当前位置: 仪器信息网 > 行业主题 > >

海洋滤网异物

仪器信息网海洋滤网异物专题为您整合海洋滤网异物相关的最新文章,在海洋滤网异物专题,您不仅可以免费浏览海洋滤网异物的资讯, 同时您还可以浏览海洋滤网异物的相关资料、解决方案,参与社区海洋滤网异物话题讨论。

海洋滤网异物相关的资讯

  • BTV使用TSI仪器测试电扇加滤网的自制空气净化器是否有效
    2014年1月20日晚19:30,北京电视台财经频道《首都调查》节目中播放了关于用TSI仪器测试电扇+滤网自制空气净化器是否有效的节目。针对于目前大家所争论的电扇加滤网自制空气净化器有没有作用的问题进行了相关的测试。在测试中,专家们使用了美国TSI公司便携式PM2.5 快速检测仪8530型产品。电扇加滤网自制空气净化器除了吸灰尘还能干什么?到底对空气质量有怎样的影响?仅仅凭滤网变色就能判断它的作用吗?北京电视台财经频道《首都调查》节目来到美国TSI集团中国公司,与TSI产品经理降凡一起,在一个不到十平米的房间里,使用便携式PM2.5 快速检测仪8530型产品,针对电扇加滤网自制空气净化器的PM2.5含量进行了现场的实际操作和测试,记录了现场可吸入颗粒物PM2.5数据变化。 记者自制了一台电扇加滤网的空气净化器,使用TSI测量环境中PM2.5颗粒物的实时浓度的仪器便携式PM2.5 快速检测仪8530型产品,通过仪器上的粒径切割器,就可以测量环境中PM2.5颗粒物的实时浓度情况。经TSI公司仪器测试,当时室内PM2.5的浓度为12微克每立方米,符合国家相关标注要求。为了达到实验的效果,人为的营造了一个PM2.5为2730微克每立方米的严度污染环境,然后开始测试自制的空气净化器是否有效。自制的空气净化器开机五分钟以后,读数为849微克每立方米,证明通过一段时间的净化,已经有一定的效果,半小时的净化后,读数为73微克每立方米,已经达到了国家标准75微克每立方米的要求。同时,为了验证自制空气净化器的净化效果,记者又用另一台专业厂家的空气净化器进行横向比较。经过二十分钟的净化,专业净化器的读数为67微克每立方米,同样达到了国家的要求。通过实验可以看到,专业净化器只用了二十分钟的时间,就把相同浓度的PM2.5降低到了国家标准75微克每立方米,速度比自制空气净化器快。而且专业净化器所采用的高效过滤器滤网材质和使用寿命要好于目前市场上购买的比较简易的分层滤网,采用静音节能的变频风机的功率也比简易的电扇加滤网要大。 从实验来看用电风扇加HEPA滤网确实能够起到降低PM2.5的效果,但是比起横向测评的专业空气净化器来说,自制的空气净化器PM2.5下降的速度要慢,适合较小的空间和对空气质量要求不是太高的人群,而且每隔三个月最长半年就要更换滤网,并且要放置在不是特别通风的地方。 该节目的视频可在以下链接观看:“美国TSI公司”的优酷专用空间http://v.youku.com/v_show/id_XNjY1NzI3NTg4.html直接观看相关测试内容。
  • 中国海洋大学郭金家团队:基于显微拉曼光谱的水下原位微塑料测量技术研究
    水下原位微塑料检测系统的研发对于评估海洋微塑料污染状况具有重要意义。然而,由于在水下环境中难以实现连续、原位的微塑料采样富集和鉴定分析,微塑料的水下原位检测仍然是一项技术挑战。近期,中国海洋大学郭金家教授团队对相关技术进行了深入研究。该研究基于显微拉曼光谱技术首次研制了一种新型水下原位微塑料检测系统,并通过海上实验对其性能进行了评估。海试过程中,系统成功获取到了不同悬浮物的显微图像和拉曼光谱,实现了海水中微藻、PP微塑料颗粒、有机物、沙粒等不同种类悬浮物的准确识别。相关成果以“A new underwater in-situ microplastics detection system based on micro-Raman spectroscopy: development and sea trials”为题发表在Measurement期刊。本研究得到了崂山实验室(LSKJ202203500)、国家重点研发计划(2022YFC2803800)、国家自然科学基金(62205170和42206194)的资助。近年来,海洋环境中微塑料污染问题日益凸显,对水生生态系统、海洋生物和人类健康带来了严重威胁。因此,深入调查和全面评估海洋微塑料污染状况显得尤为迫切和必要。当前,海洋微塑料的分析通常需要通过拖网、泵抽等方法进行样品采集,然后将样品转移至船上或实验室后进行鉴定,这一分析流程复杂且耗时。与其他鉴定方法(如目视分析法、傅里叶红外光谱、扫描电子显微镜-能谱仪联用法、质谱法等)相比,拉曼光谱因其受水分干扰较小的特点在检测水中微塑料方面具有明显优势。然而,商业化的拉曼光谱仪对检测环境的稳定性要求极高且价格昂贵,这在一定程度上限制了其在现场和原位检测水中微塑料的应用。因此,亟需开发一种适用于海洋微塑料研究的水下原位检测系统,以应对海洋环境微塑料污染的挑战。综上所述,水下原位微塑料检测系统具有为海洋微塑料污染调查研究提供新型有力工具的潜力,为海洋微塑料污染监测提供技术支持。然而,目前尚未有关于此类传感器的报道。针对水下原位显微拉曼微塑料检测系统的研发需求,团队采用步进电机驱动滤网翻转的巧妙设计,克服了水下环境中微塑料连续采样富集和滤网清洁的技术难点,提高了系统的长时间水下工作能力。另外,显微成像和拉曼光谱的结合可以同时表征微塑料颗粒的形貌信息和组分信息。这是水下原位微塑料检测的首次尝试。综上所述,所报道技术可为该领域传感器的研究提供重要参考,为海洋微塑料污染调查研究提供了一种新的技术手段。
  • 全球海洋学家拟建国际海洋监测网追踪海洋酸化
    海洋酸化威胁全球,国际海洋检测网应运而生全球海洋正在迅速酸化,其速率是过去3亿年来最快的,甚至快于5600万年前极热时期。  据《Nature》网站近日报道,全球海洋学家共同努力追踪海洋酸化状况的计划正在逐步成型,他们将于本周拟定搭建国际监测网络的具体方案,希望借助远程传感器等检测二氧化碳所致的海洋酸化对于水生生物的影响。  海洋酸化是指由于吸收大气中过量的二氧化碳,导致海水酸碱度降低的现象。海洋表层水的pH值约为8.2,呈弱碱性。研究人员估计,自19世纪工业革命以 来,海洋的酸度已经上升了30%。以此种酸化速度,2100年这一数字或将下降到7.8。海水酸性的增加,将改变海水化学的种种平衡,使依赖于化学环境稳 定性的多种海洋生物乃至生态系统面临巨大威胁,例如,越来越酸的海水能够破坏珊瑚和牡蛎贝壳中包含的碳酸钙,或是损坏某些海洋浮游生物的骨骼等。因此,科 研人员需要更清晰的数据来评估海洋酸化严重的地区,并利用模型对未来的发展趋势进行推测。  美国国家海洋和大气管理局下属太平洋海洋环境实验室的理查德费利表示,科研人员经过数十年的巡航考察发现,大部分的海水酸化发生在少数的几个公海地点, 但这种监测方式十分昂贵。他说:“我们正在尝试建立大量具有自动化系泊设备的监测点,其可以通过卫星将数据传输给研究人员,使科学家基于相关数据验证海洋 的酸化模型。”费利等人期望,监测点的数量能够在未来10年从20个攀升至60个,形成追踪海洋酸化状况的全球监测网络,并使每个国家都能支持自己的酸化 监测,令酸化监测成为巡航舰载测量的例行部分。这一监测计划将由海洋酸化国际协调中心领导,由国际原子能机构主持。  费利坦言,目前沿海生态系统的监测功能最弱,然而这些区域却最需要对于海洋酸化程度的追踪。以太平洋西北地区为例,酸化程度可因上升流携带的大量溶解的二 氧化碳而增强,致使牡蛎培育的收益率在2005年至2008年间下降80%左右。而当地研究小组提供的有关上升流的监测设备,可使培育机构及时调整运营部 署,避开酸性海水的突袭。这一战略能在2011年为太平洋西北地区的牡蛎产业节省3500万美元,可谓是监察观测系统十分实用的一个方面。  《Science》杂志近期发布的一份研究报告显示,全球海洋正在迅速酸化,且速率是过去3亿年来最快的,甚至快于5600万年前温室气体急剧增加的时期。  迅速被酸化的海水将腐蚀能给许多动物和植物提供栖息地的珊瑚礁,让贝类和牡蛎难以长出保护性的外壳,还可能损害鱼类的生长。尽管已有少量研究发现,一些浮 游生物会逐渐适应海洋酸化,例如一种叫做海洋球石藻的微小浮游生物,与未经进化的同类相比,其维持钙质外壳的能力要高出50%。但是研究人员依旧强调出对 海洋酸化的警惕不容质疑。  据路透社报道,美国国家海洋和大气管理局局长简.卢布琴科(Jane Lubchenco)在近期美国国会的一次有关海洋酸化的听证会上强调目前这种现象需要引起人们的强烈关注。  研究者们对5600万年前一次长达5000年的温暖时期进行了研究。他们认为,那一时期气温偏高的主要原因可能是大规模的火山活动导致碳元素大规模泄漏到 大气中,那也是过去3亿年来与目前的状况最为相似的一段时间。当时大气中的碳元素含量翻了一倍,平均气温升高了6摄氏度。同时,在这5000年的时间里, 海洋的酸性PH值上升了0.4个单位。  这些数据十分惊人,可是本次调查报告的作者、来自美国哥伦比亚大学拉蒙—多尔蒂地球观测所的巴尔贝尔.霍恩斯基(Baerbel Hoenisch)认为,与大约150年前开始的工业革命时期排放到地球大气中的碳元素含量相比,当时造成全球变暖和海洋酸化的碳元素含量就是小儿科了。  霍恩斯基说,这一时期被称为古新世到始新世极热时期,约在恐龙灭绝900万年后。在那段时间里,海洋的酸性PH值平均每个世纪约上升0.008个单位。当 时酸化的海水导致不少珊瑚种类灭绝,生活在海底的许多种单细胞有机体从此消失,这也使得居于食物链更高层的其它植物和动物渐渐走向灭亡。  这项研究还显示,20世纪以来,海洋的酸性PH值增加了0.1个单位。据预测,到2100年,这一数值还将增加到0.2或0.3个单位。而根据联合国气候变化委员会发布的预测,本世纪全球气温可能会上升1.8到4摄氏度。  霍恩斯基说:“在5600万年前的极热时期所发生的温度变化与今天相比小得多,但当时仍然因为温度上升而出现了生态系统的改变,这让我很担心我们的未来会发生些什么。”  有些质疑气候变化的人常将过去由自然事件引起的温暖时期作为证据,指认现在的变暖趋势也不是由人类活动所引起。尽管霍恩斯基也注意到大规模的火山活动等自 然因素很有可能是造成古新世/始新世极热时期的首因,但是她认为当时气候变暖和海水酸化的速率与现在相比仍相当温和,因为那一时期长达5000年,而现在 才不过一个世纪。  美国国家海洋和大气管理局的海洋学家理查德.菲力(Richard Feely)并未参与这项研究,但他认为了解过去有助于更好地预测未来:“这些研究能让你从时间上把控过去海洋的酸化,因为酸化是一个缓慢长期的过程。我 们在未来几十年中做出的决定可能在长远上来说会造成深刻的影响。”
  • 长三角海洋生态环境监测网方案通过评审
    由国家海洋局东海分局会同苏沪浙海洋行政主管部门编制的《长三角海洋生态环境立体监测网建设及动态评估专项工作方案》(以下简称《专项工作方案》),12月23日在沪通过国家海洋局主持的专家评审。  由国家海洋局第二海洋研究所潘德炉院士等7位专家组成的专家评审组,听取了《专项工作方案》工作背景、目标、路线、内容和预期成果等的介绍,并就《专项工作方案》涉及的有关问题进行了质询审议。专家评审组认为,长三角海洋生态环境立体监测网建设及动态评估工作意义重大,《专项工作方案》目标明确、工作路线清晰可行、监测网设计和动态评估内容科学合理,一致同意通过评审。  东海分局局长刘刻福表示,党的十八大将生态文明建设纳入“五位一体”中国特色社会主义总体布局。今年以来,党中央国务院相继出台《关于加快推进生态文明建设的意见》《水污染防治行动计划》《生态环境监测网络建设方案》和《生态文明体制改革总体方案》。国家海洋局贯彻落实党中央国务院要求,今年也相继颁布实施了《全国海洋主体功能区规划》《海洋生态文明建设实施方案(2015-2020年)》。实施长三角海洋生态环境立体监测网建设及动态评估专项,是落实生态环境监测网络建设方案,实施排污总量控制制度,提升生态系统稳定性和生态服务功能,推进污染物排放在线监测,健全应急响应体系,构建生态环境监测大数据平台和海洋生态文明建设绩效考核机制,建立多级联动海洋环境监测与保护体制机制的需要,有助于为科学应对长三角近岸海域海水富营养化严重、海洋生态环境质量下降、各种突发海洋环境污染事件带来的环境风险日益加大等影响长三角区域可持续发展环境问题,控制长江口污染物入海总量,治理和改善长三角海域海洋生态环境质量,推进海洋生态文明建设提供技术支撑和服务保障。  据东海监测中心主任徐韧介绍,长三角海洋生态环境立体监测网建设及动态评估专项,聚焦长江口和周边海域典型环境脆弱区和敏感区,以立体监测、实时掌控,动态评估、测管协同,信息共享、区域联动和业务驱动、科技支撑为目标。在现有工作基础上,建设由海洋环境状况、生态状况、入海污染源状况、风险防控应急和海洋环境监管5个子网组成的长三角海洋生态环境立体监测网,开展对长三角海域环境与生态状况,入海污染物总量、水交换与跨界输移、环境风险和监管效果的动态评估,通过建设监测大数据平台,为苏沪浙协同测管与风险防范提供及时准确的科学依据。  国家海洋局生态环境保护司司长于青松希望东海分局会同苏沪浙海洋主管部门尽快启动专项实施,根据《专项工作方案》确定的任务分工,力争用三年时间,完成长三角海洋生态环境立体监测网建设及动态评估专项。
  • 海洋光学推出高分辨率微型光纤光谱仪
    海洋光学(Ocean Optics)于近期推出高性能,900-2200nm 光谱响应的近红外光谱仪:NIRQuest 512-2.2。该产品是用于水分检测、化学分析、高分辨率激光检测和光纤特征研究等的理想设备。海洋光学NIRQuest 512-2.2 近红外光纤光谱仪尺寸小,且测量范围可达900-2200nm  NIRQuest 512-2.2采用高稳定性、512像元的滨松 (Hamamatsu) 铟镓化砷 (InGaAs) 阵列探测器,集成二阶热电制冷和低电子噪声的小型光学平台。根据配置 -- 有六种光栅选项和五种尺寸入射狭缝可供选择--光学分辨率可达~0.5 nm-5.0 nm ( FWHM 全宽半高值),高的分辨率要求对激光特征分析是相当有用。  独特的外部硬件触发功能允许用户通过外部触发来捕捉光谱,或者在数据获得之后来控制触发其它器件。该功能有利于自动过程控制的集成开发或从同步闪光的太阳能模拟器中捕捉光谱。  光谱仪采用的SpectraSuite操作软件是一个模块化、以 Java 开发的操作平台,可在Windows,Mac OS 和Linux 操作系统下运行工作。 此外,NIRQuest 512-2.2能与海洋光学的Remora网络适配器一起使用,可将系统变为通过以太网或已有无线连接控制使用的多用户光谱数据服务器。  推出NIRQuest 512-2.2之后,海洋光学现提供的NIRQuest近红外光谱仪光谱测量范围选项如下:900-1700 nm、900-2050 nm、900-2200nm 和900-2500nm 。多种光栅、光学平台和光学附件使得 NIRQuest 系列能适应各种各样的应用,如医学诊断、食物饮料监测、药物分析、环境监控和过程控制等等。  关于海洋光学 (Ocean Optics) 和豪迈 (HALMA) :  总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
  • 天津大学海洋生态环境研究中心汪光义教授访问朗诚
    2013年9月6日,旅美归国科学家、天津大学汪光义教授于百忙之中专门访问朗诚公司。汪教授目前就任天津大学海洋生态环境研究中心主任、环境科学与工程学院教授、博导,天津市&ldquo 千人计划&rdquo 特聘专家、国家海洋公益项目首席科学家。 汪光义教授参观了朗诚&ldquo 海洋与环境技术研发中心&rdquo &ldquo 朗诚分析技术研发中心&rdquo 实验室,听取了朗诚在海洋监测、观测技术研发方面的最新进展与相关产业化成果情况的汇报。 汪教授对朗诚目前所取得的成果表示了充分的肯定,认同朗诚在海洋浮标监测系统业务化运营方面的创新理念。同时,双方就今后朗诚公司与天津大学实现优势互补、在海洋生态环境保护技术与装备研发领域开展广泛合作达成了初步意向。
  • 海洋光学推出小型模块化拉曼光谱仪
    海洋光学新近推出Apex785拉曼光谱仪,该产品是精英系列高性能光谱仪、光源和组件的第一款产品(www.elitespectrometers.com)。Apex是一款小型模块化光谱仪,其性能可与台式仪器相媲美。Apex拥有极高的分辨率和出色的灵敏度,可实现超高性能。Apex从根本上解决了只能从高灵敏度和高分辨率中二选一的问题。Apex光谱仪采用独一无二的光学设计和虚拟高通量狭缝技术(HTVS),解决了灵敏度和分辨率之间的冲突问题。Apex较高的分辨率能够更好地分辨拉曼光谱,解析精细光谱结构。其高灵敏度可实现更短的积分时间、更快的测量速度和更低的激光激发功率,以使样本降解程度降至最低。&ldquo 自从二十年前我们推出第一款小型光谱仪开始,海洋光学已经是模块化光谱解决方案领域的世界领军企业。&rdquo 海洋光学总裁Richard Pollard说,&ldquo Apex光谱仪和精英系列产品的问世,展现了我们为保持行业领先地位所必备的创新能力。&rdquo Apex光谱仪的推出代表了行业领先的精密化技术创新,与海洋光学开创的基于应用环境的模块化灵活方法的完美结合。海洋光学通过将技术与应用环境结合,帮助客户更有效地解决问题,寻求疑难研究问题的答案。
