当前位置: 仪器信息网 > 行业主题 > >

海洋生物迪斯科蛤

仪器信息网海洋生物迪斯科蛤专题为您整合海洋生物迪斯科蛤相关的最新文章,在海洋生物迪斯科蛤专题,您不仅可以免费浏览海洋生物迪斯科蛤的资讯, 同时您还可以浏览海洋生物迪斯科蛤的相关资料、解决方案,参与社区海洋生物迪斯科蛤话题讨论。

海洋生物迪斯科蛤相关的资讯

  • 海螃蟹的“知行合一”记——奥豪斯水质分析仪器在海洋生物领域的应用
    海洋生物是一个有趣的科学话题,但是要深入研究,也需要很多的科学方法与设备。在系统的研究中,会包括洋生物鉴定、海洋生物养殖与海水监测和海洋生态学数据分析等。研究专家也可通过对海洋生态科技养殖场中的生物养殖条件进行研究,分析光照、温度、盐度、溶解氧含量、投料比例以及人工环境对生物生长所产生的影响。海螃蟹:你了解我吗? 图1.研究基地的海螃蟹养殖 螃蟹喜欢栖居在江河、湖泊的泥岸或滩涂的洞穴里,或隐匿在石砾和水草丛里。螃蟹掘穴一般选择在土质坚硬的陡岸,而不在平地上掘穴。通过这些依据,第一步养殖池塘的建设为海螃蟹的研究奠定了基础。在此基础上,生产研究人员需要研究人工配合饲料和天然饵料(水草、螺蚬、蚕蛹、杂鱼等)的投料比例以及时间安排,以在满足河蟹营养需要和促进河蟹正常蜕壳生长的基础上,达到提高饵料利用率和降低饲料成本的目的。海螃蟹最佳生长温度为17~32℃。适宜盐度是3.5%(对盐度适应范围广,能在淡水中生长,也能在盐度为35‰以上的海水中生存)。对低溶氧忍受力比较强,但溶氧含量不能低于2mg/L。适宜生长的pH范围为7.0~9.0。学徒在奥豪斯 辛瑞是一名来自美国的高中生,他在Midland School读九年级。这次他充分利用暑期时间,在浙江海洋大学陈永久教授的课题组进行了海洋生物学领域的系统学习。在陈永久教授的推荐下,辛瑞首先来到了美国OHAUS公司进行了水质分析仪表的系统学习。全面的了解了OHAUS公司的pH计以及溶解氧测定仪的原理以及使用。OHAUS公司是一家世界领先的为实验室、教育、工业和专业市场提供水质分析仪器、天平以及衡器产品的制造商。 图2.辛瑞在OHAUS公司学习产品操作 “知行合一”显身手 学习完OHAUS水质产品的理论知识和操作后,辛瑞随即进入浙江海洋大学陈永久教授的课题组投入到海洋环境检测系统的学习中,辛瑞充分利用了在OHAUS的学习,通过OHAUS的水质分析仪表,pH测试笔和溶解氧测定仪来获得他们所需的研究数据。 图3. 海螃蟹池塘pH测量 图4. 海螃蟹池塘溶解氧测量 经历了暑期这段时间的学习研究,辛瑞表示通过此次学习他接触到了一个全新的领域,不仅学到许多有关海洋生物方面的专业知识,同时也体验了一次海洋研究者的生活,体会他们研究中的艰辛与快乐。 在此次小主人公的实践中,全面使用了奥豪斯笔式、台式pH产品及便携式溶氧仪系列产品,奥豪斯是市面上少有的能够满足市场上大众化需求的走性价比路线的全系列常规电化学产品提供商,它不仅实用,而且易于操作上手,质量可靠稳定,国产价格、进口品质是我们的不懈追求。那么我们接下来看看奥豪斯产品的特性吧: 笔式pH计 简洁的设计,简易的操作ST系列测试笔设计简洁大方。电池已安装;电极头浸泡在保护帽中的湿润环境中,不需任何额外操作,即可随时使用。坚固的外壳,可反复使用ST系列测试笔外壳坚固,纽扣电池易于更换;6分钟无操作自动关机,保证更长时间使用。电极头可更换。防水防尘设计ST系列测试笔都是IP67防水防尘设计,标配腕带防止意外跌落。ST400D溶氧仪荧光原理,不需维护 最新的光学电极几乎不需维护,不需像电化学电极一样更换膜,或者预热操作;样品不需要搅拌即可测量。操作友好,存储方便 自动/手动终点,随时都可回显最后校准数据或存储数据;人体工程学设计可以让使用者非常方便的单手操作。校准简单,测量准确 校准简单方便,一次校准后可数月不需再次校准;自动大气压测量和补偿,自动温度补偿确保测量结果更加准确。ST5000台式pH计 设置便捷,功能强大 针对更为广泛的各种应用,本仪表提供了众多强大的功能,如大的存储容量,多种校准与测量模式,校准提醒,多种终点判定模式,时间与日期,连续测量功能,GLP测量功能等。显示清晰,操作直观 所有pH测量和校准相关的重要信息都清晰的显示在4.3寸的彩色大液晶屏上。一次简单触摸即可进行测量、校准,或者在不同测量模式间切换。坚固耐用,创新设计 IP54等级的防水防尘的仪表,标配的透明保护罩能让仪表适应更苛刻的实验室环境;创新的独立电极支架让操作更顺畅。RS232与USB接口便于数据输出。
  • 欧盟拟采取新的海洋生物毒素检测方法
    欧盟已确认,从2010年夏季开始,目前的海洋生物毒素生物检测法将被一套更为可靠的化学方法取代,即使用化学检测法取代小鼠生物检测法(MBA)来检测双壳贝类(如蚌类、海扇、牡蛎或扇贝)是否存在腹泻性贝类海洋毒素。  新检测机制预计于2011年7月实施。该提案已得到了欧盟食品链和动物卫生常设委员会(SCoFCAH)成员国的认可。该检测方法已由欧盟参考实验室认定对海洋生物毒素测定有效,其保证了对消费者健康的充分保护,而没有生物测定的缺点。  欧委会去年对MBA检测法的有效性提出了担忧。欧洲食品安全局的一项调查结论认为,MBA无法检测出大大低于EU限值浓度的毒素,因此不能用以监测亲脂性生物毒素的商业加工效果。  作为新检测方法的一部分,欧盟已提出了一项标准操作程序(SOP)。其目的是详细制定通过液相色谱-串联质谱(LC-MS/MS)法测定贝类毒素软海绵酸(OA)、蛤(扇贝)毒素(PTX)、氨代螺旋酸贝类毒(AZA)和虾夷扇贝毒素(YTX)族毒素的方法。  该方法可用于测定活体、冷冻和经处理的“被感染(spiked)和/或天然污染”软体贝类中的亲脂性海洋生物毒素。
  • 关注海洋健康 守护蔚蓝星球—奥豪斯ST20笔式测量仪和ST400D便携式溶解氧测定仪在海洋生物领域的应用
    “人类向海洋排放的污染物正在继续威胁着人们自身的安全与健康,威胁到野生动物的繁衍生息,也使全球各地的沿海地区自然风貌受到侵蚀。联合国秘书长潘基文曾呼吁:个人和团体都有义务保护海洋环境,认真管理海洋资源。” 对于海洋生物来说,溶解氧的含量与生物的生长、绝灭、复苏戚戚相关,也是影响生物形态、种类和数量的主要因素。因此研究海水溶解氧含量是目前研究海洋生物种类以及生存条件的一项重要指标。此次奥豪斯工程师跟随浙江海洋大学海洋生物课题组前往东山岛海域进行海洋生物的采样。在采样过程中,研究人员选用奥豪斯st20笔式测量仪和st400d便携式溶解氧测定仪,测试了采样点海水的ph值和溶解氧含量。海洋生物课题组的研究人员表示奥豪斯的水质仪表使用方便、读数精准、非常适合户外操作,给他们的户外研究提供了重要的信息。 ST20笔式测量仪 简洁的设计,简易的操作 坚固的外壳,可反复使用 防水防尘设计 ST400D溶氧仪 荧光原理,不需维护 操作友好,存储方便 校准简单,测量准确st系列产品秉承ohaus品牌的定位,满足市场上大众化需求,不仅实用,而且易于操作上手,质量可靠稳定,国产价格,进口品质是我们的不懈追求。
  • 青岛公共平台海洋生物仪器可全球共享
    “没想到鼠标一点就能找到我们所需要的科研设备,”新年伊始,青岛爱德检测科技有限公司负责人表示,他们通过登录青岛科技城刚刚开通的企业公共服务平台,与中科院生物能源所达成协议,用上了该所的荧光显微镜等实验设备,为公司节省了大批购买设备的资金。据悉,由青岛高科园管委建立的企业公共服务平台日前开通,该平台已收集共享仪器设备150余台,并针对园区海洋生物制药企业集中的特点,单独辟出“GMP生产线”板块,提供公共服务。  省钱上企业服务平台  要省钱,上科技城企业服务平台,这已经成为青岛科技城企业的一种意愿,不仅仅是青岛爱德检测科技有限公司。记者登录青岛科技城官方网站的企业服务平台板块看到,在这里注册登记的规模以上企业和重点中小企业达到110家,该平台根据青岛产业特点,将这些企业划分为家电电子、装备制造、生物医药、能源、新材料、轻工业和服务业七个子版块。  记者注意到,在每一个产业集群的设备资源库里,都有不少可以共享的设备。像在生物医药资源设备中,就包括气相色谱仪、高效液相色谱仪等。  目前,青岛高科园生物医药企业相对集中,但是产业规模小、实力弱的企业占据大多数。为缓解这些企业科技研发所需要的设备难题,本次投入运营的企业服务平台单独设立了“GMP生产线”板块。该板块依托青岛市首个生物公共技术服务平台——生物医用材料中试基地,为需要GMP标准环境的生物企业提供中试平台。  “我们这个GMP生产线设计了十万级、万级和局部百级不同净化级别的区域,为不同需求的生物医药企业提供服务,”据青岛高科园生物医用材料中试基地有关人士介绍,目前,已有青岛博益特生物材料有限公司、青岛剑桥湾生物医药科技有限公司等企业入驻基地并使用GMP生产线。此次在企业服务平台实现共享,就是希望借助这一平台扩大影响,吸引与更多的区域内中小生物医药企业的合作。  海洋生物仪器可全球共享  据悉,目前,青岛科技城公共服务平台共享设备达到151台,其中用于科研实验的仪器达到140台,主要用于生产的设备与生产线11套。由于该平台依托于科技城官网,在互联网上发布信息,因而平台共享的仪器信息可直达国内外。  “以海洋生物医药设备仪器共享平台为例,该平台已有30多家企业提供共享设备,像澳海生物、海大兰泰药业、海尔正大药业等药企的闲置设备信息都能在这里查到,”青岛高科园管委有关人士介绍,与此同时,该平台是国家火炬计划项目,其影响力和开放性更大,信息传播的速度更快,知晓的企业更多,这对于提升我市药企的设备利用率和降低设备使用方的费用支出都有利。  据青岛高科园管委有关负责人介绍,由于青岛科技城公共服务平台刚刚正式运营,其服务对象主要以园区企业为主,服务功能主要包括共享公共信息和科研仪器、生产及检测设备。就运营初期而言是足够了,但是下一步无论是服务对象,还是服务功能都需要进一步扩大。  “近期我们将把服务平台的覆盖范围扩大到所有规模以上企业,服务项目扩大到技术成果交易、人才流动等领域,”这位负责人表示,特别是在目前已经比较成熟的仪器设备共享领域,要尽早出台并实施辖区内仪器利用补贴政策,加大闲置设备的利用率,减轻企业的资金负担。
  • “863”计划4个重大海洋生物项目启动
    科技部“863”计划海洋技术领域办公室日前正式启动4个重大海洋生物项目,国拨经费总额达1.58亿元。  目前“十二五”“863”计划海洋技术领域已累计启动了6个海洋生物类主题项目,国拨经费总额达到2.29亿元。此次启动的项目包括深海与极地生物探测获取与应用技术系统研究、典型海洋生物重要功能基因开发与利用、海洋生态环境高通量生物检测技术开发、远洋渔业捕捞与加工关键技术研究等内容。  深海探测与作业、海洋油气勘探开发、海洋环境安全保障、海洋生物开发与利用四个方向是“十二五”“863”计划海洋技术领域发展的重点。
  • 青岛高新区呈现海洋生物医药新高地
    p  海洋生物制药是我国战略性新兴产业之一。近年来,青岛高新区大力发展海洋医疗医药产业,目前已形成国家百强药企方阵,在新药研发、医疗器材等领域不断创新,形成了聚集效应,打造出一条海洋特色生物医药产业链。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/d72f452b-2793-4d21-94ee-1b3184c4e573.jpg" title="NewsDataAction-4.jpeg"//pp  近日,位于青岛高新区的华仁太医药有限公司实验室内,研究人员正在用牡蛎制作一种用于人体补钙的碳酸钙胶囊。该公司商务招商总监程显蓉介绍,这种胶囊是一种天然的补钙剂,以牡蛎、贝壳为主要原料,经过高温煅烧,用现代新技术、新工艺制备而成,比普通的补钙剂更易于人体吸收。/pp  在青岛高新区的青岛明药堂医疗股份有限公司车间里,工作人员正在新加工一批医用口罩。这种口罩外观看似与普通口罩无异,但它却是由普通螃蟹壳制成。该公司工作人员韩超说:“该口罩中间的熔喷布含有甲壳素成分,不仅具备了普通口罩的被动吸附功能,还因为甲壳素中含有天然的海洋正电荷,能够吸附空气中带负电荷的尘埃粒子。”/pp  螃蟹壳、牡蛎贝壳、海带、海藻……这些普通海洋元素在青岛高新区蓝色生物医药产业园里摇身一变,则成了生物医药产品中独特的元素。谈到这种海洋特色的生物医药产品,青岛蓝色生物科技园发展有限责任公司总经理助理柳志明告诉记者,在青岛高新区,已经有多家企业,如明药堂、华仁太医、瑞思德等,通过提炼海洋生物中的成分,进行生物医药产品的生产和加工。/pp  据柳志明介绍,借助海洋经济快速发展的“东风”,青岛高新区蓝色生物医药产业园正在快速崛起成为青岛海洋生物医药的“新星”。目前,该区已吸引85家企业入驻,2017年总产值达到2.6亿元,创造了600多个就业岗位。2018年该园区计划引进150家左右的中小企业孵化,可创造2000个以上就业机会。/pp  筑巢引凤推动项目落户/pp  前不久,在青岛高新区蓝色生物医药产业园,青岛康立泰药业有限公司“千人计划”专家赵毅博士和她的研发团队迎来一件喜事:他们研制的生物新药“重组人白介素12注射液”获得国家食药监总局颁发的临床试验批件。该创新药对肿瘤患者放化疗具有全血象恢复、抑制肿瘤细胞生长、调节机体免疫力的作用,这对于癌症患者来说可谓福音。/pp  说到这一成果,青岛康立泰药业有限公司首席科学家赵毅喜上眉梢。“这款创新药获批进入临床研究,离不开我们研发团队人员的艰辛努力,离不开国家对于医药行业创新的政策支持。尤其自公司落户高新区以来,从‘人才特区奖’资助到日常各项服务管理,政府都为我们提供了极大的便利。”/pp  据了解,青岛高新区一直致力于聚焦医药龙头企业和高端人才的引进培育。据青岛高新区生物制药产业事业部部长耿凯介绍,为了进一步推动海洋生物制药产业的发展,高新区专门推出了一系列有针对性的支持政策,尤其是在引进高端人才方面下足了功夫,吸引了“千人计划”专家、回国的留学人员、海外归国人士等高端人才前来创业。目前,通过人才带动,高新区已累计引进医疗医药产业类项目110余个,总投资140亿元。/pp  平台建设助力企业发展/pp  记者了解到,为更好地服务企业,高新区相继搭建了青岛市生物医学工程与技术公共研发服务平台、青岛海洋生物医药产业技术创新战略联盟、青岛中医药公共研发平台等载体,搭建起科研专家、企业、各类服务机构间的互动沟通平台,优化和创新技术转移模式,建立多样化、多层次的自主研发与开放合作并存的创新模式。/pp  北科建蓝色生物医药产业园招商经理史奕钧向记者介绍,目前北科建蓝色生物医药产业园孵化中心已吸引83家创新企业入驻,入驻率超过70%,园区牵头成立的青岛市海洋生物医药产业技术创新战略联盟,引进了多位专家,成为半岛地区生物制药高端人才聚集的智慧高地和国内生物制药产业的发展范本。/pp  柳志明说:“今年以来,高新区利用自身的特色产业基地、载体、平台和政策,积极引领国内生物制药创新发展,并促成生物制药技术创新上、中、下游的对接与耦合,从更深层次、更广层面促进政产学研一体化,持续提升生物制药产业发展环境,丰富生物制药产业链条,有效加快了生物制药产业育成工程。”/p
  • 海洋生物微塑料检测方法及污染现状研究进展
