当前位置: 仪器信息网 > 行业主题 > >

光谱学特性

仪器信息网光谱学特性专题为您整合光谱学特性相关的最新文章,在光谱学特性专题,您不仅可以免费浏览光谱学特性的资讯, 同时您还可以浏览光谱学特性的相关资料、解决方案,参与社区光谱学特性话题讨论。

光谱学特性相关的资讯

  • 北京大学张树霖教授:情系拉曼光谱学
    张树霖,北京大学教授。1978 年起利用自行组建的激光拉曼光谱仪开始了拉曼光谱学研究 1985 年之后在纳米结构拉曼光谱学方面作出了基本性的、世界范围公认的研究工作,发表论文210篇 自1998 年起的历届国际拉曼光谱学大会均受邀为大会或分会邀请报告人 2000 年成功组织了由北京大学申办的第17 届国际拉曼光谱学大会 2004 年其领衔的“若干低维材料的拉曼光谱学研究”获国家自然科学二等奖 在自制成当时世界上最小的商品激光拉曼光谱仪基础上,率先开设了近代物理实验课《振动拉曼光谱》 2009 年起,先后在中国科学院和北京大学研究生院开设《拉曼光谱学基础》课程。此外,还出版了中文学术专著《近场光学显微镜及其应用》和《拉曼光谱学与低维纳米半导体》,以及世界上第一本综合性的纳米结构拉曼光谱学专著Raman Spectroscopy and its Application in Nanostructures(Wiley & Sons,2012)。张树霖教授曾担任长达10 年的中国物理学会光散射委员会的负责人,1994年当选为国际拉曼光谱学大会国际执行委员会委员,2000年成为终身委员。  相关新闻:北京大学张树霖教授荣获国际拉曼光谱大会(ICORS2016)拉曼光谱终身成就奖进入拉曼光谱学研究领域  20 世纪60 年代初,国家制定了包括导弹和原子弹在内的32 个项目的12 年科学技术发展规划,其中第32 号项目是专门为基础研究设立的,名称为“固体能谱”,学术上由黄昆先生负责(图1)。黄先生建议固体能谱项目应开展拉曼光谱研究,北京大学的拉曼光谱学研究由此提上了日程。 图1 1998 年我到黄昆先生家拜访时的合影  拉曼光谱的实验研究必须有拉曼光谱仪,当时指定由我负责向国外订货。这意味着我未来的研究工作将涉及光谱实验。我是理论专业毕业的,对光学专业的实验一无所知,便利用业余时间完成了大学光学专业的全部专门化实验。这为我日后从事激光器和拉曼光谱的相关研究打下了良好的实验基础。  预订的拉曼谱仪到货时已是“文化大革命”时期,拉曼光谱学研究已不能进行,拉曼光谱仪只能“沉睡”在仓库里。直到1978 年固体能谱项目得到恢复,拉曼光谱学研究才重新提上日程。  在我们恢复拉曼光谱学研究时,虽然中央部委、中国科学院和中国石油研究院由国家拨款或自己有条件购买了激光拉曼光谱仪,但当时的北大缺钱少粮。面对这个困难,我们把“文革”时放在仓库里的汞灯作光源的棱镜光谱仪拿出来,利用我们自制的氦—氖激光器作激发光源,加上此前掌握的激光应用技术,自组建成了国内第一台非商品激光拉曼光谱仪,开始拉曼光谱学的研究。  恢复拉曼光谱学研究的第一个成果是在自建激光拉曼光谱仪过程中产生了我国首批专利之一的“拉曼光谱样品架”(专利号850200108.8),并在此基础上,研制和生产了世界上第一台小型商品激光拉曼光谱仪“RBD-II 型激光拉曼分计”。该仪器在1986 年获得了国家教委颁发的第一批全国高教物理教学仪器优秀研究成果评比一等奖,也为我国在大学普遍开设现代物理实验课《拉曼光谱》奠定了设备基础。  1984 年我们利用世界银行贷款购买了美国产的Spex-1403 三光栅激光拉曼光谱仪。虽然当时该仪器是国际最先进的,可是对我们的研究并不完全适用,随着技术的发展,有的部件也随之落后。为此,从仪器一到手我就开始并不断进行改造升级工作。至今除了双单色仪和光电倍增管外,其他部件如激光源、宏观和显微外光路、光电接收器、光谱扫描和数据信息控制系统已全部进行了升级改造。上述升级改造使我们谱仪的技术水平在世界上首屈一指。例如,关于拉曼光谱仪的关键技术指标“低波数杂散光抑制水平”,在即使不外加任何光学滤波器的情况下,可以一次性测出低达3 cm-1并高至130 cm-1的低波数宽范围的拉曼光谱。此外,研制的谱仪扫描和数据信息处理系统还制成商品“BD-POX扫描控制系统”,帮助了国内相应的光谱仪器可以恢复工作。专注纳米结构的拉曼光谱学研究  1985 年,北大利用世界银行贷款委派我赴美国作访问学者。为此,我去征求黄昆先生的意见,并请他写推荐信。他说,你应该争取去做超晶格的拉曼光谱研究,并说University of Illinois at Urbana-Champaign(伊利诺伊大学厄巴纳-香槟分校)是一所很好的大学,为我向做超晶格拉曼光谱的Klein 教授写了推荐信。于是,从1985 年起,根据黄先生的建议,后来又在他的直接指导和其夫人李爱扶先生英语写作的帮助下,开始了我长达数十年的纳米结构拉曼光谱学研究。  2.1 本征拉曼谱  用拉曼光谱进行科学研究或技术表征,必须首先有测量对象的本征即指纹拉曼谱。因此,对于新出现的纳米结构,确认它的本征拉曼谱就成为首要和基础性的工作。半导体超晶格和多孔硅分别是最早人造和最早广泛研究的纳米结构。我们团队在确认它们的本征拉曼谱方面作出了国际公认的重要贡献。  半导体超晶格在理论上预期有折叠声学、阱层限制光学和声学、宏观界面、垒层限制光学和微观界面等5 类声子。其中,后2 类在理论预期后5 年以上都没有观察到,最后均由我们首先鉴认。其中,报道观测到微观界面声子特征拉曼谱结果的论文在当年即被第21 届国际半导体物理会议(ICPS)接受并授予“青年优秀论文奖(Young Author Best Paper)” 这使中国学者在有60 多年历史的国际半导体物理会议上有了得此大奖的纪录。  对于多孔硅,最早发表了如图2(a)和(b)所示的均由双峰构成的本征拉曼谱。图2(a)的作者认为两个峰分别是晶体和非晶硅的峰 图2(b)的作者认为双峰是由于小尺寸效应,在体硅中纵光学声子(LO)和横光学声子(TO)兼并峰的分裂结果。图2 早期发表的两个多孔硅本征拉曼谱(a)和(b)  但是,我们认为多孔硅是腐蚀遗留的硅晶体,不可能出现非晶硅组分的谱,而根据微晶理论,小尺寸效应导致的两个峰的峰形也不可能是如图所示那样的对称峰。由于多孔硅是如图3(a)所示的由毫米厚的Si 衬底和微米厚的多孔硅膜构成,我们判断图2 的作者出现了把源自多孔硅膜和Si 衬底两类物质的谱看成单一多孔硅物质谱的错误。  基于上述分析,我们参照图3(a)所示的不同波长光波在多孔硅中穿透深度不同的性质,以不同波长的激光照射多孔硅,得到了图3(b)的光谱。其中由最长波长756.1 nm 和最短波长457.9 nm 激发的谱分别是对称和不对称的单峰。756.1 nm 激光激发谱的峰值正好是体硅的拉曼峰值,而由457.9 nm 激发的实验谱和微晶理论计算的理论谱两者能很好重合(图3(c)),说明它们分别是来自Si 衬底和多孔硅膜的拉曼谱。而由中间波长514.5 nm 和488.0 nm 激光激发的双峰谱是来自Si 衬底和多孔硅膜的合成峰。于是,我们用实验完全证明了之前的判断。发表该结果的论文已被引用了61次。图3 (a)多孔硅结构的电镜图和不同波长光波在多孔硅中穿透深度的示意图 (b)不同波长激发的拉曼光谱图 (c)实验(实线)和理论(虚线)拉曼谱的比较图  其他一些有最早出现的不同类型的纳米结构,如硅纳米线、SiC纳米棒和ZnO纳米管均由我们团队首先报道。相应的论文被分别引用306、97和613次。  此外, 第一个高温超导体YBa2CuxO7-x的完整的本征拉曼谱也是由我们首先确认的。因而,我们研究组便被国际知名拉曼光谱学权威D.A.Long 教授称为“世界超导体拉曼光谱的‘Leading group’之一”。  2.2 反常拉曼谱  拉曼散射基本特性及其光谱特征是相关物理学基本原理或研究对象特性的反映。拉曼散射有两个基本特性:一个是反映能量守恒定律的拉曼散射的频率与入射光的频率无关 第二,反映时间反演对称性原理的斯托克斯频率ω S和反斯托克斯拉曼频率的绝对值相等。即  Δ =|ω S|-|ω AS|≡ 0 .  拉曼散射的光谱特征与常规光谱一样,由频率、强度、线宽、线型和偏振等参数表达。但是,我们在纳米结构的拉曼光谱实验中观测到了拉曼散射基本特性及其光谱特征反常的现象。由于观测到的反常现象涉及物理学基础性的大问题,在研究中必须首先保证实验结果绝对可靠。然后,再对反常现象进行分析,揭示出反常现象的根源和本质。  2.2.1 碳纳米管Δ ≠ 0 的现象  1996 年我们首先在多壁碳纳米管中观察到了Δ ≠ 0 的现象。之后立即把实验光谱经谱仪色散响应曲线校正和Ne 灯谱线定标,发现上述Δ ≠ 0 的实验结果是可信的。接着,又测量了多波长激发单壁碳纳米管的拉曼光谱,也得到Δ ≠ 0 的结果。表明碳纳米管存在Δ ≠ 0的现象。  后来,团队又在同一光谱实验条件下,发现碳纳米管(图4(a))和活性碳(图4(b))分别存在Δ ≠ 0 和Δ =0 的现象。活性碳和碳纳米管都是由石墨构成的,差别只在碳纳米管的石墨是管状的。因此,自然会想到Δ ≠ 0 是源于碳纳米管的石墨管状结构,若是如此,则Δ ≠ 0 的大小与碳纳米管直径大小必成比例。图4(c)所示的实测碳纳米管Δ 值与其平均直径 的关系证明了此预期。图4 同一实验条件下,实测碳纳米管(a)和活性碳(b)的斯托克斯和反斯托克斯拉曼光谱以及碳纳米管平均直径与Δ 值的关系(c)  管状石墨相对于平面状石墨可以看成是一种缺陷结构,因此,Δ ≠ 0的出现可能反映了碳纳米管是类缺陷结构。为证明碳纳米管是类缺陷结构,考虑到缺陷可以引起双共振拉曼散射(DRRS),因此,如果碳纳米管是类缺陷结构,它的拉曼谱必须能出现双共振拉曼散射。我们用理论计算证明了碳纳米管确实具备出现“双共振”的条件,而相应计算出三个不同碳纳米管的ω S、ω AS和Δ 的值,与对应的实验值也十分一致。表明碳纳米管的拉曼谱确实是缺陷结构的拉曼谱。  最后,我们在同样条件下测量了晶体质量高的定向热解石墨(HOPG)以及经金离子轰击形成有缺陷的HOPGAu 的拉曼光谱,出现了Δ HOPG=0 和Δ HOPGAu=-7.7 的结果,证明有缺陷的石墨确实会出现Δ ≠ 0。  至此,我们已有充足的理由认为碳纳米管中出现Δ ≠ 0 的根源和本质是因为碳米管是类缺陷结构,而不是时间反演不变原理不成立。  2.2.2 纳米结构拉曼光谱特征的反常现象  我们还发现了纳米结构拉曼光谱特征的许多反常现象。例如:  (1)双声子拉曼频率观测值小于色散曲线的预期值  20 世纪90 年代,我们团队和牛津大学教授均观察到了多孔硅双声子拉曼频率小于硅色散曲线的理论预期值和体硅的实验双声子拉曼频率的现象(图5),但是对此现象都无法进行解释。当我去请教黄昆先生时,他没加思考地就说“纳米结构动量不守恒,就没有色散了!” 也就是说,纳米结构已不存在色散曲线,以声子色散曲线讨论纳米结构中的问题根本上就是错误的。黄先生短短一句活,不仅解决了我当时的困惑,更为日后纳米结构拉曼光谱学研究提供了基础和根本性指导思想。  图5 (a)体硅和多孔硅的实验拉曼谱 (b)多孔硅双声子实验和理论拉曼频率值的比较  (2)微观界面多声子拉曼光谱特征与阶数关系反常  我们还发现了如图6 所示的(CdSe)4/(ZnTe)4超晶格纵光学(LO)和微观界面(MIF)模多声子拉曼谱的光谱特征截然不同的现象。  图6 (CdSe)4/(ZnTe)4超晶格纵光学(LO)和微观界面(LMIF)多声子拉曼谱k 级多声子拉曼频率ω k(a)、线宽Δ ω k(b)和强度Ik(c)随多声子级k的变化关系  在研究该问题时,我们发现观测到的上述规律与SrI 色心(缺陷)模的相应规律十分一致。显然,它反映微观界面本质上是一种类缺陷。于是提出了超晶格的微观界面是类缺陷结构的看法。当时对这样一个新奇和极其重要的观点拿不准,去请教黄昆先生。他完全赞同我们的观点,还例外地同意把他的名字作为被致谢者写入论文以示支持。表1 拉曼光谱特征的反常现象及其本质  表1 以发现时间先后归纳了我们观测到的所有拉曼光谱特征的反常现象及其根源和本质。从中可发现观测到的反常现象均揭示了新的物理性质和规律。所以,从某种意义上说,发现反常现象才是研究工作最希望的。开拓拉曼光谱的新技术应用  由于在纳米结结构拉曼光谱学研究中所取得的学术成就,我们团队在已广泛展开的拉曼光谱技术应用方面也有一些突出贡献。  首先,利用拉曼谱获得了常规方法很难测出的性能参数。例如:  (1)测量出用常规方法无法测量的超晶格的声速和光弹常数。  (2)用拉曼显微成像技术测绘出用传统方法无法做到的半导体Si 集成电路中微米尺度的CoSi 电极的两维应力分布图。  其次,我们还建议了拉曼光谱技术应用的新模式。例如:  (1)建议用G和D模声子的拉曼光谱强度比鉴认碳纳米管的质量。  由于此方法只需微克量级样品、无须制样且可以快速(十几分钟)出结果,克服了用电子显微镜观察和测量时,样品用量大,耗时又不经济的缺点。当时即被碳纳米管制备者引用。  (2)提出用拉曼谱测量碳纳米管的原位实时温度。  在首先发现碳纳米管有显著的温度效应后,提出可以用拉曼谱测量碳纳米管原位实时温度的建议,并提供了用于测温的“碳纳米管拉曼频移温度系数”。论文已被引用155次,表明该建议已成为国际上用拉曼谱测碳纳米管温度的标准方法。  (3)用纳米结构的拉曼光谱导出了体声子色散曲线。  基于动量守恒,在非弹性散射中,入射动量ki、出射动量ks 和声子动量q有如下关系:  q=ki-ks .  声子的色散曲线即频率ω 与动量q 的关系ω (q)可以用非弹性散射实验获得。但是,由于光散射中ki ?ks,声子动量q 只能是零,因此,历来只能用非弹性的X射线或中子散射实验得到。  但是在纳米结构中,动量守恒不再成立,声子动量可以是不为零的变量,因此,用光的拉曼散射测量声子色散曲线成为可能。