆)尺寸8.7cm×12.3cm×7.6cm电源4.2-18.8V DC光谱波段海岸蓝(444,28)、绿(531,14)、红(650,16)、红边(705,10)、红边(740,18)蓝(475,32)、绿(560,27)、红(668,14)、红边(717,12)、近红外(842,57)RGB输出3.6MP(全局快门,所有波段均对齐)分辨率1280×960(单波段1.2MP)地面采样间隔8cm/像素(120m相对高度)拍摄速率1秒/次,全部波段接口串口通讯,10/100/1000以太网,可移除Wi-Fi,外部触发,GPS,SDHC视场角47.2°触发选项定时模式、重叠模式、外部触发模式、人工触发模式温度0-40℃环境(无气流);0-50℃环境(气流>0.5m/s)套装内容RedEdge-MX传感器、RedEdge-MX Blue传感器、镜头保护盖、反射校准板、DLS及GPS、线缆、安装螺丝、快速转接板、硬质运输箱3、应用领域:l 作物表型及精准农业l 作物长势和农情监测l 农业灾害胁迫监测l 生态环境调查监测l 浅水环境监测l 植物叶绿素效率评估
    留言咨询
  • 6X 机载多光谱成像仪是一款操作简易、数据结果快速输出的科研级机载多光谱产品,可满足诸多不同领域的多光谱数据使用需求,该成像仪由同步触发的5个的320万像素全局快门单通道和一个2010万像素的RGB通道组成,每个通道都配备了高性能的光谱采集模块,因而可快速获取8通道的高质量多光谱影像数据。6X机载多光谱成像仪配备了高性能定制化处理器,用于处理数据,适用于机载计算机视觉和机器学习。仪器将主要的后处理操作(如图像波段配准和校正)集成到传感器的工作流程中,使其即时输出可用的数据,在野外即可实时获取可用的多光谱数据。
    留言咨询
  • SOC716视频级高光谱成像光谱仪    ------获取运动目标高光谱数据Full Motion Video Spectral Imaging System  SOC716 FMV-SI视频高光谱成像光谱仪设计独特,采用独特创新的单个焦平面光学系统设计,可以测量运动目标的高光谱数据,光谱数据立方获取速率可达60HZ。  传统的高光谱成像系统只能获得二维平面的高光谱数据立方,对于时间维度上的高光谱信息很难获得。对于行扫描高光谱成像系统,需要移动平台或扫描装置来获取空间二维面上的信息,同时需要稳固支架和精准的云台扫描信息进行数据匹配,因此在测量运动目标时,会产生光谱拖尾效应导致光谱相关性/检测性无效。  拜耳型多光谱相机采用光学系统前置滤片设计,必须要切换滤片或滤盘转动来获取不同光谱波段数据,对于实际应用会产生影像光谱拖尾的缺点,而SOC716视频高光谱成像光谱仪采用单个焦平面系统设计,无运动部件,同步实时获取多个光谱波段数据,测量运动目标的高光谱影像时避免了影像拖尾现象。   和SOC的MIDIS处理器同时使用后,可以实现实时数据定标、数据修正和波段选择等计算,MIDIS处理器无须连接电脑即可实现实时监测、检测和鉴别目标,并输出标准NTSC信号。SOC716 FMV-SI的光谱范围可覆盖UV (300-500nm),VNIR (450-950nm)和 SWIR (1000-1700nm)三个波段主要参数SOC716-UVSOC716-VNIRSOC716-SWIR光谱色散带通滤波器阵列带通滤波器阵列带通滤波器阵列光谱范围270-550 nm450-950 nm900-1700 nm分辨率可配置可配置可配置 通道数 16 16 16物镜自定义远心消色差自定义远心消色差自定义远心消色差焦距/ TFOV84mm / 12.0度85mm /12.3度125 mm /11.0度传感器类型背照式CMOSSI-CCD砷化铟镓立方体尺寸320×256×16640×540×16320×256×16位深度10位12位12位扫描速度最大每秒30立方最大每秒60立方最大每秒30立方尺寸10.75“×3.9”×3.9“6.78“×4.5”×5.6“10.5“×2.5”×2.5“重量4.2磅7.83磅4.00磅功率2W@12VDC电池12W@12VDC电池3.8W@12VDC电池