    来源:《农业资源与环境学报》2022 年 06 期作者:李娟1,季超2,张芹1,汪星宇1,伍志强1,解玉鑫1,李嘉晴1,张皓森1,臧桐宇1, 郑文杰1*单位:1. 天津师范大学生命科学学院;2. 云南农业大学云南生物资源保护与利用国家重点实验室摘要海洋微塑料污染问题是全球研究热点,现有研究表明微塑料在海洋环境中无处不在,对海洋生态的威胁逐渐加重,伴随着海洋食品的兴起,人们也越来越重视微塑料污染对人体健康的危害。本文通过对海洋生物体内微塑料污染情况的概述,系统分析了微塑料对海洋生物造成的影响。主要针对微塑料检测的前处理方法以及组分的鉴定方法展开综述,对不同方法的优缺点进行比较,指出在微塑料检测研究中多种方法综合应用效果最佳。基于现阶段海洋微塑料的研究状况,从科学研究和管控方面讨论了目前研究中存在的问题,展望了未来的研究方向。结论与展望:微塑料已经成为全球海洋环境中的新兴污染物之一,获取海洋环境中微塑料丰度等信息的标准程序方案对于确定微塑料对海洋环境的污染情况和潜在影响至关重要。本文总结了海洋微塑料污染的现状,详细阐述了对样品进行消解和分离的常用方法,认为对于海洋生物体内微塑料的提取分离而言,碱液(KOH、NaOH 等)提取相较于其他提取液的回收效果更好。针对微塑料的鉴定分析方法,本文重点介绍了显微观察法、傅里叶变换红外光谱法、拉曼光谱法和热分析法,并讨论了多种分析方法的优缺点及各自的适用特点。目前而言,单一的分析方法很难对复杂的环境样品中的微塑料进行准确定性和定量研究,尤其对于尺寸小于1 mm 的微塑料,建议采用显微观察和光谱分析相结合的方法;而对于截距小于10 μm 的微塑料,拉曼光谱是更好的选择。微塑料的来源与人类活动息息相关,人类产生的塑料垃圾会通过排水系统、河流以及风的作用进入海洋生态系统,在其中产生累积效应,已有相关研究表明,微塑料可能是海洋生物多样性降低的重要因素之一。这一方面由于微塑料体积相对较小,易被海洋生物摄取并在其体内富集,对海洋生物的组织、循环系统造成有害影响;另一方面由于微塑料自身的物理和化学性质特殊,其表面易吸附污染物,成为污染物进入海洋生物体的载体,并可通过食物链进入人体,对人类产生潜在危害,但其作为载体的具体机制和转移途径鲜见报道。未来,微塑料相关研究可从以下几个方面进行:(1)目前塑料颗粒检测技术多样且发展迅速,但随着新产业新科技的发展,一些新的材料会产生微米级、纳米级等更小的塑料颗粒,因此,针对这些新材料的检测需要探索新的检测方法来实现。(2)现阶段微塑料的检测方法良莠不齐,各种方法检测结果的准确性有待进一步验证。为了更加全面准确地监测微塑料污染情况,应建立检测微塑料、评估微塑料污染风险的标准体系,标准化、规范化的微塑料检测流程,可保证微塑料污染风险评估的准确性,为维护海洋环境和生态安全提供理论支撑。(3)人们普遍认为粒径小于100 μm 的微塑料对海洋生物和人体的影响最大,但是微塑料不同的形态、大小及聚合物类型对海洋生物的风险仍缺少具体的参考标准,故建立评估微塑料污染风险的标准体系非常必要。微塑料危害并不仅限于微塑料本身,其表面富集的各类污染物的风险更大。通过微塑料摄入将有毒化学物质转移到生物群是一个值得重视的问题,然而现有的研究鲜少使用微塑料载体进行毒性研究。为进一步明确微塑料的物理性质和污染物的连锁效应,应加强对微塑料的吸附作用和污染物(如放射性重金属和抗生素)之间相互作用的研究。(4)目前全球不同区域的食品种类繁多,而大多数微塑料研究是针对鱼类、贝类等水生生物体内微塑料浓度、形态、大小和聚合物类型所开展,对加工食品中微塑料的研究不多,这使得人类通过食物摄入的微塑料总体数量很难估计。因此,今后的研究应加强对各类食品中微塑料提取鉴定方法以及定量分析方法的研究,为食品安全检测提供途径。
  • 三亚成立热带海洋生物技术研发中心
    3月14日电(记者程范淦)记者今天从三亚市有关部门获悉,该市近日成立热带海洋生物技术研发中心,加大对海洋生物资源研究开发的力度。  据了解,为了更好地保护和开发利用热带海洋生物资源,在水产南繁、热带海洋生物资源调查与评价、海洋生物增养殖、海洋环境保护与修复、海洋生物功能食品与药物、水产品加工等领域开展研究,促进地方海洋经济产业发展,三亚市南繁科学技术研究院在2009年筹建了热带海洋生物研究室,并在鱼类人工繁育、分子遗传育种、健康养殖技术研究与推广、南海海洋生物资源调查与收集等领域开展了部分工作。  三亚市热带海洋生物研发中心是以热带海洋生物研究室为基础,与中山大学水生经济动物研究所共建,目的是建立一个一流的海洋生物技术公共实验平台,充分发挥我国海洋科技人才优势,挖掘我国南海热带生物资源,大力发展海洋生物高科技,提升地方科研创新水平和科技成果转化能力,发展水产南繁、海洋养殖、海洋药业、海洋生物工程等海洋产业,促进地区经济结构调整升级和带动地区经济发展。  据悉,三亚市热带海洋生物研发中心还聘请了中国工程院院士、中山大学水生经济动物研究所所长林浩然为特聘专家。
  • 关于举办2021世界海洋科技大会—海洋生物医药产业技术发展论坛分会的通知
    关于举办2021世界海洋科技大会—海洋生物医药产业技术发展论坛分会的通知各有关学会、研究所、高校和企业:为促进我国海洋生物医药领域科技工作者交流与合作,展示海洋生物医药最新科研成果,推进海洋生物医药领域新理论、新技术和新成果应用,由中国科学技术协会和山东省人民政府主办“2021世界海洋科技大会”,由青岛市分析测试学会承办“海洋生物医药产业技术发展论坛”分会,论坛定于2021年10月27日在山东青岛召开。本届会议以“海洋生物医药产业技术发展”为主题,旨在促进各高校、科研院所、企事业单位的研究团队之间在海洋生物医药领域高质量、高水平开发利用、交流与合作,合力解决产业发展面临的重大问题,推动海洋生物医药高质量发展。在此,我们诚挚的邀请您参加本次论坛,、共享资源、共谋发展!一、论坛主题围绕海洋生物药物发展现状及战略发展方向,海洋药物活性及构效关系,海洋生物基因开发及海洋药物品种创新研制等进行研讨,对海洋生物医药研发重点提出战略发展建议,并将专家研究成果与企业对接,以促进海洋生物医药成果转化,推动我国海洋生物医药产业发展,助力海洋经济提质增效升级。二、时间和地点会议时间:2021 年10月27(周三)。 会议地点: 山东省青岛市市南区彰化路4号 青岛海滨花园大酒店海琴厅三、组织机构主办单位:中国科学技术协会 山东省人民政府 青岛市人民政府 青岛市科学技术协会承办单位:青岛市分析测试学会协办单位:中国农业科学研究院烟草研究所中国水产科学研究院黄海水产研究所中国科学院烟台海岸带研究所中国科学院青岛生物能源与过程研究所中国海洋大学海洋药物教育部重点实验室山东科技大学化学与生物工程学院青岛科技大学海洋科学与生物工程学院美国安捷伦科技(中国)有限公司青岛博瑞迪生物技术有限公司青岛浩澳环保科技有限公司大会主席:秦松顾问委员会:张学成,潘克厚、缪锦来、王斌、王克威、张士璀、刘建国、王琦、张忠锋、陈颢。学术委员会:秦松、于广利、牟海津、郑玉新、王斌贵、王晖、王鑫、陶家军、张全斌、张洪博、史大永、马翠萍、杨庆利、周顺、葛保胜、李福利、李宁、李义强、李兆新。四、会议日程议程时间内容会议主持08:00-09:00 会议签到一、开幕式09:00-09:10领导致辞青岛微藻产业学会李兆新09:10-09:20领导致辞二、学术报告会09:30-9:55中国海洋大学 于广利教授:《海洋功能糖与肠道微生物的互作关系研究》青岛微藻产业学会李福利09:55-10:20青岛大学 郑玉新教授:《海洋与公共卫生》10:20-10:45中国科学院海洋研究所 王斌贵研究员:《深海生物资源药用潜力初探》10:45-11:10美国安捷伦科技(中国)有限公司 王晖教授:《液质联用技术在生物医药中的应用》11:10-11:35中国海洋大学 牟海津教授:《海藻精深加工与高值化产业技术发展》11:35-12:00青岛海洋生物医药研究院王鑫教授:《海洋糖类的成药特性和潜在分子作用机制》12:00-13:00 午餐三、学术报告会14:00-14:25中国科学院烟台海岸带研究所 秦松研究员:《海岸带生物活性物质:从药源供应到精准应用》青岛市分析测试学会李宁14:25-14:50青岛博瑞迪生物技术有限公司 陶家军:《GBTS靶向测序技术在分子育种中的应用》14:50-15:15中国科学院海洋研究所 张全斌研究员:《从海藻化学研究到海洋药物的开发》15:30-15:55山东大学 史大永教授:《卤代海洋候选药物的设计、合成与成药性评价》青岛市生物工程学会李义强15:55-16:20中国水产科学研究院黄海水产研究所 李兆新研究员:《海洋贝类毒素检测及预警技术》16:20-16:45中国农业科学院烟草研究所 张洪博研究员:《烟草功能成分代谢调控与生物合成》五、报名方式1. 本次论坛不收取注册费。2. 本次报名采取网上注册报名,具体方式:进入“2021世界海洋科技大会”主页进行网上注册报名,网址:http://wmstc.svipmeeting.com/web/zh 报名截止日期:2021年10月25日六、注意事项1.代表往返交通、食宿费用自理。如需安排住宿,请提前与会务组联系。2. 因参会名额有限,凡报名取得参会资格的代表,务必确保如期参会。如因故无法参加,请于报名截止日期前联系会务组,主动取消参会资格。七、会务组 联系人:邢丽红,手机号:18053248327(微信手机同号) 李 宁,手机号:18661782090(微信手机同号) 李义强,手机号:13793207898葛保胜,手机号:13355329183李兆新,手机号:13953288175 青岛市分析测试学会 2021年9月30日
  • 2022中国生物医药创新合作大会暨海洋生物医药发展论坛
    2022中国生物医药创新合作大会暨海洋生物医药发展论坛2022年3月23-24日 中国深圳尊敬的各业界同仁:生物医药产业是全球新兴的高技术产业,受新冠疫情和全球大批“重磅药物"的专利集中到期等因素影响,中国制药企业将迎来巨大的发展机遇。预计2021年中国医药行业总产值将超过十万亿,位居全球第二。借助国家“蓝色经济”战略,中国海洋生物医药产业呈现出快速发展态势,是近年来海洋产业中增长较快的领域。据自然资源部数据,2020年中国海洋生物医药实现增加值451亿元,比上年增长8.0%。预计2021年中国海洋生物医药增加值将达486亿元。作为大湾区核心引擎城市之一,深圳市近年来瞄准生物医药领域世界先进水平,聚焦生物医药重点领域和关键技术,强化创新引领,致力于打造全球知名的生物科技创新中心与生物医药产业集聚地,生物医药产业规划布局走在国内前列。因此,由深圳市生命科学行业协会、深圳市细胞治疗技术协会、广州正和会展联合组织的“2022中国生物医药创新大会暨海洋生物医药发展论坛”于2022年3月23-24日在深圳隆重举行,同期举办第三届国际细胞治疗与抗衰老大会,将邀请100+权威领袖、1000+行业专家,分享最前沿的技术资讯、解读最新产业政策、全面链接产学研资多方平台。诚邀您三月相聚鹏城,共襄盛会!注:会议详情请查阅下文2022中国生物医药创新合作大会组委会2021年12月1、 组织架构1)主办单位:广州正和会展服务有限公司2)支持单位:深圳市生物医药促进会、深圳市细胞治疗技术协会、深圳市生命科学行业协会、深圳市生命科学与生物技术协会、广州市仪器行业协会、上海市室内和环境净化行业协会、上海市癌症康复俱乐部、上海实验室装备协会、上海生物医药行业协会、上海市生物医药科技发展中心、武汉市东湖国家自主创新示范区生物医药行业协会二、大会议题将涵盖政策研讨、产业投资 、临床研究&应用、 抗体药物、靶点筛选、医药创新、海洋生物医药、新型疫苗、基因治疗、溶瘤病毒、抗体药物等三、大会议题规划(实际议程以主办方最后公布为准)专题一、新型疫苗研发与应用mRNA:从基因到产品的结构要素、如何生产高品质mRNA药物原料、mRNA药物的新型开发模式及其优势、突破mRNA技术壁垒与疫苗药物创新、mRNA疫苗及药物CMC与质控产业链建设、重组疫苗与佐剂创新与产业化、腺病毒/流感病毒载体疫苗创新与产业化、圆桌讨论:中国如何快速推进新型疫苗技术产业化与国际接轨。专题二、新型抗体药物开发与靶点筛选新型生物技术药临床分析的挑战和重要考量、ADC药物 ARX788的临床研究进展、抗体药物偶联物研发平台与项目申报经验、生物药工艺开发及商业化生产探索/高表达细胞株构建与无血清培养基开发、QbD在抗体工艺开发中的应用、抗体药物生产质量管理经验分享、新一代抗体药物质量研究与控制。专题三、领跑者聚集,探索中国医药创新的新赛道如何加速新药创制与新药可及性、新药引进和监管政策上如何与国际接轨、临床价值导向与新药研发的关系、资本机构对创新药企的投资逻辑和洞察、本土创新药企发展、小分子创新药发现的一些新趋势、针对乳腺癌脑转移搭建的创新药专题四、海洋生物医药的发展机遇和对策海洋药物活性及构效关系、深海生物资源要用潜力探索、液质联用技术在生物医药中的应用、海藻精深加工与高值化产业技术发展、海洋糖类的成药特性和潜在分子作用机制、从药源供应到精准应用、GBTS靶向测序技术在分子育种中的应用专题五、基因治疗与溶瘤病毒基因编辑在生物医药领域的应用前景与挑战、基因治疗载体开发与质量控制、溶瘤病毒在实体瘤的治疗应用、快速支原体检测系统在基因疗法开发中的应用、基因治疗与溶溜病毒药学与工艺开发、溶溜病毒疗法的瓶颈及突破策略、基因治疗产业投资机会和如何破局4、 演讲嘉宾(历届,排名不分先后)韩忠朝—国家技术科学院院士;黄 海—复星凯特CEO;张 宇—中源协和细胞基因工程股份有限公司副总经理首席科学官;刘保池—全国卫生产业企业管理协会细胞治疗产业与临床研究分会会长 上海市(复旦大学附属)公共卫生临床中心普外科;姜 丹—深圳华大医学检验实验室主任:刘 韬—罗湖医院集团:周光前—深圳大学;陈俊辉—北京大学深圳医院介入与细胞治疗中心主任;于 力—深大总医院副院长血液肿瘤中心主任;华国强—丹望医疗科技上海有限公司首席科学家 CTO;李 刚—南方医科大学南方医院教授;李星南;上海昊佰生物科技有限公司首席科学家 CTO;刘默芳—中科院上海生命科学研究院生物化学与细胞生物学研究所研究组长(PI)、研究员倪;毛 化—弗若斯特沙利文大中华区合伙人兼董事,总经理等等五、参展范围1、生物技术与实验室设备:各类与技术制药,机械和包装设备,医药包装材料,实验室耗材和仪器,合同定制,环境监测,无菌隔离系统,无菌检测,微生物检测,感控产品细胞培养基,储存,冷冻,培养,冷链运输、净化与消毒等 2、生物医药公司:药物制剂、各类疫苗、药物研发机构及生产销售机构, CMO/CDMO/CRO等服务 3、其他相关:临床试验机构、医院、投资公司、政府园区及科研院校、咨询/媒体等 六、参会参展请联系公司:广州正和会展服务有限公司网址:www.ctae.cn 联系人:廖小姐电话:18023374070(微信同号)
  • 中国发布首个海洋生物全基因组序列图谱
    中国科学家31日在青岛宣布,他们绘制完成了牡蛎全基因组序列图谱,这是中国首次发布海洋生物的全基因组序列,也是世界上首张贝类全基因组序列图谱。  牡蛎全基因组序列图谱项目首席科学家张国范介绍说,根据绘制成功的牡蛎基因组序列图谱,发现牡蛎基因组由8亿个碱基对组成,大约包含2万个基因,基因组数据支持了海洋低等生物具有高度遗传多样性的结论。  据张国范介绍,牡蛎全基因组序列的完成对牡蛎养殖和减少牡蛎所带来的海洋生物污损具有重要应用价值,而且也标志着基于短序列的高杂合基因组拼接和组装技术获得重大突破。  牡蛎隶属软体动物门,共100余种,除极地地区的各大洲沿海均有分布,是目前人类世界上产量最大的海水养殖品种,年产值达到35亿美元,中国牡蛎年产量超过海水养殖产量的四分之一。  山东省科技厅副厅长李乃胜说,牡蛎全基因组序列图谱的绘制完成,使科研工作者可以在分子水平对生物的目标性状进行预先设计,有效解决常规育种方式中周期长和准确性低的问题,具有里程碑式的意义。同时,随着牡蛎基因组数据的深入挖掘,有可能改变牡蛎生活习性,使其更好地为人类所利用。  牡蛎全基因组序列图谱的完成也为研制和生产新材料奠定了基础。科研人员介绍说,牡蛎附着在礁石或者船舶上时的粘度很大,可能是世界上粘度最大的胶体,在牡蛎基因组中找到相关基因后,就可制成粘度很强的新材料。  基因组测序项目科技合作伙伴深圳华大基因研究院总监倪培相说,牡蛎全基因组序列图谱的完成也为高杂合物种的基因组测序奠定了基础。  张国范说,牡蛎全基因组序列图的绘制完成还可解答一系列科学之谜。&ldquo 例如,为何牡蛎具有极强的繁殖能力,但是绝大部分后代却都在出生后不久就死亡?这可从基因图中找到答案。&rdquo 他说。  牡蛎全基因组序列图谱绘制由中国科学院海洋研究所研究员张国范和美国新泽西州立大学教授郭希明于2008年5月发起,并成立了牡蛎基因组计划,历时两年,于今年7月底完成了绘制工作。  基因组是生物所携带遗传信息的总和,包括单倍体细胞核、细胞器或病毒粒子所包含的全部DNA分子或RNA分子。  人类基因组序列草图于2000年6月完成,发现人类基因由30亿个碱基对组成。从2000年至2009年,完成全基因组测序的物种从42个上升至1100个,每年平均增加118个。  目前,中国已完成了水稻、家蚕和家鸡等重要经济种类物种和大熊猫及藏羚羊等濒危物种的基因组测序。
  • 中国科学院实验海洋生物学重点实验室进行现场评估
    7月4日至5日,中国科学院生物局重点实验室评估团一行18人对实验海洋生物学重点实验室进行了现场评估,生物局处长刘杰主持会议。  4日召开的现场评估会上,中科院生命科学与生物技术局副局长苏荣辉首先致辞,并宣布了本次现场评估专家组名单。中科院海洋所所长孙松对评估专家组表示欢迎,并简要介绍了海洋所及实验海洋生物学重点实验室的基本情况。现场评估专家组组长王贵海研究员就本次评估内容进行了说明,并主持了学术报告会。本次现场评估通过重点实验室工作报告、学术报告和实验室现场考察等形式,对重点实验室的研究工作、科研成果、队伍建设、人才培养、合作交流与运行管理等方面进行了全面评估。评估会现场  实验海洋生物学重点实验室主任宋林生研究员作实验室工作报告,从实验室历史、定位、方向和目标,研究重点和内容、学科特点和优势,过去五年主要承担任务和研究进展,实验室运行管理情况、目前存在的问题和拟采取的措施等多方面进行了汇报。专家组认真听取了工作报告,并对重点实验室今后的发展提出了意见。  张国范研究员、相建海研究员、王广策研究员和王斌贵研究员分别作了题为“贝类的遗传改良与健康养殖”、“虾贝抗病的遗传分子学基础研究”、“大型海藻繁殖发育的光合机制以及产业化”和“海洋生物资源高值化利用的新途径与新产品”的学术报告,从不同的研究领域对重点实验室过去5年取得的研究进展进行了汇报。  5日上午,评估专家组对水族楼、标本馆、仪器室和实验室等进行了现场考察,对提供的评估材料的原始资料和档案进行了现场核查,并集中对实验室的总体定位和方向、承担课题和经费、代表性成果及水平、队伍结构和团队建设、实验室主任与学术带头人、人才培养、公用平台、运行管理、开放合作、存在问题等进行认真讨论和评议。