特别是,由于X射线、中子和拉曼散射的测量精度分别是1 cm-1,1.6—2.4 cm-1和0.8 cm-1,用拉曼散射可以测量出高精度的声子的色散曲线。我们通过分别测量尺寸偏差小于10% 的581.6 nm、90 nm、35 nm、6.61 nm、6.30 nm、5.55 nm和3.95 nm以及尺寸分布在3—120 nm 的纳米金刚石的拉曼谱和共振拉曼谱得到了图7(a)所示的金刚石声子色散曲线。图7(b)是精度最高的中子散射得到的金刚石色散曲线,它第一次展示了色散曲线存在的“ 向上弯曲(Overbending)”行为,揭示了金刚石碳原子间的相互作用的新性质。由于拉曼谱测量的更高精度,由拉曼散射得到的金刚石声子色散曲线中,除依然出现“向上弯曲”行为外,还新发现了“ 向下弯曲(Downbending)”行为,为深入了解金刚石碳原子间的相互作用提供了新的启示。图7 拉曼散射(a)和中子散射(b)测到的金刚石的声子色散曲线  此外,我们基于拉曼光谱研究的成果还建议了一些新的技术手段。例如,(1)建议采用退火工艺改善量子阱和超晶格异质结界面质量的工艺。此方法当年就被制造超晶格者引用,论文被引用了103次。(2) 建议用强激光辐照简单快速纯化碳纳米管的方法。发表建议的论文已被引用46 次。成果源自合作与坚持  在纳米结构的拉曼光谱学研究工作中,实验样品很关键。在我认为“人各有所长”和研究工作必须“倡导合作”的思想指导下,对即使自己可以制备的例如多孔硅和碳纳米管样品,也会请北京大学化学系的蔡生民、顾镇南、施祖进、李经建等教授制备提供,其他如超晶格、极性半导体纳米结构以及金刚石等样品也都分别请中国科学院上海技术物理研究所袁诗鑫教授、复旦大学王迅教授和浙江大学蒋建中教授以及中山大学陈建教授分别提供。他们提供的高质量样品,帮助我做出所期望的研究结果。  北京大学有优越的从事科学研究的条件。首先是北大优越的人文环境。我每去学校行政部门办事,常听到这句很温暖的话:“我们是为教授们服务的!”其次北大有非常高水平的学生。有一次我把一个解释与黄昆理论有关实验的理论计算结果送请黄昆先生审查,当黄先生知道计算是大学生做的时候,表现出我从来没有见过的非常惊讶的神情,仿佛在说,大学生竟能做出这么高水平的工作!  我做过的研究课题一般都要花费2—3 年以上时间才能完成。例如,碳纳米管Δ ≠ 0 现象是1996 年发现的,6年后的2002年在Phys. Rev. B发表了论文才算结题。所以,基础科学研究特别需要坚持精神。在我的科研过程中,曾不断面临选择。有动员我改作行政工作的,有地方大员抛出的从政橄榄枝,有以优越条件吸引我“下海弄潮”的?? 面对这些诱惑,我从未动摇过,始终坚守在科研一线,借助北大的环境和条件,在许多老师的帮助和合作,以及学生们的努力工作下,我的拉曼光谱学研究工作在2004 年获得了国家自然科学二等奖。之后又在研究工作积累的基础上,写出了中文和英文专著:《拉曼光谱学与低维纳米半导体》和Raman Spectroscopy and its Application in nanostructures(图8)图8 专著的中、英文封面  我近40 年的拉曼光谱学研究工作已为2016 年国际拉曼光谱学大会颁发的“拉曼终身成就奖”所肯定(图9)。而我的研究工作,也在拉曼终身成就奖的提名人之一国际著名的拉曼光谱学专家Kiefer 教授为我的提名推荐信中作了精简的概括——“自1985 年以来,张树霖在纳米结构的拉曼光谱研究做出了根本性和世界范围公认的研究工作。他已发表论文210 余篇,出版了两本此领域的中国书籍,以及第一本全面综述《拉曼光谱学及其在纳米结构中的应用》的著作”。图9 荣获国家自然科学二等奖和国际拉曼光谱学大会的拉曼终身成就奖留影  本文选自《物理》2017年第2期
  • 合肥研究院全面解析环境监测领域中光谱学的技术进展
    p  近日,中国科学院合肥物质科学研究院安徽光学精密机械研究所刘文清团队在《光学学报》上发表创刊四十周年特邀综述,全面解析环境监测领域中光谱学的技术进展。/pp  半个多世纪以来,随着人类对于光本质认识的提髙和深化,光学技术的巨大进步,特别是激光器的发明和激光技术的应用,光与物质相互作用的认识有了根本性的提髙和发展。与此同时,人们对环境污染问题的认识也不断提升,开始采用现代的技术手段特别是光学技术研究一些环境物理化学现象和过程,逐渐发展了现代的环境光谱学。/pp  环境光谱学不仅是经典光学的创新发展,也是环境科学的新发展。环境光谱学监测是环境光学的重要组成部分,它利用光学中的吸收、发射、散射以及大气辐射传输等方法,通过建立特征因子指纹光谱数据库和定量解析算法,获取痕量气体的特性,可用于空气质量、固定和流动污染源自动监测,具有实时、动态、快速、非接触遥测、遥测、监测范围广、成本低等优势,是当今国际环境监测的发展方向和主导技术。/pp  利用光学中的吸收光谱、发射光谱、光的散射以及大气辐射传输等方法,刘文清团队提出开展光学与环境交叉科学的创新研究,目前已形成了以差分光学吸收光谱(DOAS)技术、傅里叶变换红外光谱(FTIR)技术、非分光红外(NDIR)技术、可调谐半导体激光吸收光谱(TDLAS)技术、激光雷达(LIDAR)技术、荧光光谱技术、激光诱导击穿光谱(LIBS)技术、光腔衰荡光谱技术(Cavity Ring-Down Spectroscopy,CRDS)、光散射测量技术、光声光谱技术等为主体的环境光学监测技术体系,实现了对环境痕量成分/多要素的现场快速探测与多维度多平台监测,已成功应用于大气、水源及土壤等的监测。/pp  在常规气体监测方面,主要利用各种光学技术路线:如针对SOsub2/sub、NOsub2/sub、Osub3/sub及THC、CHsub4/sub、NMHC、BTX等污染物,DOAS技术利用气体分子的吸收特性来鉴别成分,并根据窄带吸收强度反演出微量气体的浓度 针对温室气体COsub2/sub,CRDS利用相对较窄的吸收窗口,避免其他组分干扰,实现较高精度检测 针对CO,利用TDLAS的波长调谐特性,用单一窄带的激光频率扫描气体分子的一条或者几条气体特征吸收线,实现CO的定性或定量分析 在大气氧化性监测方面,可利用气体扩张激光诱导荧光技术获取大气中最重要的氧化剂——HOsubx/sub(OH、HOsub2/sub)自由基,308纳米激光将OH自由基激发至电子激发态,探测激发态OH自由基发出的荧光来确定大气中OH自由基的浓度 如要测量HOsub2/sub自由基,则需向转换装置中通入一定浓度的NO将HOsub2/sub自由基转化为OH自由基,再测OH自由基 在颗粒物监测方面,颗粒物在大气中的垂直分布不均,且高空的垂直迁移会影响近地面的污染浓度。激光雷达系统利用气溶胶的后向米散射回波信号来探测气溶胶光学特性如后向散射系数/消光系数的时空分布,可实现对颗粒物的垂直分布探测 在地表水质监测方面,利用水体中多数有机污染物属于含荧光团的大分子有机物,在适当波长的激发光作用下发射特征荧光光谱的原理,利用激光诱导荧光技术实现对大面积水域的有机物污染状况的遥测 在土壤重金属监测方面,可以利用LIBS技术,分析土壤样品的表面等离子体辐射谱线,实现土壤有机污染物的现场快速监测。/pp  在实际运用中,通常将环境光谱和遥感技术结合应用,通过对系统性、区域性和复合性污染研究和多元信息融合,可以实现在线监测环境复合污染物、三维立体和流动在线监测,为构建天空地一体化环境复合污染物观测、研究、示范平台奠定技术基础。/pp  随着光学、电子、信息、生物等相关领域的技术进步,环境光谱技术正向高精度高灵敏、多组分多平台、智能化网络化的趋势发展。/pp  在大气复合污染形成过程监测中的大气氧化性现场监测、纳米级颗粒物在线测量、超低排放污染源监测,以及水土重金属在线检测等方面还存在检测限低、时间分辨率不高等问题,因此需进一步提高检测精度和灵敏度,使光学监测技术应用于光化学反应机理研究、工业过程控制、生产安全监控 工业迅速发展使得监测的污染物种类快速增加、组分更加复杂,亟需发展大气自由基、全组分有机物、重金属、生物气溶胶、二次有机气溶胶示踪物,水体细菌、浮游植物以及土壤中残留农药和其它有机污染物的检测等 发展多平台、智能化、网络化,且具有特异选择性的环境监测仪器,实时获取环境多要素监测数据,通过对海量数据的深度挖掘、模型分析,利用大数据分析区域、流域污染源与环境质量的相应关系,构建智能管理决策平台,使环境管理向精细化、精准化转变,实现主动预见、大数据科学决策成为发展的新趋势。/p
  • 珠宝鉴定 | 利用光谱学知识探究宝石鉴定中的奥秘
    宝石是个价值数十亿美元的产业,市场需求增加及价格上涨导致大量仿冒品流出。光谱法等相关技术可快速有效地将其鉴别。同时,无需制样的技术优势可保证完整性。今天和大家分享我们是如何通过光谱学帮助识别仿冒品——宝石的分析与鉴定01 背 景拉曼光谱可探索宝石的分子结构,拉曼光谱仪提供的指纹光谱包含可与宝石的化学结构相关的峰,以及祖母绿和红宝石具有独特的微量矿物质和内含物(图1)。图1.拉曼光谱法是分析宝石很好的工具。此图中峰的强度已被变换以便比较光谱形状差异。02 鉴定天然钻石利用高灵敏度拉曼光谱仪支持的系统能同时测量拉曼和光致发光信号,从而对天然钻石及其模拟物进行全面分析。以下是两个示例:天然钻石在1332cm-1处有一个很强的拉曼峰,而使用化学气相沉积生产的钻石则没有这样的峰-这一特性可实现近乎即时的鉴定。使用高温高压(HPHT)处理,不太理想的棕色和灰色钻石会被退火到几乎无色。尽管经过HPHT处理的钻石比真正的便宜多达65%,且可作为天然宝石出售,但它们缺乏几个在天然钻石的拉曼光致发光光谱中看到的发光峰(图2)。图2.天然透明的钻石在530-600 nm波段的光致发光发射峰。锆石是另一种天然宝石,加热使其无色,更类似于钻石。对两者进行拉曼分析可揭示每种物质的不同光谱特征(图3)。图3.在比较钻石和锆石样品时可观察到明显的光谱差异。03 鉴定琥珀标本恰帕斯州的琥珀比波罗的海和其他地区的都硬,很适合珠宝和雕刻。这种化石树脂要数百万年才能形成,会被人造树脂和玻璃仿冒。科研人员将假琥珀与波罗的海和恰帕斯州的比较,观察在457nm,488nm,514nm处激发的荧光。使用海洋光学的USB4000光谱仪,对两种琥珀测出了荧光,并与散射的激光叠加在一起,但对于假琥珀则没看到信号(图4)。图4.与天然琥珀不同,假琥珀没有荧光反应。进一步的调查还揭示了恰帕斯州和波罗的海琥珀样品的差异。波罗的海琥珀发射峰(535nm),恰帕斯州琥珀发射峰(525nm),发现两者也存在轻微不同。拉曼光谱还可将真假琥珀区分开,并可更清楚地识别来自不同地区的琥珀。04 确定染色的珍珠天然养殖的淡水珍珠有个宽且形状一致的发光峰,上面有文石和多烯化合物的小拉曼峰,而染过的淡水养殖珍珠呈现出多种发光曲线(图6),很容易鉴定染料的存在。图5.天然淡水珍珠具有与文石(碳酸盐矿物)相关的拉曼特征峰。图6.染色的珍珠产生各种发光曲线。05 识别染色的珊瑚天然彩色珊瑚有独特的拉曼峰(表示碳酸钙及聚乙烯类胡萝卜素),使其有各种颜色。当对染色珊瑚测试时,会看到更宽的光致发光谱(图7),二者均以不同波长为中心并且无拉曼峰。图7.染色珊瑚具有宽广的发光曲线。06 翡翠分类图8.光谱分析显示出天然与人工合成祖母绿之间的细微差别。祖母绿显示出两个Cr3+光致发光带,其确切位置受其他杂质影响,这样就可将合成和天然祖母绿区分(图8),合成的也比天然的有更高的铬离子浓度,导致更强的光致发光峰。即使天然翡翠的颜色主要归功于钒离子,铬离子的浓度仍然很高,足以显示出光致发光,这使其成为鉴定天然翡翠的非常有效的方法。07 将光谱分析应用于其他宝石负责识别和鉴定宝石的人员需要基于科学的全面设备。紧凑的光谱学系统可在许多层面上很好地发挥这一作用,可以检测与天然宝石、合成物和仿冒品相关的光谱峰和图案(图9)。图9.“玉”一词描述了翡翠或软玉的矿物。拉曼光谱有助于揭示玉石类型和起源点的差异。光谱学的力量超出了我们所有感官,它分析了材料的本质。模块化的光谱系统通过将仪器配置为用于研究的单一设置或集成到另一台设备的自定义解决方案,无论是在实验室还是在现场,都可以提供多种方法来应对假冒产品。参考文献:1. GemmoRaman-532 from Magilabs Oy (Ltd) (gemmoraman.com).2. López-Morales, Guadalupe, R. Espinosa-Luna, and Claudio Frausto-Reyes. “Optical characterization of amber of Chiapas.” Revista mexicana de física60.3 (2014): 217-221
  • 光谱学杂志宣布 2023 年分子光谱学新兴领导者
    克萨斯 A&M 的Dmitry Kurouski 博士获得了由光谱学杂志颁发的 2023 年分子光谱学新兴领袖奖,这一奖项旨在表彰由独立科学委员会选出的才华横溢的年轻分子光谱学家。Dmitry Kurouski 博士 Kurouski 于 2013 年在纽约州立大学获得博士学位。在攻读博士学位期间对拉曼光谱在复杂基质中的理论和应用有了更深入的了解。Kurouski 的工作重点是拉曼光谱的传感方法的开发,这些方法可用于非侵入性、非破坏性分析,包括植物中生物和非生物胁迫的确认诊断。他的发现表明,拉曼光谱可用于鉴定大量植物物种中的病毒、真菌和细菌疾病。他还开发了用于诊断植物微量和常量元素组成缺陷的拉曼方法;同时还展示了基于拉曼光谱的植物表型分析的潜力。 Kurouski 的团队开发了拉曼光谱用于诊断植物的结构和代谢变化,可用于非生物胁迫的确认检测和鉴定。研究人员开发了光谱库,连同手持式拉曼光谱仪,可用于检测和鉴定水稻中的氮、磷和钾缺乏症,还证明拉曼光谱可用于植物中高盐胁迫的症状前诊断。连同相关的 40 多份相关研究报告,展示了拉曼光谱在农业中的新兴潜力,这些发现在 Kurouski 小组在去年发表的一篇综述中进行了总结。 Kurouski 发表了 140+篇论文,引用次数超过 4000 次,并在科学会议上作了超过150次报告。他还是JACS、Nature Materials、The Journal of Chemical Physics、Frontiers in Plant Science、 Analyst等多种期刊的审稿人。 光谱分析技术被广泛应用到食品及农产品质量控制和分析中,其中包括具有环保、高效等特点的近红外光谱分析技术。为了促进相关领域技术交流与合作,仪器信息网将在2023年5月25日组织召开“近红外光谱在食品及农产品中的最新应用”主题网络研讨会。点击上方图片 免费报名参会
