当前位置: 仪器信息网 > 行业主题 > >

海藻胶

仪器信息网海藻胶专题为您整合海藻胶相关的最新文章,在海藻胶专题,您不仅可以免费浏览海藻胶的资讯, 同时您还可以浏览海藻胶的相关资料、解决方案,参与社区海藻胶话题讨论。

海藻胶相关的资讯

  • 海藻酸钠在食品业中的应用
    说到可以提升食品的味道很多人都会想到味精(谷氨酸钠)却很少想到同样来自海藻类植物中产生的海藻酸钠。这两种元素可谓是现代吃货的法宝,谷氨酸钠负责把食物中的鲜味提炼出来,海藻酸钠负责把食物的质感提升上一个等次,对于味精我们都很熟悉,下面就由小编为大家介绍海藻酸钠出现,发展,和怎么才能做高品质的海藻酸钠。 1什么是海藻酸钠 海藻酸钠在1881年,英国化学家E.C.Stanford首先对褐色海藻中的海藻酸钠提取物进行科学研究。他发现该褐藻酸的提取物具有几种很有趣的特性,它具有浓缩溶液、形成凝胶和成膜的能力。基于此,他提出了几项工业化生产的申请。但处在即将到来的第一次世界大战中这项提议被搁浅,海藻酸钠直到50年之后才进行大规模工业化生产。商业化生产始于1927年,多用于食品工业,剩下的用于其它工业,制药业和牙科。 2海藻酸钠在食品中的应用 海藻酸钠改造食物最成功的案例莫过于冰激淋,100多年前的冰激凌企业可比现在苦得多了,那时候的冰激凌只要离开冰箱34分钟就彻底融化,造型也不堪入目如同浆糊一般但聪明的吃货发现冰激凌加了海藻酸钠后发现冰激凌不仅比以前的融化速度变慢了也比以前好塑形,海藻酸钠放在面粉上做出来的面条非常有劲道而且不容易发生断裂,海藻酸钠是做出果冻比不可少的的材料因为海藻酸钠具浓缩溶液、形成凝胶和成膜的能力,我们能吃上美味的果冻这都要归功于海藻酸钠。 3怎么才能做出高品质的海藻酸钠 海藻酸钠简单的来说其实就是一个植物胶,胶状物粘度是审核海藻酸钠好坏,那问题来了凭肉眼的观察很难评定粘度,博勒飞(Brookfield)的DV2TLV-低粘粘度计就完美的解决了这个问题他具有以下几个优点 一 操作简便的5英寸全彩色触屏显示 二 自动回零及范围转换,超限警报,编程控制定时测量,数据比较屏幕,PG Flash自动化操作 三 200种转数选择, USBPC界面可选电脑控制和程序步骤状态,自动搜集数据功能可Rheocalc T 链接软件进行数据分析,PG Flash软件可联机下载客户自定义程序测试 四 内建RTD温度探头实时监控样品温度
  • 青岛国家重点纺织实验室做出海藻布 抗菌防辐射
    薄如绢,亮如丝,软如棉,拿在手里,与纯棉布没有任何区别。这是记者日前在山东青岛大学纤维新材料与现代纺织国家重点实验室培育基地看到的用海藻纤维织出的海藻布。随着海藻类纤维项目的研发成功,人类继开发棉花、大麻、种桑养蚕等生物基纤维和石油基纤维之后,又开辟了纺织纤维第三来源——海藻纤维。  海藻纤维研发的领军人、青岛大学纤维新材料与现代纺织国家重点实验室培育基地副主任夏延致教授对记者说,海藻纤维研发团队马上就要完成科技部年产50吨海藻纤维生产线项目,小批量生产就可实现,已为下一步海藻纤维产业化做好技术储备,同时也为后续生产提供科研用材料。他说,今年下半年将全部完成“海藻育种——养殖——加工——纺织品”全过程的中试生产,未来两三年即可实现大规模工业化生产。  夏延致介绍,海藻纤维具有许多传统纤维没有的新特性,它的阻燃性超出国际标准10个百分点,在空气中不会起明火。海藻纤维有一定的防辐射、抗菌、保湿效果,在生物医学、高档服装、环保等领域具有广阔的应用前景。与传统的陆地纤维、合成纤维相比,海藻纤维可节约土地、净化环境,生产过程完全低碳绿色,具有可降解、可再生、无污染等优点。  