  • 泉州海洋生物产业研究院130.00万元采购发酵罐
    详细信息 泉州海洋生物产业研究院海洋生物资源提取线采购项目竞争性磋商 福建省-泉州市-石狮市 状态:公告 更新时间: 2023-08-07 泉州海洋生物产业研究院海洋生物资源提取线采购项目竞争性磋商 项目概况 海洋生物资源提取线采购项目 采购项目的潜在供应商应在福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼)获取采购文件,并于2023年08月18日 15点00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:TCZJCG(2023)FZ001 项目名称:海洋生物资源提取线采购项目 采购方式:竞争性磋商 预算金额:130.0000000 万元(人民币) 最高限价(如有):130.0000000 万元(人民币) 采购需求: 采购包1: 采购包1预算金额(元): 1300000 采购包1最高限价(元): 1300000 采购包1保证金金额(元): 26000 序号 标的名称 数量 所属行业 备注 1 酶解发酵罐 8台 工业 2 单层搅拌罐1 7台 3 刮板刮底罐1 1台 带压力容器证 4 单层搅拌罐2 2台 5 刮板刮底罐2 1台 带压力容器证 6 搅拌罐 2台 7 单层储罐1 1台 8 单层储罐2 2台 9 纯水设备 1套 10 超滤膜系统 1套 11 陶瓷复合膜 1套 合同履行期限:自合同签订之日起90日 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 进口产品:不适用 节能产品:适用,按照最新规定执行 环境标志产品:适用,按照最新规定执行 信息安全产品:适用,按照最新规定执行 信用记录: (1)供应商应在首次响应文件递交截止时间前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“供应商提供的查询结果”),供应商提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由磋商小组通过上述网站查询并打印供应商信用记录(以下简称:“磋商小组的查询结果”)。②供应商提供的查询结果与磋商小组的查询结果不一致的,以磋商小组的查询结果为准。③因上述网站原因导致磋商小组无法查询供应商信用记录的(磋商小组应将通过上述网站查询供应商信用记录时的原始页面打印后随采购文件一并存档),以供应商提供的查询结果为准。④查询结果存在供应商应被拒绝参与政府采购活动相关信息的,其资格审查不合格。 促进中小企业发展的相关政策: 采购包1:不专门面向中小企业采购。 3.本项目的特定资格要求:无 三、获取采购文件 时间:2023年08月07日 至 2023年08月14日,每天上午8:00至14:00,下午12:00至21:00。(北京时间,法定节假日除外) 地点:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 方式:凡有意参加磋商者,按照本项目磋商公告或更正公告(若有)规定的时间,在福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼)购买磋商文件。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2023年08月18日 15点00分(北京时间) 地点:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 五、开启 时间:2023年08月18日 15点00分(北京时间) 地点:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:泉州海洋生物产业研究院 地址:石狮市海宁路2023号石狮国际食品城BF-01 联系方式: 邹工 13636972996 2.采购代理机构信息 名 称:福建桃城工程造价咨询有限公司 地 址:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 联系方式:李工18059998383,林工15605911807 3.项目联系方式 项目联系人:林工 电 话: 15605911807 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:发酵罐 开标时间:null 预算金额:130.00万元 采购单位:泉州海洋生物产业研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:福建桃城工程造价咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 泉州海洋生物产业研究院海洋生物资源提取线采购项目竞争性磋商 福建省-泉州市-石狮市 状态:公告 更新时间: 2023-08-07 泉州海洋生物产业研究院海洋生物资源提取线采购项目竞争性磋商 项目概况 海洋生物资源提取线采购项目 采购项目的潜在供应商应在福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼)获取采购文件,并于2023年08月18日 15点00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:TCZJCG(2023)FZ001 项目名称:海洋生物资源提取线采购项目 采购方式:竞争性磋商 预算金额:130.0000000 万元(人民币) 最高限价(如有):130.0000000 万元(人民币) 采购需求: 采购包1: 采购包1预算金额(元): 1300000 采购包1最高限价(元): 1300000 采购包1保证金金额(元): 26000 序号 标的名称 数量 所属行业 备注 1 酶解发酵罐 8台 工业 2 单层搅拌罐1 7台 3 刮板刮底罐1 1台 带压力容器证 4 单层搅拌罐2 2台 5 刮板刮底罐2 1台 带压力容器证 6 搅拌罐 2台 7 单层储罐1 1台 8 单层储罐2 2台 9 纯水设备 1套 10 超滤膜系统 1套 11 陶瓷复合膜 1套 合同履行期限:自合同签订之日起90日 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 进口产品:不适用 节能产品:适用,按照最新规定执行 环境标志产品:适用,按照最新规定执行 信息安全产品:适用,按照最新规定执行 信用记录: (1)供应商应在首次响应文件递交截止时间前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“供应商提供的查询结果”),供应商提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由磋商小组通过上述网站查询并打印供应商信用记录(以下简称:“磋商小组的查询结果”)。②供应商提供的查询结果与磋商小组的查询结果不一致的,以磋商小组的查询结果为准。③因上述网站原因导致磋商小组无法查询供应商信用记录的(磋商小组应将通过上述网站查询供应商信用记录时的原始页面打印后随采购文件一并存档),以供应商提供的查询结果为准。④查询结果存在供应商应被拒绝参与政府采购活动相关信息的,其资格审查不合格。 促进中小企业发展的相关政策: 采购包1:不专门面向中小企业采购。 3.本项目的特定资格要求:无 三、获取采购文件 时间:2023年08月07日 至 2023年08月14日,每天上午8:00至14:00,下午12:00至21:00。(北京时间,法定节假日除外) 地点:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 方式:凡有意参加磋商者,按照本项目磋商公告或更正公告(若有)规定的时间,在福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼)购买磋商文件。 售价:¥200.0 元(人民币) 四、响应文件提交 截止时间:2023年08月18日 15点00分(北京时间) 地点:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 五、开启 时间:2023年08月18日 15点00分(北京时间) 地点:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 无 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:泉州海洋生物产业研究院 地址:石狮市海宁路2023号石狮国际食品城BF-01 联系方式: 邹工 13636972996 2.采购代理机构信息 名 称:福建桃城工程造价咨询有限公司 地 址:福建桃城工程造价咨询有限公司(泉州市洛江区万盛街85号万安里2号楼6楼) 联系方式:李工18059998383,林工15605911807 3.项目联系方式 项目联系人:林工 电 话: 15605911807
  • 福建重点发展海洋生物医药、海洋装备制造业
    福建省《关于加快海洋经济发展的若干意见》(下称《意见》)近日已提交省委九届五次全体会议重点研讨,近期有望出台。《意见》显示,福建海峡蓝色经济试验区的试点工作将于2013年全面启动 除了在项目用林、用地方面全力保障外,政府方面还拟对海洋龙头企业和成功上市的海洋企业给予资金奖励。  据悉,福建海峡蓝色经济试验区的建设目标是,到2015年福建省海洋生产总值达到7300亿,占全省地区生产总值的28%以上(2011年,全省海洋生产总值4419亿元,占全省地区生产总值的25.4%) 到2020年全面建成海洋经济强省。  瞄准海洋新兴产业  据了解,福建将瞄准海洋新兴产业,重点培育发展海洋生物医药、海洋工程装备制造、海水淡化与综合利用、邮轮游艇等产业,促进园区化、基地化发展。福建省委书记孙春兰提出,福建要立足良好的造船工业基础,适应世界海洋资源开发的需求,积极研发海洋石油平台、浮式生产系统、海洋石油开发专用船舶等,推进传统船舶工业向海洋工程装备制造业转型,积极推进台湾海峡油气资源的合作勘探。  据悉,打造中国东南沿海海洋工程装备总装基地,是福建发展海洋新兴产业的新目标之一。同时,福建也正加快厦门国际邮轮母港基地建设,推动厦漳泉游艇产业集群化发展,打造集游艇产品研发制造、交易服务、休闲运动为一体的中国游艇产业重要基地。目前,首钢已启动在隆教湾投资200亿元人民币的计划,将以游艇产业为核心,建设滨海旅游综合项目。  福建发展海洋经济将突出两岸的合作。据透露,闽台两地将重点在海洋新兴产业、港口物流、海洋旅游、海洋渔业、台湾海峡资源环境保护方面加强交流合作 构建平潭两岸海洋经济合作特殊区域,包括组建平潭海洋大学,平潭海岛开发与保护研究中心,加快引进高层次海洋人才。  优化港口资源配置  在基础设施上,福建将完善全省港口规划,优化港口功能定位与资源配置,福建可建10万-30万吨级深水泊位的岸线资源全国第一,接下来,福建将集中全省力量,把东南国际航运中心共同打造成各类航运要素集聚、具有较强国际竞争力的航运物流中心。  在政策支持上,福建副省长张志南表示,将设立规模不少于10亿元的省海洋经济发展专项资金,引导设立福建省蓝色产业投资基金,集中用于支持海洋经济发展的重点领域。此外对海洋龙头企业和成功上市的海洋企业给予资金奖励。
  • 南海海洋研究所热带海洋生物资源与生态重点实验室研究团队:痕量铝影响海洋碳循环与气候变化研究获进展
    近日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队联合德国赫姆霍兹基尔海洋研究中心、英国帝国理工学院、加拿大国立科学研究院等,采用痕量金属洁净培养技术、55Fe同位素示踪方法,开展了多项实验,发现痕量铝添加可以显著提高受铁限制硅藻的叶绿素合成速率、光合效率和生长率。该研究揭示了痕量铝有益于铁限制海洋硅藻叶绿素合成的新现象,为铁铝假说提供了新证据,也为在南大洋等铁限制海域开展海洋铝施肥负排放技术研究提供了重要基础。相关研究成果以Promoting effects of aluminum addition on chlorophyll biosynthesis and growth of two cultured iron-limited marine diatoms为题,发表在《湖沼与海洋》(Limnology and Oceanography)上。铝是地壳中含量最高的金属元素,普遍存在于各种环境与生物体。然而,目前尚未发现铝具有确切的生物学功能。铝在淡水和土壤中的浓度可达mmol/L,相较而言,海水中溶解铝的浓度要低几个数量级,常处于痕量水平。中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队从十多年前开始关注铝添加对海洋浮游植物生长的影响,开展了一系列现场和室内实验研究,发现痕量铝添加可促进海洋浮游植物固碳,增强生源碳向深海输出、埋藏封存,从而影响海洋碳汇效能,进而调节气候变化。有证据表明,过去80万年,通过沙尘沉降输入到南大洋的铝与铁通量与冰期-间冰期气候回旋存在密切关联。通常认为,南大洋浮游植物生长受铁限制,铁输入的变动被认为是调节碳汇与气候变化的关键因子。研究人员发现,铝与铁协同作用,很可能是南大洋等海域碳输出、埋藏的关键,因而提出了“铁铝假说”,指出铝与铁一样,可能是调控海洋碳循环和碳汇形成的关键因子,在冰期-间冰期气候变化过程发挥重要作用。研究团队证实痕量铝添加显著提高硅藻净固碳量,降低颗粒有机碳分解速率。根据铁铝假说,研究团队提出“海洋铝施肥”观点,认为这有可能发展成为潜在高效的负排放技术与方法,并预测南大洋等受铁限制的高营养盐低叶绿素海域是开展铝施肥及铁铝同时施肥的理想区域。然而,在大规模现场施肥实验之前,仍需要在不同时空尺度上检验海洋铝施肥的效能及其潜在环境影响。痕量铝添加如何影响铁限制浮游植物尤其是硅藻的生长,是需要解答的关键问题之一。这些结果表明,铝可能会促进叶绿素的生物合成,有利于叶绿素受限硅藻的光合效率和生长。我们推测,添加 Al 可通过促进超氧化物介导的细胞内叶绿素生物合成,提高细胞内铁的利用效率。研究工作得到国家留学基金、广东省自然科学基金、南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项等的支持。
  • 德公报称:日核泄漏不会对海洋生物造成长期污染
    德国负责渔业环境放射污染监测的约翰海因里希冯杜能研究所日前发表公报说,根据切尔诺贝利核事故取得的经验,从日本福岛第一核电站泄漏的放射性物质不会对鱼类等海洋生物造成长期污染。  该研究所根据日本公布的有关数据推测,福岛核电站泄漏的放射性污染物近日未出现明显变化,其成份包括半衰期为两年的铯134、半衰期为30年的铯137和半衰期大约为8天的碘131。由于碘131很快就会衰变为没有放射性的氙同位素氙131,所以值得关注的主要是半衰期较长的铯污染物。  该研究所说,切尔诺贝利核事故发生后,德国在过去25年中就事故产生的放射性污染物对邻近的大西洋和波罗的海海域鱼类的影响开展了持续监测,发现核事故产生的放射性污染物在水流循环好的海域很快会被稀释。在事故发生后第二年,德国有关海域就已检测不到核事故造成的铯污染。  研究人员因而推断,通过福岛核电站排出的冷却水以及因空气流动被带入太平洋海域的放射性污染物很快会被大量流动的海水稀释至检测不到的程度。
  • 我国自主研制的多类海洋生物化学原位传感器搭载水下滑翔机顺利完成海试
    近日,由中国科学院西安光机所吴国俊研究员牵头,联合青岛海洋科技中心、国家海洋技术中心、厦门大学、自然资源部第二海洋研究所等多家科研机构联合承担的某国家重点研发计划项目取得重要进展。项目将自主研制的多类海洋生物化学原位传感器(硝酸盐、叶绿素、多环芳烃、溶解氧、下行辐照度等)搭载国产“海燕”水下滑翔机在南海西沙海槽盆地区域顺利完成海试,成功实现了高时空分辨率的海洋环境长期原位观测,连续获取最大深度达1000米的生化参量深海剖面17个,有效验证了温度、压力等环境因素对参数观测的影响、传感器长期漂移、深海光学探头高集成度封装等多项关键技术。这是我国首次通过水下滑翔机搭载自研传感器的方式获取深海生物化学剖面数据。 水下移动平台搭载传感器是同时满足多学科、多参数同步海洋观测以及多过程、多界面、多尺度综合观测的重要手段。本项目正是利用这种试验手段,实现大范围、高时空分辨率生物化学剖面参数获取,以此填补跨学科、跨尺度观测空白,丰富我国海洋科学研究方式,为复杂的全球系统提供新的理解。此外,联合团队所研制的适合移动观测的海洋生物化学传感器为首创,这将显著提升我国海洋自主观测能力。突破的传感器多项关键技术,对于推动国产海洋高端传感器产业化应用提供了坚实基础。 本次海试同步进行了与国际先进传感器(Aanderaa4330、SeaOWL等)的比测,剖面浓度变化趋势、拐点深度和绝对浓度等比测结果吻合度高。后续联合团队将深入开展BGC-Argo/BGC-Glider两类示范应用。海试现场(图片来源于中国科学院西安光学精密机械研究所)部分比测数据(图片来源于中国科学院西安光学精密机械研究所)