    留言咨询
  • MULTIC宽带多光谱成像仪测试系统是为测试远距离宽带多光谱成像仪而开发的专业测试系统。它可看作是经过校正的投影系统,可在可见光至远红外波段投射出不同形状/大小/光强的标准图像。MULTIC测试系统由以下模块组成:CDT离轴反射平行光管(典型有效径为400mm或500mm),VASIP14D宽带多光谱光源 ,TCB4D黑体,一套两个MRW-6L旋转靶轮,WEB模块切换转轮,一组靶标,计算机,一组图像采集卡,控制软件,测试软件,一组平台,BOREX平台。 MULTIC是专业的测试系统,用于测试远程宽带多光谱成像系统。它是校准的图像投影仪,能够在从可见光到远红外范围的不同光谱投影不同形状/尺寸/光强度的参考图像。 MULTIC被构建为具有固定,紧凑结构的离轴牛顿型平行光管,其具有位于平行光管焦平面处的一组可交换标准靶标,主要由单个宽带多光谱辐射源照射,这种编码为VASIP的特殊辐射源是该测试系统的核心,额外的TCB黑体用于热像仪测试。这种新设计可实现广泛的测试功能,同时保持超高系统精度和可靠性。产品参数根据所选配置MULTIC能够对光学孔径不超过400/500mm的大型宽带多光谱成像仪进行测试。详细测试功能如下表所示。 表1. VASIP光源作为辐射源时的测试功能热像仪可见光-近红外相机短波红外相机可见光-近红外高光谱仪FOV畸变MTFFOV畸变MTFNEI (噪声等效照度),空间噪声 (FPN, 非均匀性)MRC (**小可分辨对比度)响应函数 (线性度,动态范围)相对光谱灵敏度颜色**度 (选配)FOV畸变MTFNER (噪声等效反射率)空间噪声 (FPN, 非均匀性)MRC (**小可分辨对比度)响应函数 (线性度,动态范围)相对光谱灵敏度(步进测量)D* 比探测率FOV桶形畸变枕形畸变MTFNER (噪声等效反射率)空间噪声 (FPN, 非均匀性)响应函数 (线性度,动态范围)MRC (**小可分辨对比度)D* 比探测率校轴误差:1. 高光谱仪在不同谱段时的光轴偏差2. 高光谱仪光轴相对于热像仪(或VIS NIR相机/SWIR相机)的光轴偏差的测量3. 测量高光谱仪图像相对于热像仪图像和VIS NIR /SWIR相机图像之间的旋转角4. 同一成像仪/相机不同视场时光轴偏差的测量5. 可见光-近红外相机(或短波红外相机,高光谱仪,热像仪)到BOREX平台的参考机械平面(机械轴)的光轴偏差的测量表 2. TCB-4D黑体作为辐射源时的测试功能热像仪VIS-NIR 可见光-近红外相机VIS-SWIR 高光谱仪MTF噪声等效温差NETD**小可分辨温差MRTD**小可探测温差MDTD空间噪声 (固定图形噪声FPN,非均匀性)比探测率D*(可选配)------------
    留言咨询
  • 仪器特点:※ 高性价比 ※ 380-1100nm全覆盖※ 6光谱通道可选※ 130万光谱输出量※ 全局快门高速成像技术参数:光谱特性光谱范围380-1100nm光谱分辨率20nm通道数6采样间隔10nm硬件特性成像技术Snapshot高光谱成像速度4 Cubes/s快门方式全局快门探测器Si CCDCube分辨率6*125万像素光谱仪接口USB, GigE,TriggerCPUARM 7重量600g电源DC 5V 15W光谱输出量1296×966数据存储SSD, SD卡物镜接口F-Mount产地:德国
    留言咨询