  • 第24届国际拉曼光谱学大会圆满落幕
    第24届国际拉曼光谱学大会 (The 24th International Conference on Raman Spectroscopy,24th ICORS) 于2014年8月15日在德国耶拿圆满落幕,这是有关拉曼光谱学的跨学科的两年一届的系列大会。 为时五天的大会吸引了来自世界各地九百多名拉曼光谱学相关领域的专家学者的光临,我国有近九十位学者出席了大会,厦门大学田中群院士作为大会报告特邀嘉宾为大会开幕式做了精彩的大会报告。ROA专场于周三上午举行,吸引了百余名来自世界各地的手性拉曼光谱学领域的专家学者。两年后的国际拉曼光谱学大会将在巴西举行。 美国BioTools公司作为主要赞助商之一出席了大会。 BioTools公司是全球唯一的手性拉曼光谱仪(ROA)的生产制造商,在此次大会上BioTools公司为拉曼光谱学科学家首次推出了包括显微拉曼、原子力显微镜(AFM)以及手性拉曼光谱(ROA)全套的拉曼光谱学研究系统解决方案,得到了来自各国包括生命科学、材料科学以及手性化学等前沿学科领域的专家和学者的广泛关注。田中群院士与Laurance Nafie教授、Rina Dukor博士和齐爱华董事长合影手性拉曼光谱学(ROA)专场邀请报告现场 美国BioTools公司代表合影 华洋科仪市场部 2014年8月16日
  • 上海光机所等集成多种光学与光谱学技术对文物进行多维研究
    6月3日至26日,在河南省文物考古研究院的大力支持下,中国科学院上海光学精密机械研究所科技考古中心联合深圳易尚展示股份有限公司、基恩士国际贸易(上海)有限公司、北京嘉元文博科技有限公司组成联合课题组,集成可移动式三维扫描仪、超景深3D显微镜、光学相干层析仪(COT)、可移动共聚焦激光Raman光谱、便携式minRaman光谱和便携式XRF(pXRF和HXRF)等多种光学和光谱学技术手段对河南新郑、平顶山、淮阳、巩县、登封、安阳出土的周代玉器、唐青花、陶瓷器、墨书兽骨以及曹操墓出土的700余件珍贵文物进行光学、光谱学、材料学和制作工艺等方面的综合研究。  本次研究分两个阶段进行。6月3日至8日,课题组选取一些小型的新郑出土的东周玉器,在上海光机所先进行方法体系上的优化及合理组合,及时发现和解决了测试过程中遇到的具体问题,从而保证了现场原位无损分析的顺利进行。通过初步的方法分析测试:(1)快速完成了对新郑出土的这批东周玉器玉材主要种属的判定,主要有透闪石、方解石、滑石、白云母、石英(含水晶、玛瑙和玉髓)等 (2)对不同玉器玉材的透明程度、纤维粗细程度及包裹体在玉料中的包裹体分布状况进行了细致的分析 (3)发现了这批玉器中透闪石玉器的玉料来源具有多源性,玉材的纤维结构粗细程度、颜色以及包裹体存在明显差异。不少透闪石玉器中含有石墨包裹体,这对古代玉器的产地溯源具有重要的参考价值 (4)通过三维扫描和超景深3D显微观察与测量,获取了反映典型玉器精细的雕刻技法、纹饰特征加工工艺信息的彩色3D图片及多角度彩色拓片等。  在第一阶段的基础上,联合课题组于6月19日至26日,赴河南省文物考古研究院新郑工作站和河南省文物考古研究院郑州本部,对库房中不宜出库的多种更珍贵的文物进行综合原位无损分析研究,所分析的文物时代自西周至唐代,包括有大尺寸画像石砖、青铜礼器组合、仿青铜的陶器礼器组合、玉器、漆陶器、唐青花、墨书甲骨以及曹操墓出土的珍贵玉器等文物。  本次研究获取了不同材质、不同时代的文物材料学和光学综合信息,实现了对不同几何尺寸、不同质地文物的三维扫描,获取了经历了漫长埋藏和清洗后肉眼几乎无法识别到的东周时期兽骨上的文字信息。研究为应用、改进和发展原位无损分析方法提供了丰富的实践经验,也为针对可移动文物的三维扫描设备的开发与应用以及多光谱的发展和应用提供了宝贵经验,同时,也实现了针对不同的研究需要,采用不同的光学和光谱学技术的优化组合。  该研究受上海市研发平台专项项目、国家科技部支撑项目及&ldquo 973&rdquo 项目等课题支持。     上海光机所等集成多种光学与光谱学技术对珍贵文物进行多维研究     分析结果
  • 新设备!Nature Nanotechnology揭示纳米光谱学仪器新开发及多功能应用!
    【科学背景】随着纳米技术的迅猛发展,科学家对于在纳米尺度下进行光谱分析的需求日益增加。尤其是在材料科学和纳米结构研究领域,对于在纳米尺度下了解材料的结构、性质和相互作用的需求十分迫切。然而,传统的光谱技术往往受到分辨率的限制,难以满足对于纳米尺度下样品的要求。原子力显微镜-二维红外光谱(AFM-2DIR)的出现引起了科学家的广泛关注。这一技术结合了原子力显微镜(AFM)的高空间分辨率和二维红外光谱(2DIR)的丰富光谱信息,能够在纳米尺度下进行光谱分析。2DIR是一种时间域的二维红外光谱技术,通过扫描一系列飞秒红外脉冲来提供丰富的光谱信息,揭示分子结构、非谐性、耦合和能量转移等信息。然而,传统2DIR技术的空间分辨率受到阿贝衍射极限的限制,无法满足对于纳米尺度下样品的要求。因此,科学家们开始探索将AFM与2DIR技术相结合的可能性,以克服空间分辨率的限制。之前的研究已经证明,基于AFM的红外(AFM-IR)技术可以通过机械光热检测实现纳米尺度下的红外成像。然而,将AFM与2DIR技术整合起来的研究还比较少见。为了解决这一挑战,美国里海大学Xiaoji G. Xu教授团队在“Nature Nanotechnology”期刊上发表了题为“Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy”的最新论文。本研究团队开发了一种新的纳米光谱学方法,即AFM-2DIR。该方法利用样品对红外脉冲序列的光热响应来实现空间分辨的红外光谱分析,克服了传统2DIR技术的空间分辨率限制。通过选择适当的信号提取机制,研究团队成功地将AFM与2DIR技术相结合,实现了在纳米尺度下对样品的光谱分析。通过该方法,研究团队成功揭示了样品中羰基振动模式的非谐性,以及在氮化硼等材料中声子极化子的能量转移途径。这一研究填补了纳米尺度下光谱分析技术的空白,为材料科学和纳米技术领域的研究提供了强大工具。【科学亮点】1. 本文首次实现了AFM-2DIR技术的集成:研究人员首次将原子力显微镜(AFM)与二维红外光谱(2DIR)相结合,创造了一种新的纳米光谱学方法。2. 利用光热响应进行光谱分析:该方法利用样品对红外脉冲序列的光热响应,结合峰值力红外(PFIR)显微镜提取光热信号,实现对样品的纳米尺度光谱分析。3. 揭示了样品的分子结构和能量传输:通过实验,研究人员成功揭示了样品中羰基振动模式的非谐性,并阐明了氮化硼(hBN)中声子极化子的能量传输途径。4. 结果丰富而有前景:通过该技术,研究人员得以在纳米尺度下探索样品的分子结构、振动非谐性和能量传输过程,为纳米材料和异质结构的光谱分析提供了新的研究手段。【图文解读】图1:具有峰值力红外peak-force infrared,PFIR检测的原子力显微镜 atomic force microscopy,AFM-二维红外光谱two-dimensional infrared spectroscopy,2DIR方法的操作流程。。图2. 羰基振动模式的2D-PFIR光谱表示。图3. 在h10BN薄片中,双曲声子极化激元phonon polaritons (PhPs) 的实空间映射和解释。图 4. 揭示能量转移h10BN的2D-PFIR光谱。图5: 在h10BN中,声子极化激元PhPs的传播特性和能量传递路径。【科学结论】原子力显微镜-二维红外光谱(AFM-2DIR)将在研究红外能量转移和模式耦合等问题上具有独特的优势,特别适用于异质纳米材料和结构。传统的二维红外光谱学在空间精度上存在不足,而AFM-2DIR则能够克服这一问题。其应用包括但不限于以下几个方面:1. 空间和光谱研究蛋白质二级结构;2. 聚合物的纳米相分离以及分子与声子/等离激元结构之间的模式耦合的调查;3. 在定制结构的双折射材料中极化子的能量转移研究,以及在低温下的研究;4. 识别振动模式的非谐性和能量转移对于研究异质催化反应中的反应性分子和中间体也是有益的。此外,AFM-2DIR还可以通过脉冲整形来生成相位稳定的脉冲序列,从而减少扫描时间。序列中的脉冲数量可以从三个扩展到四个,即在t1和t2之间引入等待时间τ,以进一步解读能量转移的时间尺度。类似的原子力显微镜光热检测也可以应用于可见频率,从而允许在光伏领域进行电子跃迁的原位研究。文献信息:Xie, Q., Zhang, Y., Janzen, E. et al. Atomic-force-microscopy-based time-domain two-dimensional infrared nanospectroscopy. Nat. Nanotechnol. (2024).https://doi.org/10.1038/s41565-024-01670-w
  • Laurence A. Nafie教授荣获2013匹兹堡光谱学大奖
    美国BioTools公司创始人之一Laurence A. Nafie教授荣获2013匹兹堡光谱学大奖  2013年3月19日下午2:00在美国宾夕法尼亚州费城国际会议中心举行了2013匹兹堡光谱学奖的颁奖仪式,该光谱学大奖授予了振动圆二色光谱技术先驱,美国BioTools公司创始人之一,美国雪城大学Laurence A. Nafie教授,以表彰Nafie教授在振动圆二色光谱技术以及手性拉曼光谱技术研究上所做出的卓越贡献.  颁奖词中提到: Nafie 教授独立研究和开发了振动圆二色(VCD)光谱和手性拉曼(ROA)光谱, Nafie教授设计和商品化的仪器是这一非常重要技术尤其是制药工业的一个基础,上千个手性化合物的绝对构型能够快速而且准确地得到确定。Nafie教授是一位著名的教育家和众多研究生的导师,他是我们这个时代的最卓著的光谱学家之一。   Laurence. A. Nafie教授(中)2013 Pittcon 光谱学奖颁奖现场  晚上5:30 在Marriott酒店举行了SSP/SACP 颁奖招待酒会,来自世界各地的学术界的科学家和企业界精英代表前来祝贺。华洋科仪董事长齐爱华女士与华洋科仪大中华区总经理李荣兴先生应邀出席了酒会,为我们时代诞生的卓越科学家送上我们由衷的祝贺。   Lawrence A. Nafie教授(左二)华洋科仪董事长齐爱华女士(右二)华洋科仪大中华区总经理李荣兴先生(右一)颁奖招待酒会现场  Laurence A. Nafie教授将于今年4月1日至2日应邀参加华洋科仪与厦门大学联合举办的“手性光谱中心开幕庆典暨手性科学前沿学术报告会” 另应吉林大学赵冰教授的邀请将于4月4日访问吉林大学超分子结构与材料国家重点实验室并做学述报告。  Laurence A. Nafie 教授 (美国)简介  《Journal of Raman Spectroscopy》杂志主编、美国雪城大学荣誉教授,国际分子光谱领域著名的科学家,手性振动光谱的研究先驱,担任多种国际学术刊物的编委。Nafie教授与国际企业进行广泛的合作,与Rina Dukor博士共同创建了美国BioTools公司,拥有丰富的产业化应用研究经验。  1973年在俄勒冈大学获博士学位,研究共振拉曼散射,自1973年至1975年在南加州大学做博士后,研究发明和证实红外振动圆二色性,1975年加入雪城大学化学系建立了VCD(振动圆二色光谱)和ROA(手性拉曼光谱)研究项目,1978年被指定为Alfred P. Sloan基金会成员,1982年晋升为教授 1978年Nafie教授提议并实现了傅里叶变换VCD首次测量。1988年Nafie教授应用ROA首次测量了散射圆偏振(SCP),这就是目前唯一商品化的ROA光谱仪。1989年Nafie教授在理论上预言了ROA的一个新形态,称为双圆形偏振(DCP)ROA,并于1991年在他的实验室得到实验验证。  1995年Nafie教授成为由John Wiley & Sons 出版社旗下BioSpectroscopy杂志创始主编,随后成为BioPolymers副主编 Nafie教授先后获得Coblentz奖(1981)、Bomem Michelson奖(2001)、William F. Meggers奖(2001)、以及应用光谱领域杰出贡献奖(2007)等,今年3月荣获2013 Pittcon光谱学大奖。Nafie教授曾任Coblentz协会理事长,应用光谱协会理事长,2010年成为Journal of Raman Spectroscopy 杂志总编,2011年出版发行了题为Vibrational Optical Activity: Principles and Applications科学书籍,发表论文近300篇,发明专利数项。  华洋科仪特别报道  2013年3月20日  费城 美国
  • 这12位科学家曾为光谱学发展做出贡献 你知道几个?