  • 909万!中国水产科学研究院南海水产研究所热带海洋生物养护与利用研究中心公共实验平台仪器设备采购项目
    一、项目基本情况项目编号:1210-2441YDZB7303项目名称:热带海洋生物养护与利用研究中心公共实验平台仪器设备购置预算金额:909.890000 万元(人民币)最高限价(如有):909.890000 万元(人民币)采购需求:(1)项目内容:包组号采购标的名称是否核心产品是否允许进口产品数量包组最高限价(万元)交货期11全自动高倍体视显微镜是1台310自合同签订生效之日起150天内完成供货、系统集成、安装调试、培训、验收并交付采购人使用。2激光扫描共聚焦显微镜是1台3高速大通量基因扩增系统(梯度PCR仪)是是1套(5台)4便携式流式细胞分析系统是1套21多参数自容式水质仪是是1台155.69自合同签订生效之日起150天内完成供货、系统集成、安装调试、培训、验收并交付采购人使用。2深海拖网多功能监控系统是1套3自容式鱼探仪收发器是1台4宽频探鱼仪是1台31粒径分析仪是1台238.40自合同签订生效之日起150天内完成供货、系统集成、安装调试、培训、验收并交付采购人使用。2热成像智能航拍无人机系统1套3气质联用仪是1台4超高速全自动氨基酸分析仪是1台5微量紫外分光光度计是是1台41便携式CTD是2台205.80自合同签订生效之日起150天内完成供货、系统集成、安装调试、培训、验收并交付采购人使用。2超微量核酸蛋白测定仪是是1台3荧光定量PCR系统是1套4杜马斯定氮分析仪1台5液相色谱原子荧光联用仪1台6蛋白分离系统1台7旋转蒸发仪1台8真空离心浓缩仪1台9超高压灭菌仪1台10真空微波干燥机1台(2)采购项目技术规格、参数及要求:详见招标文件第三章《用户需求书》。(3)本项目部分标的物允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。(4)本项目共分4个包组,除包组有特殊要求外,招标文件所规定的条款均适用于所有包组。投标人须以包组为单位对包组内的所有货物和服务进行整体投标,任何只对其中一部分内容进行的投标都被视为无效投标。本项目允许兼投兼中。合同履行期限:自合同生效之日起至合同全部权利义务履行完毕之日止。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年06月01日 至 2024年06月07日,每天上午9:00至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:广州市天河北路626号保利中宇广场A座25楼方式:现场领购或线上领购售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国水产科学研究院南海水产研究所     地址:广州市新港西路231号        联系方式:罗先生,020-89108355      2.采购代理机构信息名 称:广东有德招标采购有限公司            地 址:广州市天河北路626号保利中宇广场A座25楼            联系方式:李小姐,020-83625516            3.项目联系方式项目联系人:凌小姐电 话:  020-83625516
  • 上海希美代理Biosense海洋生物学试剂
    Biosense是一家生产海洋生物学试剂的公司。以下为主要产品: Prod.no.NameClone/IdentityFormatQuantityV01002402-096Salmonid Vtg Biomarker ELISA kit Semi-quantitative96 wellsV01002402-480Salmonid Vtg Biomarker ELISA kit Semi-quantitative480 wellsV01008402-096 Zebrafish vitellogenin ELISA kit Pre-coated plates  quantitative sandwich96 wellsV01008402-480 Zebrafish vitellogenin ELISA kit Pre-coated plates  quantitative sandwich480 wellsV01003402-096 carp vitellogenin ELISA kit Pre-coated plates quantitative sandwich96 wellsV01003402-480carp vitellogenin ELISA kit Pre-coated plates quantitative sandwich480 wellsV01004402-096 rainbow trout vitellogenin ELISA kit Pre-coated plates quantitative sandwich96 wellsV01004402-480 rainbow trout vitellogenin ELISA kit Pre-coated plates quantitative sandwich480 wellsV01013403-096 Medaka vitellogenin ELISA kit Pre-coated plates  quantitative sandwich96 wellsV01013403-480 Medaka vitellogenin ELISA kit Pre-coated plates  quantitative sandwich480 wellsV01018401-096Fathead minnow vitellogenin ELISA kit Pre-coated plates quantitative sandwich96 wellsV01018401-480 Fathead minnow vitellogenin ELISA kit Pre-coated plates quantitative sandwich480 wellsB00400402-096 Biomarker ELISA component Kit MAb GAM-HRP Semi-quantitative96 wellsB00400402-480 Biomarker ELISA component Kit MAb GAM-HRP Semi-quantitative480 wellsB00400404-096Biomarker ELISA component Kit PAb GAR-HRP Semi-quantitative96 wellsB00400404-480 Biomarker ELISA component Kit PAb GAR-HRP Semi-quantitative480 wellsA31300401-096 ASP ELISA kit (Amnesic Shellfish Poison)  quantitative competitive96 wellsV01040101-100 monoclonal mouse anti-bird vitellogenin ND-3C3 Purified100 &mu lV01040101-500 monoclonal mouse anti-bird vitellogenin ND-3C3 Purified500 &mu lV01040102-100 monoclonal mouse anti-bird vitellogeninND-3G6Purified100 &mu lV01040102-500 monoclonal mouse anti-bird vitellogeninND-3G6Purified500 &mu lV01041101-100 monoclonal mouse anti-alligator vitellogeninND-1E8Purified100 &mu lV01041101-500 monoclonal mouse anti-alligator vitellogeninND-1E8Purified500 &mu lV01402101-100monoclonal mouse anti-salmon vitellogeninBN-5Purified100 &mu lV01402101-500 monoclonal mouse anti-salmon vitellogeninBN-5Purified500 &mu lV01402102-100 monoclonal mouse anti-salmon vitellogenin KB-1Purified100 &mu lV01402102-500 monoclonal mouse anti-salmon vitellogenin KB-1Purified500 &mu lV01403101-100 monoclonal mouse anti-carp vitellogeninND-2D3Purified100 &mu lV01403101-500 monoclonal mouse anti-carp vitellogeninND-2D3Purified500 &mu lV01405101-100 monoclonal mouse anti-striped bass vitellogenin ND-1C8Purified100 &mu lV01405101-500monoclonal mouse anti-striped bass vitellogenin ND-1C8Purified500 &mu lV01405102-100 monoclonal mouse anti-striped bass vitellogeninND-3G2Purified100 &mu lV01405102-500 monoclonal mouse anti-striped bass vitellogeninND-3G2Purified500 &mu lV01407101-100 monoclonal mouse anti-killifish vitellogeninND-5F8Purified100 &mu lV01407101-500monoclonal mouse anti-killifish vitellogeninND-5F8Purified500 &mu lV01408101-100 monoclonal mouse anti-zebrafish vitellogeninJE-10D4Purified100 &mu lV01408101-500 monoclonal mouse anti-zebrafish vitellogeninJE-10D4Purified500 &mu lV01408102-100 monoclonal mouse anti-zebrafish vitellogeninJE-2A6Purified100 &mu lV01408102-500 monoclonal mouse anti-zebrafish vitellogeninJE-2A6Purified500 &mu lV01408103-100monoclonal mouse anti-zebrafish vitellogeninJE-8D6Purified100 &mu lV01408103-500monoclonal mouse anti-zebrafish vitellogeninJE-8D6Purified500 &mu lV01413101-100monoclonal mouse anti-medaka vitellogeninCK-4B3Purified100 &mu lV01413101-500 monoclonal mouse anti-medaka vitellogeninCK-4B3Purified500 &mu lV01413102-100monoclonal mouse anti-medaka vitellogeninCK-1H11Purified100 &mu lV01413102-500monoclonal mouse anti-medaka vitellogeninCK-1H11Purified500 &mu lV01414101-100monoclonal mouse anti-gulf sturgeon vitellogeninND-1H2Purified100 &mu lV01414101-500monoclonal mouse anti-gulf sturgeon vitellogeninND-1H2Purified500 &mu lV01415101-100monoclonal mouse anti-shepshead minnow vitellogeninND-5C9Purified100 &mu lV01415101-500monoclonal mouse anti-shepshead minnow vitellogeninND-5C9Purified500 &mu lV01416101-100monoclonal mouse anti-brown bullhead vitellogeninND-1D12Purified100 &mu lV01416101-500monoclonal mouse anti-brown bullhead vitellogeninND-1D12Purified500 &mu lV01402201-100polyclonal rabbit anti-salmon vitellogeninAA-1Purified100 &mu lV01402201-500 polyclonal rabbit anti-salmon vitellogeninAA-1Purified 500 &mu lV01406201-100polyclonal rabbit anti-cod vitellogeninCS-1 Purified100 &mu lV01406201-500 polyclonal rabbit anti-cod vitellogeninCS-1 Purified500 &mu lV01408201-100polyclonal rabbit anti-zebrafish vitellogeninDR-264Purified100 &mu lV01408201-500polyclonal rabbit anti-zebrafish vitellogeninDR-264Purified500 &mu lV01409201-100 polyclonal rabbit anti-arctic char vitellogeninPO-1Purified100 &mu lV01409201-500polyclonal rabbit anti-arctic char vitellogeninPO-1Purified500 &mu lV01410201-100polyclonal rabbit anti-sea bream vitellogeninPO-2Purified100 &mu lV01410201-500 polyclonal rabbit anti-sea bream vitellogeninPO-2Purified500 &mu lV01411201-100polyclonal rabbit anti-turbot vitellogeninCS-2Purified100 &mu lV01411201-500 polyclonal rabbit anti-turbot vitellogeninCS-2Purified500 &mu lV01412201-100 polyclonal rabbit anti-wolffish vitellogeninCS-3Purified100 &mu lV01412201-500polyclonal rabbit anti-wolffish vitellogeninCS-3Purified500 &mu lV01417201-100 polyclonal rabbit anti-stickleback vitellogeninGA-306Purified100 &mu lV01417201-500polyclonal rabbit anti-stickleback vitellogeninGA-306Purified500 &mu l