  • 中国科学家将纳米技术用于纱窗 可过滤雾霾
    外媒称,谁要是能找到过滤掉空气中细颗粒污染物的办法就太好了。其次是,至少不让这些污染物进入人们的肺。  美国《华尔街日报》网站2月27日报道称,第一个目标很难实现。但美国斯坦福大学的研究人员找到一个吸引人的办法来达到第二个目标。利用纳米技术,他们研发出一种低成本滤网,能捕获空气中的微小颗粒,同时基本保持透明。  科学家希望,有朝一日可以把这项技术用在纱窗上,在允许光线和空气通过的同时,改善室内空气质量。一个额外的好处是,这项技术实施起来无需能源、昂贵的设备和管道支架等。  一些研究人员来自中国,这并非巧合。中国的快速工业化导致严重的空气污染。斯坦福大学材料科学教授、论文作者之一崔屹说,在回国期间,雾霾强度让他震惊。  报道称,科学家的目标是直径在2.5微米以下的颗粒物。这些看不见的颗粒物小到足以深入肺部,损害健康。这类物质是工厂、燃煤发电厂、机动车和供热系统释放的尘埃、烟尘、有机和无机液体的混合物。  一些汽车和飞机已经在使用由极微小纤维制造的滤网。纤维上的微小气孔可捕获颗粒物。净化水过滤器也使用纳米技术。  崔博士的实验室研究过把这类技术用于制造更好的电池和更保暖衣物的可能性,这次又把焦点对准把聚丙烯腈&mdash 一种常用于手术手套的材料&mdash 纺成直径为头发丝千分之一粗细的极微小纤维,然后将纤维制成薄膜,覆盖在纱网上。  研究人员2014年夏天在北京一个空气质量糟糕的日子检测了他们的发明,发现它能捕获99%的颗粒物(尘埃、煤尘和其他对肺部有害的颗粒),同时保持77%的透明度。崔博士说,相比之下,普通纱窗的透明度为80%至85%。在测量了吸收率后,科学家估计,在重污染情况下,这样的纱窗可以连续300多个小时捕获空气中的颗粒物。最终滤网变得不透明。这是滤网上积满颗粒物的信号。颗粒物粘得太牢,无法冲洗掉。崔博士说,滤网要足够便宜,简单扔掉就行。科学家正在研究一种方法来实现这一点,比如一种纳米纤维敷料,可以覆盖在普通纱窗上,用完后再剥下来。
  • 海洋光学成功召开“第四届海洋光学亚洲代理商培训会”
    the 4th OOA Distributor Retreat in Shanghai2010年5月10日至14日,为期五天的海洋光学第四届亚洲代理商培训会在上海虹桥宾馆顺利举行,来自亚洲各地的近50人代理商伙伴济济一堂,一起学习,共同成长。上图为全体参加培训的海洋光学代理商在上海生产中心(蔚海光学仪器(上海)有限公司)外的集体合影。 此次培训会的课程内容囊括基础知识培训,新产品信息讲解和企业文化传达四个部分。与会的每位代理商代表认真听取了工程师们的精细讲解,同时,我们还提供了针对不同应用的实验平台,充分发挥大家的主观能动性,不仅是在知识理解层面上,更能在实践技巧上让各位代理商掌握操作技能,同时更为形象生动的理解讲授的内容。 人生是一场相互感染的游戏,不是你感染我,就是我感染你,培训亦是如此。在本次培训会上,讲师们充分调动学员们的积极性,通过互动,让每位学员们都参与到课堂上的演练,正如此次培训会的主题 —“同舟共济”,它意味着我们的共同目标和所有义务都在于倾听和理解客户问题,并提供有效的解决方案,我们很希望和大家分享我们在光谱分析与检测方面的经验和技术,同时我们也希望能和世界各地的同仁、工作人员、技术人员一起去推广这门技术。 5月14日,我们为各位与会的代理商安排了上海世博会的一日游参观活动,至此第四届亚洲代理商培训会圆满结束。通过这次系统的培训,相信在今后的日子里,海洋光学亚洲分公司定能与各位代理商共同支持我们的客户群体,最大限度地满足客户的需求。培训开始,海洋光学总裁Rob Randelman向与会代理商至欢迎词海洋光学亚洲分公司总经理孙玲博士正向大家白板介绍企业文化培训会现场大家认真地观看工程师的演示5月13日,全体与会代理商参观闵行区的生产中心
  • 海洋光学推高透光率低杂散光全息光谱
    海洋光学(Ocean Optics – www.oceanopticschina.cn) 推出像差校正全息凹面衍射光栅光谱仪 – Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus 可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。  平场光学设计及全息凹面光栅用于光的色散:Torus 光栅的凹面用于光的反射及汇聚 光栅刻线用于光的色散 光栅的环形设计用于像差校正,提高衍射效率。  Torus 并且具有较高的光学分辨率(1.6nm FWHM,25um 狭缝)和优良的热稳定性(在0-50℃范围内,波长漂移更小,峰型保持基本一致)。  Torus 系列光谱仪可以通过 USB 接口与计算机进行交互控制,可以根据客户需要更改狭缝、滤光片及其它配件来优化配置 也可以通过 C-mount 接口与显微镜等配合使用。与海洋光学的其它光学配件一起,使您的测量更方便,更灵活。  Torus 通过海洋光学的 Spectrasuite 光谱操作软件来进行操作与分析,并且可用于 Windows, Macintosh,及 Linux 操作平台。并且还与海洋光学的 OmniDriver,SeaBreeze 软件开发平台相兼容。
  • 南海海洋研究所热带海洋生物资源与生态重点实验室研究团队:痕量铝影响海洋碳循环与气候变化研究获进展
    近日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队联合德国赫姆霍兹基尔海洋研究中心、英国帝国理工学院、加拿大国立科学研究院等,采用痕量金属洁净培养技术、55Fe同位素示踪方法,开展了多项实验,发现痕量铝添加可以显著提高受铁限制硅藻的叶绿素合成速率、光合效率和生长率。该研究揭示了痕量铝有益于铁限制海洋硅藻叶绿素合成的新现象,为铁铝假说提供了新证据,也为在南大洋等铁限制海域开展海洋铝施肥负排放技术研究提供了重要基础。相关研究成果以Promoting effects of aluminum addition on chlorophyll biosynthesis and growth of two cultured iron-limited marine diatoms为题,发表在《湖沼与海洋》(Limnology and Oceanography)上。铝是地壳中含量最高的金属元素,普遍存在于各种环境与生物体。然而,目前尚未发现铝具有确切的生物学功能。铝在淡水和土壤中的浓度可达mmol/L,相较而言,海水中溶解铝的浓度要低几个数量级,常处于痕量水平。中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队从十多年前开始关注铝添加对海洋浮游植物生长的影响,开展了一系列现场和室内实验研究,发现痕量铝添加可促进海洋浮游植物固碳,增强生源碳向深海输出、埋藏封存,从而影响海洋碳汇效能,进而调节气候变化。有证据表明,过去80万年,通过沙尘沉降输入到南大洋的铝与铁通量与冰期-间冰期气候回旋存在密切关联。通常认为,南大洋浮游植物生长受铁限制,铁输入的变动被认为是调节碳汇与气候变化的关键因子。研究人员发现,铝与铁协同作用,很可能是南大洋等海域碳输出、埋藏的关键,因而提出了“铁铝假说”,指出铝与铁一样,可能是调控海洋碳循环和碳汇形成的关键因子,在冰期-间冰期气候变化过程发挥重要作用。研究团队证实痕量铝添加显著提高硅藻净固碳量,降低颗粒有机碳分解速率。根据铁铝假说,研究团队提出“海洋铝施肥”观点,认为这有可能发展成为潜在高效的负排放技术与方法,并预测南大洋等受铁限制的高营养盐低叶绿素海域是开展铝施肥及铁铝同时施肥的理想区域。然而,在大规模现场施肥实验之前,仍需要在不同时空尺度上检验海洋铝施肥的效能及其潜在环境影响。痕量铝添加如何影响铁限制浮游植物尤其是硅藻的生长,是需要解答的关键问题之一。这些结果表明,铝可能会促进叶绿素的生物合成,有利于叶绿素受限硅藻的光合效率和生长。我们推测,添加 Al 可通过促进超氧化物介导的细胞内叶绿素生物合成,提高细胞内铁的利用效率。研究工作得到国家留学基金、广东省自然科学基金、南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项等的支持。
  • 保护海洋生态,不使用含塑料微珠的化妆品
    国家市场局发布的“GB/T 40146-2021化妆品中塑料微珠的测定”推荐国标,即将于2021年9月1日实施,该标准对化妆品中的塑料微珠所用的主体材料进行测定,香皂、洗衣液等也可参照使用,按新规定牙膏也属于化妆品。 在了解标准之前,我们先来了解一下什么是塑料微珠。 塑料微珠是指:尺寸小于等于5mm且不溶水的固体塑料颗粒。 由于塑料微珠有去角质、去死皮的作用,近年来在洗面奶、磨砂膏、肥皂、洗发水、牙膏等日化用品中广泛使用。一支磨砂洗面奶中所含的微珠就超过30万颗。在我们使用含塑料微珠的洗面奶、牙膏、沐浴露等时,其中的塑料微珠通过下水道输送到污水处理厂。因其体积太小无法过滤,最终流入海洋。塑料微珠进入海洋后,可能被海洋生物摄食,并在海洋生物体内释放,进而对海洋生物产生毒害,进一步可能通过食物摄入方式进入人体。 塑料微粒本身及其含有或吸附的有毒物质污染了海洋生态,并且威胁到人类和地球的健康! 鉴于塑料微珠的危害,各国在行动。目前,美国、英国、加拿大、欧盟和澳大利亚等国家和地区组织,都已经禁止或在逐步减少塑料微珠在个人护理产品中的使用。 我们国家发展改革委、生态环境部联合发布《关于进一步加强塑料污染治理的意见》(发改环资〔2020〕80 号),确定了目标:到2020 年底,禁止生产含塑料微珠的日化产品。到2022 年底,禁止销售含塑料微珠的日化产品的要求。 国家发改委进而发布《禁止、限制生产、销售和使用的塑料制品目录》(征求意见稿)。该目录包括了“含塑料微珠的日化产品”,具体包括:为起到磨砂、去角质、清洁等作用,有意添加粒径小于5毫米的固体塑料颗粒的淋洗类化妆品(包括沐浴剂、洁面乳、洗手液、香皂、剃须泡沫、磨砂膏、洗发水、护发素、卸妆水/油)和牙膏、牙粉。 有鉴于此,我们呼吁,不使用含塑料微珠的化妆品和洗护用品! 塑料微珠的替代品:核桃壳、椰子壳、咖啡粉、燕麦、玉米等可生物降解的材料。 那么如何确定化妆品中是否使用了塑料微珠呢?为此国家市场局发布了由深圳市计量质量检测研究院等主持起草的检测标准“GB/T 40146-2021化妆品中塑料微珠的测定”。该标准对不同基体的化妆品采用不同的前处理方法,然后用傅立叶变换红外光谱法(FTIR)进行定性测定。 基本配置:傅里叶变换红外光谱仪+ATR附件精致小巧的红外光谱仪IRSpirit搭配一体式ATR附件QATR-S 高级配置:傅里叶变换红外光谱仪+ATR附件+红外显微镜(金刚石池)红外光谱仪IRTracer-100搭配红外显微镜AIM-9000 应用案例使用岛津红外光谱仪和ATR(金刚石晶体)对洁面膏、磨砂膏以及去角质啫喱进行检测。下图为三种样品中塑料微珠的红外叠加谱图,从叠加谱图可以看到,三种样品中的塑料微珠的红外光谱一致,可以判定为同一物质。 对去角质啫喱中的塑料微珠进行光谱检索,结果如下图,图中红色谱图为去角质啫喱样品的红外光谱图,绿色谱图为聚乙烯PE的标准光谱图,两谱图出峰位置一致,峰强度比值一致,可以判断该去角质啫喱中的塑料微粒成分为PE。 关于化妆品中塑料微珠的测定,我们可以为客户提供从样品前处理到检测到数据分析的全面解决方案。如果您想详细了解仪器具体配置和应用,欢迎咨询岛津工作人员!
  • 国家海洋局发布《国家海洋事业发展“十二五”规划》
    2013年4月11日,国家海洋局发布《国家海洋事业发展“十二五”规划》,全文如下:  国家海洋事业发展“十二五”规划  目 录  前 言  第一章 发展环境  第一节 成就回顾  第二节 机遇与挑战  第二章 总体要求  第一节 指导思想  第二节 基本原则  第三节 发展目标  第三章 海洋资源管理  第一节 加强海洋渔业资源管理  第二节 加大海洋油气资源勘探与开发  第三节 推进海水资源综合利用  第四节 加快海洋可再生能源利用  第四章 海域集约利用  第一节 加强海域使用管理  第二节 严格执行海洋功能区划制度  第三节 强化围填海及重大建设项目用海管理  第五章 海岛保护与开发  第一节 促进有居民海岛有序开发  第二节 加强无居民海岛保护  第三节 强化特殊用途海岛管理  第六章 海洋环境保护  第一节 提高海洋污染防控力度  第二节 加强海洋环境监测与评价  第三节 强化海洋重大污染事件管理与处置  第七章 海洋生态保护和修复  第一节 加强海洋生物多样性保护  第二节 推进海洋生态系统修复  第三节 强化海洋生态监测和生态灾害管理  第八章 海洋经济宏观调控  第一节 加强海洋经济指导与调节  第二节 实施海洋主体功能区战略  第三节 推进海洋经济发展试点工作  第九章 海洋公共服务  第一节 加强海洋调查与测绘  第二节 提升海洋信息化水平  第三节 健全海洋标准计量服务体系  第四节 提高海洋渔业服务能力  第五节 强化海上交通安全服务  第六节 维护海域平安稳定  第十章 海洋防灾减灾  第一节 强化海洋灾害风险防范能力  第二节 提升海洋预报服务水平  第三节 增强海洋应对气候变化能力  第四节 提高海洋灾害观测能力  第十一章 海洋权益维护  第一节 加强海上维权巡航执法  第二节 开展多形式海洋维权行动  第三节 维护国际海上航行安全  第十二章 国际海洋事务  第一节 全面参与国际海洋事务  第二节 深化拓展双边海洋合作  第三节 积极引导多边区域合作  第十三章 国际海域资源调查与极地考察  第一节 加强国际海域资源环境调查与评价  第二节 深化极地科学考察  第三节 加快国际海域调查与极地考察能力建设  第十四章 海洋科学技术  第一节 深化海洋基础科学研究  第二节 发展海洋战略性前瞻技术  第三节 推进海洋技术产业化  第十五章 海洋教育和人才培养  第一节 加快海洋教育发展  第二节 培养创新型领军人才  第三节 统筹海洋人才队伍建设  第十六章 海洋法律法规  第一节 加强海洋立法工作  第二节 提高依法行政水平  第十七章 海洋意识和文化  第一节 提高全民族海洋意识  第二节 保护海洋文化遗产  第三节 培育海洋文化产业  第十八章 保障措施  第一节 制定海洋发展战略  第二节 实施海洋综合管理  第三节 强化规划配套指导  第四节 加大政府投入力度  前 言  我国位于太平洋西岸,大陆岸线长1.8万公里,面积500平方米以上的海岛6900多个,内水和领海面积38万平方公里。根据《联合国海洋法公约》有关规定和我国的主张,我国管辖的海域面积约300万平方公里。此外,我国在国际海底区域获得了具有专属勘探权和优先开发权的7.5万平方公里多金属结核矿区和1万平方公里多金属硫化物矿区,在南北极建立了长城、中山、昆仑、黄河科学考察站。  作为发展中的海洋大国,我国在海洋有着广泛的战略利益。随着经济全球化的发展和开放型经济的形成与深化,海洋作为国际贸易与合作交流的纽带作用日益显现,在提供资源保障和拓展发展空间方面的战略地位更为突出。“十二五”是我国海洋事业发展的关键时期,着力提升海洋开发、控制和综合管理能力,统筹海洋事业全面发展,是保障国家“走出去”战略实施的重大举措,对于促进沿海地区经济社会发展、国民经济发展方式转变、实现全面建设小康社会目标,具有重大的战略意义。  本规划以2008年国务院批复实施的《国家海洋事业发展规划纲要》为基础,结合面临的新形势,对新时期海洋事业发展做了全面深入的部署。本规划所指海洋事业,涵盖海洋资源、环境、生态、经济、权益和安全等方面的综合管理和公共服务活动。规划期至2015年,远景展望到2020年。  第一章 发展环境  “十一五”以来,我国海洋事业发展取得突破性进展,同时也面临严峻形势和诸多挑战。必须以全球眼光和战略思维,审视海洋事业发展的新形势,准确把握海洋事业发展的新特征,继续抓住重要战略机遇期,有效化解发展过程中的矛盾和问题,努力开创海洋事业发展的新局面。  第一节 成就回顾  “十一五”时期,全民海洋意识显著增强,海洋规划工作有序开展,海洋发展战略逐渐明晰。海洋国际合作深入推进,国家海洋权益和海洋安全得到有效保障,实现了我国管辖海域的定期巡航执法。海洋科学技术取得重大突破,具有标志性的深海勘探等技术达到或接近世界先进水平,领海、专属经济区和国际海域资源环境与科学调查广泛展开。海洋经济持续快速增长,对国民经济发展的拉动作用明显增强。重点海域环境污染防治措施逐步实施,海洋保护区建设取得重大进展。海洋公益服务和防灾减灾的支撑保障能力显著增强,海域、海岛、海上交通、海洋渔业和海上治安管理取得积极成效,海洋综合管理能力进一步提升。  第二节 机遇与挑战  “十二五”是我国海洋事业加快调整、拓展和提升的关键时期。《中共中央关于制定国民经济和社会发展第十二个五年规划的建议》和《中华人民共和国国民经济和社会发展第十二个五年规划纲要》对海洋事业发展提出了更高要求,做出了重要部署。