  • 高光谱成像仪HY-8030-U高谱成像产品详情 产品简介HY-80系列实验室高光谱成像仪是一款专门为实验室环境定制的专用设备,能够实现对物质定性、定量、定时、定位信息的精准 检测,是一台“图谱合一”的专业化科研设备。 HY-80系列实验室高光谱成像仪,核心分光模组完全由高谱公司自主研发,支持选配多种型号图像传感器,并搭配超高像素高清相机实现高空间分辨率与高光谱分辨率的完美融合。同时,HY-80系列可选配自研线性光源和定制暗箱,最大程度减少外部环境对样品检测带来的影响,结合独有的时空辐射校正功能,确保获得稳定的标准化高光谱数据。 HY-80系列实验室高光谱成像仪,为物质分选、刑侦文检、食品监测、真伪鉴定等行业高端应用领域提供高精度的光谱建模与分析解决方案。物理模块 功能特性◆大靶面高光谱相机;◆高性价比COMS图像传感器;◆支持选配高性能CCD图像传感器;◆时空辐射强度校正,显著提高辐射标定精度(时间校正+空间校正);◆集成高清相机,提高空间分辨率,海量数据下便于按图索骥;◆自动扫描,完成数据采集与存储;◆ 辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆ 自动积分时间推荐,根据样品反射率推荐曝光时间;◆ 高光谱数据支持Envi等第三方软件;◆均匀光源/线型光源,匹配高光谱相机视场角,为数据采集提供全谱段照明;◆可选专用暗箱,确保获得稳定的标准化高光谱数据;◆辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆自动积分时间推荐,根据样品反射率推荐曝光时间;◆高光谱数据支持Envi等第三方软件;技术参数应用案例及领域◆刑侦文检:证物、印章、签字、涂改、油墨、印制品、证件、指纹等;◆食品应用:果蔬、肉类、谷物、茶叶;◆物质分选:烟草、药品;◆真伪识别:文物鉴定、珠宝识别; 高光谱成像技术具有无损、快速、绿色的优势,可实现金银花和山银花药材质量快速的无损检测与识别。
    留言咨询
  • 高光谱成像仪HY-8030-A高谱成像产品详情 产品简介HY-80系列实验室高光谱成像仪是一款专门为实验室环境定制的专用设备,能够实现对物质定性、定量、定时、定位信息的精准 检测,是一台“图谱合一”的专业化科研设备。 HY-80系列实验室高光谱成像仪,核心分光模组完全由高谱公司自主研发,支持选配多种型号图像传感器,并搭配超高像素高清相机实现高空间分辨率与高光谱分辨率的完美融合。同时,HY-80系列可选配自研线性光源和定制暗箱,最大程度减少外部环境对样品检测带来的影响,结合独有的时空辐射校正功能,确保获得稳定的标准化高光谱数据。 HY-80系列实验室高光谱成像仪,为物质分选、刑侦文检、食品监测、真伪鉴定等行业高端应用领域提供高精度的光谱建模与分析解决方案。物理模块 功能特性◆大靶面高光谱相机;◆高性价比COMS图像传感器;◆支持选配高性能CCD图像传感器;◆时空辐射强度校正,显著提高辐射标定精度(时间校正+空间校正);◆集成高清相机,提高空间分辨率,海量数据下便于按图索骥;◆自动扫描,完成数据采集与存储;◆ 辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆ 自动积分时间推荐,根据样品反射率推荐曝光时间;◆ 高光谱数据支持Envi等第三方软件;◆均匀光源/线型光源,匹配高光谱相机视场角,为数据采集提供全谱段照明;◆可选专用暗箱,确保获得稳定的标准化高光谱数据;◆辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆自动积分时间推荐,根据样品反射率推荐曝光时间;◆高光谱数据支持Envi等第三方软件;技术参数应用案例及领域◆刑侦文检:证物、印章、签字、涂改、油墨、印制品、证件、指纹等;◆食品应用:果蔬、肉类、谷物、茶叶;◆物质分选:烟草、药品;◆真伪识别:文物鉴定、珠宝识别; 高光谱成像技术具有无损、快速、绿色的优势,可实现金银花和山银花药材质量快速的无损检测与识别。
    留言咨询