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁 530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)。图2 海洋核安全评估的技术路线与展望Fig. 2 Technical route and prospect of marine nuclear safety assessment寻找人类核活动历史的可靠“档案馆”。海洋放射性核素的本底基线存在复杂的时空演化特征。然而,海洋放射性核素实际观测数据的时间和空间分辨率均十分欠缺,特别是在我国广大海域。冰芯、树轮、黄土、沉积柱、珊瑚礁是记录不同时空尺度环境变化的天然档案馆。特别指出,海洋中珊瑚礁具有年轮清晰、分辨率高、连续记录、固定生长等优点[48],是记录海洋放射性核素本底基线时空演化历史和追踪人类核活动历史的十分理想的档案馆[29, 49]。健全海洋放射性核素的基准/标准限值。活度限值是海洋核安全评估和管理的重要依据。出于人类健康的需求,国际上更多关注饮用水和食品中放射性核素的活度限值[40]。海洋为人类提供丰富的生物资源和重要的生态服务功能。出于海洋中非人类物种的保护与人类健康的综合需求,未来我国需要加强海洋中非人类物种的放射性核素基准/标准限值研究和制定工作[39]。探索长期低剂量生物辐射效应与风险。国际上对于低剂量辐射效应和危害仍然存在争议[50],较为缺乏实验室内受控观测和流行病学现场调查等证据[51],直接影响人类和非人类物种的剂量限值规定和管理。此外,海洋生物辐射剂量模型的构建和计算,还涉及代表生物的筛选、海洋生物富集和海洋食物链/网的传递等过程。在巨大且复杂的海洋生态环境系统中,这些过程又往往存在较大的物种差异性和海域特异性。因此,在海洋核安全技术与管理需求背景下,亟需开展适用于我国海域现状与发展需求的长期低剂量海洋生物辐射效应与风险研究。作为海洋大国,新时代中国明确提出加快建设海洋强国。海洋核安全是我国维护国家安全和人民生命健康、深度参与全球海洋治理以及构建海洋命运共同体的关键领域,亟需投入与滨海核电发展及应对海上核风险能力需求相匹配的研发力度, 以保障新时期我国海洋核安全,进一步丰富和完善现代化核安全监管体系,践行全面推进美丽中国建设需求。参考文献:[1] 于大鹏, 梁晔, 徐晓娟, 等. 我国核与辐射安全现状研究与探讨 [J]. 核安全, 2022, 21 (4): 12-18.[2] Sverdrup K, Kudela R. Investigating oceanography, 4th edition [M]. New York: McGraw Hill, 2023.[3] Buesseler K O. Fukushima and ocean radioactivity [J]. Oceanography, 2014, 27 (1): 92-105.[4] Lin W H, Mo M T, Yu K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018 [J]. Marine Pollution Bulletin, 2022, 176: 113476.[5] Smith J T, Wright S M, Cross M A, et al. Global analysis of the riverine transport of 90Sr and 137Cs [J]. Environmental science & technology, 2004, 38 (3): 850-857.[6] Lin W H, Chen L Q, Yu W, et al. Radioactive source terms for the Fukushima nuclear accident [J]. Science China: Earth Sciences, 2016, 59 (1): 214-222.[7] Casacuberta N, Smith J N. Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans [J]. Annual Review of Marine Science, 2022, 15(1): 203-221.[8] Song J M. Biogeochemical processes of biogenic elements in China marginal seas [M]. Berlin: Springer, 2010.[9] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究 [J]. 核安全, 2020, 19(5): 27-34.[10] 王茂杰, 郝丽娜, 徐晋, 等. 核电厂流出物监督性监测实践 [J]. 核安全, 2021, 20(3): 12-16.[11] Machida M, Iwata A, Yamada S, et al. Estimation of temporal variation of tritium inventory discharged from the port of Fukushima dai-ichi nuclear powerplant:analysis of the temporal variation and comparison with released tritium inventories from Japan and world major nuclear facilities [J]. Journal of Nuclear Science and Technology, 2023, 60(3): 258-276.[12] 林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对 [J]. 科学通报, 2021, 66(35): 4500-4509.[13] Wang F F, Men W, Yu T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the Northeast South China Sea in 2011–2015 [J]. Chemosphere, 2022: 133546.[14] Smith J, Marks N, Irwin T. The risks of radioactive wastewater release [J]. Science, 2023, 382(6666): 31-33.[15] 林武辉, 张翊邦, 余克服, 等. 2023年日本福岛核污水站在历史的十字路口 [J]. 环球财经, 2023, 267(2/3): 46-50.[16] Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima daiichi nuclear plant [J]. Marine Pollution Bulletin, 2021, 169: 112515.[17] Liu Y, Guo X-Q, Li S-W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations [J]. National science review, 2022, 9(1): 209.[18] Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of Environmental Radioactivity, 2010, 101(6): 426-437.[19] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展 [J]. 中国环境科学, 2015, 35(1): 269-276.[20] Waters C N, Syvitski J P M, Ga&lstrok uszka A, et al. Can nuclear weapons fallout mark the beginning of the anthropocene epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.[21] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern baltic sea ecosystem [J]. Oceanologia, 2013, 55(3): 485-517.[22] IAEA. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.[23] He P, Aldahan A, Possnert G, et al. A summary of global 129I in marine waters [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.[24] Wu J W, Sun J, Xiao X Y. An overview of current knowledge concerning the inventory and sources of plutonium in the China seas [J]. Marine Pollution Bulletin, 2020, 150: 110599.[25] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.[26] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069.[27] Lin W H, Feng Y, Yu K F, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway [J]. Marine Geology, 2020, 424: 106157.[28] Lin W H, Yu K F, Wang Y, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (10 a) by gamma spectrometry [J]. Quaternary Geochronology, 2021, 61: 101125.[29] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估 [J]. 地球科学进展, 2023, 38(3): 286-295.[30] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results [J]. Journal of environmental radioactivity, 2005, 81(1): 63-87.[31] Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H, 90Sr, 137Cs and (239,240) Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of environmental radioactivity, 2004, 76(1): 113-137.[32] Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal, 2004, 4: 200-215.[33] Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring, 2009, 11(1): 116-125.[34] Inomata Y, Aoyama M. Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer [J]. Earth Syst. Sci. Data, 2023, 15(5): 1969-2007.[35] 李培泉. 海洋放射性及其污染 [M]. 北京: 科学出版社, 1983.[36] 蔡福龙. 海洋放射生态学 [M]. 北京: 原子能出版社, 1997.[37] 李树庆, 祝汉民, 吴复寿, 等. 中国近海放射性水平 [M]. 北京: 海洋出版社, 1987.[38] 唐森铭, 商照荣. 中国近海海域环境放射性水平调查 [J]. 核安全, 2005, 4(2): 21-30.[39] 杜金秋, 王震, 林武辉, 等. 放射性核素水环境质量标准研究进展 [J]. 生态毒理学报, 2018, 13(5): 27-36.[40] Bradley F J, Pratt R M. Regulations. Poschl M, Nollet L M L. Radionuclide concentrations in food and the environment [M]. Boca Raton: CRC Press. 377-410, 2007. [41] Brown J, Alfonso B, Avila R, et al. The ERICA tool [J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371-1383.[42] 林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用 [C]. 福建平潭: 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会, 2014: 326-334.[43] TEPCO. Analysis of seafood [EB/OL]. (2023-6-5) [2023-6-13]. https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/2q/fish01_230605-j.pdf.[44] IAEA. Marine radioactivity information system (MARIS) [EB/OL]. (2014-12-28) [2023-11-13]. https://maris.iaea.org/explore.[45] NRA. Readings of seawater monitoring in off-shore sea area [EB/OL]. (2023-11-7) [2023-11-13]. https://radioactivity.nra.go.jp/en/list/292/list-1.html.[46] TEPCO. Analysis of radioactive substances around Fukushima daiichi nuclear power plant [EB/OL]. (2014-7-31) [2023-11-13]. https://www.tepco.co.jp/nu/fukushima-np/f1/smp/indexold-j.html. [47] METI. Progress status reports [EB/OL]. (2023-10-26) [2023-11-13]. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/progress_status.html.[48] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应 [J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172.[49] 林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比 [J]. 海洋学报, 2020, 42(10): 47-58.[50] Sutou S. Low-dose radiation effects [J]. Current Opinion in Toxicology, 2022, 30: 100329.[51] Lowe D, Roy L, Tabocchini M A, et al. Radiation dose rate effects: what is new and what is needed? [J]. Radiation and Environmental Biophysics, 2022, 61(4): 507-543.