海洋事业发展面临新的机遇,但同时也存在诸多严峻挑战。一是随着沿海地区经济快速发展以及临海产业的加速集聚,科学利用海洋资源、合理保护海洋生态环境的任务更加艰巨,亟待加强对海洋经济发展方式转变和布局优化的指导与调节,切实提高海洋经济监测评估、海洋防灾减灾和海洋资源环境监管等方面的能力。二是面对世界海洋科技竞争日趋激烈的严峻形势和国民经济发展方式加快转变的迫切要求,亟待改善海洋自主核心技术缺乏、成果转化率低、科技高端人才严重不足的现状,优化配置科技资源,切实提高海洋科技创新能力和人才培养力度。三是随着改革开放战略的深入实施和海洋事业“走出去”步伐的加快,亟待完善海洋综合协调机制,切实提高维护海洋权益、保障海洋安全、快速处置海洋突发事件和参与维护国际海洋秩序等方面的能力。  第二章 总体要求  积极适应国内外形势的新变化,立足发展基础,把握发展机遇,创新发展思路,科学确定“十二五”时期海洋事业发展的指导思想、原则和目标,推进我国海洋事业再上新台阶。  第一节 指导思想  以邓小平理论和“三个代表”重要思想为指导,以科学发展为主题,以加快转变经济发展方式为主线,以体制机制创新和科技进步为支撑,坚持陆海统筹,科学利用海洋资源,合理保护海洋生态环境,积极推进海洋经济发展,提高海洋意识,繁荣海洋文化,维护国家海洋权益,参与国际海洋事务,拓展发展空间,全面提高海洋开发、控制和综合管理能力,为建设现代化海洋强国奠定坚实基础。  第二节 基本原则  坚持陆海统筹。正确处理沿海地区经济社会发展与海洋资源利用、海洋生态环境保护的关系,统筹协调陆海经济社会发展的基本思路、功能定位、重点任务和管理体制。  坚持全球视野。正确处理及时总结自身实践与充分借鉴国际经验的关系,创新发展思路,主动参与国际海洋事务的交流合作,积极承担相应的国际责任和义务,树立更加开放的现代海洋发展观。  坚持服务为本。正确处理海洋事业快速发展与提高社会公共服务水平的关系,创新管理体制机制,切实提高海洋事业对国民经济发展、社会事业进步的服务保障能力。  坚持持续发展。正确处理海洋资源开发与生态环境保护的关系,规范海洋开发秩序,转变海洋经济发展方式,提高海洋防灾减灾能力,努力促进经济社会与生态环境的协调发展。  坚持科技创新。正确处理加快海洋事业发展与提高综合竞争力的关系,优化科技资源配置,推进科技成果转化,加快人才培养与引进,切实提高科技对海洋事业发展的支撑作用。  第三节 发展目标  “十二五”时期,海洋事业发展的目标是:  ——海洋综合管理能力稳步提高。海洋综合管理体制机制进一步完善,涉海法律法规和政策日益健全,海洋联合执法力度不断加大。海域、海岛、海洋环境、交通运输、渔业管理更为规范有力,海洋经济监测公报与评估制度有效执行,海洋综合管理调控手段明显加强。  ——海洋可持续发展能力显著增强。海洋环境恶化趋势得到遏制,主要入海污染物排放总量得到有效控制,近岸海域水质总体保持稳定,重点近岸海域水质有所改善。海洋保护区占管辖海域面积的比例由2010年的1.1%提升到2015年的3%,大陆自然岸线保有率不低于36%。  ——海洋公共服务能力明显优化。海洋灾害监测预报预警水平提高,风暴潮灾害警报提前12小时发布,海啸灾害警报在海底地震发生后30分钟内发布。海洋防灾减灾体系逐步完善,新建89个海洋观测站,建成3个大型海上综合观测平台,志愿船不低于400艘。海洋调查与测绘、海洋信息、海洋标准计量等公共服务能力显著提高。出海边防检查和海上治安管理服务能力不断增强。海上人命救助有效率稳步提升。  ——海洋巡航执法能力不断强化。管辖海域维权巡航执法时空覆盖率进一步提升,应对海上侵权事件及其他违法行为的应急反应和现场处置能力明显提高,参与维护国际重点海域和海上战略通道安全的保障能力得到强化。  ——海洋科技创新能力大幅提升。我国海洋基础研究水平进入世界先进行列,海洋前瞻性和关键性技术研发能力显著增强。深海油气开发、深海资源勘探技术的自主研发能力取得实质性突破,海上风能工程装备、海水淡化和综合利用装备实现大规模产业化,海水淡化原材料、装备制造自主创新率达到70%以上,对海岛新增供水量的贡献率达到50%以上,对沿海缺水地区新增工业供水量的贡献率达到15%以上。海洋科技对海洋经济的贡献率达到60%。海洋事业从业人员中本科及以上学历比例达到55%,以重大海洋科技项目或工程为依托,培养100名左右具有国际水平的海洋科学与技术领军人才。  到2020年,海洋事业发展的总体目标是:海洋科技自主创新能力和产业化水平大幅提升。海洋开发布局全面优化,海域利用集约化程度不断提高。陆源污染得到有效治理,近海生态环境恶化趋势得到根本扭转,海洋生物多样性下降趋势得到基本遏制。海洋经济宏观调控的有效性和针对性显著增强,海洋综合管理体系趋于完善,海洋事务统筹协调、快速应对、公共服务能力显著增强。参与国际海洋事务的能力和影响力显著提高,国际海域与极地科学考察活动不断拓展。全社会海洋意识普遍增强,海洋法律法规体系日益健全。国家海洋权益、海洋安全得到有效维护和保障,海洋强国战略阶段性目标得以实现。  第三章 海洋资源管理  坚持可持续发展的原则,强化规范管理,科学养护和利用海洋生物资源,加强海水资源、海洋可再生能源和海洋油气资源开发利用的规划指导,切实提高海洋资源对促进海洋经济和沿海地区经济社会发展的支撑保障作用。  第一节 加强海洋渔业资源管理  加强海水养殖管理,合理确定养殖规模,调整优化海水养殖布局,积极拓展深水大网箱等离岸养殖,支持工厂化循环水养殖,加快水产养殖标准化建设和健康养殖标准推广应用。加强人工鱼礁和海洋牧场建设,合理确定增殖放流品种,加大近海海域渔业资源增殖放流力度。不断完善伏季休渔制度,继续实施海洋捕捞渔船总量和功率总量控制制度,促进渔业装备更新,2015年渔船总数和功率总量不突破2010年实际数量。继续实施远洋渔业扶持政策,发展壮大大洋性渔业,巩固提高过洋性渔业,加强新资源新渔场的探捕和开发利用,积极建设多功能海外渔业综合开发基地。研究制定促进海洋渔业健康发展的政策措施。  第二节 加大海洋油气资源勘探与开发  加强黄海、东海、南海等海域油气资源战略调查与评价,完成重点海域油气资源普查。加大黄海、南海、东海油气勘探,加强深水区油气资源潜力的科学研究,加大深水勘探开发科技与装备的攻关力度,力争实现商业性油气开采。实施海域天然气水合物资源普查,积极研发勘探开采技术和装备,开展试采工程。  第三节 推进海水资源综合利用  加快制定促进海水直接利用、海水淡化与综合利用的政策措施,扩大沿海城市海水利用规模。在沿海地区的电力、化工、石化、冶金等行业中实行海水直流冷却和循环冷却,2015年海水年直接利用量达到750—1000亿立方米。积极创建国家级海水淡化与综合利用示范城市,继续支持天津、大连、青岛、上海、深圳、厦门、宁波等城市因地制宜地实施海水淡化工程。鼓励沿海省市率先选择一批沿海市县,开展海水淡化和海水综合利用试点,扩大海水淡化和海水综合利用规模。以辽宁长海、山东长岛、浙江舟山、福建平潭、广东南澳、广西涠洲和海南西沙群岛等海岛为重点,大力发展海水淡化,满足海岛居民生活用水。2015年,海水淡化量达到220—260万立方米/日。促进海水化学资源和卤水资源综合利用,加快浓海水制盐、提钾、提溴、提镁、提锂及其深加工等产业化进程,建设国家海水利用产业化基地。  第四节 加快海洋可再生能源利用  加快海洋可再生能源勘查与评估,编制发展规划,利用国家海洋可再生能源专项资金加强海洋能开发应用。开展万千瓦级潮汐水轮发电、兆瓦级潮流发电、百千瓦级新型波浪能项目示范。探索开展温差能和海洋生物质能利用。因地制宜地发展海上风电,引导风电场布局逐步向深水远岸推进。委员会等国际组织的活动。发展与国际海洋学院、保护国际等非政府间  第四章 海域集约利用  坚持集约节约用海,加强海域使用管理,严格执行海洋功能区划制度,强化围填海及重大建设项目用海管理,健全海域使用机制,规范海域使用秩序,提高海域使用效率。  第一节 加强海域使用管理  全面推进国家、省、市、县四级海域使用动态监视监测体系建设,对重点项目用海实行全过程监管。实施差别化的海域供给政策。制定各类建设项目用海标准,适时调整海域使用金征收标准。开展海域资源价值评估,推进实施海域使用权招标、拍卖和挂牌出让工作,健全和规范海域使用权市场流转机制。加强海域使用动态监管与执法检查,对各类用海活动开展定期专项检查,加大对违法行为的查处力度。推进全国海岸和近岸海域整治修复工作,到2015年,完成整治和修复海岸线长度不少于1000公里。  专栏一 海域使用动态监视监测体系  健全国家、省、市、县四级海域使用动态监视监测业务体系,完善业务化运行机制。利用卫星遥感、航空遥感和地面监测技术,开展海域使用状况监测。建立围填海项目动态监视监测制度,重点开展填海、围海及构筑物用海监测。提高重点海域远程视频监控能力,实现开发利用重点海域全天候监控与重大工程项目用海全过程监控。建立海域使用信息共享机制,提高海域使用综合评价与决策服务能力。  第二节 严格执行海洋功能区划制度  进一步完善海洋功能区划制度,加快各级海洋功能区划的编制工作,科学划分海域基本功能,统筹海域空间开发,提高海域利用效率,强化海洋功能区划实施的监督检查,切实发挥海洋功能区划的整体性、基础性、约束性作用。优化海岸线资源配置,加强海岸线保护与利用的统筹规划,调控海岸线开发布局和强度,严格控制占用海岸线的开发利用活动,突出海岸线的社会服务功能。严格限制高耗能、高污染、低水平重复建设项目用海,合理布局沿海港口、滨海城镇和临港工业区。  第三节 强化围填海及重大建设项目用海管理  严格围填海年度计划管理,科学确定围填海规模和时序。加强围填海计划执行情况的评估和考核,加大对违法违规围填海行为的查处力度。强化围填海项目用海审批管理,严格执行建设项目用海预审制度和环境影响评价制度,做好重大建设项目选址的科学论证。加强对集中连片围填海的管理,严格控制内湾围填海,减少对自然岸线、海湾、海岛、湿地、水生生物资源、水下文物等的破坏。规范海底电缆管道和军事用海管理。  第五章 海岛保护与开发  贯彻落实《海岛保护法》,加快实施海岛保护规划,实施海岛分类分区管理,加强有居民海岛的合理开发和无居民海岛的保护,强化特殊用途海岛管理。  第一节 促进有居民海岛有序开发  采取特殊的扶持政策,加快舟山、横琴、平潭等重点海岛的开发开放。建设舟山群岛新区,全力打造海洋综合开发试验区。推动横琴开发开放,建设率先发展的粤港澳紧密合作示范区。建设平潭综合实验区,建立两岸交流合作先行区。适度控制海岛居住人口规模,改善海岛人居环境,保护自然景观和历史遗迹,维护海岛及其周边海域的生态平衡。大力推进海岛基础教育、公共卫生和广播电视等社会事业发展,支持交通通讯、供水供电、污水和生活垃圾处理等基础设施建设。引导发展特色产业,制定扶持边远海岛开发利用的有关政策。  第二节 加强无居民海岛保护  加大执法力度,加强监视监测,清理非法用岛活动,严格限制开发具有红树林、珊瑚礁、泻湖等特殊生态系统的无居民海岛,禁止在无居民海岛及周边海域倾废。建立海岛统计调查制度,开展海岛资源综合调查和地名普查,设置海岛名称标志,完善海岛数据库。发布无居民海岛开发利用名录,依法开展无居民海岛地籍调查、土地确权登记等工作,稳妥实施无居民海岛有偿使用制度。开展海岛生态评估,选择典型海岛实施生态修复,推行生态型海岛开发利用模式。  专栏二 无居民海岛的监管与保护  海岛生态修复工程:编制海岛生态修复技术规程,选取辽宁大王家岛,山东崆峒岛,浙江桥梁山岛、北渔山岛和南韭山岛,广东罗斗沙岛、三角岛和小蜘洲岛等,实施海岛陆域生态系统修复试点。选取辽宁广鹿岛、山东麻姑岛、福建东山岛和海坛岛、广西沙井岛和涠洲岛等,实施岛体周围沙滩生态修复试点。选取福建湄洲岛,海南永兴岛、西瑁洲岛和小洲岛等,实施海岛周边红树林、珊瑚礁生态修复试点。  海岛监视监测系统:建设海岛数据管理平台、监视监测网络,建立海岛生态评估和预警系统,开展卫星遥感、航空遥感、船舶巡航、登岛实地监测等多种方式相结合的海岛监视监测,构建海岛监视监测体系,动态监控我国海岛保护与利用情况。  第三节 强化特殊用途海岛管理  开展领海基点岛屿巡视。加强领海基点海岛保护,划定保护范围,保持领海基点海岛及其周边区域地形、地貌稳定,修复受损严重的领海基点海岛。积极保护国防用途海岛,禁止从事影响国防的各类活动。对海洋权益和海洋划界有影响的特殊岛屿要加强助航导航、水文气象观测、地震监测、海洋防灾减灾等公益性设施建设。加强海岛自然保护区和特别保护区建设,建立海岛自然保护区科学普及和海岛生态环境保护宣传教育基地。  第六章 海洋环境保护  坚持海陆统筹、河海兼顾,完善海洋环境保护协调合作机制,实施以海洋环境容量和近岸海域污染状况为基础的污染物排放总量控制制度,从源头上扭转海洋环境质量恶化的趋势。  第一节 提高海洋污染防控力度  实施污染物排海总量控制,编制实施近岸海域污染防治规划。加强对渤海、长江口、珠江口等重点海域海洋环境容量和污染物排海总量的监测评估,重点加强对直排海污染源的监管,加强近岸重点海域环境综合整治,实施流域—海域污染物排海总量控制示范工程。强化对海洋石油勘探开发、海洋工程建设项目、海洋倾废活动的全过程监督管理,加大海洋环境执法查处力度。实施船舶及其相关活动的油污染物零排放计划,建立船舶油污水、压载水、生活污水和固体废弃物跟踪系统,加强船舶污染物接收和港口污染处理设施建设。修订相关法规,建立健全海洋污染损害赔偿机制,实施船舶油污损害赔偿基金制度,开展石油勘探开发等海洋工程和大型临海企业海洋污染赔偿制度研究。沿海地区要依据海洋功能区划、近岸海域环境功能区划等,确定氮磷营养盐、化学需氧量、石油类等特征污染物的总量控制目标,制定并实施重点河口、海域各类污染物排海总量分配方案和削减计划,改善近岸海域环境质量。2015年中度和重度污染海域面积比2010年减少10%。  专栏三 流域—海域污染物排海总量控制示范工程  选择10个有典型环境问题的封闭或半封闭海湾,建立跨行政区域和跨管理部门的协调联动机制,开展无机氮、活性磷酸盐等主要污染源的分配排放控制,加强重点海域化学需氧量、石油类以及汞、铅、铜和镉等重金属污染物控制。  第二节 加强海洋环境监测与评价  实现海洋环境管理由事后管理向全过程监管转变,继续完善国家、省、市、县相结合的海洋环境监测体系,开展海洋环境监测机构标准化建设。推进海洋环境监测网络建设,提升装备能力和技术水平,实现对我国管辖海域各类环境要素的监测。建立海洋环境保护数据共享机制,深化海洋环境监测信息分析评价,完善海洋环境质量公告制度和环境状况通报制度。对入海排污口、直排海污染源、重大海洋工程等加强海洋环境监测监督 对赤(绿)潮易发区、集中海水养殖区、重要滨海浴场、珍稀濒危海洋生物主要活动区域等直接关系到经济社会发展、公众健康安全、海洋生态安全的海域开展海洋环境质量监测。对海洋石油勘探开发实行定期巡航监测,定期发布通报。加强对持久性有机污染物、重金属、内分泌干扰物、生物毒素等的监测与评价。  第三节 强化海洋重大污染事件管理与处置  健全海洋环境突发事件应急处理机制,完善各类海洋环境灾害和突发事件应急预案,提高全海域海洋应急监测预警能力。开展沿海环境风险源和环境影响区调查,建立海洋环境风险信息数据库,强化海洋环境风险评估。加强海上溢油风险评估工作,在国家重大海洋溢油应急处置部际联席会议制度基础上,定期开展隐患排查,强化溢油风险管理措施,完善海上溢油应急联动机制。制定应对核泄漏事故海洋环境监测预案,开展重点海域海洋环境放射性监测和评估工作。健全海洋环境突发事件的信息通报和发布制度,强化事件处理的公开透明,明确政府应对措施,提高公众防范技能。  第七章 海洋生态保护和修复  加大海洋生态保护和修复力度,建设海岸带蓝色生态屏障,恢复海洋生态功能,提高海洋生态承载力。  第一节 加强海洋生物多样性保护  编制实施海洋生态保护与建设规划。开展海洋生物多样性普查,重点对98个海洋生物多样性优先保护区域开展调查与评估。建立海洋生物样品库和重要海洋生物种质资源库,建立海洋生物多样性信息管理系统。加强海洋濒危物种保护和外来入侵物种防范的管理,建设海洋水生生物自然保护区和海洋水产种质资源保护区。加强各类海洋保护区规划和管理,完善海洋保护区基础设施和标准体系建设。到2015年,新建国家级海洋自然保护区3个、海洋特别保护区44个,推进形成海洋保护区网络。研究建立海洋生态补偿机制,选择典型海域开展海洋生态补偿试点。  第二节 推进海洋生态系统修复  保护与修复滨海湿地、盐沼、红树林、珊瑚礁和海草床等重要海洋生态系统。加强海洋生态修复技术研究,实施海洋生态修复工程,建设25处海洋生物资源修复区,开展35处滨海湿地生态修复,新增滩涂湿地植被面积200平方公里,其中种植红树林100平方公里,恢复芦苇湿地100平方公里。在广东大亚湾及雷州半岛、广西涠洲岛、海南周边及西沙等海域开展珊瑚礁人工繁育和生态修复。在滨海地区规划建设海洋生态文明示范区。  第三节 强化海洋生态监测和生态灾害管理  提高海洋生态监测能力,完善海洋生态监控体系,加强海洋生态灾害预警和防治工作。提高卫星航空遥感、远程视频及在线自动监测能力,新建18个海洋生态监测站。建设海洋绿潮、水母、外来入侵物种、敌害生物、病毒病害等监控网络,强化海洋赤潮监控,形成20个重点生态监控区。