  • 高光谱成像仪HY-8030-S高谱成像产品详情 产品简介HY-80系列实验室高光谱成像仪是一款专门为实验室环境定制的专用设备,能够实现对物质定性、定量、定时、定位信息的精准 检测,是一台“图谱合一”的专业化科研设备。 HY-80系列实验室高光谱成像仪,核心分光模组完全由高谱公司自主研发,支持选配多种型号图像传感器,并搭配超高像素高清相机实现高空间分辨率与高光谱分辨率的完美融合。同时,HY-80系列可选配自研线性光源和定制暗箱,最大程度减少外部环境对样品检测带来的影响,结合独有的时空辐射校正功能,确保获得稳定的标准化高光谱数据。 HY-80系列实验室高光谱成像仪,为物质分选、刑侦文检、食品监测、真伪鉴定等行业高端应用领域提供高精度的光谱建模与分析解决方案。物理模块 功能特性◆大靶面高光谱相机;◆高性价比COMS图像传感器;◆支持选配高性能CCD图像传感器;◆时空辐射强度校正,显著提高辐射标定精度(时间校正+空间校正);◆集成高清相机,提高空间分辨率,海量数据下便于按图索骥;◆自动扫描,完成数据采集与存储;◆ 辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆ 自动积分时间推荐,根据样品反射率推荐曝光时间;◆ 高光谱数据支持Envi等第三方软件;◆均匀光源/线型光源,匹配高光谱相机视场角,为数据采集提供全谱段照明;◆可选专用暗箱,确保获得稳定的标准化高光谱数据;◆辅助对焦,根据样品厚度自动调节高光谱相机升降对焦,确保成像清晰;◆自动积分时间推荐,根据样品反射率推荐曝光时间;◆高光谱数据支持Envi等第三方软件;技术参数应用案例及领域◆刑侦文检:证物、印章、签字、涂改、油墨、印制品、证件、指纹等;◆食品应用:果蔬、肉类、谷物、茶叶;◆物质分选:烟草、药品;◆真伪识别:文物鉴定、珠宝识别; 高光谱成像技术具有无损、快速、绿色的优势,可实现金银花和山银花药材质量快速的无损检测与识别。
    留言咨询
  • 便携式高光谱成像光谱系统GaiaField 系统特点:1、一键实现自动曝光、自动调焦、自动扫描速度匹配、自动采集并保存数据2、辅助取景摄像头实现对拍摄区域的监控3、内置电池,可连续工作4小时以上4、数据预览及校正功能:辐射度校正、反射率校正、区域校正、镜头校准、均匀性校准5、镜头可更换6、只需一根USB线实现连接通信7、数据格式完美兼容Evince、Envi、SpecSight等数据分析软件8、支持Win7~10-32位或64位系统9、高配版可内置微型处理器,利用手机、Ipad通过Wifi热点远程控制 GaiaField 便携式高光谱系统是双利合谱研制的一款超便携式高光谱成像仪器。使用此系统进行图像采集扫描,在获得目标影像信息的基础上,还可以获得数百甚至上千波段的光谱信息。GaiaField 系统有着轻便灵活,续航能力出色、智能化、数据分析处理功能齐全、能够实时监控等特点。广泛适用于户外和实验室内的应用需求,例如:目标探测与识别、伪装与反伪装等军事领域,地面物体与水体遥测、现代精细农业等生态环境监测领域,刑侦、文物保护、生物医学、塑料垃圾、烟草烟叶的工业分选,化学气体燃烧火焰、地质矿石分析,油气岩层荧光分析等等领域。 覆盖可见光与近红外全波段可提供超过700个光谱通道,可自由选择GaiaField便携式高光谱系统采用了高分辨率的成像光谱仪。在可见光波段,光谱分辨率优于3nm,即使在短波红外波段也能达到5nm。因而全波段(400-1000nm)内可以获得超过700个的光谱通道,更多的光谱通道意味着更多的信息,有助于研究人员通过对连续光谱的分析、反演,获得更多的高价值数据细节。 独有的软硬件功能 辅助摄像头的实时监控功能1、通过辅助摄像头观察目标拍摄区域2、当前狭缝位置指示3、选择自动曝光与自动调焦区域,直观方便,仅需鼠标即可完成操作4、过度曝光饱和提示5、物距计算功能自动调焦功能1、业内首创自动调焦技术,解决了传统手动调焦方式调焦不易判断和操作不便的问题2、2、通过自动调焦实现对物距的测量传统光谱相机进行调焦时,需要使用者在调焦的同时,观察采集屏幕,通过判断图像边界的锐利程度来完成操作。