    p  光谱学是光学的一个分支学科,它研究各种物质的光谱的产生机器物质之间的相互作用。而光谱是一类借助光栅、棱镜、傅里叶变换等分光手段将一束电磁辐射的某项性质解析成此辐射的各个组成波长对比性质的贡献的图表。/pp  人类观察到的第一种光谱,无疑是天空中的彩虹,自然界中另一个引人注目的光谱现象是极光。/pp  从牛顿发现白光是由各种颜色的光组成的开始算起的话,人类对光谱的研究已经有350年的历史了。现在,光谱学的应用极为广泛而多样化。他提供了长度与时间的基本单位。同时广泛应用于分析工作、天文学以及卫星等各个领域。/pp  今天我们来认识12位为光谱学的发展而努力的科学家,别说你只认识第一个....../pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/b30552e0-9ecf-4dd3-9151-5fed6a467e8a.jpg"//pp  对可见光谱所作的首次科学研究是1666年牛顿的著名色散实验,这是人类最早对光谱的研究。/pp style="text-align: center "img width="450" height="306" title="02.jpg" style="width: 450px height: 306px " src="http://img1.17img.cn/17img/images/201602/noimg/259de108-4051-4eaa-9a6e-0cd65aa5a4c8.jpg" border="0" vspace="0" hspace="0"//pp  通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的,可惜的是并未观察到光谱谱线。/pp style="text-align: center "img title="03.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/8b3c665e-0b16-44ce-ad7a-3168d19ea971.jpg"//pp  1802年,英国科学家沃拉斯顿采用了窄的狭缝。发现太阳光谱中的7条暗线,这是光谱学的一个重大进展,因为采用狭缝的像进行研究要比针孔的像进行研究容易得多。但沃拉斯顿并未就此深入研究,错误以为是颜色的分界线。/pp style="text-align: center "img title="04.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/e1a5c0ac-f902-474c-b3e8-7e066d73ff78.jpg"/p  德国物理学家夫琅和费(1787~1826),也独立地采用了狭缝,在研究玻璃对各种颜色光发折射率时偶然发现了灯光光谱中的橙色双线。/pp  1814年,发现太阳光谱中的许多暗线 1822年,夫琅和费用钻石刻刀在玻璃上刻划细线的方法制成了衍射光栅。/pp style="text-align: center "img title="05.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/4564c8fd-2504-4838-aa62-d8767bf86608.jpg"/图:夫琅和费线/pp  夫琅和费是第一位用衍射光栅测量波长的科学家,被誉为光谱学的创始人。夫琅和费利用自己的狭缝和光栅得以编排太阳光谱里576条狭窄的、暗的“夫琅和费线”。夫琅和费线是光谱中最早的基准标识,对这些暗线的解释一直是其后45年中的一个重要问题。/pp style="text-align: center "img title="06.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/af8950ae-28ef-4725-8926-e0d1776149ab.jpg"/p  来自海德堡大学的物理学教授基尔霍夫(1824~1887)给出了夫琅和费线的答案。他断言:“夫琅和费线”与各种元素的原子发射谱线处于相同波长的位置。这些黑线的产生是由于在太阳外层的原子温度较低,因而吸收了由较高温度的太阳核心发射的连续辐射中某些特定波长造成的。这种吸收与发射之间的关系导致他创建了现在众所周知的基尔霍夫定律。 /pp style="text-align: center "img title="07.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/41192fbd-8793-42b3-9bc0-6a3437e62bdb.jpg"//pp  德国科学家本生与基尔霍夫在19世纪60年代发展起实用光谱学,他们系统地研究了多种火焰光谱和火花光谱,并指出,每一种元素的光谱都是独特的,并且只需极少里的样品便可得到,这样,他们就牢固地建立起光谱化学分析技术。/pp  并利用这种方法发现了两种新元素:铷和铯。这两种元素的发现是卓越的,因为他比门捷列夫提出的能预言未知元素的周期律还早10年。这是通过光谱分析方法发现的一些元素中的第一批元素。同时人类应用光谱技术共发现了18种元素。/pp  他们研究了太阳光,并且首次对环绕太阳的大气层作了化学分析,指出环绕太阳的大气也是由地球上已知的那些元素组成的。1859年,本生和基尔霍夫还研制出了第一台实用的光谱仪。/pp style="text-align: center "img title="09.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/82a318a5-12b4-41cb-8023-8873f92aedb5.jpg"//pp  1868年,瑞典物理学家埃格斯特朗发表了“标准太阳光谱”图表,记载了上千条夫琅和费谱线的波长,为光谱学研究提供了有价值的标准,而埃格斯特朗也被称为“光谱学的奠基人”。为纪念埃格斯特朗将波长的单位定为埃。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/aeac0e5e-a893-4f6b-829e-3897780b9d3b.jpg"//pp  1882年,美国物理学家罗兰(1848~1901)研制出平面光栅和凹面光栅,获得了极其精密的太阳光谱,谱线多达20000多条,新编制的“太阳光谱波长表”被作为国际标准,使用长达30年之久。/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/0c2cc909-a959-4ad6-8203-8f59eecbd86e.jpg"//pp  从事天文测量的瑞士科学家巴耳末(英:ohann Balmer)找到一个经验公式来说明已知的氢原子谱线的位置,此后便把这一组线称为巴耳末系。/pp style="text-align: center "img width="450" height="296" title="12.jpg" style="width: 450px height: 296px " src="http://img1.17img.cn/17img/images/201602/noimg/35743deb-30d9-4e04-97b3-77a18cc10034.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "img title="13.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/88e9fdd5-38ec-4186-ba19-d4d9f75672d3.jpg"/br//pp  1889年,瑞典光谱学家里德伯(瑞典语:Johannes Robert Rydberg)发现了许多元素的线状光谱系,其中最为明显的为碱金属原子的光谱系,它们也都能满足一个简单的公式。/pp style="text-align: center "img title="14.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/4ee2a1f9-0b29-4a69-824c-9824aec71d62.jpg"/br/p  1896年,塞曼(英语:Pieter Zeeman)把光源放在磁场中发现了观察原子光谱在磁场中的分裂现象,并且这些谱线都是偏振的。现在把这种现象称为塞曼效应。/pp style="text-align: center "img width="400" height="294" title="15.jpg" style="width: 400px height: 294px " src="http://img1.17img.cn/17img/images/201602/noimg/0b9680a0-d67b-4856-9a19-fe93078bed5f.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "img title="16.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201602/noimg/a7deda05-c24e-453f-a448-306a9124501e.jpg"/br//pp  1897年,洛伦兹对于塞曼效应作了满意的解释。洛伦兹认为一切物质分子都含有电子,阴极射线的粒子就是电子。把以太与物质的相互作用归结为以太与电子的相互作用。/pp style="text-align: center "img width="450" height="269" title="17.jpg" style="width: 450px height: 269px " src="http://img1.17img.cn/17img/images/201602/noimg/524ba97e-82fa-4e91-8315-e28ce2f87601.jpg" border="0" vspace="0" hspace="0"/pbr//pp  这一理论成功地解释了塞曼效应,与塞曼一起获1902年诺贝尔物理学奖。塞曼效应不仅在理论上具有重要意义,而且在应用中也是重要的。在复杂光谱的分类中,塞曼效应是一种很有用的方法,它有效地帮助了人们对于复杂光谱的理解。/pp style="text-align: center "img title="18.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/09b10537-b9b3-4f38-b714-f3c67392ffd0.jpg"//pp  尽管氢原子光谱线的波长的表示式十分简单,不过当时人们对其起因却茫然不知,一直到1913年,丹麦科学家玻尔才对它作出了明确的解释。/pp style="text-align: center "img title="19.jpg" src="http://img1.17img.cn/17img/images/201602/noimg/851ffa26-2fa8-44e4-a1d9-4c1e49a25e3f.jpg"/br//pp  但玻尔理论并不能解释所观测到的原子光谱的各种特征,即使对于氢原子光谱的进一步的解释也遇到了困难。br//ppbr//pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/pp/p/p/p/p/p
  • 华东师范大学武愕教授团队在中红外单光子光谱学研究中取得重要突破
    近期,华东师范大学重庆研究院武愕教授科研团队在中红外单光子光谱学研究中取得重要突破,利用基于量子关联的波长-时间映射方案实现具有单光子探测灵敏度的中红外光谱学测量,无需依赖于光谱仪、干涉仪或阵列型探测器,有效降低了噪声对单光子光谱测量的影响,为样品的非破坏性检测提供了新方法。研究成果以“Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping”为题,于2024年4月19日在线发表于Science Advances。博士研究生蔡羽洁为论文第一作者,陈昱副研究员、Konstantin Dorfman教授和武愕教授为论文通讯作者。该项工作得到了国家重点研发计划、国家自然科学基金委等项目资助。中红外光谱能够揭示多种分子的基础吸收带和复杂化合物独特的光谱特征,是研究物质结构的重要工具。傅里叶变换红外(FTIR)光谱仪作为中红外光谱的常规测量仪器,主要构成部件为干涉仪系统,除结构复杂、体积庞大外,商售中红外探测器效率低、噪声大等问题严重影响了中红外光谱的研究。中红外频率上转换通过非线性和频过程,将中红外光子与强泵浦耦合并利用硅基单光子探测器实现有效探测。其优势是消除了对中红外探测器和干涉仪的需求,从而实现稳定且紧凑的结构。目前,使用高功率泵浦激光结合高亮度中红外照明是提取高信噪比光谱的直接方法。但在超灵敏中红外频率上转换的相关应用场景中,需要在复杂环境中有效地提取微弱信号,此时强泵浦在非线性晶体中产生的参量噪声难以滤除,影响了探测灵敏度。由于光敏样品和量子相干现象对光学探针的强度存在限制,在中红外上转换光谱中使用的明亮中红外照明并不适合此类应用场景。此外,红外光谱学研究均需要使用光谱仪、干涉仪或昂贵的多像素探测器才可实现中红外光谱采集。面对弱光照下进行样品高灵敏光谱分析的需求,提升探测灵敏度,降低噪声对光谱测量影响并避免机械扫描结构,是亟待解决的关键难点。通过自发参量下转换过程产生宽带关联光子对,分别为波长位于中红外波段的信号光子和近红外波段的预报光子。信号光子通过频率上转换到近红外波段,利用硅基单光子探测器探测。关联的近红外预报光子通过一根10公里的单模光纤,群速度色散允许波长到时间映射的实现。光纤介质内不同频率的光具有不同的速度,将在不同的时刻到达探测器,导致通过色散介质后的脉冲包络会在时域上展宽,从而可以反映出光脉冲的频谱信息。由于上转换光子继承了中红外信号光子的量子相关性,通过对上转换光子和近红外预报光子之间的量子相关性进行符合测量,可以非局域地将中红外信号光子所携带的光谱信息映射到相关测量的时间域中。得益于量子相关性,在每脉冲0.21个光子的中红外光强条件下,30分钟曝光时间的光谱平均信噪比达到了54.6,可以实现嘈杂环境中的弱中红外信号的检测。研究团队在无需光谱仪、单色仪或干涉仪,以及阵列型探测器的情况下,实现了1.18微米宽带中红外单光子上转换光谱探测。
  • 著名原子光谱学和光谱仪器专家何华焜先生逝世