  • 环境部海洋司司长柯昶:加强入海排污口溯源整治技术培训
    入海排污口溯源整治一直是海洋保护与监测工作的重要抓手。入海排污口连通陆地和海洋,是污染物排海的重要途径,数量大、类型多、情况复杂、动态变化快,精细化管理的困难较大,是近岸海域生态环境保护的监管难点。近日,环境部海洋生态环境司司长柯昶在接受记者采访时表示,今年海洋生态环境司将按照稳中求进的原则,坚持系统观念,从三个主要方面推动《重点海域综合治理攻坚战行动方案》各项任务落实落地:一是组织流域海域局和相关部属单位指导攻坚范围内的“2+24”沿海城市制定实施方案,突出精准治污、科学治污、依法治污,将攻坚战各项目标任务逐级分解细化为具体的落实举措,科学把握攻坚计划和工作节奏,共同推进落实落地;二是编制印发驻点帮扶工作方案,组织部属相关单位深入沿海城市一线扎实开展驻点技术帮扶,协助地方贯彻落实好攻坚战各项任务要求,逐步补齐基础能力短板;三是加强技术培训和试点示范,加强入海排污口溯源整治等重点难点任务的技术培训,选择部分地方开展试点示范。针对入海排污口污染物监测技术,仪器信息网邀请到生态环境部直属单位——国家海洋监测中心胡展铭高级工程师,基于“十四五”海洋生态规划,在4月21日进行时长40分钟的报告,与听众在线答疑互动,诚邀参会!点此免费报名参会届时,将有赛莱默、山东省科学院海洋仪器仪表研究所副研究员带来精彩技术分享!郭英田老师,将从三个方面作精彩分享,讲解赛莱默专业解决方案:1.海洋近岸监测中多参数仪器的性能要求,便携式取样和在线监测中遇到的一些问题2.介绍赛莱默用于海洋监测的水质多参数仪ProDSS和EXO仪器特点 3.赛莱默多参数仪在近岸海洋监测的实际应用孔祥峰老师,将围绕海洋生态新型传感器及仪器装备,讲解最新成果,分享海洋生物传感器、海水多参数传感器等多种水质传感器的研发过程,以及将传感器集成于无人船、浮标等环境监测系统的应用案例。 系列会议预告:4月28日,“海洋生态环境保护与监测主题系列会——之海洋生态环境监测技术”主题网络研讨会,3位专家聚焦海洋微塑料、海洋重金属、海洋水质监测等,参会请点击蓝字:我要免费参会如无法报名,可微信联系:13717560883,备注“海洋”。
  • 中国海洋大学食品学院携手华质泰科共建“原位质谱合作实验室”
    仪器信息网讯 近日,中国海洋大学食品科学与工程学院与华质泰科生物技术(北京)有限公司签署战略合作协议,共建“原位电离质谱应用开发联合实验室”。这是继北京大学之后,第二个高端原位质谱联合实验室成功落地。  原位质谱技术带来质谱分析领域的重大变革。十余年来,在食品、药品、材料、物证、环境、临床检验等领域得到了广泛的关注和急剧上升的应用 在空间组学、新药研发、中药研究、分子成像、精准医疗等前沿领域也发挥着重要作用。  中国海洋大学食品科学与工程学院是我国食品科学领域(特别是水产品加工贮藏工程)最具品牌影响力和竞争力的高等学府之一。学院的定位是:以海洋生物资源加工利用为显著特色,基础与应用研究协调发展的高水平研究型学院。华质泰科是国内较早开展原位电离质谱技术推广并产业化的团队之一,拥有非常专业的技术和市场队伍,致力于引领行业领域中的实时科学发展潮流。  联合实验室旨在搭建一个促进交流、强化合作的高端原位质谱技术平台,利用 AP/MALDI、DART、SICRIT、DESI、LESA 及其他原位质谱相关技术,探索与开发快速、绿色、原位和实时的检测方案,以及准确、先进的快筛、定量、成像分析技术。双方期望通过合作实验室的设立,促进原位质谱技术在食品组学、食品营养、食品安全、海产加工等领域的应用,加快原位电离基础理论研究和产业化开发步伐,进一步推动我国原位电离质谱及原位检测行业的蓬勃发展!  合作实验室签约暨揭牌仪式合影  出席签约暨揭牌仪式的嘉宾有:中国海洋大学食品科学与工程学院院长薛长湖教授,副院长常耀光教授,学院分析测试中心米娜莎主任,合作实验室学术负责人徐杰教授,实验师丛培旭博士 华质泰科总裁兼首席技术官刘春胜博士、首席顾问官汤跃庆先生、技术部经理段晓琨先生 青岛市分析测试学会王琦秘书长,青岛海关技术中心牛增元研究员、崔鹤研究员,大港海关高建国教授以及中国海洋大学化工学院李苓高级工程师,并邀请到中科院上海有机所王昊阳副研究员,南京师范大学李红丽副教授带来精彩的原位质谱学术报告。  签约现场 中国海洋大学食品科学与工程学院院长薛长湖教授(左)和华质泰科总裁兼首席技术官刘春胜博士(右)  共同揭牌  中国海洋大学食品科学与工程学院 徐杰 教授  本次签约暨揭牌仪式由徐杰教授主持,合作实验室的建立获得了学院领导的大力支持,原位质谱的引入为课题研究拓展了新的思路,对后续合作应用开发充满期待。  中国海洋大学食品科学与工程学院院长 薛长湖 教授  中国海洋大学食品科学与工程学院院长薛长湖教授在揭牌仪式上致辞。薛院长表示,中国海洋大学食品学院主要从事海洋食品的研究,如何把海大食品学院分析检测中心与其他大学区分开来,就是要有自己的特色,不但研究课题有特色,设备也要有特色。原位质谱是学院长期以来想要做的研究工作,海洋食品和陆地食品大不相同,海洋脂质组学和原位质谱二者结合,期待有新的发现和表达。  华质泰科首席顾问官 汤跃庆先生  华质泰科首席顾问官汤跃庆先生说,从早期的原位质谱 DART,到现在 SICRIT 的推广应用,不仅凝结了华质泰科人的信仰,更聚集了各位研究者的智慧与执着。中国海洋大学与华质泰科原位质谱推广团队成立联合实验室,标志着新型质谱技术与海洋生物研发的深度结合。毋庸置疑,只有仪器工程技术团队与应用研发团队紧密结合,才能更好地解决技术转化的痛点问题。华质泰科一直致力于打造产业方案平台公司,有了中国海洋大学食品学院的鼎力加持,必将在海洋生物研发方案上打造出一流团队与平台,结出丰硕的成果。  青岛市分析测试学会 王琦 秘书长  王琦秘书长代表青岛市分析测试学会对揭牌仪式表示祝贺!原位电离质谱作为质谱领域的重要分支技术,已经成为广大质谱工作者研究的焦点。原位质谱技术的出现,极大地提升了质谱设备的潜能,拓展了在食药安全、法医毒检、精准医疗、能源环境等领域的应用。合作实验室依托中国海洋大学食品学院的良好平台和华质泰科先进的分析设备,将进一步开发新的应用研究及科研技术,进而推动实时检测行业发展。  青岛海关技术中心 崔鹤 研究员  崔鹤研究员在致辞中提到,青岛海关实验室已利用 DART 实时直接分析技术检测食品中农残和有机金属化合物,原位源具有简便、快速、绿色的特点,前处理简单,有机溶剂使用比较少。食品学院和华质泰科的合作,是一个很好的产学研应用范例,利用食品学院的研究优势和华质泰科的开发优势,共同合作,探索成果,为仪器技术的进一步国内研发和迭代升级做准备。  华质泰科总裁兼首席技术官 刘春胜 博士  继北京大学分析测试中心之后,华质泰科与中国海洋大学食品学院成立第二个高端的联合实验室。总裁兼首席技术官刘春胜博士在签约仪式上对原位质谱在精准快检、组学和成像方面的进展做了简要汇报。华质泰科聚焦原位源的引入、推广、方案开发,及小型便携质谱方案整合集成。把全球各地出现的关键原位技术引入高端质谱,为液质装配多套“聪明脑袋”,实现更多分子范畴的覆盖!比如,DART 简单快速广谱,SICRIT 解决气味分析,LESA 在四大组学和抗体药物等相关应用,AP/MALDI 高分辨的空间分布成像,LDTD 满足极高通量分析的需求等。  华质泰科的使命是创建‘原位质谱全案’,开发共性关键装备,定制方案流程,建立行业类别谱库,形成移动轻便型‘临床专用’和‘快检通用’原位质谱整机方案产品。同时,布局医疗疾控、食药环监、安保通关、纤材商品等百亿美元快检市场,突破常规技术屏障,降低检测准入门槛,提升行业投资回报比 搭建平台,成就国际级原位质谱智能制造与应用示范基地。  学术报告:  中科院上海有机所 王昊阳 副研究员  中科院上海有机所王昊阳副研究员是原位质谱技术的资深用户。他带来的报告是《未知物的原位质谱鉴定与分析》,从“复杂反应中活性中间体发现与判别、未知有机小分子的质谱鉴定与分析、未知有机聚合物的质谱鉴定与分析”三个方面来讨论,实时原位质谱(DART、AP/MALDI)与多谱学融合,发挥原位质谱的采样和分析能力,用于未知物的鉴定和表征工作,并逐步完善体系化未知物质谱分析技术平台的建设。王昊阳博士同时对 DART 机理进行了验证和深入探讨,得出结论 DART 不愧为“天选之子”。  南京师范大学 李红丽 副教授  南京师范大学李红丽副教授为大家分享了《原位电离质谱分析方法的构建和应用》,提出了一种利用 DART-MS 表征中草药多糖成分的新方法。该方法简单、快速,揭示了糖苷元和糖组分的结构信息,可用于实际样品中同分异构体的鉴定,为多糖成分的直接分析和产品品质的快速评估提供一种新选择。另外,李红丽博士介绍了烟草化学中 DART 分析卷烟烟气的研究。  中国海洋大学食品科学与工程学院合影  仪式结束后,与会嘉宾参观中国海洋大学食品科学与工程学院质谱中心实验室,技术工程师段晓琨先生为设备演示现场取材,DART 直接测试面部油脂和 SICRIT 呼气测试,均能看到明显标志物图谱,详细应用方案及数据分析,请持续关注。  关于原位质谱:  原位质谱(Ambient Ionization Mass Spectrometry,简称 AIMS)技术自16年前出现以来始终引领行业大潮,盘踞分析科学头条,在临床检验和分析测试各个行业快速下沉,深度影响着技术设备的优汰应用和迭代开发。该类技术无需或仅需简单的样品制备,可常温常压下对样品直接采样,进行原位分析,是质谱分析领域的重大变革。近十年来,原位质谱技术迅速应用在诸如食品、药品、材料、物证、环境、卫生等领域的安全检测与品质控制,在组学分析、新药研发、中药及天然产物分析、和生物分子成像等领域,其应用也发展迅速。  作为高科技装备制造业的一颗明珠,AIMS 正在一方面朝小型化和便携式方向突进,已作为关键车载装备进入某些市场监管行业,开展高通量食药和毒物快检 另一方面,AIMS 大大提升高端质谱设备的潜能,更便捷地将功能强大的质谱仪实验机服务于食药安全、法检毒检、精准医疗、检验检疫、与健康大数据管理。AIMS 被认为是最有机会普及为民用技术的现代质谱科学。  关于中国海洋大学食品学院:  中国海洋大学食品科学与工程学院是我国食品科学领域(特别是水产品加工贮藏工程)最具品牌影响力和竞争力的高等学府之一。学院的定位是:以海洋生物资源加工利用为显著特色,基础与应用研究协调发展的高水平研究型学院。  关于华质泰科:  华质泰科生物技术(北京)有限公司为国家高新技术企业,是国内较早开展原位电离质谱技术推广并产业化的团队之一,拥有非常专业的技术和市场队伍,致力于引领行业领域中的实时科学发展潮流,通过专长的知识、成熟的产品和持续高品质的服务为客户赢得更多、更好的投资回报。公司承担国家十二五863等重大质谱专题项目,与大学研究院等国家级研究机构达成了20多个合作研究和应用专项,发起并组织承办了中国原位质谱学术会议,获得了广泛的国际赞誉。  自成立至今,已经拥有680多个涵盖国家级研究机构、大学、研究院、三方检测、制药与临床检验、食品安全检测、法医物证分析、蛋白质组学、生物制药、等研究方向的高端大客户群,客户及合作伙伴并呈急剧增加的趋势。
  • 福建34家省重点实验室授牌,涉及海洋碳汇、生物技术、检验医学等
    近日,根据《福建省重点实验室管理实施细则》,福建省科学技术厅对34家省重点实验室(学科类)进行了验收。经研究决定,福建省海洋碳汇重点实验室等34家重点实验室(具体名单附后)通过验收,予以正式授牌运行。通过验收并授牌的省重点实验室名单如下:通过验收并授牌的省重点实验室名单序号实验室名称依托单位业务主管单位负责人1福建省海洋碳汇重点实验室厦门大学〔海洋与地球学院(海洋与环境学院)〕厦门大学焦念志2福建省海洋经济生物遗传育种重点实验室厦门大学〔海洋与地球学院(海洋与环境学院)〕厦门大学徐 鹏3福建省海岸带污染防控重点实验室厦门大学(环境与生态学院)厦门大学白敏冬4福建省智慧基础设施与监测重点实验室华侨大学(土木工程学院)华侨大学许 斌5福建省大数据智能与安全重点实验室华侨大学(计算机科学与技术学院)华侨大学杜吉祥6福建省专用化学品先进制造重点实验室福州大学(石油化工学院)福州大学鲍晓军7福建省媒体信息智能处理与无线传输重点实验室福州大学(物理与信息工程学院)福州大学赵铁松8福建省新型电化学储能材料重点实验室福州大学(化学学院)福州大学魏明灯9福建省特色海洋生物资源可持续利用重点实验室福建师范大学(生命科学学院)福建师范大学郑 怡10福建省海洋生物技术重点实验室福建农林大学〔动物科学学院(蜂学学院)〕福建农林大学陈新华11福建省植物功能生物学与绿色农业重点实验室福建农林大学(生命科学学院)福建农林大学缪 颖12福建省检验医学重点实验室福建医科大学附属第一医院福建医科大学欧启水13福建省血管衰老重点实验室福建医科大学附属协和医院福建医科大学洪华山14福建省药物靶点发现与结构功能研究重点实验室福建医科大学(药学院)福建医科大学俞昌喜15福建省烧创伤重点实验室福建医科大学附属协和医院福建医科大学陈昭宏16福建省口腔疾病研究重点实验室福建医科大学附属口腔医院福建医科大学陈 江17福建省模式识别与图像理解重点实验室 厦门理工学院 麦克奥迪(厦门)医疗诊断系统有限公司厦门理工学院 王大寒18福建省风灾害与风工程重点实验室厦门理工学院〔土木工程与建筑学院(土木工程与建筑系)〕厦门理工学院陈昌萍19福建省先进微纳光子技术与器件重点实验室泉州师范学院(物理与信息工程学院)泉州师范学院廖廷俤20福建省新型功能性纺织纤维及材料重点实验室闽江学院(服装与艺术工程学院)闽江学院李永贵21福建省海洋传感功能材料重点实验室闽江学院(材料与化学工程学院)闽江学院吴克琛22福建省复杂动态系统智能辨识与控制重点实验室中科院海西研究院泉州装备制造研究所中国科学院福建物质结构研究所陈 豪23福建省流域生态重点实验室中科院城市环境研究所中国科学院城市环境研究所杨 军24福建省海洋生态保护与修复重点实验室自然资源部第三海洋研究所自然资源部第三海洋研究所蔡 锋25福建省蔬菜遗传育种重点实验室福建省农业科学院作物研究所福建省农业科学院温庆放26福建省农产品质量安全重点实验室福建省农业科学院农业质量标准与检测技术研究所 福建省农业科学院土壤肥料研究所福建省农业科学院傅建炜27福建省妇儿重大疾病研究重点实验室福建省妇幼保健院福建省卫生健康委员会曹 华28福建省医疗大数据工程重点实验室福建省立医院福建省卫生健康委员会叶 青29福建省急诊医学重点实验室福建省立医院 福建省急救中心福建省卫生健康委员会陈 锋30福建省力值计量测试重点实验室福建省计量科学研究院福建省市场监督管理局姚进辉31福建省水动力与水工程重点实验室福建省水利水电勘测设计研究院福建省水利厅付开雄32福建省地质灾害重点实验室福建省地质工程勘察院 福州大学福建省地质矿产勘查开发局简文彬33福建省灾害天气重点实验室福建省气象科学研究所 福建省气象台福建省气象局高建芸34福建省适配体技术重点实验室中国人民解放军联勤保障部队第九〇〇医院中国人民解放军联勤保障部队第九〇〇医院兰小鹏福建省科学技术厅关于福建省海洋碳汇等34家省重点实验室通过验收并授牌的通知.doc
  • 山东:多部门协同探索海洋生态环境监测新途径