开展海洋生态灾害防治技术应用示范,加强海洋生态灾害防治体系及治理示范工程建设。  第八章 海洋经济宏观调控  坚持陆海统筹,加强对海洋经济发展的指导、调节与服务,调整海洋产业结构,优化海洋经济布局,加快海洋经济发展方式转变,奠定海洋强国的经济基础。  第一节 加强海洋经济指导与调节  研究支持海洋产业结构调整的财政、金融、税收政策,制定促进海洋经济发展的指导意见。发布海洋产业优先发展目录,制定行业标准和重要产品技术标准,推广海洋循环经济发展模式,严格限制高耗能、高污染的海洋产业发展。编制海洋经济发展规划,加强对海洋经济的规划指导。保持海水养殖业稳步增长,强化海洋渔业在海洋经济中的基础地位。大力推进海洋药物和生物制品、海水淡化和综合利用、海洋能、高端船舶制造和海洋工程装备、海洋新材料、深海资源等新兴产业的发展。加强海洋经济统计工作,定期发布统计公报,搭建海洋经济信息服务平台。开展全国海洋经济调查工作,强化国家海洋经济运行监测与评估。继续将围填海计划管理作为宏观调控的重要手段,科学引导沿海地区产业发展的投资规模与空间布局。  专栏四 海洋经济调查与监测评估  全国海洋经济调查:以海洋经济调查试点为基础,实施全国海洋经济调查,健全海洋经济统计制度与方法,建立涉海基本单位名录库,掌握海洋经济发展规模、结构、布局等,强化海洋经济核算支撑。  国家海洋经济运行监测与评估系统建设:建立国家、海区、沿海省(含计划单列市)三级分布式信息节点,建设海洋经济运行监测系统、海洋经济评估系统、海洋经济信息数据库系统和信息服务平台,形成全国海洋经济运行监测与评估系统。  第二节 实施海洋主体功能区战略  制定并实施海洋主体功能区规划,发挥战略性、指导性作用,合理划分内水和领海、海岛、专属经济区和大陆架的主体功能,实施海洋空间分类管理,实行差别化的绩效评价,优化海洋开发利用空间布局。对海域利用程度高,海洋生态环境压力大,海洋资源开发问题突出,海洋产业活动和经济结构亟需调整的海域实施优化开发。对区位优势明显和战略地位突出,海洋资源环境承载力较好,海洋经济发展潜力较高,适于高强度集中开发的海域及海岛实施重点开发。对关系我国海域与海岸线生态安全,需要保持并提高渔业生产能力的海域及海岛实施限制开发。对具有典型性或代表性海洋生态系统、珍稀濒危海洋生物、重要经济价值的海洋生物生存区、水下文物保护区、重大科学文化价值的海洋自然历史遗迹和自然景观所在的海域及海岛实施禁止开发。  第三节 推进海洋经济发展试点工作  支持山东、浙江、广东、福建和天津开展海洋经济发展试点工作,在深化改革、优化海洋经济结构、加强海洋生态文明建设、创新综合管理体制机制等方面先行先试,加强对试点地区海洋经济发展情况的跟踪指导、督促检查、经验总结等工作,为全国海洋经济科学发展提供示范。继续对沿海重点开发开放地区的发展给予支持,形成布局合理、优势互补、开发有序和各具特色的海洋产业集聚区。  第九章 海洋公共服务  推进海洋调查与测绘、海洋信息化和海洋标准计量工作,强化海洋渔业和海上交通的服务保障能力,提升海洋公共服务质量和水平。  第一节 加强海洋调查与测绘  加强海洋调查的统筹规划与管理,开展近岸海域精细勘测与测绘。定期更新近海海洋资源环境基础数据和基础图件,完善海洋基础数据库系统。加快实施海洋地质保障工程。拓展海洋勘探调查空间,加强专属经济区和大陆架综合调查,开展外大陆架海域、重要资源区等专项调查,继续开展国际海域资源调查与评价。加强全球海洋地理空间信息基础设施建设。研究建立海洋调查船准入制度,推进大型海洋调查探测设备和分析测试仪器共享。  第二节 提升海洋信息化水平  统筹海洋信息化工作,编制海洋信息化发展规划。加快海洋信息标准化建设,推进信息资源的统一管理和共享,依托国家电子政务网络,整合改造海洋信息业务网。建设海洋环境与基础地理信息服务平台,以海域海岛管理、生态环境保护、海洋防灾减灾、海洋经济监测、基础科学研究为主题,推进海洋管理与服务信息化工作。继续建设“数字海洋”,加快海洋数字档案与图书馆建设。健全海洋信息发布制度,强化信息公共服务。进一步强化海洋信息管理,保障国家海洋信息安全。  专栏五 “数字海洋”工程  在“数字海洋”信息基础框架及相关海洋业务系统建设的基础上,整合我国内水、领海、毗连区、专属经济区和大陆架以及公海、国际海底区域等海洋信息资源,改造和完善海洋信息通讯传输网络,建设安全保障和运行控制系统,构建统一的“数字海洋”基础信息、决策指挥和公共服务平台。  第三节 健全海洋标准计量服务体系  强化“海洋标准化技术委员会”工作机制,完善质量监督管理体系,建设海洋技术产品质量监督检验中心。重点加强海洋资源勘探开发、海洋高新技术产业化、海洋观测预报和防灾减灾等标准体系建设。建立海洋标准效果评估体系,建设全国海洋标准信息服务平台。加强海洋标准计量的国际合作,建设亚太区域海洋仪器检测评价中心。  专栏六 亚太区域海洋仪器检测评价中心  应联合国政府间海洋学委员会和世界气象组织的有关需求,在我国天津建立亚太区域海洋仪器检测评价中心,建设海洋仪器计量性能检测、海洋仪器环境试验、检测技术研发、海洋仪器国际标准研发、全球海洋仪器质量监督保障、海洋标准计量质量技术支持、交流与培训等平台,为亚太地区海洋标准计量和质量监督提供服务。  第四节 提高海洋渔业服务能力  加强对海洋渔业发展的指导,优化渔港建设布局,改扩建一批沿海重点渔港,提高建设标准,完善通讯、监控、导航等设施,在台风多发的东南地区适当增加布局密度。到2015年,基本形成功能完善的沿海渔港网络,为70%的渔船提供就近服务。加强渔村供水供电、交通通讯等基础设施建设,改善渔民生产生活条件,加大渔民转产转业的政策扶持力度,开展渔民多样化就业培训。健全海洋水产良种选育、水产技术推广与疫病防控服务体系,加强海产品质量安全监督,强化渔业安全生产和执法检查。推进政策性渔业保险。  第五节 强化海上交通安全服务  加大海上航运监管与服务力度,优化船舶交通管理系统布局,完善沿海干线航标体系,建成西沙、南沙海域公用航标,航道安全巡航扩展至专属经济区及其他管辖海域。开展沿海民用港口及航路测绘,更新重要通航水域、能源大港海图。完善全国沿海近岸水域甚高频安全通信系统布局,实现沿岸25海里全覆盖。购置直升机、固定翼飞机,建造巡航船、航标船、测量船,推进航运保障基地建设。建立健全海上交通安全应急救援指挥机构,完善海上搜救应急预案体系,定期开展海上联合搜救演练,积极推进搜救国际合作。到2015年,渤海湾、长江口、台湾海峡、珠江口、琼州海峡、南海部分水域离岸100海里范围内,监管救助力量到达时间不超过90分钟。  第六节 维护海域平安稳定  创新海上治安管理,完善海上治安综合治理工作机制。编制平安海域建设发展规划,实施我国内水、领海及毗连区常态治安巡逻,打击海上犯罪。改进出入境船舶边防检查服务,提高船舶出入境边防检查效率。精准管控靠港国际航行船舶,保障港口和船舶治安安全。提升海上治安管理服务能力,合理布防海上警力,完善沿海口岸、码头和监控系统等基础设施和通关条件,强化海上110治安报警服务平台建设,健全海上群防群治网络,加强执法装备能力建设。  第十章 海洋防灾减灾  增强海洋灾害意识,加强海洋灾害风险防范和突发事件的应急管理,加快提高海洋灾害观测能力和预警预报服务水平,增强海洋领域应对气候变化能力,完善海洋防灾减灾体系,保障人民生命财产安全。  第一节 强化海洋灾害风险防范能力  开展全国海洋灾害风险评估与区划工作,为沿海地区经济发展布局和涉海工程防护规范标准制定提供科学指导。建立沿海重大工程建设的海洋灾害风险评价制度,制定风险评价技术规范,对已建和在建的沿海核电站、化工企业、大型产业园区和城镇发展区开展风险排查,及时消除安全隐患。在海洋灾害重点防御区内设立产业园区、进行重大项目建设的,应当在项目可行性论证阶段,开展海洋灾害风险评估,预测和评估海啸、风暴潮等海洋灾害的影响。  建立健全分类管理、分级负责、条块结合、属地管理为主的海洋灾害应急管理体制。完善海洋灾害应急预案,建立灾害预警多部门应急联动机制,定期组织开展应急管理专题培训和应急演练。建设海洋减灾中心和移动应急指挥平台,加强海洋灾情信息快速获取能力建设,提高应对各类海洋灾害的装备能力、技术水平和物资储备。做好海洋防灾减灾宣传教育工作,提升全社会的海洋灾害防范意识。  第二节 提升海洋预报服务水平  加强海洋、气象、地震、环保、水利、海事、民政、渔业等主管部门的协同与配合,进一步完善海洋预报体系,形成分级分区、面向目标、互为补充的海洋预报服务工作格局。加强海洋预报技术的自主研发,重点推进沿海重大设施、产业密集区和人口密集区的精细化预报工作。拓展海洋预报服务领域,丰富服务内容,建立渔业生产、大洋航路保障、海上搜寻与救助、海洋油气生产等专题服务系统。到2015年,风暴潮、海浪、海流数值预报时效从目前的3天提高到5天以上,近岸空间分辨率从4000米提高到100米以内,开展海洋灾害发生前3至6小时的短时临近预报。加强海洋预警信息发布,通过各类媒介及时发布灾害预警信息,增强海洋预报的社会服务功能。  第三节 增强海洋应对气候变化能力  提升海洋对气候变化影响的分析预测能力,开展厄尔尼诺、拉尼娜等海—气形势对我国气候影响的预测工作,定期发布各类分析预测产品。建立气候变化影响调查评估体系,开展海平面上升、海洋生态系统退化等对我国沿海经济社会影响的监测调查和趋势分析工作。加强沿海湿地的保护和防护林带、防潮工程建设,提高沿海各类重大工程项目和城镇市政排水设施的设计标准,增强沿海地区应对气候变化的能力。  第四节 提高海洋灾害观测能力  加强规划,优化布局,加大海洋灾害观测覆盖密度,增强离岸观测能力,完善沿岸观测、海底观测、海上平台、浮标、潜标、船舶、航空遥感和卫星遥感等多种手段相结合的海洋灾害立体观测网,提高观测网运行保障能力。加强海上重要通道、国际航线等重点海域的观测能力建设。大力推进志愿船和应急移动观测,加大海啸监测力度。进一步加强海洋断面调查,增加数量和频次,提高调查装备水平。  第十一章 海洋权益维护  实施常态化的海洋维权巡航执法,开展多种形式的海洋维权行动,深化相关对策研究,强化管辖海域的实际控制,加强海上航行安全保障,切实维护国家海洋权益。  第一节 加强海上维权巡航执法  强化对我国管辖海域的定期维权巡航执法,进一步提高海上维权执法与管控能力,购置、建造用于维权巡航执法的船舶、飞机,建设保障基地,提升监视监控和通信联络能力。  第二节 开展多形式海洋维权行动  在传统渔场开展常态化护渔维权行动,保护我国渔船在东海、南海传统渔区的生产活动。结合海南国际旅游岛建设,科学规划西沙、南沙旅游线路。在管辖海域和岛礁建立海洋保护区,切实加强海洋生态环境保护和管理。按照《联合国海洋法公约》等相关规定,积极推进在公海及国际海底区域内的资源开发、科学调查等活动。加强我国海洋权益主张的对内对外宣示和解释工作,正确引导社会舆论。  第三节 维护国际海上航行安全  深化与海洋大国在海运管理制度等方面的合作,加强海上战略安全、通道安全的磋商与对话协调机制,拓展在打击海盗、反恐、反走私、缉毒、搜救等领域务实合作,共同维护重要海上运输通道安全。加强与重要通道沿岸国在海洋观测、航道测量、环境保护和灾害预报、航海保障能力建设等领域的互惠合作。积极参与维护马六甲海峡安全的地区事务和海上合作。  第十二章 国际海洋事务  拓展双边和多边海洋合作空间,积极引导区域海洋合作,切实履行国际责任和义务,全面提高我国参与国际海洋事务的能力。  第一节 全面参与国际海洋事务  积极参与联合国相关海洋事务,提高参与国际海洋规则制定和海洋事务磋商能力。加强对联合国教科文组织政府间海洋学委员会、国际海底管理局等机构工作的实质性参与。深化《联合国海洋法公约》研究,跟踪世界各国实践公约的最新情况。准确把握国际海洋秩序发展新趋势,做好参与重要国际事务的政策、法律、科学、技术及执行方案的储备,提高研判和行动能力。深入参与海洋环境保护、海底资源开发、渔业资源管理、海事与海上救助等涉海国际公约、条约、规则的制定、修订工作。推进与相关国家及国际组织的合作,积极开展国际海洋合作研究与技术培训。积极参与联合国海洋和海洋法事务非正式磋商、“全球海洋环境状况定期评估”工作,跟踪研究深海生物基因资源、公海保护区等国际海洋热点问题。  第二节 深化拓展双边海洋合作  积极开展政府间、科研机构间的合作,搭建合作平台,加强在海洋观测与调查、海洋生态环境保护与评估、海洋灾害过程研究与防灾减灾、应对气候变化与防范措施、海洋经济发展政策与海洋管理等领域的合作。推进中印尼海洋与气候变化联合研究中心建设,加大对发展中国家海洋防灾减灾能力建设的支持和技术援助力度。加强与发达国家、新兴经济体国家在前沿海洋科学、业务化海洋学、海洋政策与管理、信息共享、教育培训、旅游开发等方面的合作交流,积极推进海洋可再生能源开发、海水淡化、海洋生物工程、海洋矿产资源开发、海洋空间资源利用、极地考察等海洋技术的交流与合作。  专栏七 中印尼海洋与气候变化联合研究中心  与印度尼西亚合作,在雅加达建设中印尼海洋与气候联合研究中心,通过促进我国和印度尼西亚在海洋与气候领域的合作,增强对印度洋及周边海域的科研调查、综合观测和研究能力,共同提高两国应对气候变化的能力。  第三节 积极引导多边区域合作  加强与有关国家在海洋政策、海洋生态环境保护和防灾减灾等领域的合作,推动南海海啸预警与减灾系统建设。支持并参与联合国政府间海洋学委员会发起的重大海洋科学计划和各项活动,组织实施区域海洋合作项目。积极发展与北太平洋科学组织、国际海洋研究科学委员会、国际海洋学院等国际组织和非政府组织的合作关系。进一步发挥在亚太经合组织海洋工作组中的重要作用,做好亚太经合组织海洋可持续发展中心工作。  专栏八 亚太经合组织海洋可持续发展中心  与亚太经合组织合作,在厦门建立海洋可持续发展中心,通过政策交流与咨询、研讨与培训以及开展示范项目等活动,促进亚太经合组织各成员经济体之间海洋领域的务实合作,加强海洋综合管理能力建设,实现亚太区域海洋经济的可持续发展。  第十三章 国际海域资源调查与极地考察  持续开展国际海域资源调查,深化极地科学考察,加强国际海域资源调查和极地科学考察能力建设,为人类和平利用海洋作出贡献。  第一节 加强国际海域资源环境调查与评价  在国际海底开展多金属硫化物、富钴结壳及生物基因资源调查,适时提出多金属硫化物和富钴结壳勘探矿区的申请。深入开展多金属结核合同区的资源评价。开展国际海底环境综合研究,加强深海典型生境生物多样性调查与评价,开展深海微生物、底栖生物和浮游生物研究。加强深海生物基因资源采集、保藏、提取和培养技术研究,开发深海生物资源利用技术。  第二节 深化极地科学考察  实施南极大陆及周边重点海域、北极海域环境的综合考察。深化极地科学考察与研究,重点开展冰川、海洋、大气、地质与地球物理、天文等基础领域的科学研究。加强对极地生物资源调查和利用研究,开展极地微生物基因资源的收集和应用评估。加强北极航道利用调查与研究,积极参与相关领域国际合作。完善极地观测系统,实现南北极综合考察常态化。有效开展南极保护区建设和管理工作。  第三节 加快国际海域调查与极地考察能力建设  新建大洋综合调查船和载人潜水器支持母船,提高装载能力。加大深海矿产资源勘查、开采、选冶加工技术和装备的研发力度。加快国家深海基地建设,提高深海资源调查、深海技术装备研发的综合保障能力。规划建设大洋调查海外支撑保障站点。提高极地科学考察和保障能力,规划建设南极新的考察站,建设南极固定翼飞机保障系统,提高极地考察陆地运输装备能力,实施极地考察破冰船建造工程,确保每年200天以上的极地考察时间。实施极地科学考察国内基地的改造升级,重点强化实验分析、数据处理、多学科综合研究、资料数据共享和国际极地信息交流功能。  专栏九 国际海域调查与极地科考支撑保障能力建设工程  国家深海基地建设工程:建设大洋调查船和载人潜水器支持母船的专用码头、科研办公业务用房、配套保障用房等,配置专用设备,为大洋调查、载人潜水器等大型装备海上试验提供技术支持和后勤保障。  极地考察破冰船建造工程:建造极地科学考察破冰船,配备先进的极地海洋环境考察、实验室及甲板考察作业等设备,提高极地科考支撑保障能力。  第十四章 海洋科学技术  坚持深化近海、强化远海、支撑发展、引领未来的方针,加强海洋基础性、前瞻性和关键性技术研究,加快海洋科技成果转化,提高海洋科技对海洋开发、保护与综合管理的支撑能力。  第一节 深化海洋基础科学研究  围绕国家战略需求,在一批重大基础科学上取得突破,推动海洋科学整体水平的提高。重点开展海洋与气候、海洋生物多样性、海陆相互作用、海底深部过程等重大前沿问题研究。加强物理海洋、海洋生物、海洋地质与地球物理、海洋化学等优势领域研究。支持工程海洋学、极地海洋学、海洋观测技术学等新兴领域的研究。推进海洋科学国家重点实验室和科学创新基地建设。拓展野外科学观测站点建设,完善海洋科学观测网络,推进海上综合科学试验场建设。  第二节 发展海洋战略性前瞻技术  深化深海探测技术研究,加快高新海洋工程装备研发,推进“蛟龙号”深海试验性应用。加强大深度水下运载、生命维持系统、高比能量动力装置、高保真采样和信息远程传输、深海装备制造等技术研发,实现重载作业型水下机器人装备与技术的国产化。发展海洋观测技术,提高自主创新能力,突破一批海洋生态和动力环境观测核心技术,加快推进海底观测网技术发展。