    p style="text-align: center "strong何华焜先生 讣告/strong/pp  著名原子光谱学和光谱仪器专家,享受国务院特殊津贴学者,中国广州分析测试中心(广东省测试分析研究所)研究员,为原子光谱分析事业做出突出贡献的长者何华焜同志,因病于2015年12月23日在广州逝世,享年80岁。/pp  何华焜同志的遗体告别仪式于2015年12月26日早上11:30分在广州殡仪馆21号厅举行。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/insimg/0ecea8f3-253e-4e10-9ee1-f89f53bd8999.jpg" title="何华焜.jpg" width="300" height="341" border="0" hspace="0" vspace="0" style="width: 300px height: 341px "//pp  strong何华焜同志生平/strongbr//pp  何华焜,著名原子光谱学和光谱仪器专家/pp  1935年10月生,湖北荆州人,毕业于中山大学物理学系。60年代在广东省中心实验站(中国广州分析测试中心、广东省测试分析研究所的前身)组建原子光谱研究团队,是国内最早的原子光谱研究团队之一,从此专情于此专业和学术一生,到七十多岁高龄仍密切关注国际上本学科的前沿进展并对业内企业的研发进行指导,不断总结研发经验。何先生勤于笔耕,与行内专家合作出版多部专著。先生十分关心年轻一辈的学术成长,常常告诫年轻人:要在专业上取得成就,唯有勤奋!其勤奋和专注精神令人钦佩。/pp  何华焜先生主持或指导的原子光谱仪器项目共获得省部级科学技术奖10项,是塞曼原子吸收光谱仪的国内最早研究者之一。何先生对仪器产业的贡献颇多,其指导下研发的多款原子吸收光谱仪获得广泛好评。/pp style="text-align: right "联系方式:020-87683273/pp style="text-align: right "nacczp@fenxi.com.cn/pp style="text-align: right "中国广州分析测试中心/pp style="text-align: right "  广东省测试分析研究所/ppbr//p
  • 美国Laurence A. Nafie教授将荣获2013匹兹堡光谱学大奖
    振动圆二色光谱技术先驱,美国Biotools公司创始人之一Laurence A. Nafie教授即将在2013年美国匹茨堡国际学术会议上荣获由匹兹堡光谱学会(SSP)颁发的光谱学大奖,以表彰Nafie教授在振动圆二色光谱技术以及手性拉曼光谱技术研究上所做出的卓越贡献。 美国Biotools公司是全球第一家实现振动圆二色光谱仪商品化的仪器厂家,并且拥有以Laurence A. Nafie教授为核心,实力雄厚的专家技术团队,能够在化学和生物领域里为客户提供最权威有效的应用技术支持。 华洋科仪公司于2012年3月获得了Biotools公司振动圆二色光谱仪、手性拉曼光谱等全线产品在中国大陆及香港、台湾地区的总代理权, 进入中国市场不久,便受到了广大手性领域的科研工作者的广泛关注和极大的兴趣,目前已有3套振动圆二色光谱仪落户国内。相信在华洋科仪和Biotools的共同努力下,必将带动我国手性研究的不断进步。 敬请关注我们届时的进一步详细跟踪报导。 华洋科仪特别报导 2013.2.7 大连
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • Pittcon光谱学大奖得主 为本网iCS2013做精彩报告
    仪器信息网讯 &ldquo 拉曼光谱最新进展网络专场研讨会&rdquo 将于2013年9月24日召开。该研讨会是仪器信息网举办的&ldquo 第二届光谱网络研讨会(iConference on Spectroscopy,iCS2013)&rdquo 的一个重要专场。拉曼光谱近年来吸引了广大科研人员的关注,并被应用于各行各业中。本次研讨会旨在为广大专家学者提供拉曼光谱领域相互交流学习的平台,共同探讨拉曼光谱技术在科学研究领域的最新进展及成果。  本次研讨会邀请到了手性拉曼光谱(ROA)的创始人美国雪城大学Laurence A.Nafie教授为广大网友做精彩报告。Laurence A. Nafie是《Journal of Raman Spectroscopy》杂志主编,国际分子光谱领域著名的科学家,手性振动光谱的研究先驱和奠基人之一。作为美国BioTools公司创始人之一,Laurence A. Nafie教授因在振动圆二色光谱技术以及手性拉曼光谱技术研究上所做出的卓越贡献,荣获了2013 Pittcon光谱学大奖,被称为这个时代最卓著的光谱学家之一。美国雪城大学Laurence A.Nafie教授报告题目:手性拉曼光谱在手性研究中的应用  手性拉曼光谱是对手性分子绝对构型研究的现代光谱新技术。手性拉曼光谱技术被认为将是继X射线晶体衍射和核磁共振技术之后,研究生物手性大分子的又一重大技术。由于手性拉曼光谱可用于水相和生命体中手性分子的研究,能原位显示生命大分子结构及其变化,将在手性催化和生命科学研究领域发挥重大作用。  本次网络拉曼光谱研讨会得到了中华环保联合会环保技术标准专业委员会理事、北京服装学院应用化学实验室材料科学与工程学院教授龚龑的大力支持,还邀请到了中科院半导体所研究员谭平恒、中南大学教授梁逸曾、北京大学教授徐怡庄、清华大学教授王佳等业内专家做精彩报告。欢迎广大网友踊跃参与,报名请点击  &ldquo 拉曼光谱最新进展网络专场研讨会&rdquo 具体报告内容见下图:   附录:1、第二届光谱网络研讨会(iConference on Spectroscopy,iCS2013)  &ldquo 第二届光谱网络研讨会(iConference on Spectroscopy,iCS2013)&rdquo 将于2013年 9月 23日至9月25日召开。为期三天的会议涵盖近红外应用新进展、光谱新技术新进展、拉曼光谱应用、ICP/ICP-MS应用最新进展以及重金属检测等光谱研究领域,分设5个主题,大会将邀请近20名业内光谱专家针对不同主题做精彩报告并与大家进行交流。  具体内容及报名参加:http://ics2013.instrument.com.cn  2、第一届光谱网络研讨会(iConference on Spectroscopy,iCS 2012)  &ldquo 第一届光谱网络研讨会(iCS2012)&rdquo 于2012年12月11-13日成功举行,仪器信息网依托成熟的网络会议平台举办的光谱网络研讨会,共吸引了来自大专院校、科研院所、质检机构、分析测试中心、仪器企业等近1500余名专业用户报名参加。
  • 三大近红外光谱学会领军人 共话未来发展趋势——访国际、亚洲、中国近红外光谱学会负责人
    近红外谱区于1800年被天文学家William Herschel所发现,尽管该谱区被较早发现,但由于谱带宽,重叠较严重,而且吸收信号弱、信息解析复杂,其分析价值一直未能得到足够的重视。以致1960年Wheeler称近红外谱区为“被遗忘的谱区”。二十世纪90年代以来,由于计算机与化学统计学软件的发展,特别是化学计量学的深入研究和广泛应用,使近红外成为发展最快、最引人注目的光谱技术,国际分析界逐步形成了近红外光谱分析的“热潮”。  2010年10月14-17日,第三届全国近红外光谱学术会议暨第二届亚洲近红外光谱会议在上海召开。来自中国、日本、新加坡、泰国以及美国、德国、南非等十二个国家一百位近红外光谱技术专家学者参加了此次国际学术会议,大家对近红外光谱理论、化学计量学、近红外光谱仪器、近红外光谱应用等内容进行了充分的沟通与交流。  在此次会议上,仪器信息网(以下简称:Instrument)对国际近红外光谱学会主席Pierre Dardenne博士、亚洲近红外光谱学会主席Yukihiro Ozaki教授、中国仪器仪表学会分析仪器分会近红外光谱专业委员会主任委员袁洪福教授进行了专访。国际、亚洲、中国近红外光谱学会发展概况与交流合作  Instrument:Pierre Dardenne博士、Yukihiro Ozaki教授、袁洪福教授,您们好!非常感谢大家接受仪器信息网的采访。  首先请三位教授给我们介绍一下,目前国际近红外光谱学会、亚洲近红外光谱学会、中国近红外光谱专业委员会的发展情况?以及学会之间未来交流合作计划?国际近红外光谱学会主席Pierre Dardenne博士  Pierre Dardenne博士:国际近红外光谱学会创建于1986年,迄今已经在世界各地举办了14届国际近红外光谱学术会议。我们2年举办一次国际近红外会议,2009年11月在泰国曼谷举办了第14届国际近红外会议,会议共邀请了来自中国、德国、澳大利亚、美国、日本、泰国等37个国家约450余人参加。  未来,国际近红外光谱学会与中国近红外光谱专业委员会之间,肯定会有很多交流和合作的项目的。亚洲近红外光谱学会主席Yukihiro Ozaki教授  Yukihiro Ozaki教授:在亚洲某些地区,近红外光谱技术发展得相当不错,但是有些地方就比较落后,所以相互之间的交流和合作就很重要。借助亚洲近红外协会这个很好的平台,我们可以更方便地交流批次的研究成果。  亚洲近红外学会和中国近红外光谱学会间的交流工作一直以来都非常好,如这次第二届亚洲近红外光谱会议在中国上海召开,就有很多日本人积极来参会。单就费用来说,从大阪到上海距离很近,而且费用不高,很多年轻人都可以来参加。但是如果是去欧洲或者美洲,那么可能就有很多人支付不起费用。  另外,亚洲各个国家的专家学者不是很擅长英语,所以有时候参加国际会议会交流时可能会有点“困难”,而亚洲级别的会议更有利于我们提高自己的英语水平和交流能力。中国近红外光谱专业委员会会主任委员袁洪福教授  袁洪福教授:早在上世纪90年代,国际近红外光谱学会就试图和我们近红外光谱分析研究小组联系,希望有机会在中国举办一次近红外光谱学术会议,我当时认为条件并不成熟。2006年6月我受日本和韩国近红外光谱学术会议邀请参加了在韩国首尔举办的这次会议,出席会议的还有梁逸曾教授、姚建垣先生、林国林教授。会议期间成立了亚洲近红外光谱学会(ANC)。国际近红外光谱学术届很希望我国能有一个近红外专业学术交流的对口平台。2006年10月我国举办了第一届全国近红外光谱学术会议,会议期间来自国内40多位近红外专家聚在一起,大家强烈呼吁建立国内近红外光谱学术交流平台。在陆婉珍院士的倡议下,成立了近红外专业委员会筹备工作小组。在国内来自不同领域的8名院士和中国仪器仪表学会分析仪器分会领导闫成德和刘长宽先生共同支持下,通过小组成员近3年的努力工作,近红外专业委员会于2009年6月6日在北京正式成立。  迄今,专业委员会已经建立了国内近红外光谱专业网站,创办了近红外通讯,相继组织了多期不同行业的近红外光谱技术研讨会,近红外光谱分析技术培训班,和成功举办了2年一次的全国近红外光谱学术报告会,和这次第二届亚洲近红外光谱学术会议。相信专业委员会今后将积极开展国内外近红外光谱学术交流,教育,技术推广,技术培训和咨询等活动,将为我国近红外光谱分析技术健康发展发挥重要作用。近红外光谱发展趋势集中于“小型、在线以及成像技术”  Instrument:请三位教授谈谈,近红外光谱技术的优势有哪些?  Yukihiro Ozaki教授:近红外光谱技术有许多优势,最关键的是无损检测,可以透过玻璃和一些塑料包装直接进行测量,属于非破坏性分析方法。并且,不需要使用很多的试剂、药品,也不需要进行很多的前处理工作,维护费用及分析成本比普通色谱分析技术低,所以近红外光谱技术是非常环保的。另外,近红外光谱分析的成本较低,广泛应用于粮食领域、水果熟程度的检测、蔬菜检测等。  袁洪福教授:近红外光谱分析技术的确有很多优势,主要得益于近红外光特性和化学计量学。近红外光具有相对较强的穿透能力,可以通过普通玻璃或光纤传输,还有各种分光方式如光栅、傅立叶、声光过滤、固体阵列等,为设计各种用途的专用分析仪器提供了便利,该技术非常适合各种固体和液体的样品测量;每张光谱的扫描时间仅为几秒钟,采用化学计量学方法,一次全光谱扫描,可以获得各类化学成分定性或定量的数据,因此具有同时快速(如秒内)分析多种化学成分或多种性质的能力。  近红外光谱分析技术优势主要体现在质量快检方面,比如高通量在线质量分析,越来越多的应用把近红外集成到系统设备中作为一个质量检测附件使用,最近到上海一家跨国公司交流看到,该公司内工业装置上有80多处在线检测点使用了近红外分析技术,共安装了十几台在线近红外光谱仪,为精确控制装置运行发挥了巨大作用。现场品质检测更是近红外分析技术的独特优势,目前,越来越多的便携仪器已经广泛用于农业(如水果),食品和药品质量检验。无疑,近红外分析技术在工农业生产过程质量快速和高效的精确控制以及食品药品质量监控方面具有显著的优势。  Instrument:近红外光谱技术发展难点集中在哪些方面?  Pierre Dardenne博士:30年前,开展近红外光谱技术研究的人还很少,现在越来越多的国家、越来越多的人开始从事这方面的研究,这是一个非常好的现象。但是近红外光谱的教育还是不够。近红外光谱技术持续不停地发展,我的观点是加大教育投入力度。当然,这还需要做很多工作,特别是非洲等地。  袁洪福教授:虽然,近红外分析技术近年来发展很快,但在国内还尚未被广泛了解,如何普及应用也是今后发展的难点之一。主要让人们了解该技术能够解决什么问题,怎样才能正确使用该技术和应用带来的明显好处。在今后发展中,仪器硬件方面,应特别注重通过科学的精密制造工艺保证近红外光谱仪光谱测量的高度重现性,在应用方面应通过培训使用户掌握正确建模方法和维护知识。我积极建议,专门从事该技术研究的相关部门应当瞄准当前国家重大需求,研究和确定近红外分析技术能够发挥重要作用的具体应用,认真规划和组织,建立一系列的成功应用示范点,将她的显著优点清楚地展现给大家,一直不遗余力地坚持推广,以期推动近红外光谱技术可持续的发展。  Instrument:近红外光谱技术未来发展趋势如何?  Yukihiro Ozaki教授:近阶段,近红外成像技术发展的也很快,近红外成像是一种很有用的工具,借助此技术我们可以看到样品的内部,甚至可以对自然状态下的水果进行药品含量的检测。  现在,正在大力发展手持近红外光谱仪器、小型化仪器,这是相当有用的。还有在线近红外光谱工业分析技术,可以监测从原料到产品的整个反应变化过程,是一项很“棒”的技术。  Pierre Dardenne博士:近红外光谱技术发展方向主要是趋于小型化,方便携带和使用。  袁洪福教授:总结国内外近红外分析技术发展历史以及近红外技术特点,我认为近红外网络技术将是今后重要的发展方向之一,制约近红外大范围推广使用的技术是模型,因此,围绕近红外分析模型共享,优先发展先进的近红外网络建模中心和模型共享网络技术,以满足相关重要领域如农业粮食收购,水果生产和销售,食品和药品物从生产到消费的流通等领域中品质实时监控网络需求。该技术的发展将与物联网时代的到来相关。当然,仪器的微型化和智能化,和高性价比也是未来技术发展的重要方向。  Instrument:最后,请袁洪福教授介绍一下中国近红外光谱专业委员会近期的工作重点以及推进计划?  袁洪福教授:为有效地推动我国近红外光谱学科的发展,专业委员会近期工作重点如下:(1)组织申办2015年在北京举办第17届国际近红外光谱学术会议;(2)通过组织高等院校科研单位,近红外仪器厂家,知名专家进行技术发展研讨等多种形式活动,围绕国家十二五发展战略,提出国家近红外发展规划建议;(3)组织和建立近红外光谱分析建模方法标准,并推动个领域制定相关的近红外光谱分析应用技术标准;(4)协助各行各业开展建设具有典型意义的近红外分析应用示范点;(5)加强技术培训和咨询工作。  后记  采访过程中,谈到中国近红外光谱专业委员会计划申办2015年国际近红外光谱大会,记者向Pierre Dardenne博士、Yukihiro Ozaki教授请教了他们对此事的看法。  Pierre Dardenne博士代表国际近红外光谱学会欢迎中国申办2015年的会议。并认为中国在近红外光谱技术方面有很好的设施,很好的师资力量,有很多高水平的研究学者,而且中国的消费也很低,总的来说中国有很好的机会获得主办权。  接着更是给出了一些良好的建议,如需要好好准备材料以及陈述,一切都准备得当,然后就可能赢得举办权。  Yukihiro Ozaki教授高兴的说到,这对于中国近红外协会来说是一个非常好的消息,对于亚洲亦是。下次是南非,然后是法国,再到中国,这是很好的一个交流。中国非常不错,不管从亚洲其他国家也好,从美洲、欧洲来上海都是非常方便的。可以促进中国近红外的发展,特别是关于教育方面,很多日本青年也能参加,非常好。  祝福、期待中国能在不久的将来成功获得2015年国际近红外光谱大会的主办权。  另外,特别感谢:近红外光谱专业委员会会主任委员袁洪福教授、华东理工大学杜一平教授及其学生、近红外光谱专业委员会秘书长刘慧颖高工,在日前召开的近红外光谱学术盛会新闻报道以及此次专访过程中给予我们的大力支持与帮助!  采访编辑:刘丰秋  附录:国际近红外光谱学会 www.icnirs.org  亚洲近红外光谱学会 http://nir.ac.affrc.go.jp/Web-ANC/index.html  中国仪器仪表学会分析仪器分会近红外光谱专业委员会 www.ccnirs.org