    沙蚕、蛤蜊、钩虾、螃蟹、海鞘、海蛇尾、海胆……6月8日“世界海洋日”前夕,记者在位于青岛附近海域的专业溢油应急处置指挥船“海巡0512”轮上看到,生态环境部门工作人员用箱式采泥器采集到多种海洋生物。“这些海洋生物多数是清洁水体的‘指示种类’。它们的现身,说明我们所在的青岛附近海域底栖生物物种多样性水平较高,生态环境质量较好。”山东省青岛生态环境监测中心副主任崔文连说。工作人员在“海巡0512”轮上收集样本。新华社记者张武岳 摄在船上,工作人员还将现场采集到的水体样本等,放到模块化实验室中。他们在此可开展pH、溶解氧、石油类、重金属、营养盐、微塑料、新污染物、挥发性有机物等多项指标的现场分析,及时掌握监测海域现场生态环境状况。为何海洋生态环境监测相关工作,可以在海事部门的专业应急船上开展?这与各方通力协作密不可分。2023年12月5日,山东省生态环境厅、山东海事局在青岛签订海洋环境保护合作框架协议,将“海巡0512”作为载体,为共同参与海上污染防治监管、海洋环境应急监测、突发应急指挥等海上行动提供装备保障。工作人员在模块化实验室中做实验。新华社记者张武岳 摄“通过加装船载海洋生态环境监测模块化实验室等,我们加强监视监测信息共享共治,实现了海洋环境监测与溢油清除能力的资源共享、高效融合。”山东海事局危管防污处处长崔昊旻介绍。历经6个月,双方共同完成船载模块化监测实验室安装,尾部绞车、L型侧吊等监测采样辅助设施加装,救生安全装备和海上通信设备升级改造等工作。如今的“海巡0512”轮,配备多通道CTD采水器、箱式采泥器、便携式全自动测油仪、有毒有害气体分析仪、紫外可见分光光度计、水质多参数仪等设备,已经具备海洋水质、沉积物、挥发性有机气体、海洋生物多样性以及海洋新型污染物等要素的精确监测能力。“海巡0512”轮航拍照片。受访者供图“在监测船的共建协同机制下,应急处置过程中,生态环境监测部门能够第一时间赶到现场,在模块化实验室中开展监测分析,迅速掌握海洋生态环境的实时状况,评估污染程度、扩散范围以及可能对环境造成的影响,为应急处置提供科学、准确的依据。”崔文连说。
  • 关注海洋塑料污染——珀金埃尔默与eXXpedition同行
    致力于为创建更健康的世界而不懈努力的创新型技术企业珀金埃尔默,近日宣布其产品Spectrum Two™ FT-IR 光谱仪解决方案将助力广受关注的“eXXpedition 2019-2021 塑料污染考察航海项目”,协助其调研海洋塑料污染的成因及解决方案。eXXpedition是一个全球非营利性组织,全部由女性组成,旨在通过远洋航行深入调查海洋塑料污染的原因并寻求解决方案,从而提升人们对海洋塑料污染的认知,并向在科学和探险等领域做出杰出贡献的女性致敬。2019年10月,最近一次科考之旅从英格兰普利茅斯启航,到2021年春季期间将停靠30个港口—从亚速尔群岛、阿鲁巴和帕拉戈斯群岛,到斐济、珀斯和雷克雅未克。每一段新旅程都将有来自各行业的新志愿者船员加入。eXXpedition Round The World 2019-2020通过与科研合作伙伴携手合作,“eXXpedition 2019-2021塑料污染考察航海项目”的科学家团队(包含来自英国普利茅斯大学的成员)通过使用珀金埃尔默提供的便携式红外光谱仪Spectrum Two来分析航行中收集到的塑料碎片并记录其化学成分信息。珀金埃尔默还全程提供Spectrum™ 10 软件培训及支持。“海洋塑料污染是我们面临的最显著的环境问题之一。随之而来的问题是,当塑料瓶或渔网等物品分解为微塑料,由海洋生物摄入,并最终出现在我们的餐桌上,进入人体,这尚未引起广泛关注。”珀金埃尔默应用市场全球副总裁兼总经理金南勳先生表示。“这些研究的开展,将加快微塑料的科学探索,推动解决方案的进步。我们很自豪能参与此次eXXpedition远航项目,并相信他们的研究将能获得有意思的成果,有助于提高人们的环保意识。”海洋保护倡导者、eXXpedition项目联合创始人Emily Penn表示,“拥有珀金埃尔默的创新科技产品,我们感到很兴奋。这些产品可以帮助我们进行实时分析,辨别聚合物的类型,还可以让我们在回到陆地时继续开展研究,寻找可行的解决方案。”针对海洋污染问题,珀金埃尔默不仅提出了微塑料的红外及红外显微成像原位分析方案、三联机逸出气体分析方案;还对纳米颗粒型微观污染物提出了单颗粒、单细胞ICP-MS分析方案;针对微观污染物的生物毒性提出毒理学研究的完整分析方法。扫描下方二维码,下载珀金埃尔默微观污染物论文集和微观污染物解决方案关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。我们与客户建立战略合作关系,凭借深厚的市场知识和技术专长,让客户更早地获得更准确的洞见。在全球,我们拥有13,000名专业技术人员,他们以饱满的热情,帮助客户创造更健康的家庭,改善生活品质。2018年,公司营业额约28亿美元,服务于180多个国家的客户,并被列入标普500指数。
  • 新型AI算法提升海洋浮游生物图像机器识别性能
    北京时间11月10日,中国科学院深圳先进技术研究院集成所光电工程技术中心李剑平博士团队在海洋数据机器学习算法研究中取得新成果,提出了一种基于对比学习的浮游生物图像识别检索框架,在解决实际海洋数据中的不均衡分布、数据漂移、开集识别问题中展现出了优异性能。论文以Contrastive Learning-based Image Retrieval for Automatic Recognition of in situ Marine Plankton Images为题,发表在国际海洋考察理事会海洋科学期刊ICES Journal of Marine Science上。中国科学院大学硕士杨振宇为第一作者,李剑平博士为论文通信作者,深圳先进院为第一单位。来自厦门大学、哈尔滨工业大学(深圳)的数据科学家参与本课题的合作研究。文章上线截图经过了30多年来的发展,海洋水下成像仪器为海洋浮游生物原位观测带来了海量图像数据,刺激了计算机图像自动识别技术的长足发展。然而,训练机器对来自实际中复杂海洋环境下的图像数据进行准确识别始终是一项极具挑战的任务。现有浮游生物图像机器学习分类算法虽然在某些闭合数据集上取得了良好表现,但是当应用于来自不同时空的实际数据时,往往会出现性能不稳定甚至骤降的问题,不能满足海洋观测的实时准确要求。通过深入调研,李剑平团队发现现有算法几乎全部将浮游生物识别问题处理成了一个对“N+1类”目标图像的分类问题(即N类感兴趣目标和1类所有不感兴趣目标)。然而,与其他领域中图像识别任务不同的是,在真实海洋环境中采集的数据必将面临成像质量恶化、数据分布不均、数据分布漂移和分布外样本出现等问题的挑战。因此,在闭合数据集上训练优化的机器学习算法在应用时,由于待识别数据集不满足与训练数据集的独立同分布条件,导致识别性能极易下降,只能通过费时费力的数据重新标注和模型重新训练来恢复其性能,显然这样就造成了机器学习算法的高昂的部署成本,难以在实际中应用。 李剑平团队提出的浮游生物原位图像检索识别框架IsPlanktonIR示意针对这一瓶颈,李剑平团队设计并训练了一种基于对比学习的浮游生物图像检索框架IsPlanktonIR,以图像相似度比对的方式,通过图像检索灵活地解决浮游生物的原位图像识别问题,实现浮游生物图像的自动识别。在该框架里,研究团队首先选取SEResNext作为浮游生物图像特征提取器,利用有监督的对比学习对其训练,使其获得较强的特征提取能力。识别图像时,通过比较待识别图像和一个检索库中图像特征的相似性,实现对其具体类别判定或对分布外样本的发现与拒识。此外,IsPlanktonIR框架还提供了人机交互接口,以供使用者方便地检查校验识别结果,扩充检索库,不断完善增强识别性能。 训练浮游生物图像检索框架中特征提取器的代表图像数据为了实现该识别框架的算法训练和效果验证,团队利用独立研发的海洋浮游生物原位光学成像仪在深圳大亚湾和海南昌江海域采集的图像构建了一个实验数据集。利用该数据集,团队使用部分类别图像对模型进行了训练,构造了多种不同组合的检测数据集,以检验该框架在真实海洋环境中应对必将发生的数据不均衡、数据分布漂移、分布外样本出现情况下的性能表现。实验结果表明,IsPlanktonIR算法框架在应对同时存在上述问题的测试集上均表现出了优异的性能。尤其是当测试中遇到新类别图像出现时,只需向检索库中添加部分新的人工标注样本,即可使框架实时拥有对新类别图像的正确识别能力。此外,团队还对该框架与经典的浮游生物图像分类算法和最新的异常值检测算法的性能在相同的测试集上进行了比较。结果表明,IsPlanktonIR不仅在二者不可处理的开集识别问题上取得了很好的效果,在这两类算法擅长处理的闭集分类问题上也取得了可比拟、甚至部分超越的性能指标。IsPlanktonIR的识别结果稳健性也大大增强,展示出了在实际海洋观测应用中的可靠性和灵活性。 在不同条件下的测试实验中IsPlanktonIR识别框架和对照算法的性能表现对比此外,为了提高框架的图像检索效率,减小存储和计算开销,李剑平团队还提出了一种压缩精简的算法,将浮游生物图像检索库进一步稀疏化,在几乎不降低识别准确率的前提下将检索库的大小缩小了一半,保障了基于图像检索的图像识别框架在大规模数据下的检索速度,以满足海洋观测的高实时性要求。IsPlanktonIR框架的发展为真实海水环境下的浮游生物原位长期观测提供了一套更加有效、稳健、灵活、便捷的算法方案,更加贴近海洋观测的实际需求,将有助于促进人工智能在海洋生物观测识别任务的落地应用。该论文研究得到了中国科学院国际合作重点项目和深圳市科技创新计划基础研究重点项目的支持。
  • 海洋微塑料监测方法的标准化及风险评估专场周四上午开讲!
    海洋面积约占地球表面积的71%,含水量约占地球总水量的97%。值得关注的是,目前大量的海洋垃圾已经切实威胁到了海洋生物的生存,对海洋生态环境造成了巨大的破坏。2022年2月28日至3月2日,第五届联合国环境大会于肯尼亚共和国首府内罗毕召开,在该次会议中,联合国官员彼得汤姆森倡议各国共同治理海洋塑料污染。海洋塑料污染问题,确实已经到了刻不容缓的地步。据统计,海洋垃圾的60%~80%是塑料,塑料从最开始能以肉眼观测到的“白色污染”逐渐向粒径极小、难以被观测到,但却能对环境造成巨大污染的“微塑料”转变。研究显示,微塑料在较浅的海洋沿岸和大多数海洋水体中均已存在。微塑料因形态、色泽、种类多样、粒径较小,对海洋中不同营养级生物均会产生毒性作用,且可沿食物链传递,危及人类健康。仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院将于4月27日-4月28日联合主办“ 微塑料检测与分析网络研讨会”。海洋微塑料监测方法的标准化及风险评估专场将于27日(本周四)上午9:00准时拉开帷幕。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427张彦旭 南京大学 教授报告题目《全球海洋微塑料的源与汇:三维传输模型视角》张彦旭,南京大学大气科学学院教授、国家海外高层次青年人才、江苏省双创人才、全国优秀博士学位论文。2006年本科毕业于北京大学,2010年和2013年获得北京大学和华盛顿大学博士学位,此后在哈佛大学从事博士后研究,2017年起回国任教并担任大气物理系副主任。研究领域包括空气质量、地球系统模式和全球变化等。发表论文70余篇,包括美国科学院院刊、自然通讯等高影响期刊。研究成果被多家媒体采访报道,为国家能源研究所等机构提供咨询报告。张微微 生态环境部国家海洋环境监测中心 副研究员报告题目《海洋微塑料标准化监测技术方法研究进展》张微微,国家海洋环境监测中心副研究员,主要从事海洋生态环境监测评价工作,承担中国-东盟海上合作基金、海洋公益性科研专项等多项科研项目,主持起草《海洋垃圾监测与评价指南》《海洋微塑料监测技术规范》,作为联合国海洋污染问题专家组成员参加《海洋塑料垃圾监测与评价指南》起草。张晓丹 安捷伦科技(中国)有限公司 分子光谱应用工程师报告题目《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》张晓丹,2012年加入安捷伦科技(中国)有限公司,担任分子光谱产品线应用工程师。主要负责包括红外、拉曼、紫外以及分子荧光等产品售前/售后应用支持和应用方案开发工作。从2015年起,开始从事微塑料红外检测方法的开发工作,先后开发了单点显微微塑料测试方案、显微红外成像微塑料测试方案以及激光红外成像微塑料测试方案,在微塑料分析测试方向具有非常丰富的工作经验。查珊珊 珀金埃尔默企业管理(上海)有限公司 材料表征产品高级技术工程师兼北区实验室经理《Perkinelmer微塑料检测分析方案》查珊珊,目前主要负责Perkinelmer公司分子光谱类仪器、热分析类仪器以及联机类仪器的应用方法的开发和技术支持工作,另外负责公司北区实验室的运营管理工作,拥有仪器分析行业10多年的工作经验。王清 中国科学院烟台海岸带研究所 研究员报告题目《黄渤海微塑料污染及其生态效应》王清,目前就职于中国科学院烟台海岸带研究所,研究员,主要从事海洋生态与环境科学研究,关注近海微塑料污染及其生态风险。作为负责人先后主持国家重点研发计划课题、国家自然科学基金项目、中国科学院装备研制项目、先导专项子课题等10余项。发表SCI论文100余篇,论文总引用次数3500余次。入选中国科学院青年创新促进会,获得中国科学院“沈阳分院第五届优秀青年科技人才奖”,2017年度获得中国科学院科技促进发展奖。徐向荣 中科院南海海洋研究所 研究员报告题目《海洋微塑料的生态效应研究进展及展望》徐向荣,中国科学院南海海洋研究所责任研究员,博士生导师,中国科学院大学教授。2010年入选中国科学院海外杰出人才引进计划(“百人计划”),入职中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室,组建海洋环境污染与修复技术研究团队。先后主持国家自然科学基金面上项目、国家重点基础研究发展计划973项目课题、海南省重点研发项目及中科院百人计划项目等各类科研项目20多项。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427张彦旭 教授南京大学
  • 3年内投10亿支持海洋国家实验室采购仪器设备等