发射海洋系列卫星,完善数据地面接收站建设,深化海洋卫星遥感技术的研发和应用。加强特种船舶装备技术研发,重点发展深海钻井船关键技术、大洋渔业船舶与装备关键技术、深远海多功能可移动式人工岛关键技术、海上救捞作业船和深潜救助打捞作业技术及配套装备。继续发展深海勘探技术,加强大洋、海底多参数快速勘测和三维勘查技术、热液区原位观测和综合评价技术、深海矿产资源和生物资源取样关键技术及工程样机研发。研究二氧化碳海底封存技术。  专栏十 海洋系列卫星专项工程  研制发射海洋一号系列水色环境和海洋二号系列动力环境业务卫星。改扩建现有的北京、三亚、牡丹江和杭州海洋卫星地面接收站,新建北京数据处理中心、海上遥感辐射校正试验场和南、北极遥感卫星接收站。建立海洋水色环境和海洋动力环境信息获取,卫星海洋遥感资料库、信息库和综合服务,以及海域和海岛管理、海洋环境保护、海洋防灾减灾、海洋权益维护应用等业务化系统。  第三节 推进海洋技术产业化  完善海洋科技创新体制机制,搞好海洋科技投融资平台建设,积极推进产学研结合,发挥企业在成果转化中的主体作用,推动形成区域海洋科技产业联盟。实施科技兴海工程,推进成果转化和产业化。支持海洋产业技术研发转化中心和孵化基地建设,推进海洋工程技术(研究)中心、海洋技术成果转化和高新技术产业化基地、海洋技术推广中心建设,引导海洋生物、海洋工程装备制造、海水综合利用、海上清污和海洋能等科研成果加快转化。发展苗种繁育、绿色养殖和精深加工等海洋生物资源开发与高效综合利用技术。加快深海生物资源利用技术转化,在深海生物制品、工业酶以及生物冶金等方面实现产业化突破,规划建设海洋生物医药产业园和海洋药谷。搭建海洋可再生能源开发利用实验平台,完善海洋可再生能源标准体系,加速海洋能产业化进程。强化海水淡化技术研发、示范及运行机制的集成创新,开展新能源和海水淡化联合技术示范应用,实现万吨级以上大规模海水淡化、海水循环冷却等工程示范和产业化推广,到2015年,反渗透法和蒸馏法海水淡化单机规模分别达到1.5万立方米/日和2.5万立方米/日。大力推进深水油气生产作业装备、深海通用材料、基础部件产业化开发。  第十五章 海洋教育和人才培养  实施“泛海人才战略”,加快海洋教育发展,加强高层次创新型人才培养,完善海洋人才工作体制机制,发挥海洋人才效能,统筹推进海洋人才队伍建设。  第一节 加快海洋教育发展  支持发展海洋高等教育,调整优化涉海高等院校海洋学科专业设置,扩大相关专业办学规模,推进重点学科和实验室建设,加强国内外学术交流与合作,积极培育具有国际水准与地域特色的海洋院校和专业。在经费投入、扶持政策等方面对海洋基础学科教育予以适当倾斜。积极发展研究生教育,改革培养模式。实施海洋人才培养共建计划,继续推进涉海部门(单位)与相关高等院校合作共建。加强海洋职业教育和培训,壮大专业技能人才队伍。制定海洋行业继续教育规划和实施办法。  第二节 培养创新型领军人才  实施海洋领军人才和创新团队培养发展计划、高层次创新型海洋科技人才引进计划。结合国家重大项目、重点实验室、博士后科研流动(工作)站建设,建立高层次创新型人才培养基地。健全有利于人才创业及团队形成的引进、使用、培养、评价和激励机制。完善首席科学家、首席专家和特聘专家制度,对重大海洋科学与调查项目推行技术负责人与行政负责人分离制度。支持我国科学家参加国际大型海洋科学研究计划,牵头组织重大国际合作研究项目。促进与港澳台地区在海洋科技教育与人才培养方面的交流合作。以海洋高新技术产业园区和涉海留学人员创业园为载体,加大对高层次留学人才回国创业的扶持力度,为引进人才提供全方位服务。  第三节 统筹海洋人才队伍建设  根据海洋事业发展需要,加强海洋工程装备技术、海洋资源开发利用技术、海洋公益服务专业技术、海洋管理、海洋高技能和国际化海洋人才队伍建设。制定重点海洋产业人才发展目录,研究重点领域海洋专业技术人才培养与激励政策。引导企业参与国家重大海洋专项,在研发实践和产业化过程中集聚培养人才。稳定海洋专业技术工作方向,加强专业技术团队培养。鼓励海洋相关专业毕业生到基层台站、远洋船舶、边远海岛等一线地区和艰苦岗位实习工作。实施海洋优秀青年科技人员培养计划,为海洋事业发展储备优秀人才。开展海洋人才动态跟踪统计工作,形成监测评估体系,促进人才有效配置与合理流动。  专栏十一 “泛海人才战略”  “泛海人才战略”是指面向建设海洋强国战略的需要,统筹规划各涉海部门人才队伍建设,协调指导各沿海地区人才队伍发展,整合优化各学科海洋科技人才资源,建设跨地区、跨部门、跨行业、跨学科、跨领域的海洋人才队伍。  第十六章 海洋法律法规  坚持依法治海、依法护海,健全海洋法律法规体系,完善海洋执法与监督机制,不断提高海洋依法行政能力和海洋综合管理水平。  第一节 加强海洋立法工作  完善海洋立法的框架体系,提高海洋立法工作的针对性和前瞻性,推进海洋立法工作有序开展。加快制定南极活动管理条例等法律法规。加强海洋经济、渤海区域、海洋防灾减灾、海洋巡航执法、大洋勘探、军事用海管理以及海洋基本法等方面的立法研究。进一步完善海域使用、海上交通安全、海洋倾废等方面的法律制度。制定与相关法律配套的实施细则,确保海洋法律执行的可操作性。研究建立法律法规实施效果评估制度。支持沿海地区出台地方性海洋法规与政府规章,健全上下协调的法律法规体系。推进海洋法律法规的普及与宣传。  第二节 提高依法行政水平  加强干部队伍法治教育,增强依法行政观念,提高执法水平。强化海洋执法体系建设,重点加强海域使用、无居民海岛利用、海洋环境影响评价和海洋工程等审批环节的制度建设与管理,形成规范的行政决策程序,落实专家咨询、合法性审查、风险评估、重大决策听证、政府信息公开等制度。加强海洋领域信访和行政复议工作,完善举报投诉平台,推行行政复议委员会制度,建立健全对行政处罚、许可、强制、复议等行为的审查程序,及时化解各类用海矛盾。  第十七章 海洋意识和文化  树立建设海洋强国的意识和理念,发掘和保护海洋文化遗产,培育海洋文化产业,促进海洋文化繁荣发展,增强海洋事业发展软实力。  第一节 提高全民族海洋意识  制定增强全民族海洋意识指导意见。推进中小学海洋基础知识教育,加强高等院校海洋科学和文化普及教育。充分利用自然博物馆、科技馆、展览馆等各类场馆,建设一批海洋科普教育基地,完善海洋保护区的科普教育功能。积极推进国家海洋博物馆和中国海洋档案馆建设。积极开展海洋文化理论研究,编纂中华海洋文明史,出版海洋文化、科普教育等系列丛书。利用各类新闻媒体多形式开展海洋宣传工作。组织开展海洋知识竞赛、海洋夏令营、海洋博览会等活动,继续办好“世界海洋日暨全国海洋宣传日”等海洋主题宣传和文化活动。  第二节 保护海洋文化遗产  制定海洋文化遗产保护规划。加强海洋文化遗产研究和调查,初步查清我国涉海文物和非物质文化遗产数量、规模和保护现状。加强海洋水下文化遗产保护,实施南海Ⅰ号、南澳Ⅰ号等沉船遗址和西沙水下文物重点保护工程,提高水下考古科技和装备水平。加强各级水下文物保护区建设,加大执法力度,保障管辖海域水下文化遗产安全。系统整理保护民间节庆等习俗、文学艺术、传统技艺、饮食服饰等涉海非物质文化遗产及代表性传承人,拓展文化遗产传承利用途径。加强(象山)海洋渔文化生态保护区建设。发掘、传承和弘扬妈祖文化、以海洋丝绸之路为代表的海洋商业文化、以郑和下西洋为代表的航海文化,鼓励各类海洋文化艺术作品的创作和展示发行。  第三节 培育海洋文化产业  加强政府对海洋文化产业的引导与培育,实施重大海洋文化产业项目带动战略,推动海洋文化产业基地和区域性特色海洋文化产业群建设。编制海洋文化发展规划,制定海洋文化产业发展扶持政策,设立海洋文化基金,鼓励跨所有制经营和重组,推动海洋文化与制造业、服务业和高新技术产业的融合,提高规模化水平。积极发展海洋文化娱乐、旅游休闲、体育运动等产业,培育一批优质海洋旅游景区和旅游线路,打造国家精品海岸和海岛旅游带。继续搞好青岛国际海洋节、厦门国际海洋周、象山开渔节、平潭国际沙雕节等各具特色的海洋节庆活动,打造招商引资、集聚产业的文化平台。  第十八章 保障措施  充分认识海洋在发展全局中的战略地位和重要作用,增强紧迫感和忧患意识,强化对海洋事务的统筹协调,加强对海洋经济的宏观调控,加大对海洋事业的支持力度,努力提高海洋开发、控制和综合管理能力。  第一节 制定海洋发展战略  树立海洋科学发展观和权益观,把握全球海洋发展态势,深入开展海洋发展的战略性、方向性和政策性等重大问题研究。制定并实施国家海洋发展战略,统筹我国在内水、领海和毗连区、专属经济区和大陆架、公海和国际海底区域以及南北两极的现实和潜在利益,统筹国家海洋政治、外交、安全、经济、管理等工作,形成促进海洋事业发展的合力。  第二节 实施海洋综合管理  推动建立海洋事务高层次协调机制,加强涉海管理部门之间的统筹协调和沟通配合,提高中央与地方海洋管理工作的联动性,增强海洋行政管理效能。根据国家宏观政策取向,综合运用海域和海岛、海洋渔业、海运海事、海洋生态环境保护等管理手段,对海洋产业发展和海洋经济运行实施引导和调节,提高综合管理对海洋开发利用与保护的调控效率。  第三节 强化规划配套指导  国务院有关部门和沿海各级人民政府要结合工作职能,立足海洋事业发展的实际情况,加快事关海洋经济发展、海洋生态环境保护、重点海洋产业培育、海洋科学技术研发转化等方面规划的编制实施,落实配套政策和措施,通过充分发挥各类海洋规划的指导调节作用,促进沿海地区产业结构调整和布局优化,加快发展方式转变。各级发展改革部门和海洋行政主管部门要建立海洋事业发展规划实施监督检查与评估机制,定期向同级人民政府和上级主管部门报告有关情况。  第四节 加大政府投入力度  国务院有关部门在安排财政预算和投资计划时,加大对海洋事业的支持力度,按照统筹考虑、区分轻重缓急、避免重复建设的原则,优先保障国家海洋领域重大项目的实施。沿海地方各级人民政府要在制定国民经济和社会发展规划、计划及财政预算时把海洋事业发展放在重要位置,进一步加大基础能力建设、重大专项的资金投入和支持力度。要统筹和规范海域使用金的用途,重点加强海洋环境保护和生态修复,并强化绩效考评和审计监督。
  • 新法解读|生态环境部海洋司胡松琴:为地方政府加紧法律“紧箍咒”
    “这次修订的海洋环境保护法聚焦海洋生态环境保护的突出问题,总结海洋生态环境保护的实践经验,有许多制度创新和务实管用的举措。”生态环境部海洋司副司长胡松琴在解读新修订的海洋环境保护法时表示,新修订的海洋生态环境保护法为地方政府落实海洋生态环境治理任务措施目标加紧法律“紧箍咒”。完善了海洋生态环境保护制度体系,增强了法律震慑力“比如建立了海洋环境目标责任制与考核评价制度。”胡松琴举例说,这次修订的海洋环境保护法明确沿海县级以上地方人民政府对其管理海域的海洋环境质量负责,实行海洋环境保护目标责任制和考核评价制度,对于未完成海洋环境保护目标的海域,省级以上人民政府生态环境主管部门可以采取区域限批和约谈政府和有关部门主要负责人的措施,这将有利于进一步压实地方政府主体责任,为地方政府落实海洋生态环境治理任务措施目标加紧法律“紧箍咒”。胡松琴指出,新修订的海洋环境保护法确立了重点海域综合治理制度。在渤海、长江口—杭州湾、珠江口等重点海域综合治理攻坚战实践的基础上,这次修订的海洋环境保护法明确规定划定国家环境治理重点海域及其控制区域,制定综合治理行动方案,沿海省市地方制定其管理海域的实施方案,开展综合治理。“这将为巩固前期污染防治攻坚战成果,继续深入实施综合治理攻坚行动、持续改善重点海域生态环境质量提供重要制度保障。”建立了海洋垃圾污染防治制度。“海洋垃圾是人民群众感受最直接、反映最强烈的海洋污染问题之一。在部分沿海地区,海洋垃圾问题比较突出,尚未实现常态化清理处置,影响岸滩环境和公众亲海体验,部分海洋垃圾难以降解,还会被海洋生物和鸟类误食并损害海洋生物栖息环境,威胁海洋生物多样性。”胡松琴指出,这次修订的海洋环境保护法聚焦海洋垃圾这一突出海洋生态环境问题,明确沿海县级以上地方人民政府负责其管理海域的海洋垃圾污染防治,建立海洋垃圾监测、清理制度,统筹规划建设陆域接收、转运、处理海洋垃圾设施,明确海洋垃圾管控区域,建立海洋垃圾监测、拦截、收集、打捞、运输、处理体系并组织实施。“这些规定体现了系统治理的思路,多环节多举措遏制海洋垃圾入海数量,通过拦截、收集、打捞已经进入海洋的垃圾并上陆处理,形成了海洋垃圾陆海统筹治理的闭环。”“这次修订的海洋环境保护法还在海上排污许可、入海排污口、入海河流治理、生态环境分区管控、海洋倾废等方面作出一系列新的规定同时,在法律责任方面也增加了处罚事项、加大了处罚力度、丰富了计罚方式和处罚手段。”胡松琴指出,这些有效解决了“该硬不硬、该严不严、该重不重”的问题,完善了海洋生态环境保护制度体系,增强了法律实施的震慑力。加强对海洋倾倒监管,新增连带责任制度,建立信用记录与评价应用制度“这次修订的海洋环境保护法在加强对海洋倾倒监管方面有了一些新的规定。”胡松琴表示,海洋倾废监管对于统筹做好海洋生态环境保护和海洋高质量发展具有重要意义。“这次修订的海洋环境保护法针对海洋倾废监管中存在的突出问题,结合国内实践经验与国际履约成果,完善审批与管理制度,加大监管力度。”一是加强废弃物源头管理。继续实施可以向海洋倾倒的废弃物名录制度,以严格管控海洋倾倒的废弃物种类,从源头避免和减少海洋倾废对海洋生态环境的影响。同时,进一步落实“预防为主、源头防控”等原则,在这次修订的法律中增加“国家鼓励疏浚物等废弃物的综合利用,避免或者减少海洋倾倒”有关规定,严控向海洋倾倒废弃物的数量,统筹做好海洋生态环境保护和海洋高质量发展。二是科学布局海洋倾倒区。进一步强化海洋倾倒区的科学布局和全局性谋划,增加倾倒区规划制度,明确倾倒区规划应报国务院批准,由国务院生态环境主管部门依据规划统一开展倾倒区选划,以科学合理利用海洋资源,优化我国海洋倾倒区的布局,特别是近岸和远海倾倒区的分布比例,尽可能减少倾倒活动对倾倒区及其周边海洋生态环境的影响。法律规定要定期对倾倒区进行评估,并依据评估结果制定并实施调整、暂停或封闭倾倒区等管理措施。三是完善许可及监管制度。深化落实国务院“放管服”改革要求,优化倾废许可审批层级,明确海洋倾废许可有关申请向国务院生态环境主管部门海域派出机构提出。强化产生废弃物单位污染防治的主体责任,明确由产生废弃物的单位作为倾废许可申请的主体。加强事中事后监管,针对倾倒作业船舶等载运工具,增加安装使用符合要求的海洋倾倒在线监控设备等规定,并强化倾倒作业报告制度,有效提高监管效能。四是强化法律责任及监督执法。针对海上违法倾废活动频发、违法处罚偏软偏轻等问题,新修订的海洋环境保护法提高了处罚金额,增加了一定时间内行业禁止等处罚手段,以及扣押船舶等行政强制措施。新增了连带责任制度,明确获准倾倒废弃物的单位应当与造成环境污染和生态破坏的受托单位承担连带责任等,同时还建立了信用记录与评价应用制度,对违法活动形成有力震慑。
  • 红外光谱仪FTIR-850对微小异物的分析
    显微红外技术是基于傅里叶变换红外光谱技术与显微镜技术的结合发展起来的,与常规红外光谱技术相比,显微红外技术具有检测灵敏度高、微区分析和无损检测等优点,测试时几乎不引入外部干扰,可以满足对微小样品成分的快速鉴定与分析。 在法庭科学领域中, 由于案件现场提取到的物证通常是极微量的,常规红外光谱分析技术常常无法达到检测要求,显微红外技术可以卓有成效地解决微量物证鉴定上的难题,可以满足微量物证必须保留以用于法庭作证的特殊需要。 在电子显示屏生产领域中,电子显示屏通长是由多层材料组装起来的,如果不慎引入异物夹杂在层与层之间,在屏幕点亮的时候很容易出现黑点、黑线或者是阴影,造成质量不合格。要解决这种情况或者是找到责任方,都需要先分析异物具体是什么物质,找到异物的来源,才能针对性的采取措施防止类似事件发生,从而改进产品的质量。针对此类微小异物(人体皮屑、衣物纤维、粉尘颗粒等)的分析,最常用的分析方法就是显微红外。 在微塑料分析研究领域,微塑料作为一种新兴污染物,泛指直径小于5 mm的塑料颗粒,充斥于从海洋到陆地的所有环境里。微塑料被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害,目前微塑料的检测主要是通过显微红外光谱技术手段来进行。1、适用范围 适用于微量物证鉴定、显示屏异物来源分析、微塑料成分及氧化情况研究。2、基本原理 红外光谱技术与显微技术相结合而产生的一种微量分析技术,即通过显微镜观察被测样品的外观形态或物理微观结构的基础上直接测试,选定样品某特定部位测试,得到该微区物质高质量的红外谱图。3、实验条件(1)主机及附件FTIR-850傅里叶变换红外光谱仪 红外显微镜附件(PIKE) 红外显微镜附件(Specac)(2)扫描参数: 分辨率8cm-1 ;扫描次数64次;扫描范围4000~500cm-1。4、实验结果(1)车辆碰撞物证(车漆)(2)显示屏异物(60微米黑色异物)(3)微塑料5、实验结论 与常规红外光谱技术相比,显微红外技术具有检测灵敏度高、制样方法简便、无损检测等优点,非常适合于微小样品或者大样品的微区分析,对于物证鉴定机构、电子显示屏生产企业、海洋环境微塑料污染及防控研究机构来说显微红外光谱技术是一种非常重要的手段 。 港东科技——专注、专业、专心为您提供更好的红外光谱解决方案!