  • 美研究人员研制成功一种用于光谱学的新型太赫兹激光器
    从左至右:利哈伊大学(Lehigh University)电气和计算机工程研究生Ji Chen、Liang Gao和Yuan Jin在利哈伊大学Sinclair大楼Sushil Kumar的太赫兹光电子(Terahertz Photonics)实验室  美国研究人员展示了一种具有破记录输出功率的太赫兹半导体激光器,可用于各种形式的光谱学和其他应用。  以强烈的单色辐射光束形式提供的光束是众所周知的技术,可以追溯到1960年推出的第一台激光器。依靠激光器来实现超快速和高容量的数据通信、制造、手术以及商业应用,例如条形码扫描仪、打印机,诸如CD和DVD的光盘,自动驾驶车辆,激光显示表演和动态艺术装置,当然还有光谱学。  从红外到紫外的激光器被广泛使用,然而,利哈伊大学的Sushil Kumar团队研究了太赫兹激光器。太赫兹辐射位于微波和红外区域之间的电磁波谱区域。它们可穿透塑料、织物、纸板和其他材料,可用于检测各种化学品。太赫兹激光有可能用于非破坏性、非侵入性筛查和检测爆炸物,非法药物,检测药物化合物,筛查皮肤癌。  为了真正有用,激光必须以非常精确的波长发射,这通常通过单模激光器中的“分布式反馈”来完成。太赫兹激光器必须是单模的。随着太赫兹辐射的传播,其中一部分会被大气湿度吸收,这是非常不利的。因此,一个用于光学传感和分析的太赫兹激光,不管距离多远,即使几米,也必须避免这个问题。现在,Kumar的团队一直致力于通过提高光功率输出来提高强度和亮度。  他们研究了“表面发射”(而不是“边缘发射”)的单模激光器。已经找到了一种将周期性引入激光器光学腔的方法,使其能够从根本上辐射高质量的光束并提高辐射效率。该团队将这种方法称为“混合二阶和四阶布拉格光栅”。他们建议,他们的混合光栅不一定限于太赫兹激光器,而是可以用于增强几乎任何表面发射半导体激光器。  该团队报告了单模太赫兹激光器的功率输出为170毫瓦的实验结果。这是迄今为止这种激光器中功能最强大的。因此他们证明,它们的混合光栅可以通过简单地改变激光腔内压印光栅的周期来精确控制发射波长。库马尔表示,1000毫瓦的设备应该很快成为可能,这可能会吸引制造商的眼球。  原文请查阅:  Power up: New lasers for spectroscopy  SpectroscopyNOW.com  Channels: Atomic  Published: May 15, 2018 符斌供稿
  • 第三届中国激光诱导击穿光谱学研讨会通知
    第三届中国激光诱导击穿光谱学研讨会(第一轮通知)CSLIBS -2013, 广州时间:2013年3月22至24日地点:广东广州五山华南理工大学主办:中国光学学会环境光学与技术专业委员会承办:华南理工大学  会议宗旨  近年来,LIBS技术研究及其应用在我国得到了迅速的发展,无论是在新机理的探索、新技术研发,还是在现有技术实用化等方面均取得了很大的成绩,尤其是在2011年第一届"CSLIBS2011-青岛"和2012年第二届"CSLIBS2011-合肥"的推动下,LIBS技术在电力、石油、冶金、食品安全和环境监测等各个领域的应用取得了显著进展。  为进一步促进激光诱导击穿光谱(LIBS)技术的应用与交流,提高LIBS技术在我国的研究水平,交流近期取得的研究成果,共同研讨我国LIBS研究发展的对策,并为2014年在北京召开的第8届国际LIBS会议做准备,由华南理工大学承办的"第三届中国激光诱导击穿光谱学研讨会 - CSLIBS'2013"定于2013年3月22日至2013年3月24日在广州华南理工大学召开。此次会议已得到国内外同行的高度关注,将有多名国外LIBS领域著名专家参会。同时也将邀请国内外与LIBS相关的仪器设备公司举办最新产品展览会。  征文范围  l LIBS基础:  激光等离子体基础(Fundamental of laser-induced plasma)  -激光烧蚀和激光等离子体物理(Physics of laser ablation and laser-induced plasma)  -激光等离子体光谱及其诊断(Diagnostics and spectroscopy of laser-induced plasma)  - LIBS技术及装置的发展:过去、现在和未来(Instrumentation development of LIBS: the past, the present, and the future)  -LIBS数据处理和化学计量学(LIBS data processand Chemometrics)  - LIBS定量分析评价(Quantitative analytical performance assessment)  lLIBS应用  专业设备研发及其应用(Applications and specific instrument development)  - 环境领域(Environment)  - 工业领域(Industrials)  - 极端环境:太空、海洋、军事、核环境(Detections in extreme conditions:space, ocean, military, nuclear…)  - 有机物和生物学(Organic and biomedical)  - 其他领域(other areas)  会议形式  根据会议学术委员会多次商议,此次会议将更注重学术效果,主要采用如下模式安排会议内容:  1、基础短训班  邀请国内外LIBS领域的著名专家,就LIBS技术相关理论基础进行专题讲座:  对象:研究生和交叉学科的LIBS应用者  课程:  1)LIBS物理基础  2)LIBS发射光谱  3)LIBS仪器设备  4)数据处理  2、大会主题报告  由国内外LIBS主要研究单位报告近一年中的最新研究进展与发展趋势  3、学术交流  将全部采用poster形式,安排专门单元进行充分研讨,并进行评选奖励最佳poster报告活动(以鼓励和表彰青年学者和研究生为主)  4、其他形式  如学术沙龙等,主要安排青年学者和研究生进行学术交流,特邀资深专家进行指导。  投稿及其他信息  会议网址:http://www.scut.edu.cn/CSLIBS2013/  参会报名与论文提交邮箱地址:CSLIBS2013@scut.edu.cn  参会报名与投稿截止日期:3月1日  参会费用:  由于参会人员的不断增加,为保证会议的顺利进行,本次会议将酌情收取会务费:  短训班:300元/人  会务费:600元/人  会议日程  3月21日参加短训班人员报到  3月22日上午、下午  短训班  参会人员报到  晚上:学术沙龙  3月23日上午:开幕式,大会报告  下午: poster研讨  晚上:珠江夜游  3月24日上午:大会报告  下午:专题研讨  会议地点  广东广州五山华南理工大学逸夫人文馆  住宿  广东广州五山华南理工大学西湖苑、学者楼  会议语言  中文、英文  (为了做好LIBS2014的预演,CSLIBS 2013鼓励用英语准备ppt和poster)  联系方式  地址:广东广州五山华南理工大学电力学院, 510640  联系人:姚顺春(13925150807),李军(15989024816),张博(13580339824),  E- mail :CSLIBS2013@scut.edu.cn
  • 全国第二届生物医学拉曼光谱学术会议年底召开
    p  随着生物医学及相关研究领域持续向前发展,快速、高灵敏并具有分子指纹识别特性的拉曼光谱技术受到包括生物、医学、材料和分析科学等领域专家和学者的广泛关注和青睐。6月5日,全国第二届生物医学拉曼光谱学术会议第一轮通知正式发布。/pp  全国第二届生物医学拉曼光谱学术会议将于2018年底在上海举行,由上海师范大学、华中农业大学和武汉大学联合承办,上海励博文化传播有限公司协办。/pp  大会的宗旨是按中国物理学会光散射专业委员会要求,给国外内拉曼光谱在生物学、基础医学、临床医学以及纳米医学界同仁、生命科学相关领域的学者和拉曼仪器制造商提供交流与合作的平台,挖掘拉曼光谱技术在生物医学领域的潜在应用需求, 探讨目前存在的主要技术瓶颈和问题,展望该领域的美好前景。/pp  拟邀请德国耶拿大学的Jü rgen Popp教授、厦门大学的任斌教授、华东理工大学的龙亿涛教授等国内外着名学者作大会报告 同时将邀请若干拉曼学术研究领域知名专家、医学界专家和仪器技术人员作特邀报告 此外,会议将设立“跨界论坛”和“墙报展讲” 以吸引有各界对此领域有研究兴趣的青年学子参会交流。/pp  会议主题聚焦以下7个方面:/pp  1、拉曼光谱与疾病(早期)诊断   /pp  2、拉曼光谱与单细胞分析 /pp  3、等离激元纳米结构与新型实用 SERS基底 /pp  4、SERS用于生物分子的免标记、直接检测 /pp  5、SERS与生化传感分析 /pp  6、拉曼( RS, SERS, CARS, SRS和 TERS )显微镜与生物成像 /pp  7、拉曼与生物医学其它相关。/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201806/ueattachment/da920e18-8d99-46f9-9384-0af46efa509b.pdf"全国第二届生物医学拉曼光谱学术会议第一轮通知.pdf/a/p
  • 光谱学专家Richard Friend爵士教授加盟牛津仪器
    牛津仪器宣布任命Richard Friend爵士教授为独立非执行董事。这项任命从2014年9月1日起生效。Richard Friend  Richard Friend爵士教授,英国皇家学会院士、皇家工程学院院士,卡文迪什物理学教授及剑桥大学圣约翰学院研究员。他是英国光谱学、分子导体、磁体研究领域的重要科学家之一。他也是新剑桥纳米技术跨学科研究合作的主要研究者之一,同时还是剑桥显示技术公司和Plastic Logic公司的创始人之一。2003年,他入选英女王寿辰授勋名单,2009年获得费萨尔国王国际科学奖。此外,他还直接参与了两个从剑桥大学分拆出来的公司的技术商业化。(编译:秦丽娟)
  • 光谱学技术获最新突破,利用阿秒激光爆发作为泵浦和探测脉冲
    近日,柏林的Max Born研究所、伦敦大学学院和匈牙利的ELI-ALPS研究所在共同参与的一个项目中,展示了一种利用阿秒激光爆发作为泵浦和探测脉冲的新型光谱学技术。据介绍,在正常运行的光谱学平台上使用这种短脉冲有助于研究复杂的光学过程,而该项目则主要是利用它来研究原子的非线性多光子电离过程。近日,相关成果发表在光学和光子学专业期刊Optica上。飞秒(1飞秒= 10-15秒)泵浦探针光谱技术彻底改变了人们对极快过程的理解。例如,如果一个分子的解离是由飞秒泵脉冲引发的,它可以使用延时飞秒探针脉冲来实时进行观察,捕捉分子的演化状态,从而得到记录分子解离细节过程的动态图像。1999年,这项强大的技术甚至被授予了诺贝尔化学奖。然而,自然界中的一些过程甚至更快,并且发生在阿秒的时间尺度上(1阿秒= 10-18秒)。到目前为止,阿秒泵浦阿秒探针光谱学已经被证明用于涉及两个光子吸收的相对简单的过程。然而,由于全阿秒泵浦-探测光谱非常具有挑战性,目前大多数得到实际应用的方法只使用一个阿秒脉冲泵(或探针),而另一个步骤则会使用飞秒脉冲。而在最新进展中,研究人员成功演示了一个泵-探针实验。在这个实验中,复杂的多光子电离过程使用了两个阿秒脉冲序列。这个实验需要产生非常强的阿秒脉冲,为此需要使用一个大型激光系统。同时,两个阿秒脉冲必须与阿秒时间和纳米空间稳定性重叠。考虑到这样大的挑战性,研究人员选择在马克斯波恩研究所(Max Born Institute)最大的实验室进行了上述这项实验。“原子和分子中的多电子动力学经常在亚秒至几飞秒的时间尺度上发生,”发表在Optica杂志上的论文中指出,“以前极端紫外(XUV)光子阿秒脉冲的可用强度允许对双光子、双电子相互作用进行时间分辨的研究。而最新的进展中,我们研究了氩原子的双电离和三电离,包括了多达5个XUV光子的吸收。”在以往的场景中,产生所需的强阿秒脉冲通常需要使用大型和强大的激光系统,幸而每个项目合作伙伴都在这一方面颇具优势。其中,极光基础设施阿秒光脉冲源(ELI-ALPS)研究中心正在开发一种价值600万欧元的激光器,旨在以1千赫兹的重复频率提供超过15太瓦的峰值功率,脉冲持续时间小于8飞秒。在新的研究中,两个阿秒脉冲串(APTs)与一个氩原子相互作用,吸收了四个光子,从而从原子中去除三个电子。根据该项目,有许多可能的方式来发生这种多光子吸收,要详细地找出电子是如何从原子中去除的,则需要改变两个阿秒脉冲之间的时间延迟,并观察产生了多少离子。结果表明,多光子吸收是分三步进行的:在前两步中,每一步都吸收一个光子;而在第三步中,两个光子同时被吸收。这些结果已经被计算机模拟所证实,并证明了强APTs的应用能够更好地理解复杂的多光子电离途径。据介绍,这项已开发的实验技术未来不仅可以用于研究原子中的复杂过程,还可以用于研究分子、固体和纳米结构。该项目还希望能进一步回答有关几个电子如何相互作用的问题,这有助于在最短的时间内理解最基本的过程。
  • 哀悼!北京大学光谱专家许振华病逝,曾长期从事稀土化学和分子光谱学研究
    2021年1月29日,北京大学化学与分子工程学院网站发布讣告:中国共产党党员、北京大学化学学院教授级高级工程师许振华老师因病不幸于2020年11月13日在加拿大去世,享年86岁。许振华老师长期从事稀土化学和分子光谱学研究,北京大学化学与分子工程学院评价其“造诣深厚,著述颇丰,成绩斐然”,许振华老师作为主要发明人荣获国家发明奖三等奖(1990)、国家教委科技进步二等奖(1987、1993、1996)、中国分析测试协会科学技术奖一等奖(1993)。他曾任中国化学会和中国光学学会分子光谱学学术委员会委员、高校大型仪器咨询专家组成员、中国分析测试协会仪器评议委员会分子光谱专家组长和《现代仪器》杂志副主编。关于许振华老师许振华老师1935年 11月 出生于江苏无锡,1956年3月加入中国共产党,1959年7月于北京大学技术物理系原子能化学专业毕业并留校任教,1973年6月转入北京大学化学系(现化学与分子工程学院)任教,1998年9月退休;1984年10月至1986年8月及1998年10月至1999年9月在加拿大麦吉尔大学化学系分别做访问学者和访问教授。