    行走在位于青岛蓝色硅谷核心区的青岛海洋科学与技术国家实验室,绿树、碧草、湖水相映成趣,12栋独立的现代科研建筑散落其中。“海洋国家实验室是2015年10月底启用的,总占地640亩,总建筑面积15万平方米。目前已成立了海洋动力过程与气候等8个功能实验室,启动了高性能科学计算与系统仿真等大型科研平台建设。”实验室主任吴立新院士对记者表示,在未来5到10年内,要将青岛海洋科学与技术国家实验室建成与斯克利普斯海洋研究所、伍兹霍尔海洋研究所等全球一流的海洋研究室比肩的世界海洋研究中心。  打造像青岛海洋科学与技术国家实验室这样的海洋科技高地,彰显了青岛市着力打造海洋科技城、实现蓝色引领的决心。作为我国老牌的海洋科研城,青岛市拥有28家以海洋科研与教育为主的机构,拥有各类海洋人才15000人 建有海洋科学观测台站11处,拥有各类海洋科学考察船20余艘。近年来,青岛市通过着力完善海洋科技创新体系,推动海洋科技转型升级,有力发挥了对蓝色经济的引领和支撑作用。  搭建国家级海洋科技创新平台  “瞄准国家建设海洋强国重大战略需求,建设海洋领域国家重大科技创新平台,凝聚一批国家级创新团队,是我们打造海洋科技城的重要路径之一。”青岛市科技局局长姜波告诉记者,海洋国家实验室基础建设总投资13亿元,未来3年,山东省、青岛市还将投入10亿元经费,支持海洋国家实验室用于仪器设备采购、科研团队建设等,推动实现可持续发展。“目前已经确定了海洋动力过程与气候变化、海洋生命过程与资源利用、海底过程与油气资源、海洋生态环境演变与保护、深远海和极地极端环境与战略资源、海洋技术与装备的重点研究方向。”  距青岛海洋国家实验室只有几公里远的海边,另外一个国家重大科技创新平台——国家深海基地建设也已于2015年3月份启动。在位于青岛即墨市鳌山湾畔的国家深海基地,记者看到项目一期的工程码头、车间、厂房、水池都已启用。  国家深海基地管理中心主任于洪军介绍,国家深海基地是继俄罗斯、美国、法国和日本之后的世界上第5个深海技术支撑基地,码头可同时停泊两艘6000吨级的海洋科考船,并具有超强的抗风浪性能。除码头外,还建有“蛟龙号”的实验水池和维护维修车间,具备“蛟龙号”试验和维护的条件。“作为‘蛟龙号’深潜器的母港,国家深海基地具备水下勘查作业、装备研发及应用、水下监视与安全、水下运载器深潜作业、水下工程装置布放维护、水下救捞打捞等业务能力,还主要承担深海科学考察、资源勘查和环境观测,深海技术与装备研发和海试等任务,是我国目前唯一的国家级深海科学技术综合性研究机构和支撑保障平台。”于洪军说。  构建海洋工程装备创新体系  在搭建国家级海洋科技创新平台基础上,青岛市又瞄准全球海洋高端产业,大力引进新建一批高端研发机构,增强海洋科技发展持续竞争力。  走进位于青岛西海岸的中船重工厂区,塔吊林立,各类大型海上装备齐全。深入采访会发现,其科研力量更是令人惊叹。  目前,中船重工集团在青岛已经布局建设了与船舶与海工装备配套相关710所、712所、716所、702所等8个研究所,成为青岛市海洋工程装备研发创新的主力军。2014年9月,中船重工集团又与青岛签署了合作协议,总投资70亿元,力争用3到5年的时间,建设青岛海工装备科技城和研究院。重点围绕海洋资源开发装备、海洋环境监测系统等,开展海洋水文气象观测设备等海洋装备关键技术和产品的研发、转化、实验、服务和产业化,建成综合实力强、专业特色明显、部分专业具有国际影响力的海洋装备研发及产业化基地。  在青岛,这样的海工装备高端研发机构不止一家。“我们前不久刚引进了天津大学海洋技术研究院,他们将设立12个与海工装备相关的研究所。”姜波告诉记者。  据了解,青岛还引进了TSC天时海洋工程及石油装备研究院(青岛)有限公司、克瓦纳海工(青岛)工程技术有限公司等项目,该项目由海洋石油(青岛)有限公司与克瓦纳公司强强联合、合资成立,将重点进行深水海洋工程装备的高端产品开发,为海洋油气资源开发工程提供可行性分析、概念设计、工程总包、国际采办等服务。“这对优化青岛市海工装备产业结构,促进产业转型升级,提升海工设计能力、项目管理能力和国际市场开拓能力具有重要意义。”姜波说。  同时,青岛市还搭建了船舶与海工装备创新平台:依托国家深海基地管理中心,建设了深海技术装备研发公共服务平台 依托质检局检测中心,建设了海洋设备检验检测公共研发服务平台 依托青岛海洋仪器仪表研究所,建设了中乌特种船舶研发设计公共服务平台。“通过实施青岛市自主创新重大专项,重点支持712所的船用电力推进系统研发及产业化项目,725所的船用压载水装置的研发及产业化项目等,使青岛在船用电力推进系统、船用压载水、海洋石油钻井平台总包设计等领域处于领先水平。”姜波说。  海洋技术创新领跑全国  以科技创新为基础,日前青岛市印发了《青岛市“海洋+”发展规划(2015-2020)》,提出到2020年,重点完成海洋+新模式、海洋+新业态、海洋+新产业、海洋+新技术、海洋+新空间、海洋+新载体六大任务。  其中关于海洋科技创新的目标为:到2020年,海洋科技自主创新建设取得明显成效,新引进和建设海洋高端研发机构20家,总数达到40家。海洋科技服务能力大幅度提升,海洋特色创客蓬勃发展,培育海洋领域科技型中小企业500家以上,海洋高新技术产业产值占海洋经济总产值的比重达到45%,海洋科技人才占全市的比重达到65%以上。  事实上,青岛海洋科技创新已经形成了万马奔腾的趋势。除了海洋科研院所、新引进的科研机构和海洋科技型企业在海洋科技创新方面不断发力,一些传统企业也开始向海洋科技领域进发。  传统酒类生产企业青岛琅琊台集团就是其中一例。日前,记者在琅琊台集团下属企业——青岛科源海洋生物有限公司研发车间看到,科研人员正在为海洋微藻DHA产品的相关指标数据分析而忙碌,公司高级工程师徐建春说:“这种产品对宝宝的智力和视力发育至关重要,产品附加值很高,目前已和国内知名的奶粉生产企业展开合作。”琅琊台集团已经成功转型为海洋科技型企业,成为国家863计划、国家海洋生物高技术产业化、山东半岛蓝色经济区重点产业项目承担实施单位,并建成了世界最大的衣康酸研发生产基地和国内最大的海洋微藻DHA、异麦芽酮糖研发生产基地。
  • “十一五”863计划海洋技术领域9个项目通过验收
    8月23-24日,863计划海洋技术领域办公室在北京组织召开了“十一五”海洋生物类重点项目总结验收会,“新型海洋生物制品研究开发”等9个项目验收会通过专家组验收。  通过“海洋生物功能基因工程产品关键技术研究”重点项目的实施,建立了海葵强心肽、重组鲨肝刺激物质类似物、低温脂肪酶等10余种海洋生物基因工程产品中试规模制备技术 基本完成了重组鲨肝刺激物质类似物等3个基因工程产品的临床前成药性评价研究。  通过“海洋微生物产品的中试研究”重点项目的实施,开展并完成了2个海洋微生物来源抗肿瘤候选药物、2个具有工业和医用价值的海洋微生物酶以及2个新颖海洋微生物来源农用制剂的中试和主要的临床前研究。  通过“新型海洋生物制品研究开发”重点项目的实施,开发了高效制备海藻寡糖、高活性壳聚糖等生产工艺技术,建成了千吨海洋生物农药生产线 以海藻多糖为主要原料研制成功了植物空心胶囊,并获得SFDA颁发的生产批文 以海洋功能性壳聚糖为原料研制获得3个医用止血产品。  通过“海洋滩涂耐盐植物开发及集成应用技术研究”重点项目的实施,筛选培育了适于黄河三角洲和苏北滩涂种植的耐盐能源植物、药用植物、蔬菜和饲用植物新品种(品系)21个 建立了30种耐盐植物栽培的技术规程,在黄河三角洲及苏北建立8300亩以上示范区。  通过“海洋水产品加工新技术与设备”重点项目的实施,研发了海洋水产品的低温/组合干燥、以低值鱼为原料生产高品质冷冻鱼糜、养殖大黄鱼生物脱脂、低值鱼蛋白酶组合深度水解、参贝类养殖海珍品即食产品的质构控制等关键技术,建立了产业化示范生产线11条。  通过“深远海极端微生物及其基因资源开发关键技术”重点项目的实施,初步具备了深海浮游微生物的富集采样能力 研发了实验室高压培养系统 获得了一批宝贵的极端酶和多糖资源 初步建立了一套深海未培养微生物环境基因组研究方法。  通过“抗肿瘤海洋药物研究开发”、“抗心脑血管系统海洋药物研究开发”、“抗神经系统疾病海洋药物研究开发”三个重点项目的实施,完成了候选药物971的I期临床研究、D-聚甘酯注射液I期临床重复试验研究、916的Ⅱ期临床研究、注射用海参多糖Ⅲ期临床研究,以及YCP全部临床前研究、抗心律失常候选药物A1998和抗血栓药物GFP的主要临床前研究,已提交K001的III期临床试验计划,推动了我国海洋药物的研发,但由于海洋新药开发难度大、周期长、不可控因素多等原因,海洋药物研发进度和实验结果与预期仍有一定差距。  针对这些项目的进展情况和管理经验,专家组成员建议“十二五”应进一步加强项目内各课题组间的交流合作,强化牵头单位和牵头人对项目实施的管理职责,在确保各课题研发任务完成的同时,提升项目层面的系统集成能力。
  • 【微塑料】人类一手栽培的催命符 海洋中的“PM2.5”
    p  日前,澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布的一项报告再次引爆了“微塑料”这个议题。报告称,在澳东南部海域海底的沉积物中发现高浓度塑料微粒,很可能污染整个食物链。/pp  微塑料,直径小于5微米,细小到用肉眼难以发现它。也正因如此,它对海洋生物乃至人类皆产生了巨大的危害。联合国专家组(GESAMP)已将其列为海洋生物的“温柔杀手”,并指出其危害程度等同于大型海洋垃圾。/pp  但这一强大的劲敌确是人类一手栽培喂饱的,这些塑料微粒或来源于我们日常使用的化妆品、清洁用品中,或来源于纤维类衣物脱离出的细小颗粒,又或者来源于环境中的塑料垃圾,它们经过催化分解最终形成了塑料颗粒??可以说,海洋中的微塑料来源非常复杂,既有陆地河流、工业和生活污水、塑料垃圾等陆源输入,也有船舶运输、海上钻井平台等海源输入。/pp  微塑料逐渐为大众所知/pp  早在上世纪70年代,海洋微塑料污染的相关研究已经开展。/pp  2001年,一位国外科学家报道了其研究海域水体中,微塑料的密度每立方米约有上亿个,才逐步引起各国政府、媒体和研究者的广泛关注。/pp  2004年,英国科研人员在美国《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的研究论文,首次提出微塑料(Microplastic)这个概念。/pp  2014年,英美研究人员联合在《科学》杂志上发表的观点文章指出:微塑料已遍布整个海洋,而生物体中微塑料的污染状况以及造成的生态效应和健康风险是当前微塑料研究应着重关注的问题。/pp  2014年6月,联合国环境大会上提出了海洋废弃物和微塑料问题,并最终达成了“海洋塑料废弃物和微塑料决议”,提出开展有关海洋塑料废弃物和微塑料的研究。/pp  2015年,微塑料污染被列入环境与生态科学研究领域的第二大科学问题,并成为与全球气候变化、臭氧耗竭和海洋酸化并列的重大全球环境问题。/pp  微塑料的危害/pp  科学研究已经证实,海洋中的微塑料污染对海洋生物的生长、发育、躲避天敌和繁殖的能力皆有不同程度的影响。微塑料除了对海洋生物造成一定的危害,还通过食物链进入到更高等级的生物体内,并最终为人类所食用。/pp  威胁海洋生态/pp  中国一份关于海洋鱼类的调查显示,在20多种经济价值较高的常见鱼类中,90%的鱼类样本中都发现了微塑料。/pp  前不久,科学家首次拍摄了浮游生物摄入微塑料的一小段视频,视频形象地揭示了微塑料对海洋生物的影响,而不仅仅是停留在宣告阶段,它向全人类证实了,废弃的塑料确实可以进入海洋生物体内,并沿着食物链进行传递。/pp  威胁人类健康/pp  经过食物链的传递,那些“被微塑料”了的海洋生物,如鱼类、贝类等,最终流向人类的餐桌,而微塑料也因此而进入了人体。/pp  另外,研究专家已经证实,人类摄入微塑料也不仅仅是通过食用海洋生物。一个由墨西哥和荷兰科学家组成的研究小组通过在墨西哥洛斯佩泰尼斯生物圈保护区的实地研究首次证实,微塑料已经进入陆地食物链。/pp  他们表示,由于缺乏塑料回收和处理系统,洛斯佩泰尼斯的居民通常在焚烧塑料后将其掩埋到果园的地下,这就增加了这些塑料废弃物分裂为微塑料的风险。为了评估这种情况,研究人员对保护区中10个果园的土壤以及生活在土壤中的蚯蚓、居民饲养在果园里的母鸡的粪便和胃脏进行了分析,结果显示,在土壤里、蚯蚓体内、母鸡粪便和胃里都存在微塑料。不管是海洋生物还是陆地生物,如果人类长期摄入微塑料,很可能对身体健康构成威胁。/pp  微塑料延伸到哪了?/pp  北极/pp  研究人员发现,数以万亿计的微塑料颗粒出现在了北极的海冰中,每立方米的海冰中含有多达240个微塑料颗粒,这一分布密度是大太平洋垃圾漂浮带微塑料颗粒的2000倍。/pp  达特茅斯大学的材料学家兼工程师RachelObbard和她的同事通过样本估算指出,如果北极海冰全部融化,将会释放出7万亿多个微塑料片。/pp  南极海/pp  日本九州大学与东京海洋大学公布的调查结果显示,南极海也漂浮着“微塑料”。微塑料常见于人口密集的全球沿海地区,而在南极海发现被认为尚属首次。/pp  该项调查在澳大利亚与南极大陆间的5个地点实施。通过拉密孔网采集海面附近浮游生物的样本,在距离南极较近的2个地点发现大量塑料粒子,平均每吨海水中有0.05个至0.1个,经换算每平方公里约有14万至29万个,与北半球海洋平均10万个的数量不相上下。/pp  澳大利亚东南海域/pp  澳大利亚塔斯马尼亚大学海洋和南极科学研究学院发布报告称,在澳东南部海域海底沉积物中发现高浓度塑料微粒,很可能污染整个食物链。/pp  2015年,研究小组从新南威尔士州、维多利亚州、塔斯马尼亚州及南澳大利亚州共计42处地点采集海底沉积物样本,并发现平均每毫升沉积物中含超过3个塑料纤维或颗粒。/pp  日本海洋/pp  日本环境省发布消息称,在距本州和九州沿岸100公里至200公里海域发现了细微塑料漂浮物,可能会对生态系统造成不良影响。/pp  2014年,东京海洋大学和九州大学受环境省委托进行了调查。他们在本州和九州近海的45处地点采集了漂浮物,每1立方米海水中平均发现2.4个微塑料。环境省2010年至2012年在濑户内海实施调查时平均仅为0.4个,此次有22个地点超过了这一数值。此外,调查人员还对较大的漂浮垃圾进行了调查,结果发现其中有56%是可能会变成微塑料的石油化工制品。/pp  中国海域/pp  微塑料污染问题不仅仅存在于国外海域中,我国海域同样存在这一问题。中国国家海洋局调查显示,中国37个海域的海面漂浮垃圾和海滩垃圾中,塑料类占77%,并且86%—91%来自陆地。事实上,我国科学家早已证实在三亚海滩和南海浮游动物体内发现了大量微塑料。只不过,我国尚未对南海微塑料开展全面的调查研究。/pp  各国纷纷呼吁应对微塑料污染/pp  随着微塑料的危害性逐渐加剧升级,并为大众所熟知,各国政府也开始对此事备加关注。除了出台系列政策应对塑料垃圾之外,也出台了直接针对微塑料的系列措施,而报道最多的当属“呼吁禁止在化妆品等洗护用品中添加微塑料”。/pp  其中,美国政府已立法宣布禁止在化妆品和洗护用品中使用微塑料,成为全球第一个宣布此项禁令的国家。/pp  欧盟也已开始着手制定禁止在化妆品中使用微塑料的提案。/pp  2017年起,英国也禁止在化妆品以及洗护用品中使用微塑料。/pp  2017年3月份,瑞典环境大臣卡罗利娜· 斯科格在首届“波罗的海未来大会”上呼吁,波罗的海地区应该禁止化妆品中微塑料的使用,以减轻其对环境与人类的负面影响。/pp  在我国,国家重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”已于2016年底启动,中国科学家也开始呼吁禁止在个人护理品中添加用于深度清洁的微塑料颗粒。/pp  微塑料危害之大想必已不必多说,对于海洋生物而言,微塑料犹如海洋中的PM2.5,而对于人类而言,微塑料则犹如一道隐性催命符。因此,及早有效应对微塑料污染已迫在眉睫。而各国在解决微塑料问题上,应该抱团协作,共同努力。据了解,新成立的“西太平洋区域海洋微塑料研究项目”就将在建立机构和专家网络的基础上,发挥区域作用,引领这一主题的研究,从制定统一采样和分析方法学的角度出发,分析海洋微塑料的分布、来源、归趋,评估其对海洋生态系统的影响。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制