  • 国家海洋局:我国近岸海域海洋环境问题突出
    新华网北京3月20日电,记者20日从国家海洋局获悉,2012年我国海洋环境质量状况总体较好,但近岸海域环境问题依然突出。  国家海洋局20日发布的《2012年中国海洋环境状况公报》显示,2012年,我国管辖海域海水环境状况总体较好,符合第一类海水水质标准的海域面积约占我国管辖海域面积的94%。  “我国近岸海域环境问题仍然突出。”国家海洋局新闻发言人石青峰说,“主要表现在陆源排污压力巨大,近岸海域污染严重,赤潮灾害多发,局部区域海水入侵、土壤盐渍化、海岸侵蚀等灾害严重,海洋溢油、危化品泄漏等突发性事件的环境风险加剧等。”  公报表示,2012年我国未达到第一类海水水质标准的海域面积达17万平方公里,海水水质为劣四类的近岸海域面积约为6.8万平方公里,较上年增加了2.4万平方公里,近岸约1.9万平方公里的海域呈重度富营养化状态。  同时,在实施监测的近岸河口、海湾等典型海洋生态系统中,有81%处于亚健康和不健康状态。72条主要江河携带入海的污染物总量约1705万吨。辽河口、黄河口、长江口和珠江口等主要河口区环境状况受到明显影响。  公报显示,目前我国管辖海域海水、海洋生物的放射性水平和海洋大气γ辐射空气吸收剂量率未见异常,日本福岛核泄漏事故尚未对我国管辖海域造成影响,但日本福岛以东及东南方向的西太平洋海域仍受到福岛核泄漏事故显著影响。  “国家海洋局正在组织沿海省份围绕海上核污染问题打造安全体系,加强防范风险能力建设。”国家海洋局环保司司长李晓明说。
  • 首批《海洋数据开放共享目录》和“海洋云”平台正式发布
    6月8日,在第16个世界海洋日暨第17个全国海洋宣传日上,自然资源部面向全社会公开发布首批《海洋数据开放共享目录》和全国首个国家海洋大数据服务平台(海洋云)。该目录和平台由国家海洋信息中心研发。本次发布的《海洋数据开放共享目录》,是对我国自主获取海洋数据、自主研发海洋信息产品和全球海洋环境数据的整编集成。目录的内容包括海洋7大学科、83类要素,一是中国海洋站、浮标、岸基雷达、志愿船、断面观测和近海海洋综合调查标准数据集。二是中国近海环境统计分析产品,中国海平面变化和气候变化专题产品,全球和西北太平洋区域海洋实况分析、海洋再分析和海洋环境图集等产品。三是基于全球Argo等多源数据,通过排重整合、融合分析和精细化质量控制等处理形成的全球海洋温盐、水位、气象、生物、化学、水深地形、底质和地球物理等整合数据集。总体上,国内来源数据时间范围从1942年至今,国际数据从1662年至今,空间覆盖我国近岸近海、太平洋、大西洋和印度洋等全球海域。《海洋数据开放共享目录》具有数据类型丰富、时空范围广、时效性强、成谱系化等特点。所有数据都经过精细化处理和深加工,更新频率最高达到分钟级,涵盖标准数据集、整合数据集和统计分析、实况分析、再分析产品,以及图集图件和专题报告等多层级,可以面向海洋经济发展、海洋防灾减灾、海洋生态环境保护、海洋资源开发利用、海洋教育和科学研究等领域,为涉海部委、沿海地方、科研院校、涉海企业和社会公众等用户,提供多样化和个性化的服务。海洋云是国家级海洋数据和信息产品在线服务平台,构建了国家全球海洋立体观测网数据在线汇聚、涉海部门海洋信息互联互通、公益数据产品集成服务、国际海洋信息资料交换合作的一站式平台。海洋云以国家海洋观测调查的海洋大数据资源为基础,保证上云数据科学可靠、时空连续;充分利用大数据、云计算、区块链、互联网等先进信息技术,实现数据和模型方法上链服务;通过平台共建、资源共享、产品整合、平台挂载、资源链接等方式,保持云上数据资源的动态更新和生命力;打造数据安全防护体系,全力保障海洋云数据和系统的安全。海洋云提供海洋数据免费下载、依申请使用、在线计算分析和数据产品特色定制等服务,极大地提升用户享受数据服务的便利度和权威性,满足各类用户的多样化和个性化需求。《海洋数据开放共享目录》和海洋云的上线运行,将为全社会提供科学权威的海洋数据服务,有力推进海洋数字化转型,创新海洋信息互联互通、深度融合、智慧应用的新思路新模式。下一步,自然资源部将进一步聚焦新形势下海洋数据要素保障的新要求,完善海洋数据分类分级、海洋数据要素流通等规章制度与标准规范,加强安全沙箱、智能合约等新技术应用,动态更新海洋数据共享目录和海洋云系统功能,持续推动和加强海洋数据开放共享,为海洋新质生产力赋能海洋经济高质量发展和海洋强国建设提供更大助力。仪器人眼中的“赛龙舟”:
  • 海洋卫士印萍:加强海洋甲烷监测 应对全球变暖
    “海洋被称为‘地球之心’,是地球的关键部分。”全国人大代表、中国地质调查局青岛海洋地质研究所副所长印萍近日在接受中新社记者采访时表示,为更好地服务国家“双碳”战略、应对全球变暖、推动海洋经济健康发展,她在今年全国两会上提出了“加强海洋甲烷监测”的建议。“海底沉积物甲烷储集效率的波动将深刻影响大气中甲烷的水平和全球气候变化走向,在全球甲烷循环中的地位无可替代。”印萍表示,甲烷减排对中国乃至全球能源和环境安全将产生深远影响,也势必会成为新一轮全球性技术竞争的核心。印萍建议,为防范“卡脖子”风险,应加快推进海洋甲烷测量和监测技术研发,重点突破超低含量甲烷快速测量、甲烷原位精确测量、在线连续测量等技术难点,研发具有自主知识产权的新型测量装备,建立可推广的海洋甲烷测量技术方法体系。“中国甲烷监测和评估工作刚起步,尚未有在轨的甲烷观测卫星,监测设备基本依赖进口,这些问题都亟待发展。”印萍说,中国应该加快构建“星-空-地-海”甲烷监测体系,重点突破甲烷遥测遥感技术、海洋海岸带甲烷观测组网技术难点,加快国产甲烷监测卫星的研发和发射组网,研发海洋全剖面、关键界面和典型区域通量观测设备装备,开展重点区甲烷业务化监测示范,推动建设全球性海洋甲烷监测网。“加强海洋甲烷监测是应对全球气候变化、助力双碳战略的一条有效路径。”印萍建议,中国要加快海洋甲烷清单计量与减排技术研发,监测和评估海洋海岸带甲烷排放现状及排放源,建立甲烷收支计量和碳足迹追溯方法,编制甲烷排放清单,有效支撑温室气体排放管控和碳排放权交易;要加快海洋甲烷监测科技创新平台的建设,整合国内优势科研资源,促进行业技术标准化,强化创新技术成果转移转化、应用示范和工程服务,打造海洋新技术研究开发、成果转化、人才聚集、协同创新平台。作为一名海洋地质专家,印萍经常带队出没野外,参与过大量外业调查和监测工作。风暴中,她一个人背着几十斤的沉积物样品,在齐腰深的海水里,徒步4公里;海边小路上,她推着出故障的摩托车在泥泞中步行2个多小时回驻地......印萍坚信通过自身实践获得数据,才能做好研究。多年来,她改进和完善了海岸侵蚀综合模式,建立了评估、预测和预报模型;改进了监测和研究方法,并把研究成果推广到中国海岸环境评价和保护治理工作中。印萍一直心系海洋,履职以来,多次提出有关海洋的建议和议案,内容包括成立海洋生态环境损害司法鉴定实验室、培养更多海洋技术人才、加强海岸带地质遗迹保护等。“开展海岸带地质研究是个长期的事,我要当好‘海洋卫士’,保护好这一抹神秘的蔚蓝。”印萍说,两会结束后,她将奔赴长江三角洲开展海岸带生态地质调查工作,中国从北到南漫长的海岸线上,一直有她的身影。
  • 海洋光学推出Nirquest512-2.5高分辨率微型光纤光谱仪
    随着 NIRQuest512-2.5 的推出,海洋光学 (Ocean Optics ) 扩展了其近红外光纤光谱。 NIRQuest512-2.5响应范围覆盖900-2500纳米,非常适用于分辨率要求高的激光特性测量等应用。  NIRQuest512-2.5 采用滨松512像元的銦鎵化砷(InGaAs)阵列检测器,覆盖范围900-2500nm,比之前的256像元的近红外系列,显著提高了光学分辨率。依据用户选择的光栅配件和入射狭缝的尺寸,分辨率可以达到4.1 nm-6.3 nm(FWHM)。并且暗噪声更低,适宜于长时间的曝光积分。  光谱仪提供触发模块,当给光谱仪一个外触发信号时,光谱仪可以采集光谱信号;另外也可以通过光谱仪去触发其它硬件。基于 Java 开发的 SpectraSuite 软件平台,用于光谱仪的控制及操作。另外,NIRQuest512-2.5 可以和海洋光学的雷莫拉网络适配器(Remora Network Adapter)相衔接,使系统转变为一个可以通过以太网或现有的Wi-Fi连接的多用户光谱数据服务器。
  • 关注海洋健康 守护蔚蓝星球—奥豪斯ST20笔式测量仪和ST400D便携式溶解氧测定仪在海洋生物领域的应用
    “人类向海洋排放的污染物正在继续威胁着人们自身的安全与健康,威胁到野生动物的繁衍生息,也使全球各地的沿海地区自然风貌受到侵蚀。联合国秘书长潘基文曾呼吁:个人和团体都有义务保护海洋环境,认真管理海洋资源。” 对于海洋生物来说,溶解氧的含量与生物的生长、绝灭、复苏戚戚相关,也是影响生物形态、种类和数量的主要因素。因此研究海水溶解氧含量是目前研究海洋生物种类以及生存条件的一项重要指标。此次奥豪斯工程师跟随浙江海洋大学海洋生物课题组前往东山岛海域进行海洋生物的采样。在采样过程中,研究人员选用奥豪斯st20笔式测量仪和st400d便携式溶解氧测定仪,测试了采样点海水的ph值和溶解氧含量。海洋生物课题组的研究人员表示奥豪斯的水质仪表使用方便、读数精准、非常适合户外操作,给他们的户外研究提供了重要的信息。 ST20笔式测量仪 简洁的设计,简易的操作 坚固的外壳,可反复使用 防水防尘设计 ST400D溶氧仪 荧光原理,不需维护 操作友好,存储方便 校准简单,测量准确st系列产品秉承ohaus品牌的定位,满足市场上大众化需求,不仅实用,而且易于操作上手,质量可靠稳定,国产价格,进口品质是我们的不懈追求。
  • 1100万!中国科学院海洋研究所高分辨率原位质谱成像系统等采购项目
    一、项目基本情况1.项目编号:OITC-G230661389项目名称:中国科学院海洋研究所海洋生物微区原位代谢组学研究平台(区域中心)高分辨率原位质谱成像系统采购项目预算金额:550.0000000 万元(人民币)最高限价(如有):550.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包高分辨率原位质谱成像系1套550万人民币拟购置的高分辨率原位质谱成像系统主要用于小分子代谢物、短肽或蛋白的鉴定、定量及成像分析功能。具体而言,可以针对各种海洋生物细胞或组织开展各类分子如脂类(磷脂:PC、PE、SM、SE)、多肽、代谢物、药物及代谢产物等数百种分子的同时成像;能实现物质筛选与鉴定同时进行,目标分子可进行多级质谱分析,准确鉴定其组成与结构;实现高空间分辨率、高质量精度、高质量分辨率的非靶向性快速检测,且无需任何标记。合同签订后8个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后8个月内交货。本项目( 不接受 )联合体投标。2.项目编号:OITC-G230310496项目名称:中国科学院海洋研究所2023改善科研条件专项-深海岩芯原位分析测试平台微区X射线荧光光谱仪采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包微区X射线荧光光谱仪1套300万人民币可以对岩心、矿石、沉积物等进行多元素分布成像,还可以自动识别2000多种矿物,进行矿物分布成像、矿物分类统计,突破了以往数字化测试的局限,通过成像的方式带给科研人员元素和矿物分布信息。采购的设备需满足元素分布成像、矿物分布成像功能合同签订后5个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后5个月内交货。本项目( 不接受 )联合体投标。3.项目编号:OITC-G230610913项目名称:中国科学院海洋研究所2023改善科研条件专项-深海岩芯原位分析测试平台场发射扫描电镜及能谱系统采购项目预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:包号设备名称数量预算简要要求交货期交货地点第1包场发射扫描电镜及能谱系统1套250万人民币场发射扫描电镜及能谱系统基于扫描电镜的微观形貌和能谱得到的元素分布扫描,全自动快速得到目标材料样品(包括矿物岩心、海底岩石、沉积物、废石废物、冶炼残渣、金属制品、陶瓷器等)的夹杂物(矿物)分布与组成、元素分布信息和夹杂物(矿物)的颗粒尺寸等,配合相关设备,可进行化学和成分分析。合同签订后12个月内交货海洋研究所(青岛)投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。技术要求详见本文件第八部分。合同履行期限:合同签订后12个月内交货。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年07月04日 至 2023年07月11日,每天上午9:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:登录“东方招标”平台http://www.oitccas.com注册并购买。方式:登陆“东方招标平台”(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院海洋研究所     地址:青岛市市南区南海路7号         联系方式:王老师;0532-82898629       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:李雯、王军、郭宇涵; 010-68290530;010-68290508            3.项目联系方式项目联系人:王老师电 话:  0532-82898629
  • 国家海洋局东海分局海洋仪器仪表采购大单公布
    国家海洋局东海分局海洋仪器仪表采购及服务项目公告  2010年11月23日,中国政府采购网发布国家海洋局东海分局海洋仪器仪表采购及服务项目招标公告,详细内容如下:  1. 国家海洋局东海分局海洋仪器仪表采购及服务项目(招标编号:SITEN-SX6-NE10263)  2. 招标机构:上海市上投招标公司  地址:上海市威海路511号上海国际集团大厦317室  邮编:200041  联系人:王琴  电子信箱:wangqingood@yahoo.cn  电话:021-22191101  传真:021-63237316  开户银行:交通银行上海市分行  银行帐号:310066661010141114415  3. 招标单位:国家海洋局东海分局  地址:上海浦东新区东塘路630号  邮编:200137  联系人:鲍昌能  电话:021-58673248  (1)招标内容:  *包1:  船舶气象仪   1台/套  手持式臭氧计   1台/套  手持太阳分光光度计   1台/套  *包2:  多参数水质仪   1台/套  多参数水质测定仪   1台/套  包3:  单光束可见分光光度计   2台/套  双光束紫外可见分光光度计   1台/套  通风干湿表   1台/套  精密电子天平   1台/套  卡盖式采水器   2台/套  可见分光光度计   2台/套  台式酸度计   1台/套  紫外/可见分光光度计   1台/套  便携式电导率仪   2台/套  触摸式精巧型pH计   1台/套  生化培养箱   1台/套  万分之一电子天平   2台/套  单光束紫外分光光度计   3台/套  紫光分光光度计   1台/套  *包4:  海洋生态浮标   1台/套  包5:   *盐度计   3台/套  *高精度台式酸度计   1台/套  pH计   2台/套  便携式测风仪   8台/套  包6:   *倾倒区水深/地形快速测量仪器设备   1台/套  *温盐深剖面仪   2台/套  *单波束测深仪   2台/套  双频动态全球定位系统   2台/套  GPS   1台/套  *包7:  生物显微镜及显微成像系统   1台/套  体视显微镜   1台/套  生物显微镜   1台/套  包8:  无油隔膜真空泵   6台/套  调速多用振荡器   1台/套  分液漏斗震荡机   1台/套  抓斗式采泥器   1台/套  *超纯水器   1台/套  *包9:  营养盐自动分析仪自动稀释器   1台/套  固相萃取装置   1台/套  营养盐自动分析仪配件(总氮总磷高压锅消解器)   1台/套  *包10:  拖曳式多参数剖面测量系统   1台/套  (2) 开标时间:2010年12月13日10:00  (3)投标人必须具备以下条件  1)投标人为独立法人单位,注册资金在人民币100万元或以上   2)近3年内投标人必须具有销售同类设备的业绩和经验,并提供相应证明材料。  3)招标内容中,带“*”的设备须提供制造厂商的经销资格证明或授权函。上海市上投招标公司2010年11月23日
  • 积极推动海洋监测技术与仪器自主研发——访国家海洋技术中心于连生研究员
    进入21世纪以来,全球海洋经济快速发展,成为世界经济增长的重要组成部分和新的亮点。其中,2008年我国海洋生产总值29662亿元,占国内生产总值近10%。1996年海洋技术领域纳入863计划以来,我国海洋技术得到快速发展,海洋技术领域累计投入国拨经费近28亿元。仅“十一五”期间投入专项经费18.6亿元,在海洋油气勘探开发、海洋环境监测、海洋生物资源利用、深海探测等方面取得了一大批技术成果。  2010年4月29日-30日,“863计划海洋技术成果转化推广暨产品推介对接洽谈会”于青岛市召开。此次会上,国家海洋技术中心的于连生研究员展示了其研制的海洋监测仪器“光学悬沙粒径谱仪”、“激光悬沙测量传感器”。并且于洽谈会上,于连生研究员就“激光悬沙测量传感器”与国内知名的粒度仪厂商——丹东百特仪器有限公司签订了金额500万的技术转让协议。  近日,仪器信息网(以下简称:Instrument)采访了于连生研究员,就其科研成果与技术情况、产业转化、市场前景等相关问题进行了交流。国家海洋技术中心 于连生研究员海洋环境监测:了解、保护和合理利用海洋资源  Instrument:于连生研究员,您好!非常感谢您接受仪器信息网的采访。请您谈谈海洋环境监测重要意义?  于连生研究员:海洋是生命的摇篮,与人类的生存息息相关。海洋是地球上水循环的起点,海水受热蒸发,水蒸汽升到空中,再被气流带到陆地上来,使陆地上有降水和径流。陆地上有了水,生物才得到发展。海洋对地球上的气候起着调节作用,使气温变化缓和。所以说,海洋环境对陆地环境的形成也起着决定性的作用。  我个人认为:首先海洋环境是用表征海洋状况的特征参数来量化,这些参数主要包括地理参数,如海域面积、海岸线、水深等;水质参数,如盐度、溶解物、悬浮物等;海洋生物,如鱼虾贝类、海洋植物等;以及海底沉积物的数量、分布等。以上参数在海流、潮汐、风浪、光照的作用下不断的运动变化,海洋环境就是用这些参数及其运动规律来描述。  在正常的情况下,海洋参数运动变化,海洋生物生生息息,处于动态平衡状态,但是,由于外界因素,例如陆源污染、过度性开采等,打破了这种动态平衡,海洋环境就会遭到破坏。为了保护和合理利用海洋资源,首先要了解海洋,也就是对海洋环境参数进行监测,这就是海洋环境监测的意义所在。  Instrument:请您介绍一下,海洋环境监测与常规的环境检测有何不同?  于连生研究员:海洋环境监测与常规环境检测的不同是由于海洋环境与陆地环境不同造成的。其一,测量的参数不尽相同;其二,测量环境不同;其三,对仪器的要求不同。大家都知道,海水是咸的,具有腐蚀性;海上风浪巨大,破坏性强;海很深,每增加10米水深,就增加一个大气压,因此放在水下的仪器要耐高压;生活在海边的人都知道海草和海蛎子,它们都会在仪器上长,我们叫“生物附着”,这些都是海洋环境监测仪器要重点解决的特殊问题。  水中的悬浮颗粒、悬浮泥沙、微藻等是海洋环境参数之一,对它进行监测,是海洋环境监测的不可或缺的内容之一。悬浮泥沙的现场测量对研究泥沙运移规律,河口变迁、对航道疏浚、海中构筑物都有重要意义;微藻数量、种类测量对于赤潮研究具有重要价值。我们课题组研制的“光学悬沙粒径谱仪”、“激光悬沙测量传感器”就是测量海洋悬浮颗粒的仪器。“海洋仪器研制的信息法”:利用信息技术,将成熟技术移植到海洋仪器上  Instrument:请介绍一下您在海洋仪器研发方面的经验?  于连生研究员:研制海洋现场仪器是非常重要的。例如,我们国家的海洋泥沙研究在世界上还是处于先进地位的,但理论模型的研究超前于现场测量方法和测量仪器,没有现场测量仪器和测量结果,尤其是实时结果对模型的验证,理论是缺乏公信力的。从这个意义上说,我国迫切需要自主研制海洋监测仪器。  在仪器研发过程中,我遵循这样一条原则:研制海洋仪器,技术攻关点或重点关注点放在海洋环境的特殊性上,利用信息技术,充分地收集有用的成熟技术移植到海洋上,很好地完成了这种移植,也就多、快、好、省地完成了仪器研制。我把这种方法叫做“海洋仪器研制的信息法”。  Instrument:您研制的“光学悬浮沙粒径谱仪”,其性能优势及应用情况如何?  于连生研究员:“光学悬沙粒径谱仪”是一种可以放在海水中自动成像的数字显微镜,将这种仪器放在水里,它就会自动地将水中悬浮的颗粒拍下图像,将这些图像传到计算机里,通过分析,给出颗粒的大小、浓度。“光学悬浮沙粒径谱仪”可以自动拍摄悬浮于水中的1微米到100微米的颗粒,基本可以满足平均粒径在30微米到50微米的悬浮泥沙颗粒的测量需求。光学悬浮沙粒径谱仪  “光学悬沙粒径谱仪”就是一台可用于水下的数字显微镜,加上专用的颗粒图像分析软件,就构成了可用于水下的颗粒图像分析仪,863立项时主要是针对长江口的悬浮泥沙测量,所以叫“光学悬浮沙粒径谱仪”。这种仪器是我们第一个发明的,获得了国家发明专利。这种仪器国外还未见有关报导。  “光学悬浮沙粒径谱仪”已经在长江口、黄河口、辽河口、大连湾、鲅鱼圈等多个海区获得了大量现场资料,其关键技术已在磨料生产中成功应用,最近又获得了国家海洋公益性项目的支持,目标就是实现产品化,随着近年来数字成像技术的突飞猛进,相信在国家项目的支持下,具有独立知识产权的“光学悬浮沙粒径谱仪”不久就会形成批量生产能力。  Instrument:您研制“激光悬沙测量传感器”的研发过程、及其性能优势如何?  