  • 2017国家科技奖初评结果公布 “低维碳材料的拉曼光谱学研究”榜上有名
    p  6月28日,国家科学技术奖励工作办公室发布国家科学技术奖励工作办公室公告第87号,公示初评通过的40项国家自然科学奖项目、56项国家技术发明奖通用项目和133项国家科学技术进步奖通用项目(含3个创新团队)。/pp  值得注意的是,2017年度国家自然科学奖初评通过项目化学组中,由张锦(北京大学)、刘忠范(北京大学)、 童廉明(北京大学)、彭海琳(北京大学)等完成的“低维碳材料的拉曼光谱学研究”项目初评建议等级为二等奖,推荐专家为田中群、包信和、解思深。/pp style="text-align: center "img title="QQ截图20170628164842.jpg" src="http://img1.17img.cn/17img/images/201706/insimg/9f2e955b-859e-4ad2-b714-a2de22c112be.jpg"//pp  a title="" href="http://www.instrument.com.cn/news/20170628/223181.shtml" target="_blank"strong2017年国家科技奖初评通过项目名单公示(附全名单)/strong/a/pp  /pp /p
  • 基于拉曼光谱学的新激光探测仪能“听”出脑内癌细胞
    在脑外科手术中,医生的眼睛在显示屏和病人间来回穿梭会影响他们的专注力。据《新科学家》杂志网站11月7日报道,英国几个大学和医院的科学家合作开发出一种激光探测仪,能把脑细胞光谱信号转换成音频,让医生通过“听”来辨别癌细胞与健康细胞。新技术能帮助医生更快速、更安全地完成脑外科手术。  新激光探测仪在去年研发基础上改进而成。之前的探测仪也能帮助医生辨别脑内癌细胞所在区域,但只能通过显示屏可视化呈现。而新探测仪能将图谱信号转换成音频信号,使医生能“听”出脑内癌细胞,从而将眼睛集中于手术切除部位。参与研究的斯特拉斯克莱德大学的马修贝克表示,新技术能精准地发出信号指导,让医生“目不转睛”地专注于手术。  激光探测仪的工作原理基于拉曼光谱学,可向脑细胞发出激光,并对反射回来的光谱进行分析,形成一个类似细胞指纹的光谱图。光谱图的形状能告诉医生所照射细胞是否癌变。研究团队这次为探测仪安装了一套全新的音频信号软件,该软件能够捕获图谱信号的重要特征,并将这些信号特征转换成声音。  初步检测结果表明,只用耳听,医生依靠激光检测仪辨别出健康细胞和癌变细胞的准确率高达70%。贝克表示,虽然比看光谱信号90%的准确率要低,但他们有信心通过改进继续提高。  对脑癌患者来说,癌变细胞未清除干净会留下复发和转移隐患,而切除健康细胞,神经功能又会受到损害,造成严重的副作用。下一步,他们将争取早日对激光检测仪进行临床试验,以帮助医生尽量将癌变脑细胞清除干净,又不会切除健康细胞。
  • 第三届(2024)全国生物医学拉曼光谱学术会议会议日程公布
    随着生物医学及相关研究领域持续向前发展,快速、高灵敏并具有分子指纹识别特性的拉曼光谱技术受到包括生物、医学、材料和分析科学等领域专家和学者的广泛关注和青睐。2016年底,在胡继明老师的倡导和组织下,由武汉大学、华中农业大学和上海师范大学联合承办了全国首届生物医学拉曼光谱学术会议,取得了圆满的成功。第三届全国生物医学拉曼光谱学术会议(3rd National Conference on Raman-based Biomedical Application)将于2024年3月28-30日在上海嘉定召开。本次会议由上海交通大学、武汉大学、上海师范大学和华中农业大学联合承办。 大会的宗旨是按中国物理学会光散射专业委员会要求,给国内外拉曼光谱在生物学、基础医学、临床医学以及纳米医学界同仁、生命科学相关领域的学者和拉曼仪器制造商提供交流与合作的平台,挖掘拉曼光谱技术在生物医学领域的潜在应用需求,探讨目前存在的主要技术瓶颈和问题,展望该领域的美好前景。会议将邀请若干拉学术研究领域知名专家、医学界专家和仪器技术人员作特邀报告。★详细会议日程请查看下图★会议地点:上海国际汽车城瑞立酒店(上海市嘉定区安亭镇博园路6966号)会议日程
  • 首届全国生物医学拉曼光谱学术会议将在武汉召开
    随着生物医学及相关研究领域持续向前发展,快速、高灵敏并具有分子指纹识别特性的拉曼光谱技术受到包括生物、医学、材料和分析科学等领域专家和学者的广泛关注和青睐。由中国物理学会光散射专业委员会主办,武汉大学、华中农业大学和上海师范大学联合承办的“首届全国生物医学拉曼光谱学术会议(1stNational Conference on Raman-based Biomedical Application)”将于2016年11月4-7日在武汉召开。  本届会议顺应拉曼光谱技术在生物医学领域日新月异发展的现状,旨在推动国内拉曼光谱学界同仁与生物学、基础医学、临床医学及纳米科学等相关领域学者的交流与合作。会议的主要议题包括:  会议已邀请到厦门大学田中群院士、中科院大连化学物理所李灿院士和湖南大学谭蔚泓院士,以及德国耶拿大学的Jürgen Popp教授和荷兰鹿特丹大学的Gerwin J. Puppels教授等国内外著名学者作大会报告 同时邀请到30余位本领域知名专家作特邀报告。此外,会议将设立“研究生论坛”和“墙报展讲”以吸引广大青年学子参会进行交流。  一、会议主题  1)拉曼光谱与疾病(早期)诊断   2)拉曼光谱与单细胞分析   3)等离激元纳米结构与新型实用SERS基底   4)SERS用于生物分子的免标记、直接检测   5)SERS与生化传感分析   6)拉曼(RS, SERS, CARS, SRS和TERS)显微镜与生物成像。  二、会议学术委员会和组织委员会(按姓氏笔画排序)  学术委员会  顾问:田中群、李灿、谭蔚泓  主任:任斌  委员:王玉芳、毛艳丽、王培杰、尤静林、龙亿涛、叶勇、左健、刘玉龙、刘冰冰、李源、刘照军、陆云、沈文忠、杨良保、陈建、沈爱国、杨海峰、张锦、张韫宏、郑海荣、范峰滔、郝少康、赵冰、姚建林、赵艳、胡继明、逯乐慧、徐红星、倪振华、梁二军、黄岩谊、龚敏、普小云、蒋健晖、韩鹤友、谭平恒  组织委员会  主任:胡继明  副主任:杨海峰、韩鹤友  委员:牛菲、冯钰錡、刘志洪、张志凌、何治柯、庞代文、周平、周晓东、胡斌、黄卫华、童华  秘书:李娟、沈爱国  三、征文要求  1)论文摘要包括中文(或英文)题目、作者姓名、单位、单位所在地、关键词和摘要,具体参见会议网站的论文摘要模板。  2)会议同时欢迎论文全文投稿,经审稿录用后将在中文核心期刊《光散射学报》和《分析科学学报》上正式发表。论文全文的字数为3000-6000字(含图表在内),包括中英文的论文题目、作者姓名、单位、单位所在地、关键词和摘要及中文正文。具体要求参见会议网站的全文论文要求。  3)会议采用“口头报告”和“墙报”两种方式进行学术交流。为尊重个人意见和便于组委会安排,参会者投稿时请注意选择稿件类型:“口头报告”或“墙报”。  4)会议投稿一律采用在线注册投稿的方式进行。  四、会议注册  1)全部参会代表(包括无稿件参会人员)务必在会议网站注册,并填写提交参会回执。  2)会议注册费:2016年10月5日前,正式代表1200元,学生代表800元 2016年10月5日后,正式代表1500元,学生代表1000元。  3)收款信息(电汇底单扫描后与回执一并提交):收款人全称:武汉大学 收款人账号:5768 5752 8447 武汉市转账开户银行:中国银行武汉水大支行 武汉市转账清算行号:846022 异地电汇开户银行:中国银行武汉东湖开发区支行 电汇全国联行行号:1045 2100 3300  五、会议赞助  本次会议由拉曼光谱仪的知名品牌供应商之一“堀场(中国)贸易有限公司”独家赞助。  六、会议时间  论文截稿日期:2016年8月31日 第二轮会议通知:2016年8月 开放注册投稿日期:2016年6月15日 会议截止投稿日期:2016年8月31日 注册优惠截止日期:2016年10月5日  七、联系方式  有关本次会议的其他相关事宜请访问会议网页(http://bio-Raman.isigu.com/),会议邮箱biomedical_raman@qq.com 或与武汉大学化学与分子科学学院沈爱国副教授联系。组委会电话027-68752439-8063,Email: agshen@whu.edu.cn。  中国物理学会光散射专业委员会  首届全国生物医学拉曼光谱学术会议组委会  2016年6月8日
  • Alfred G.Redfield获Pittcon 2015光谱学大奖
    近日,Pittcon主办方之一匹兹堡光谱学会(SSP)发布,Alfred G. Redfield为Pittcon 2015光谱学大奖获得者。Redfield是布兰迪斯大学(Brandeis University,美国马赛诸塞州波士顿地区沃尔瑟姆镇)的生物化学和物理学名誉教授。  创立于1957年的Pittcon光谱奖用来表彰在光谱领域作出杰出贡献的个人。  Redfield在核磁共振(NMR)领域特别是在核自旋弛豫方面,积极促进了该项技术的研发、实际应用,取得了杰出成绩。另外,Redfield在科学界担负着领导角色,并对年轻科学家进行了积极指导。  Redfield是美国国家科学院的院士、美国美国科学艺术研究院院士,他获得的奖项包括:美国物理学会(2005)的生物物理学奖、生物物理学 (2006)Max Delbruck奖和the Russell Varian Lecture奖(2007)。60 多年的职业生涯中,Redfield已经发表了200多篇论文。  Pittcon 2015将在2015年3月8-12日于美国路易斯安那州新奥尔良的Morial会展中心召开,颁奖礼将在该展会上颁发。
  • 第三届(2024)全国生物医学拉曼光谱学术会议第一轮通知
    随着生物医学及相关研究领域持续向前发展,快速、高灵敏并具有分子指纹识别特性的拉曼光谱技术受到包括生物、医学、材料和分析科学等领域专家和学者的广泛关注和青睐。2016年底,在胡继明老师的倡导和组织下,由武汉大学、华中农业大学和上海师范大学在武汉联合承办了首届全国生物医学拉曼光谱学术会议,由上海师范大学、华中农业大学和武汉大学在上海联合承办了第二届全国生物医学拉曼光谱学术会议,两届会议都取得了圆满的成功。经大会组委会讨论决定“第三届全国生物医学拉曼光谱学术会议”(3rd National Conference on Raman-based Biomedical Application,NCRBA)将于2024年3月28-30日在上海召开。本次会议由上海交通大学、上海师范大学、武汉大学和华中农业大学联合承办。大会的宗旨是按中国物理学会光散射专业委员会要求,给国内外拉曼光谱在生物学、基础医学、临床医学以及纳米医学界同仁、生命科学相关领域的学者和拉曼仪器制造商提供交流与合作的平台,挖掘拉曼光谱技术在生物医学领域的潜在应用需求,探讨目前存在的主要技术瓶颈和问题,展望该领域的美好前景。会议拟邀请德国耶拿大学的Jurgen Popp教授、哥伦比亚大学的闵玮教授、牛津大学的黄巍教授等国内外著名学者作大会报告。同时将邀请拉曼学术研究领域知名专家、医学界专家和仪器技术人员作特邀报告;此外,会议将设立“跨界论坛”、“人工智能论坛”和“墙报展示”以吸引广大青年学子参会进行交流。会议组委会热忱地欢迎各位同行在美丽的初春3月来到上海参会!一、会议主题1)拉曼光谱与疾病(早期)诊断2)拉曼光谱与单细胞分析3)等离激元纳米结构与新型实用SERS基底4)SERS用于生物分子的免标记、直接检测5)SERS与生化传感分析6)拉曼光谱与人工智能7)拉曼(RS, SERS, CARS, SRS和TERS)生物显微成像技术和应用8)拉曼与生物医学其他相关二、会议学术委员会和组织委员会学术委员会顾问:田中群、李灿、徐红星、谭蔚泓主任:姚建林委员:陈昌、陈建、崔丽、范峰滔、方吉祥、韩鹤友、胡家文、胡万彪、雷力、李剑锋、林妙玲、刘冰冰、刘照军、龙亿涛、毛艳丽、倪振华、仇巍、任斌、沈爱国、宋薇、谭平恒、童廉明、王俊俏、王培杰、席广成、谢微、杨海峰、杨良保、杨腾、叶坚、尤静林、张洁、张正龙、赵继民(按照姓氏拼音排序)组织委员会名誉主任:胡继明主任: 叶坚副主任: 杨海峰、韩鹤友 委员:林俐、陈舟三,征文要求1)论文摘要包括中文(或英文)题目、作者姓名、单位、单位所在地、关键词和摘要,具体参见会议网站的论文摘要模板。2)会议同时欢迎论文全文投稿,经审稿录用后将在中文核心期刊《光散射学报》和《生物医学工程学进展》上正式发表。论文全文的字数为3000-6000字(含图表在内),包括中英文的论文题目、作者姓名,单位、单位所在地、关键词和摘要及中文正文。具体要求参见会议网站的全文论文要求。3)会议采用“邀请报告”和“墙报”两种方式进行学术交流。为尊重个人意见和便于组委会安排,参会者投稿时请注意选择稿件类型:“邀请报告”或“墙报”。4)会议投稿一律采用在线注册投稿的方式进行。四,会议注册1)会议注册费:代表类型预注册优惠价格(2月20日前完成缴费)现场注册正式代表2400元2800元学生代表1200元1400元2)全部参会代表(包括无稿件参会人员)在会议网站注册会议网站: http://www.htcis.net/MeetingMain/Index/NCRBA。3)收款信息户名:上海汇光会务服务有限公司开户行:中国银行上海市菊园新区支行账号:4481 7817 3875附言备注项:NCRBA+参会人姓名五,会议赞助本次会议分皇冠级、钻石级、铂金级、黄金级、白银级赞助商。大会诚邀国内外优秀企业加入,可通过多种方式提供支持和合作。六,会议时间会议举办时间:2024年3月28-30日第一轮会议通知:2023年10月10日第二轮会议通知:2023年12月10日会议投稿截止日期:2024年1月20日线上注册日期:2023年10月10日~2024年3月28日注册优惠截止日期:2024年2月20日七、会议联系方式上海交通大学生物医学工程学院叶坚、林俐、陈舟电话:021-62934760联系方式:15216708228、18916153586会议邮箱:ncrba2024@126.com有关本次会议的其他相关事宜请访问会议网页(http://www.htcis.net/MeetingMain/Index/NCRBA) 中国物理学会光散射专业委员会第三届全国生物医学拉曼光谱学术会议组委会 2023年10月16日
  • 新技术新成果 第22届全国分子光谱学学术会议精彩报告来袭