操作复杂,效率低。即使有经验的使用者也难以手动调整至最佳状态。双利合谱自主研发的自动调焦模组与算法,使以上问题得到了根本解决。每位使用者仅需单键操作,15秒内系统将自动完成对焦,无需任何额外操作,只需一次单击即可全自动完成。3、通过自动对焦功能的实现,还可以有效测量物距,进而实现扫描速度自动匹配自动扫描速度匹配、自动曝光自动曝光:根据当前光照环境,进行曝光测试,获得精准的曝光时间。在得到最佳信噪比的同时,又可避免过度曝光造成数据作废。同时软件具有实时过度曝光监视功能。自动扫描速度匹配:根据当前的曝光时间等参数,进行测试拍摄,得到实时帧速,进而计算出合适的扫描速度。从而避免了扫描图像的变形(拉伸或压缩) 便携式高光谱成像光谱系统GaiaField 规格参数表
    留言咨询
  • SOC716 FMV-SI视频高光谱成像光谱仪设计独特,采用独特创新的单个焦平面光学系统设计,可以测量运动目标的高光谱数据,光谱数据立方获取速率可达60HZ。 传统的高光谱成像系统只能获得二维平面的高光谱数据立方,对于时间维度上的高光谱信息很难获得。对于行扫描高光谱成像系统,需要移动平台或扫描装置来获取空间二维面上的信息,同时需要稳固支架和精准的云台扫描信息进行数据匹配,因此在测量运动目标时,会产生光谱拖尾效应导致光谱相关性/检测性无效。  拜耳型多光谱相机采用光学系统前置滤片设计,必须要切换滤片或滤盘转动来获取不同光谱波段数据,对于实际应用会产生影像光谱拖尾的缺点,而SOC716视频高光谱成像光谱仪采用单个焦平面系统设计,无运动部件,同步实时获取多个光谱波段数据,测量运动目标的高光谱影像时避免了影像拖尾现象。   和SOC的MIDIS处理器同时使用后,可以实现实时数据定标、数据修正和波段选择等计算,MIDIS处理器无须连接电脑即可实现实时监测、检测和鉴别目标,并输出标准NTSC信号。SOC716 FMV-SI的光谱范围可覆盖UV (300-500nm),VNIR (450-950nm)和 SWIR (1000-1700nm)三个波段主要参数SOC716-UVSOC716-VNIRSOC716-SWIR光谱色散带通滤波器阵列带通滤波器阵列带通滤波器阵列光谱范围270-550 nm450-950 nm900-1700 nm分辨率可配置可配置可配置分辨率 161616物镜自定义远心消色差自定义远心消色差自定义远心消色差焦距/ TFOV84mm / 12.0度85mm /12.3度125 mm /11.0度传感器类型背照式CMOSSI-CCD砷化铟镓立方体尺寸320×256×16640×540×16320×256×16位深度10位12位12位扫描速度最大每秒30立方最大每秒60立方最大每秒30立方尺寸10.75“×3.9”×3.9“6.78“×4.5”×5.6“10.5“×2.5”×2.5“重量4.2磅7.83磅4.00磅功率2W@12VDC电池12W@12VDC电池3.8W@12VDC电池
    留言咨询
  • 采用全反射同心光学设计,原始全息光栅。将光谱仪和采控系统完全集成到一个盒子里,大大节省了空间、减轻了重量,是现今集成度清晰的一款机载高光谱成像光谱仪。整机重量只有0.5Kg,适合无人机搭载。同时搭配地面配件也可在地面(室内/野外)使用,实现了一机两用。应用领域:l 精准农业、农作物病虫害、长势与产量评估;l 森林病虫害监测与防火监测;l 内陆水环境监测;l 海洋学与海洋环境监测;l 生态环境及矿山环境监控;l 遥感教学与科研;l 军事、国防和国土安全等。 基本参数:波段范围(nm)400-1000空间通道640光谱通道270光谱分辨率(FWHM)6nm重量0.5Kg
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制