于连生研究员:运用“海洋仪器研制的信息法”,“激光悬沙测量传感器”就是将实验室的激光粒度仪移植到海水中,是一种可以放在水里测量悬浮颗粒的激光粒度仪。我们主要解决水下密封、防腐、自动工作等问题,而这些关键问题解决了,仪器也就基本做好了。仪器已经过了现场实验和比测,达到了预期目标。这种仪器在国内,我们是第一家,也申请了发明专利。激光悬沙测量传感器  Instrument:请介绍一下您编写的《光学悬浮沙粒径谱仪》海洋行业标准的相关情况?  于连生研究员:实际上,《光学悬浮沙粒径谱仪》海洋行业标准是针对显微图像法光学悬浮沙粒径谱仪和激光悬沙测量传感器的性能检验起草的标准。本标准将为检验该类仪器的性能参数如粒径测量范围、测量准确度、双峰分离、分布宽度等参数提供统一方法。因为这两种仪器有其共性,并且都用于现场悬浮颗粒测量,虽然方法不同,但测量参数相同,所以把它们的检验纳入到一个标准中,这样有利于比较。科研成果产业化:明确“用到哪里、怎么用、用的结果”  Instrument:除“光学悬沙粒径谱仪”、“激光悬沙测量传感器”外,您与企业合作的项目有哪些?  于连生研究员:以前与企业的合作主要是为企业提供声光器件和技术支持,说起来时间不短,如深圳大族激光公司成立最初,激光打标机的关键技术声光Q开关和驱动电源就是我提供的。中国大恒激光公司、桂林星辰公司等多家企事业单位都用过我为他们提供的声光器件和技术指导,包括国外声光器件修理。  Instrument:您认为我国科研成果产业化方面还存在哪些问题?  于连生研究员:科研与市场脱节,科研院所以争取到科研项目、科研经费为目标的现状是科研成果无法实现产业化的主要问题所在。  基础科学研究可以自由探索,但已有的成果要转化为产品,就不能自由探索,开拓市场,落实用户是成果向产品转化的关键,没有市场的产品是无法生存的。  我觉得科研成果能否转化为产品首先要明确用到哪里,怎么用,用的结果如何,得出了什么结论。  Instrument:请您介绍一下,您在实现科研成果产业化方面的经验?  于连生研究员:自“九五”以来我一直承担国家863计划海洋监测技术项目的研究。我觉得海洋仪器不同于其他产品,它的用户是国家,具有公益性特点,这样的仪器与市场上流通的商品具有明显的区别。  对于这类产品要针对国家需求,提出明确的目标,注重实用结果和得到的结论,就像气象预报,误报率少就是成功;因此国家的、明确的、可操作的、具体的目标要求是研制出高水平海洋监测仪器产品的关键,就像航天技术,国家的目标要求十分明确,任务完成的质量就非常容易判断。没有明确目标的探索性阶段要越短越好。于连生研究员科研团队:“松散的”,但高效的联合体  Instrument:请介绍一下,您的工作经历、取得了哪些科研成果、正在进行哪些方面的研究工作、下一步的科研工作重心?  于连生研究员:我1974年毕业于中国海洋大学分配到国家海洋技术中心。三十多年的科研工作主要分为三方面的内容:1、声光技术研究;2、海洋卫星;3、悬浮颗粒测量。  近几年的工作主要是完成863计划支持的“激光悬沙测量传感器”的研制、“光学悬浮沙粒径谱仪海洋行业标准的编写”,并承担了海洋公益性项目“海滨自动观测仪器检测技术与规范子课题-声学测波仪鉴定设备改造”和“我国近海海洋综合调查与评价(908专项)赤潮灾害发生规律、预警和防治对策研究子课题-全自动显微成像仪赤潮监测技术”的研究,这几项课题目前都在验收过程中。  今后,主要想完成《实验声光学》一书;借助863产业化对接和新的海洋公益性项目的支持,把光学悬浮沙粒径谱仪的产业化工作做好。  Instrument:最后,请您介绍一下国家海洋技术中心的情况?以及您领导的科研团队情况?  于连生研究员:国家海洋技术中心是国家海洋局下属的事业单位,主要为国家海洋局提供技术支撑。  我们的科研团队是一个“松散”的联合体,成员不光有海洋技术中心的在编人员,还有来自工厂的技术能手,来自大学的老师、在读博士、博士后,主要研究方向是声光技术及其在海洋环境监测中的应用。自“九五”开始,我们承担了5项863计划课题,1项海洋局课题,2项国家科研专项课题。在项目研制的过程中,始终与企业和实验场保持紧密的联系。这种联合扩大了人才空间,有效地集中了经费,避免了许多体制弊病,实践证明效率是高的。 后记  于连生研究员谈到与丹东百特仪器有限公司关于“激光悬沙测量传感器”的合作时,说,“目前,该转让工作正在有序进行,我们和丹东百特仪器有限公司有很好的合作基础,相信会成功的。”  于连生研究员谈到充分发挥科研成果的作用时,曾说到,一台新的测量仪器,可能还不稳定,不精确,但是可以作为教学实验仪器使用,或可为建立独具特色专业实验室提供很好的途径。而且,于连生研究员不是被动的等待成果的产业化,如其研制的“光学悬浮沙粒径谱仪”,在产业化之前已经获得了大量现场应用数据,那么一旦有了机遇,很快就会形成批量生产能力。  采访过程中,给编者印象最深的是贯穿于于连生研究员整个科研工作中的求真、严谨、务实精神。于连生研究员研制的每一项成果均根据实际需求来确定科研方向,也因此他的科研成果能很快得到推广应用,并解决海洋监测实际问题。这种定位于实际、定位于解决问题的求真务实科研精神,值得每一个科研工作者借鉴和思考。  采访编辑:刘丰秋  附录:于连生研究员简介  于连生,研究员,中国声学学会理事,高级会员,中国仪器仪表学会视听工程学会理事,天津声学学会理事;曾任中国声学学会超声电子学分会委员;天津激光学会理事。多年从事声光技术和海洋仪器研制,主持了多项国家科研攻关项目,曾获中科院青年奖励基金,海洋局、天津市、阜新市有关奖项。取得专利4项。发表论文50余篇。
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁 530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)。图2 海洋核安全评估的技术路线与展望Fig. 2 Technical route and prospect of marine nuclear safety assessment寻找人类核活动历史的可靠“档案馆”。海洋放射性核素的本底基线存在复杂的时空演化特征。然而,海洋放射性核素实际观测数据的时间和空间分辨率均十分欠缺,特别是在我国广大海域。冰芯、树轮、黄土、沉积柱、珊瑚礁是记录不同时空尺度环境变化的天然档案馆。特别指出,海洋中珊瑚礁具有年轮清晰、分辨率高、连续记录、固定生长等优点[48],是记录海洋放射性核素本底基线时空演化历史和追踪人类核活动历史的十分理想的档案馆[29, 49]。健全海洋放射性核素的基准/标准限值。活度限值是海洋核安全评估和管理的重要依据。出于人类健康的需求,国际上更多关注饮用水和食品中放射性核素的活度限值[40]。海洋为人类提供丰富的生物资源和重要的生态服务功能。出于海洋中非人类物种的保护与人类健康的综合需求,未来我国需要加强海洋中非人类物种的放射性核素基准/标准限值研究和制定工作[39]。探索长期低剂量生物辐射效应与风险。国际上对于低剂量辐射效应和危害仍然存在争议[50],较为缺乏实验室内受控观测和流行病学现场调查等证据[51],直接影响人类和非人类物种的剂量限值规定和管理。此外,海洋生物辐射剂量模型的构建和计算,还涉及代表生物的筛选、海洋生物富集和海洋食物链/网的传递等过程。在巨大且复杂的海洋生态环境系统中,这些过程又往往存在较大的物种差异性和海域特异性。因此,在海洋核安全技术与管理需求背景下,亟需开展适用于我国海域现状与发展需求的长期低剂量海洋生物辐射效应与风险研究。作为海洋大国,新时代中国明确提出加快建设海洋强国。海洋核安全是我国维护国家安全和人民生命健康、深度参与全球海洋治理以及构建海洋命运共同体的关键领域,亟需投入与滨海核电发展及应对海上核风险能力需求相匹配的研发力度, 以保障新时期我国海洋核安全,进一步丰富和完善现代化核安全监管体系,践行全面推进美丽中国建设需求。参考文献:[1] 于大鹏, 梁晔, 徐晓娟, 等. 我国核与辐射安全现状研究与探讨 [J]. 核安全, 2022, 21 (4): 12-18.[2] Sverdrup K, Kudela R. Investigating oceanography, 4th edition [M]. New York: McGraw Hill, 2023.[3] Buesseler K O. Fukushima and ocean radioactivity [J]. Oceanography, 2014, 27 (1): 92-105.[4] Lin W H, Mo M T, Yu K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018 [J]. Marine Pollution Bulletin, 2022, 176: 113476.[5] Smith J T, Wright S M, Cross M A, et al. Global analysis of the riverine transport of 90Sr and 137Cs [J]. Environmental science & technology, 2004, 38 (3): 850-857.[6] Lin W H, Chen L Q, Yu W, et al. Radioactive source terms for the Fukushima nuclear accident [J]. Science China: Earth Sciences, 2016, 59 (1): 214-222.[7] Casacuberta N, Smith J N. Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans [J]. Annual Review of Marine Science, 2022, 15(1): 203-221.[8] Song J M. Biogeochemical processes of biogenic elements in China marginal seas [M]. Berlin: Springer, 2010.[9] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究 [J]. 核安全, 2020, 19(5): 27-34.[10] 王茂杰, 郝丽娜, 徐晋, 等. 核电厂流出物监督性监测实践 [J]. 核安全, 2021, 20(3): 12-16.[11] Machida M, Iwata A, Yamada S, et al. Estimation of temporal variation of tritium inventory discharged from the port of Fukushima dai-ichi nuclear powerplant:analysis of the temporal variation and comparison with released tritium inventories from Japan and world major nuclear facilities [J]. Journal of Nuclear Science and Technology, 2023, 60(3): 258-276.[12] 林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对 [J]. 科学通报, 2021, 66(35): 4500-4509.[13] Wang F F, Men W, Yu T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the Northeast South China Sea in 2011–2015 [J]. Chemosphere, 2022: 133546.[14] Smith J, Marks N, Irwin T. The risks of radioactive wastewater release [J]. Science, 2023, 382(6666): 31-33.[15] 林武辉, 张翊邦, 余克服, 等. 2023年日本福岛核污水站在历史的十字路口 [J]. 环球财经, 2023, 267(2/3): 46-50.[16] Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima daiichi nuclear plant [J]. Marine Pollution Bulletin, 2021, 169: 112515.[17] Liu Y, Guo X-Q, Li S-W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations [J]. National science review, 2022, 9(1): 209.[18] Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of Environmental Radioactivity, 2010, 101(6): 426-437.[19] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展 [J]. 中国环境科学, 2015, 35(1): 269-276.[20] Waters C N, Syvitski J P M, Ga&lstrok uszka A, et al. Can nuclear weapons fallout mark the beginning of the anthropocene epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.[21] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern baltic sea ecosystem [J]. Oceanologia, 2013, 55(3): 485-517.[22] IAEA. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.[23] He P, Aldahan A, Possnert G, et al. A summary of global 129I in marine waters [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.[24] Wu J W, Sun J, Xiao X Y. An overview of current knowledge concerning the inventory and sources of plutonium in the China seas [J]. Marine Pollution Bulletin, 2020, 150: 110599.[25] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.[26] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069.[27] Lin W H, Feng Y, Yu K F, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway [J]. Marine Geology, 2020, 424: 106157.[28] Lin W H, Yu K F, Wang Y, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (10 a) by gamma spectrometry [J]. Quaternary Geochronology, 2021, 61: 101125.[29] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估 [J]. 地球科学进展, 2023, 38(3): 286-295.[30] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results [J]. Journal of environmental radioactivity, 2005, 81(1): 63-87.[31] Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H, 90Sr, 137Cs and (239,240) Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of environmental radioactivity, 2004, 76(1): 113-137.[32] Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal, 2004, 4: 200-215.[33] Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring, 2009, 11(1): 116-125.[34] Inomata Y, Aoyama M. Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer [J]. Earth Syst. Sci. Data, 2023, 15(5): 1969-2007.[35] 李培泉. 海洋放射性及其污染 [M]. 北京: 科学出版社, 1983.[36] 蔡福龙. 海洋放射生态学 [M]. 北京: 原子能出版社, 1997.[37] 李树庆, 祝汉民, 吴复寿, 等. 中国近海放射性水平 [M]. 北京: 海洋出版社, 1987.[38] 唐森铭, 商照荣. 中国近海海域环境放射性水平调查 [J]. 核安全, 2005, 4(2): 21-30.[39] 杜金秋, 王震, 林武辉, 等. 放射性核素水环境质量标准研究进展 [J]. 生态毒理学报, 2018, 13(5): 27-36.[40] Bradley F J, Pratt R M. Regulations. Poschl M, Nollet L M L. Radionuclide concentrations in food and the environment [M]. Boca Raton: CRC Press. 377-410, 2007. [41] Brown J, Alfonso B, Avila R, et al. The ERICA tool [J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371-1383.[42] 林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用 [C]. 福建平潭: 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会, 2014: 326-334.[43] TEPCO. Analysis of seafood [EB/OL]. (2023-6-5) [2023-6-13]. https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/2q/fish01_230605-j.pdf.[44] IAEA. Marine radioactivity information system (MARIS) [EB/OL]. (2014-12-28) [2023-11-13]. https://maris.iaea.org/explore.[45] NRA. Readings of seawater monitoring in off-shore sea area [EB/OL]. (2023-11-7) [2023-11-13]. https://radioactivity.nra.go.jp/en/list/292/list-1.html.[46] TEPCO. Analysis of radioactive substances around Fukushima daiichi nuclear power plant [EB/OL]. (2014-7-31) [2023-11-13]. https://www.tepco.co.jp/nu/fukushima-np/f1/smp/indexold-j.html. [47] METI. Progress status reports [EB/OL]. (2023-10-26) [2023-11-13]. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/progress_status.html.[48] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应 [J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172.[49] 林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比 [J]. 海洋学报, 2020, 42(10): 47-58.[50] Sutou S. Low-dose radiation effects [J]. Current Opinion in Toxicology, 2022, 30: 100329.[51] Lowe D, Roy L, Tabocchini M A, et al. Radiation dose rate effects: what is new and what is needed? [J]. Radiation and Environmental Biophysics, 2022, 61(4): 507-543.