    仪器信息网讯 2023年7月15日,第22届全国分子光谱学学术会议暨2023年光谱年会在昆明召开,本次会议由中国光学学会、中国光学学会光谱专业委员会、中国化学学会主办,云南师范大学承办。会议邀请了光谱及相关领域的院士、著名学者以及相关仪器厂商代表莅临会议并作报告分享和产品展示,增进了广大光谱科学工作者及支持光谱事业人们间的交流与合作,吸引了来自各地近600人齐聚昆明共襄盛会。7月15日上午,厦门大学田中群院士、北京大学张锦院士、郑州大学常俊标教授、山东师范大学唐波教授、赛默飞世尔科技(中国)有限公司应用专家邓洁等5位院士、专家分别带来了精彩的大会报告。(相关阅读:《再聚昆明 第22届全国分子光谱学学术会议暨2023年光谱年会开幕》)活动现场7月15日下午,清华大学张新荣教授、湖南大学张晓兵教授、岛津企业管理(中国)有限公司的产品经理郑伟、南京大学龙亿涛教授、厦门大学任斌教授、湖南师范大学杨荣华教授分别为大家作大会报告分享。东北大学王建华教授、中科院过程工程研究所刘会洲研究员分别主持会议。清华大学 张新荣 教授《单细胞分析方法与仪器研究》张新荣教授从单细胞分析的意义讲起,介绍了其课题组在单细胞分析方法与仪器研究方面开展的一系列研究工作。报告中,张新荣教授特别详细介绍了课题组搭建的高光谱成像结合结构光照明仪器用于单细胞分析的应用研究,同时也分享了在单细胞代谢微环境成像分析方面开展的系列工作。湖南大学 张晓兵 教授《光学探针结构调控与精准成像》光学成像技术具有响应速度快,样本损伤小,动态实施等优点,是细胞和活体水平上高效获取生产信息的有力工具。张晓兵教授认为,目前,现有光学成像探针面临原位检测、背景干扰、响应特异三个方面的挑战,光学成像领域亟需高性能成像探针。基于此,他与大家分享了课题组的相关研究成果,包括提出基于氢键驱动的有机小分子荧光探针有序组装策略,首次提出疏水疏脂染料概念,发现富电子蒽衍生分子的长余辉发光特性和机制等。岛津企业管理(中国)有限公司 产品经理 郑伟《红外拉曼,琴瑟和鸣——红外拉曼显微镜的创新与融合》郑伟经理向我们介绍了红外及拉曼光谱技术分析的共性、特性和互补性。他介绍道,岛津最新方案——全球首台红外-拉曼“二位一体”显微镜,实现了在同一位置,用同一套软件、同一台设备,可以使红外、拉曼技术呈现1+1>2的效果。同时,他也分享了一些基于AIRsight的典型应用案例等。南京大学 龙亿涛 教授《限域可控的单个体光电化学测量》从宏观尺度、微纳尺度到单个体限域,龙亿涛教授谈了他对于化学测量的理解,并回顾了关于纳米单颗粒限域光电化学的系列研究成果及对他工作的启发。之后他详细介绍了在南京大学所做的关于单颗粒限域光电化学的一些技术研究,包括纳米孔道单分子精密光电测量系统、纳米孔道增强的单分子拉曼光谱等。厦门大学 任斌 教授《纳米分辨针尖增强拉曼光谱技术及其应用》任斌教授与大家详细地分享了纳米分辨针尖增强拉曼光谱技术研究及应用进展。他表示,TERS前景光明,然任重而道远。报告中,任斌教授从仪器方法、商品化仪器、研究体系三个方面对TERS的发展方向进行了展望。同时,他还就教学型多功能拉曼光谱仪设计理念、实验体系、分析教学等方面进行了探讨。湖南师范大学 杨荣华 教授《细胞上的化学测量学》细胞生化信息获取是人类探索生命现象本质的重要环节,也是化学测量学研究的核心内容之一。杨荣华教授认为,细胞信息获取目前面临着三大挑战:选择性、灵敏性、响应性,及两大瓶颈:缺乏高效分析识别工具、缺乏高灵敏信号转换与放大手段,亟需发展高效分子识别工具及细胞信息获取新原理与新方法。基于此,他从三链核酸分子开关(TMS)、生物体系自助信号放大、细胞微环境激活的ISAC生物正交反应三个方面开展了相关研究,并取得了一系列成果。东北大学 王建华教授 主持中科院过程工程研究所 刘会洲研究员 主持除此之外,相关领域青年学者的墙报在会议期间全程展示,展现他们最新的前沿研究成果,参会人员进行了优秀墙报的组织评选,后续将在会议公布得奖情况,仪器信息网将持续跟踪报道。墙报展示会议期间,赛默飞、岛津、HORIBA、布鲁克、雷尼绍、安捷伦、珀金埃尔默、瑞士万通、天美仪拓、荧飒光学、日立科学、奥谱天成、昊量光电、鉴知技术、如海光电等20多家仪器厂商将相关的产品带到了现场进行展示,吸引大家驻足咨询沟通。仪器展区
  • 第十七届全国分子光谱学学术会议举行
    仪器信息网讯 2012年10月19-23日,由中国光学学会和中国化学会主办,韶关学院和韶关市化学化工学会联合承办的“第17届全国分子光谱学学术会议”在广东韶关召开。230余名分子光谱领域的专家学者参加了此次会议。会议现场  大会开幕式由韶关学院科技处处长陈小康教授主持,开幕式上韶关学院校长刘荣万教授、韶关市科技局局长张才明高工、中国光学学会光谱专业委员会主任孟广政教授分别致开幕词,大会组委会主席北京师范大学谢孟峡教授宣读了中国科学院大连化学物理研究所李灿院士为本届分子光谱大会致来的贺信。韶关学院校长刘荣万教授韶关市科技局局长张才明高工中国光学学会光谱专业委员会主任孟广政教授大会组委会主席北京师范大学谢孟峡教授  会议报告  本届大会通过大会报告、主题报告、邀请报告、口头报告以及墙报展等方式展现了近年来分子光谱领域的最新研究进展。据大会组委会主席谢孟峡教授介绍,分子光谱学是现代科学技术的重要手段,近年来分子光谱学的实验研究、应用研究等逐步取得了重要的进展,本届报告的内容很好的展示了我国近年来分子光谱技术的研究进展,尤其是红外光谱和拉曼光谱技术的研究取得了丰富的成果。  以下是本次会议中的部分精彩报告介绍。厦门大学 孙世刚教授显微和时间分辨红外光谱及其在电化学能源转换和存储研究中的应用  显微红外光谱是将显微技术应用到傅里叶变换红外光谱仪中,可以与人们熟知的电子探针和电子扫描显微镜技术相媲美。近年来,显微红外光谱已经成为在复合材料研究领域进行研究必备且不可替代的技术。时间分辨光谱学的研究起始于五六十年代,时间分辨傅里叶红外光谱方面的研究始于七十年代,八十年代初出现了商品化的仪器,当前已经在物理、化学生物等研究领域取得了成功的应用。  在报告中,孙世刚教授介绍了以上两种技术在电化学能源转换和存储研究中的应用。利用显微红外光谱可以在分子水平研究电化学反应的机理,以及研究锂离子电池的纳米特性和界面反应。通过时间分辨红外光谱技术可以有效研究电化学反应的热力学和动力学过程。清华大学 孙素琴教授复杂混合物体系分析关键问题与思路  红外光谱法用于混合物分析具有无需标记,直接检测;整体成分和特定成分分析;定性定量分析;固体、液体、气体等各种形态样品分析;简便、快速、无损、成本低、绿色环保等优点,并可以和多种仪器联用进行分析。  报告中孙素琴教授介绍了普通红外光谱、二阶导数红外光谱、二维相关红外光谱等在混合物分析中的应用。并介绍了利用红外光谱进行“不分离,即分析”、“边分离,边分析”、“边组合、边分析”的混合物分析路线。以及红外光谱在质量控制过程中所能发挥的“指导大方向,监控全过程”的重要作用,同时孙素琴教授指出目前针对红外光谱的研究远不及色谱、质谱分析方法研究热门,应用也不及紫外光谱广泛,对此孙素琴教授要真正实现红外光谱在定性定量方面的重要作用需要更多的努力。北京大学 徐怡庄教授基于正交样品设计的二维相关光谱研究进展  二维相关光谱是一种实验设计与数据处理相结合的分析技术。对于每一种样品体系,需要根据研究目的,设计合适的实验方案,通过对样品施加特定的微扰(包括机械拉伸力、温度、压力、浓度、磁场、光照等),诱导光谱信号产生动态变化,对一系列的动态谱图进行相关分析计算,便得到二维相关谱图。  分子间相互作用是化学研究中的热点问题,徐怡庄教授通过采用浓度变化作为外部扰动,构建二维光谱的方法研究了分子间的相互作用。徐教授分别介绍了利用正交样品设计法、双正交样品设计法、以及双异步正交样品设计方法设计新的浓度序列,强化二维相关谱的功能,使二维相关光谱成为更好的研究分子间相关作用的手段。  中国农业大学 闵顺耕教授  近红外光谱技术在农药分析领域的应用  闵顺耕教授介绍说,近红外光谱技术具有快速现场分析的能力,广泛应用于农业与食品、生物医学、石油化工等分析。该方法具有:仪器小,测试快速简单,可实现现场分析;无损分析技术;可对固体、液体和气体样品直接进行测定,无需复杂的前处理过程;样品用量少,基本不用溶剂,方法绿色环保。  闵顺耕教授主要研究了采用近红外光谱法进行农药制剂质量分析与市场监管,建立农药质量分析与市场监控的快速、现场分析技术体系,可用于原料的质量控制、制剂的质量分析、农药质量市场监管、农药生产在线分析与工艺优化。  韶关学院化学与环境工程学院 徐永群教授  光谱比对技术在中药鉴别中的应用  徐永群教授介绍说随着现代分析仪器和技术的发展,荧光光谱和红外光谱技术在中成药质量监控、中药材真伪鉴别和药材分类等方面有了用武之地。和传统荧光法相比,三维荧光光谱能较完整地表现出激发波长和发射波长变化时荧光强度变化信息。三维荧光等高线图可与物质中各荧光物质的本性以及各物质之间的相互作用密切相关,具有指纹性,根据这一特征,可实现对物质的分类和鉴别。在研究中,徐教授利用三维荧光等高线特征谱鉴别中药注射液、对饮料进行聚类分析等都取得了很好的实验结果。  另外徐教授还介绍了红外光谱相似谱能凸显两红外光谱的差异,可辅助红外谱图的解析、物质的分类和鉴别等方面的工作。吉林大学 赵冰教授SERS检测多环芳烃  SERS(表面增强拉曼散射)技术具有超灵敏性:SERS的增强因子最高可以达到1014~1015,使单分子检测成为可能,因此其灵敏度不低于任何其他分析方法;高选择性:表面选择定则和共振增强的选择性使得SERS可以在极其复杂的体系中仅仅增强目标分子或基团,得到简单明了的光谱信息;检测条件温和:SERS检测时样品可以是固态、液态和汽态,而且可以方便地用于水溶液体系,这一特点尤其适合生物分子研究领域。  赵冰教授在报告中介绍说课题组设计了一种新型SERS基底,该基底具有稳定、保存时间长的特点,使类似于多环芳烃这类与金没有作用的分子利用SERS技术得以检测。并详细讨论了巯基取代环糊精在金纳米粒子表面的表面覆盖度对SERS效果的影响,以及离心速度对SERS结果的影响。实现了对五种多环芳烃混合物的SERS光谱定性分析,可以定性鉴别混合物中的蒽、芘、屈以及苯并菲分子。不仅对单一组分的蒽、芘、屈以及苯并菲进行了定量检测,还对五种多环芳烃的复杂体系进行了定量检测。并深入地讨论了多环芳烃与环糊精内腔的匹配程度对SERS增强效果的影响。  中国检验检疫科学研究院 邹明强研究员几种快检新技术及应用  拉曼光谱法具有谱线丰富、无需样品预处理、非接触性、非破坏性、快速、需样量少等特点。邹明强研究员在报告中介绍了课题组研发了可实现简便、快速,准确定量检测乳品微痕量三聚氰胺的便携式拉曼光谱仪,该仪器可拓展用于橄榄油真伪鉴别、果汁真伪鉴别、塑料包装材料材质鉴别、农兽残检测、汽油鉴别等快速检测。同时研发了纳米增敏试剂,突破快检技术瓶颈,发展拉曼技术在食品微痕量有害物检测的应用。  邹明强研究员介绍说,2011年2月,“便携式三聚氰胺速测仪及速测技术”以单项许可的方式转让给威海威高电子工程有限公司。西藏全区质监系统已应用,在蒙牛、伊利等乳业,及北京、辽宁、山西、宁夏检验检疫局等进行了示范应用。  上海大学 尤静林教授  铝氟熔盐结构高温原位拉曼光谱和量子化学从头计算研究  冰晶石是熔盐电解法炼铝的重要助溶剂,氧化铝在高温下部分熔融于冰晶石,具有较好的稳定性和导电性。冰晶石氧化铝熔盐结构与其物理化学性质有着密切的关系,熔盐的微观结构决定了其宏观物理化学性能,而NaF-AlF3二元系是冰晶石氧化铝熔盐结构中一个非常重要的子系。因此,研究该二元系的微结构及其性质是十分必要的。  尤静林教授介绍说课题组测定了NaF-AlF3铝氟熔盐体系不同摩尔比熔盐的常温及高温原位拉曼光谱,同时采用量子化学从头计算方法对该体系的铝氟配位结构及其拉曼光谱进行了计算模拟。结果表明,铝氟四面体和八面体是NaF-AlF3铝氟熔盐体系较为稳定的基本结构单位,其中,铝氟四面体的种类桥氟数还随AlF3含量的增加发生变化。  除会议报告外,本次会议还采用了墙报展示的方法进行学术交流。  据介绍本届大会共收到论文200余篇,收入论文集稿件175篇。为表彰本次学术会议上研究水平高、突出研究内容要点、讲解清楚的“口头报告”和“墙报”,本次会议特别从70多篇墙报中评选出20个优秀墙报奖,20多个口头报告中评选出10篇优秀论文奖,并在闭幕式上为获奖者颁发证书和奖金。优秀论文奖获奖者及颁奖嘉宾合影优秀墙报奖获奖者及颁奖嘉宾合影  此外在大会闭幕式上,韶关学院科技处处长陈小康教授对本次大会进行了总结。苏州大学材料与化学化工学部姚建林教授热情邀请新老朋友参加2014年11月在苏州大学举办的第十八届全国分子光谱学学术会议。韶关学院科技处处长陈小康教授苏州大学材料与化学化工学部姚建林教授  本届会议得到了赛默飞世尔科技、安捷伦科技(中国)有限公司、岛津国际贸易(上海)有限公司、珀金埃尔默仪器(上海)有限公司、雷尼绍(上海)贸易有限公司、北京凯元盛世科技、天津港东科技发展股份有限公司、上海千欣仪器有限公司、伯乐生命医学产品(上海)有限公司、天美(中国)科学仪器有限公司、堀场贸易(上海)有限公司、布鲁克光谱仪器公司的大力支持。大会期间各公司通过现场仪器展示,以及会议报告的方式向与会人员展示了各自最新的仪器及应用技术,详细信息敬请关注仪器信息网后续报道。集体合影
  • 热烈祝贺我司核心技术成果(电化学表面增强拉曼光谱学研究)荣获国家科技科学奖!
    1月10日上午中共中央、国务院在北京隆重举行国家科学技术奖励大会。习近平、李克强、王沪宁、韩正等党和国家领导人出席大会并为获奖代表颁奖。习近平总书记为最高奖获得者颁奖。  由我司首席科学家田中群院士领衔,厦门大学任斌教授、李剑锋教授、吴德印教授,及我司技术总监刘国坤副教授等专家共同研究的“电化学表面增强拉曼光谱学研究”项目获国家自然科学二等奖。任斌、刘国坤作为获奖代表参加奖励大会。    表面增强拉曼光谱(SERS)是基于表面等离激元共振(SPR)效应且具超高表面检测灵敏度的分子光谱。21 世纪前,学术界主流观点认为仅有金、银等少数金属的粗糙表面和纳米粒子体系具有SERS效应,因而该技术无法被广泛应用,这导致SERS 研究一度陷入低潮。  项目团队迎难而上,系统发展非传统SERS 和电化学拉曼光谱实验和理论方法,显著拓展SERS 方法普适性,推进其应用和产业化,取得如下国际领先水平的创新成果:  1、从实验和理论上系统证实过渡金属体系存在SERS 效应。在具有重大(电)催化应用背景的一系列铂族和铁族等过渡金属体系实现了SERS 效应,证明电磁场增强(特别是避雷针效应)为主要增强机理 发现了紫外光激发的SERS 效应 首次利用EC-SERS 深入研究与电催化过程密切关联的氢等弱拉曼信号分子体系的吸附行为 发展以金为内核、铂等过渡金属为壳层的核壳纳米粒子,实现了更具挑战性的过渡金属电极界面水结构的表征。奠定了我国在国际EC-SERS 领域的长期领先优势,并于2002 年获中国高校科学技术一等奖。  2、发明壳层隔绝纳米粒子增强拉曼光谱(SHINERS)新技术,全面突破长期限制SERS 发展的材料和形貌普适性差的瓶颈。应用领域涉及电化学、催化、能源、材料、生命科学等。该技术被国际同行誉为“下一代先进谱学技术”,“开辟了光谱分析的新方向”。该“借力”策略和相关实验技术可被进一步拓展至表面增强荧光和非线性光学等谱学技术。自主研发以SERS 为核心技术的便携式拉曼光谱快检系统,成功实现其在食品和公共安全等领域的实际应用,为2017年厦门金砖会晤等国家级重大事件的食品安全工作提供重要技术支撑。  普识纳米研发团队将会继续在拉曼领域努力探索,积极研究,贡献出自己的一份力量!  延伸阅读  国家自然科学奖是由中华人民共和国国务院设立,由国家科学技术奖励委员会负责的奖项,是中国五个国家科学技术奖之一,授予在基础研究和应用基础研究中,阐明自然现象、特征和规律、做出重大科学发现的公民。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制