  • 2973万!浙江省海洋科学院浙江省海洋灾害综合防治体系建设(浙江省海洋科学院)项目海洋生态灾害预警及应对气候变化检测能力提升采购项目
    一、项目基本情况项目编号:CTZB-2024060078项目名称:浙江省海洋科学院浙江省海洋灾害综合防治体系建设(浙江省海洋科学院)项目海洋生态灾害预警及应对气候变化检测能力提升预算金额(元):29730000最高限价(元):10439000,2021000,8740000,4700000,3830000采购需求: 标项一标项名称:海洋生态灾害监测预警检测设备能力提升检测分析设备数量:1预算金额(元):10439000简要规格描述或项目基本概况介绍、用途:电感耦合等离子体质谱仪、原子吸收分光光度计、三重四极杆气质联用仪、三重四极杆液质联用仪、同位素比质谱仪联用元素分析仪、叶绿素荧光测定仪、原子荧光光度计、气相色谱仪(ECD+FID)、气相色谱仪(ECD+FPD)、气相色谱-单四极杆质谱联用仪,具体内容详见招标文件。备注:采购依据:[2024]38291号、[2024]37548号、[2024]37545号;最高限价:10439000元;项目属性:货物项目;产地:部分接受进口产品。标项二标项名称:海洋生态灾害监测预警检测设备能力提升检测前处理及辅助设备数量:1预算金额(元):2021000简要规格描述或项目基本概况介绍、用途:微波消解仪、全自动快速溶剂萃取仪、快速溶剂萃取仪(手动)、全自动洗瓶机(大瓶)、全自动洗瓶机(精密玻器)、全自动定量浓缩仪、氮吹仪、高速离心机、旋转蒸发仪、超纯水仪、电子天平、分析天平(0.1mg/0.01mg)、分析天平(0.1mg)、除湿机、氢气发生器、沉积物打磨台,具体内容详见招标文件。备注:采购依据:[2024]37546号;最高限价:2021000元;项目属性:货物项目;产地:国产产品。标项三标项名称:海洋生态灾害监测预警检测设备能力提升调查设备数量:1预算金额(元):8740000简要规格描述或项目基本概况介绍、用途:闭合浮游生物网、绞车、自容式海流计、机载高精度激光测绘雷达系统、执照审定无人机电子设备、浮游生物泵、走航声学多普勒流速流向仪、温盐深测量仪、便携式多波束测深仪、多波束测深仪,具体内容详见招标文件。备注:采购依据:[2024]37543号、[2024]37544号、[2024]38291号;最高限价:8740000元;项目属性:货物项目;产地:部分接受进口产品。标项四标项名称:应对气候变化生态系统监测能力提升仪器设备采购数量:1预算金额(元):4700000简要规格描述或项目基本概况介绍、用途:基于水汽平衡和海气分压差法的海水和大气二氧化碳测量仪、基于涡动法的海气二氧化碳通量测量仪,具体内容详见招标文件。备注:采购依据:[2024]37989号;最高限价:4700000元;项目属性:货物项目;产地:接受进口产品。标项五标项名称:海洋生态灾害预警监测能力提升实验室环境设施升级改造数量:1预算金额(元):3830000简要规格描述或项目基本概况介绍、用途:实验室家具及空调设备系统、实验室检测能力提升配套服务,具体内容详见招标文件。备注:采购依据:[2024]37547号、[2024]37542号;最高限价:3830000元;项目属性:货物项目;产地:国产产品。合同履约期限:标项 1、2、3、4、5,按招标文件规定本项目(是)接受联合体投标。二、获取招标文件时间:/至2024年07月19日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外)地点(网址):浙江政府采购网(http://zfcg.czt.zj.gov.cn/)方式:投标人通过“浙江政府采购网”在线获取(招标公告下方选取“潜在供应商”处“获取采购文件”),不提供纸制版招标文件;投标人只有在“浙江政府采购网”完成获取招标文件申请并下载了招标文件后才视作依法获取招标文件;售价(元):0三、对本次采购提出询问、质疑、投诉,请按以下方式联系1.采购人信息名 称:浙江省海洋科学院地 址:浙江省杭州市西湖区益乐路20号传 真:/项目联系人(询问):王晓宇项目联系方式(询问):0571-88000865质疑联系人:谢芳质疑联系方式:0571-880008262.采购代理机构信息名 称:浙江省成套招标代理有限公司地 址:杭州市文晖路42号现代置业大厦西楼18层1804室传 真:/项目联系人(询问):徐均项目联系方式(询问):0571-85830191质疑联系人:冯东东质疑联系方式:0571-853312933.同级政府采购监督管理部门 名 称:浙江省财政厅政府采购监管处、浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室(快递仅限ems或顺丰) 传 真:/ 联 系 人:朱女士、王女士 监督投诉电话:0571-85252453政策咨询:何一平、冯华,0571-87058424、87055741预算金额未达100万元的采购项目,由采购人处理采购争议。若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线95763获取热线服务帮助。CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。
  • 国家海洋局东海分局海洋仪器仪表中标结果公示
    2010年11月23日,中国政府采购网发布国家海洋局东海分局海洋仪器仪表采购及服务项目招标公告。今天(12月14日),国家海洋局东海分局海洋仪器仪表采购及服务项目(1)评标工作已经完成,经评标委员会评审和招标人确认,现将中标结果公示如下:  一、招标人:国家海洋局东海分局  二、招标代理机构:上海市上投招标公司  三、项目名称:国家海洋局东海分局海洋仪器仪表采购及服务项目(1)  四、招标编号:SITEN-SX6-NE10263  包1:船舶气象仪、手持式臭氧计、手持太阳分光光度计  中标人:南京丹杰科技有限公司  中标金额:人民币329,600.00元  包2:多参数水质仪、多参数水质测定仪  中标人:上海泰恒科学仪器有限公司  中标金额:人民币73,400.00元  包3:单光束可见分光光度计等、双光束紫外可见分光光度计、通风干湿表、精密电子天平、卡盖式采水器、可见分光光度计、台式酸度计、紫外/可见分光光度计、便携式电导率仪、触摸式精巧型pH计、生化培养箱、万分之一电子天平、单光束紫外分光光度计、紫光分光光度计  中标人:南京丹杰科技有限公司  中标金额:人民币334,500.00元  包4:海洋生态浮标  流标(投标单位不足三家)  包5:盐度计、高精度台式酸度计、pH计、便携式测风仪  流标(投标单位不足三家)  包6:倾倒区水深/地形快速测量仪器设备、温盐深剖面仪、单波束测深仪、双频动态全球定位系统、GPS  中标人:劳雷(北京)仪器有限公司  中标金额:人民币1,130,000.00元  包7:生物显微镜及显微成像系统、体视显微镜、生物显微镜  中标人:上海乐仪仪器有限公司  中标金额:人民币223,993.00元  包8:无油隔膜真空泵、调速多用振荡器、分液漏斗震荡机、抓斗式采泥器、超纯水器  中标人:南京丹杰科技有限公司  中标金额:人民币99,960.00元  包9:营养盐自动分析仪自动稀释器、固相萃取装置、营养盐自动分析仪配件(总氮总磷高压锅消解器)  中标人:上海宝中盈仪器仪表有限公司  中标金额:人民币270,230.00元  包10:拖曳式多参数剖面测量系统  中标人:杭州应用声学研究所  中标金额:人民币2,220,000.00元  上海市上投招标公司  二零一零年十二月十四日
  • 海洋微塑料危害不容忽视
    p  塑料的发明,为人类生产生活带来极大便利。自20世纪50年代起,全球塑料年均增长率保持在8.5%。到2016年,全球塑料产量达3.35亿吨。我国是世界塑料生产和使用大国,且进一步增长的潜力十分巨大。/pp  然而,塑料在使用后,一部分由于收集处理不及时而进入环境,发生破碎、降解,给地表水、土壤和海洋等带来严重环境污染。近年来,我国开展的多次大洋和极地科考中,均在海洋中检测出微塑料。/pp  海洋微塑料究竟是什么?其危害何在?该如何防范、治理?/pp  国家海洋环境监测中心副主任王菊英长期从事海洋垃圾和微塑料方面研究。她介绍,学术界和管理者普遍认同,微塑料是小于5毫米的塑料颗粒,在各种海洋介质中均有存在,包括生物体。/pp  据自然资源部报道,我国载人潜水器“蛟龙号”去年从大洋深处带回了海洋生物样品。令人意想不到的是,在4500米水深下生活的海洋生物体内,竟检出了微塑料。今年初,自然资源部第一海洋研究所研究员孙承君等人在南极鲍威尔海盆开展科学考察。他们通过船载泵取得500升表层海水样本,用显微镜观察时,也发现有小于0.3毫米的微塑料。这是中国科学家首次在南极海域发现微塑料。/pp  根据全球科研人员的实地调查发现,从近海到大洋,从赤道到极地,从海洋表层到大洋深处,海洋微塑料无处不在。/pp  “不管是水体还是沉积物,从海表到海底,以及海洋沉积物中,都发现微塑料的存在。”王菊英表示,2017年他们实验室开展过相关研究,结果显示,约76%的鱼类肠道、消化道都检出有微塑料。/pp  不过王菊英指出,微塑料是一个新型环境问题,当前研究仍存在进一步拓展的空间,包括监测方法的标准化。目前,微塑料分析方法尚不统一,不同研究之间的可比性并不强。对此,学术界正在努力推出相应的标准化分析方法。目前,在大部分微塑料对生物体影响的实验室研究中,其浓度都高于实际环境浓度。而从非常高的实验室加标浓度外推实际的生物效应,仍存在一定不确定性。/pp  与大型塑料一样,海洋微塑料对地球生态环境也有负面影响。但据联合国粮农组织报道,目前尚无直接证据表明,通过食用海产品可以对人类健康产生影响。王菊英认为,关于微塑料对生态系统和人体健康的影响,目前仍在研究中,但其潜在影响不容小视。因为小于5毫米的微塑料颗粒,还能继续分解为更细的颗粒,对人体健康的影响需要格外关注。/pp  “它们本身含有增塑剂,并能从环境中吸附有毒有害物质。当被海鸟、鱼类、底栖动物等海洋生物摄食后,会损害海洋生物的消化道,或刺激其胃肠组织产生饱胀感而停止进食 其所携带的有毒有害物质也会对海洋生物产生不利影响。”王菊英介绍。/pp  微塑料是近年来国际社会高度关注的环境问题。2016年,联合国环境大会将海洋塑料垃圾和微塑料问题等同于全球气候变化等全球性重大环境问题,相关国家和环境组织还出台了行动措施和法规。/pp  中国是最早颁布限塑令的国家之一——禁止生产、销售和使用厚度小于0.025毫米的塑料袋。此外,国内相关海洋环保法律法规、条例、水污染防治行动计划等,也要求加强塑料陆源入海污染防控,严控塑料垃圾入海。/pp  王菊英表示,国内实施的生活垃圾分类制度方案有效减少了陆源和海源垃圾输入,固废特别是塑料废弃物的回收利用也从源头上防止陆源垃圾入海。/pp  就塑料回收利用率排名而言,欧盟30%,位居第一 中国25%,位居第二。而世界平均回收利用率是9%。“因此,中国在固废回收利用的相关措施上还是较为有力的。”王菊英说。/pp  近期实施发布的农业农村污染治理攻坚行动计划,明确提出了地膜回收要求,旨在进一步从源头上防止陆源塑料垃圾入海的输入。科技部则启动了重点研发专项,专门针对海洋微塑料的来源、分布和防治技术开展研究。相关部门也从2007年起实施业务化海洋垃圾监测,并于2016年开始监测海洋微塑料。此外,我国还积极提升公众意识,转变公众消费方式,降低一次性消费制品使用率。/pp  王菊英表示,今后将从研究方案、加强监测、科学评估、社会参与、宣传教育以及国际合作等6方面开展海洋微塑料污染防治 并应加强海洋垃圾监测,掌握海洋垃圾和微塑料分布规律,开展相关领域科学研究,更加科学地评估海洋垃圾的环境影响,特别是微塑料对海洋生态和人体健康的影响。“另外,还要加大社会参与垃圾分类的支持力度,加强塑料垃圾的回收和资源化利用 推动公众参与,转变消费方式 参与应对海洋垃圾和塑料污染的国际进程,积极推进全球海洋垃圾治理。”王菊英说。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ea627375-85ce-4938-91db-0ff6719e1d10.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论!/span/p
  • 482万!广东海洋大学计划采购高效液相色谱仪、凯氏定氮仪等仪器设备
    一、项目基本情况项目编号:M4400000707015065001项目名称:培育国家平台-海洋生物制品联合地方工程中心(2022年续建)项目采购方式:公开招标预算金额:4,822,620.00元采购需求:合同包1(培育国家平台-海洋生物制品联合地方工程中心(2022年续建)项目):合同包预算金额:4,822,620.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1教学专用仪器等温滴定微热量仪1(套)详见采购文件420,000.00-1-2教学专用仪器生物样品研磨仪1(台)详见采购文件79,800.00-1-3教学专用仪器超低温冰箱1(台)详见采购文件70,000.00-1-4教学专用仪器正置倒置一体荧光显微镜1(套)详见采购文件228,000.00-1-5教学专用仪器高效液相色谱仪1(套)详见采购文件143,000.00-1-6教学专用仪器全自动脂肪测定仪1(套)详见采购文件110,000.00-1-7教学专用仪器高通量真空平行浓缩仪1(套)详见采购文件240,800.00-1-8教学专用仪器发酵罐1(套)详见采购文件150,000.00-1-9教学专用仪器蛋白纯化系统1(套)详见采购文件243,000.00-1-10教学专用仪器凯氏定氮仪1(套)详见采购文件240,000.00-1-11教学专用仪器多通道数据采集仪1(套)详见采购文件163,000.00-1-12教学专用仪器中压制备色谱(多糖快速纯化系统)1(套)详见采购文件400,000.00-1-13教学专用仪器高效液相色谱仪2(套)详见采购文件993,600.00-1-14教学专用仪器流变仪1(套)详见采购文件470,000.00-1-15教学专用仪器离心机1(台)详见采购文件386,420.00-1-16教学专用仪器酶标仪1(台)详见采购文件485,000.00-本合同包不接受联合体投标合同履行期限:合同所约定的全部义务履行完毕之日止。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人,投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日当天前六个月中任意一个月在境内依法缴纳税收和社会保障资金的相关材料复印件,如依法免税和依法不需要缴纳社会保障资金的,应提供相应证明文件3)具有良好的商业信誉和健全的财务会计制度:提供2021年的财务状况报告复印件或银行出具的资信证明复印件。新成立公司可提供成立至今的月或季度财务状况报告复印件4)履行合同所必需的设备和专业技术能力:提供承诺函或填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)。2.落实政府采购政策需满足的资格要求:合同包1(培育国家平台-海洋生物制品联合地方工程中心(2022年续建)项目)落实政府采购政策需满足的资格要求如下:采购包不属于整体专门面向中小企业。3.本项目的特定资格要求:合同包1(培育国家平台-海洋生物制品联合地方工程中心(2022年续建)项目)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。(3)本项目不接受联合体投标。三、获取招标文件时间: 2022年08月20日 至 2022年08月26日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年09月09日 14时30分00秒 (北京时间)递交文件地点:广州市越秀区环市中路316号金鹰大厦10楼会议室开标地点:广州市越秀区环市中路316号金鹰大厦10楼会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.潜在投标人请同时在广东省机电设备招标有限公司广咨电子招投标交易平台网站(www.gzebid.cn)进行网上注册。网上注册:具体操作方法请浏览“广咨电子招投标交易平台平台服务办事指引网上注册指南”。咨询方式:网站客服(QQ):3151435402,热线电话:400-150-3001。5.项目事宜联系邮箱:gmetb3@163.com七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东海洋大学地 址:广东海洋大学联系方式:0759-23962112.采购代理机构信息名 称:广东省机电设备招标有限公司地 址:广州市越秀区环市中路316号金鹰大厦13楼联系方式:020-835470603.项目联系方式项目联系人:黄工,廖工电 话:020-83547060,020-83542319广东省机电设备招标有限公司2022年08月19日
  • 【微塑料】人类一手栽培的催命符 海洋中的“PM2.5”
    p  日前,澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布的一项报告再次引爆了“微塑料”这个议题。报告称,在澳东南部海域海底的沉积物中发现高浓度塑料微粒,很可能污染整个食物链。/pp  微塑料,直径小于5微米,细小到用肉眼难以发现它。也正因如此,它对海洋生物乃至人类皆产生了巨大的危害。联合国专家组(GESAMP)已将其列为海洋生物的“温柔杀手”,并指出其危害程度等同于大型海洋垃圾。/pp  但这一强大的劲敌确是人类一手栽培喂饱的,这些塑料微粒或来源于我们日常使用的化妆品、清洁用品中,或来源于纤维类衣物脱离出的细小颗粒,又或者来源于环境中的塑料垃圾,它们经过催化分解最终形成了塑料颗粒??可以说,海洋中的微塑料来源非常复杂,既有陆地河流、工业和生活污水、塑料垃圾等陆源输入,也有船舶运输、海上钻井平台等海源输入。/pp  微塑料逐渐为大众所知/pp  早在上世纪70年代,海洋微塑料污染的相关研究已经开展。/pp  2001年,一位国外科学家报道了其研究海域水体中,微塑料的密度每立方米约有上亿个,才逐步引起各国政府、媒体和研究者的广泛关注。/pp  2004年,英国科研人员在美国《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的研究论文,首次提出微塑料(Microplastic)这个概念。/pp  2014年,英美研究人员联合在《科学》杂志上发表的观点文章指出:微塑料已遍布整个海洋,而生物体中微塑料的污染状况以及造成的生态效应和健康风险是当前微塑料研究应着重关注的问题。/pp  2014年6月,联合国环境大会上提出了海洋废弃物和微塑料问题,并最终达成了“海洋塑料废弃物和微塑料决议”,提出开展有关海洋塑料废弃物和微塑料的研究。/pp  2015年,微塑料污染被列入环境与生态科学研究领域的第二大科学问题,并成为与全球气候变化、臭氧耗竭和海洋酸化并列的重大全球环境问题。/pp  微塑料的危害/pp  科学研究已经证实,海洋中的微塑料污染对海洋生物的生长、发育、躲避天敌和繁殖的能力皆有不同程度的影响。微塑料除了对海洋生物造成一定的危害,还通过食物链进入到更高等级的生物体内,并最终为人类所食用。/pp  威胁海洋生态/pp  中国一份关于海洋鱼类的调查显示,在20多种经济价值较高的常见鱼类中,90%的鱼类样本中都发现了微塑料。/pp  前不久,科学家首次拍摄了浮游生物摄入微塑料的一小段视频,视频形象地揭示了微塑料对海洋生物的影响,而不仅仅是停留在宣告阶段,它向全人类证实了,废弃的塑料确实可以进入海洋生物体内,并沿着食物链进行传递。/pp  威胁人类健康/pp  经过食物链的传递,那些“被微塑料”了的海洋生物,如鱼类、贝类等,最终流向人类的餐桌,而微塑料也因此而进入了人体。/pp  另外,研究专家已经证实,人类摄入微塑料也不仅仅是通过食用海洋生物。一个由墨西哥和荷兰科学家组成的研究小组通过在墨西哥洛斯佩泰尼斯生物圈保护区的实地研究首次证实,微塑料已经进入陆地食物链。/pp  他们表示,由于缺乏塑料回收和处理系统,洛斯佩泰尼斯的居民通常在焚烧塑料后将其掩埋到果园的地下,这就增加了这些塑料废弃物分裂为微塑料的风险。为了评估这种情况,研究人员对保护区中10个果园的土壤以及生活在土壤中的蚯蚓、居民饲养在果园里的母鸡的粪便和胃脏进行了分析,结果显示,在土壤里、蚯蚓体内、母鸡粪便和胃里都存在微塑料。不管是海洋生物还是陆地生物,如果人类长期摄入微塑料,很可能对身体健康构成威胁。/pp  微塑料延伸到哪了?/pp  北极/pp  研究人员发现,数以万亿计的微塑料颗粒出现在了北极的海冰中,每立方米的海冰中含有多达240个微塑料颗粒,这一分布密度是大太平洋垃圾漂浮带微塑料颗粒的2000倍。/pp  达特茅斯大学的材料学家兼工程师RachelObbard和她的同事通过样本估算指出,如果北极海冰全部融化,将会释放出7万亿多个微塑料片。/pp  南极海/pp  日本九州大学与东京海洋大学公布的调查结果显示,南极海也漂浮着“微塑料”。微塑料常见于人口密集的全球沿海地区,而在南极海发现被认为尚属首次。/pp  该项调查在澳大利亚与南极大陆间的5个地点实施。通过拉密孔网采集海面附近浮游生物的样本,在距离南极较近的2个地点发现大量塑料粒子,平均每吨海水中有0.05个至0.1个,经换算每平方公里约有14万至29万个,与北半球海洋平均10万个的数量不相上下。/pp  澳大利亚东南海域/pp  澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布报告称,在澳东南部海域海底沉积物中发现高浓度塑料微粒,很可能污染整个食物链。/pp  2015年,研究小组从新南威尔士州、维多利亚州、塔斯马尼亚州及南澳大利亚州共计42处地点采集海底沉积物样本,并发现平均每毫升沉积物中含超过3个塑料纤维或颗粒。/pp  日本海洋/pp  日本环境省发布消息称,在距本州和九州沿岸100公里至200公里海域发现了细微塑料漂浮物,可能会对生态系统造成不良影响。/pp  2014年,东京海洋大学和九州大学受环境省委托进行了调查。他们在本州和九州近海的45处地点采集了漂浮物,每1立方米海水中平均发现2.4个微塑料。环境省2010年至2012年在濑户内海实施调查时平均仅为0.4个,此次有22个地点超过了这一数值。此外,调查人员还对较大的漂浮垃圾进行了调查,结果发现其中有56%是可能会变成微塑料的石油化工制品。/pp  中国海域/pp  微塑料污染问题不仅仅存在于国外海域中,我国海域同样存在这一问题。中国国家海洋局调查显示,中国37个海域的海面漂浮垃圾和海滩垃圾中,塑料类占77%,并且86%—91%来自陆地。事实上,我国科学家早已证实在三亚海滩和南海浮游动物体内发现了大量微塑料。只不过,我国尚未对南海微塑料开展全面的调查研究。/pp  各国纷纷呼吁应对微塑料污染/pp  随着微塑料的危害性逐渐加剧升级,并为大众所熟知,各国政府也开始对此事备加关注。除了出台系列政策应对塑料垃圾之外,也出台了直接针对微塑料的系列措施,而报道最多的当属“呼吁禁止在化妆品等洗护用品中添加微塑料”。/pp  其中,美国政府已立法宣布禁止在化妆品和洗护用品中使用微塑料,成为全球第一个宣布此项禁令的国家。/pp  欧盟也已开始着手制定禁止在化妆品中使用微塑料的提案。/pp  2017年起,英国也禁止在化妆品以及洗护用品中使用微塑料。/pp  2017年3月份,瑞典环境大臣卡罗利娜· 斯科格在首届“波罗的海未来大会”上呼吁,波罗的海地区应该禁止化妆品中微塑料的使用,以减轻其对环境与人类的负面影响。/pp  在我国,国家重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”已于2016年底启动,中国科学家也开始呼吁禁止在个人护理品中添加用于深度清洁的微塑料颗粒。/pp  微塑料危害之大想必已不必多说,对于海洋生物而言,微塑料犹如海洋中的PM2.5,而对于人类而言,微塑料则犹如一道隐性催命符。因此,及早有效应对微塑料污染已迫在眉睫。而各国在解决微塑料问题上,应该抱团协作,共同努力。据了解,新成立的“西太平洋区域海洋微塑料研究项目”就将在建立机构和专家网络的基础上,发挥区域作用,引领这一主题的研究,从制定统一采样和分析方法学的角度出发,分析海洋微塑料的分布、来源、归趋,评估其对海洋生态系统的影响。/p
  • 海洋英雄榜—2011年度最受欢迎海洋光学产品大比武
    2011年,是美国海洋光学(Ocean Optics)进入中国的第5周年,也是海洋光学中国发展史上最重要的一年。在岁末辞旧迎新之际展望2012,我们有理由相信,作为微型便携式光纤光谱仪的发明者,海洋光学必将继续引领光谱业界潮流,为业界带来更多世界一流的光传感解决方案。2012年1月1日,海洋光学在仪器信息网首页与PE、安捷伦、赛默飞、岛津并列的厂商专栏开通。为了庆祝专栏上线,我们特举办本次&ldquo 海洋英雄榜&mdash &mdash 2011年度最受欢迎海洋光学产品大比武&rdquo 有奖评选活动。精彩大奖,等你来拿!活动链接:http://www.instrument.com.cn/custom/SH101234/20120105/评选时间:2012年1月1日-2012年2月29日 奖项设置:1. 最佳评论奖(3名) 奖品为价值500元的真皮钱包一个说出你的使用感受,给大家一个最具参考价值的意见,你的评论将让大家的选购更加简便! 2. 参与奖:一等奖:1名,奖品为价值500元的真皮钱包一个二等奖:10名,奖品为价值100元的精美限量版U盘一个幸运奖:100名,奖品为2012年海洋光学新版产品手册你的支持我们万分感谢,幸运的你既然畅所欲言,幸运女神又有什么理由不眷顾你呢?
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制