山东半岛是海藻生产大区,具有优越的地理位置和技术优势。目前,我省海藻纤维生产技术已完全成熟,海藻纤维将人类获取纤维的领域从陆地扩展到了海洋。海藻纤维的产业化,将使山东构筑以海藻纤维为主体,以海藻养殖加工业和以海藻纤维材料为原料的纺织加工业为两翼,形成一个从海洋开始的新产业链,形成新的经济增长点。  山东省科技厅副厅长、青岛国家海洋科学研究中心主任李乃胜在接受记者采访时说,海藻纤维技术的成功突破是我省海洋科技储备的一个范例。打造半岛蓝色经济区战略实施以来,我省海洋科技领域迅速行动,到沿海第一线做了大量调研,形成了6份大的战略性新兴产业发展计划书。在技术储备方面,我省大院大所立足国际海洋科技前沿,瞄准十二五发展目标,突出山东特色,开展了一系列科技创新和产业技术建设。目前我省在海洋低碳技术、海洋生物制品、新型海水产业、海洋装备制造、海洋建筑工程、海洋可再生能源等方面已有了批量成熟的技术储备。投资5个亿的海洋科学综合考察船建设项目、海洋低碳技术示范工程、海水灌溉农业等项目正顺利进行。
  • 海藻面膜再成违规“重灾区”,产品质量底线要守牢
    上周(7月22日-7月28日),国家药品监督管理局再次发布通告,36批次化妆品不合格,中国化学品对附件信息整理得出,不合格产品重点指向“海藻”面膜类产品。不合格的海藻面膜多由海藻提取物与其他各色成分构成,但在生产过程中基本不具备有效的防腐体系,极容易细菌超标,引发使用者细菌感染,产生过敏反应。化妆品生产过程的每一环节都至关重要,企业要严格监督产品质量,守稳守牢质量安全底线。国家药监局:36批次化妆品不合格——海藻面膜占一半2024年7月23日,国家药品监督管理局发布通告,在2023年国家化妆品抽样检验工作中,经西藏自治区食品药品检验研究院等单位检验,产品标签标识为广州普伽娜生物科技有限公司生产的“SAMKUS上官氏熊果苷光感亮肤安瓶面膜”等36批次化妆品不符合规定,且该公司存在提供虚假信息、隐瞒真实情况的行为,属于《化妆品监督管理条例》规定的情节严重的情形,将依法从重从严处罚。经中国化学品整理统计发现,这36批次不合格的化妆品中,海藻面膜有18批次,占比50%;特殊化妆品(染发膏、防晒霜等)为8批次,占比22.2%。虚假宣传“孕妇专用”、虚构好评——违规商业广告遭重罚2024年7月28日,根据群众举报的线索,执法部门发现广州赛蓓生物科技有限公司在网络销售化妆品时涉嫌存在虚假宣传的违法行为。现查明,该企业在天猫平台上开设的“赛蓓博士旗舰店”存在以下违法行为:(一)该企业为宣传、推广、销售“赛蓓博士氨基酸表活净润洁肤乳(备案号:粤G妆网备字2021688864)”等5款国产普通化妆品,通过网店上架化妆品的标题、产品详情中使用“孕妇专用”“宝妈&敏肌可用”“孕肌护肤定制”等宣传用语,但无法提供上述宣传用语的任何依据或证明材料。(二)该企业在网店内销售化妆品时使用“叶酸不仅是发育补充剂健康肌肤的养成同样也具有养护作用”“可以预防巨幼红细胞性贫血,赛蓓博士叶酸含量高,促进健康细胞增殖……”“维生素B+DHA+叶酸,可以补充至孕后三个月肌肤营养流失……”等图文宣传信息时无法提供相关数据支持。(三)当事人在上述网店内宣传其所售化妆品的核心成分为“安欣佳、叶酸、DHA”,却无法提供该产品添加了“安欣佳、叶酸、DHA”等成分的证据。(四)该企业在其网店内宣传其化妆品时使用“买家秀实测爆款好物,回购率极高”的文字搭配顾客好评截图等信息,为自行设计、制作并发布。以上4点构成采用虚假或者引人误解的商业宣传,欺骗、误导消费者的违法行为,执法部门对该企业罚款80000元。染发产品苯超标、生产设备非专用——一企业被罚1.8万元2024年7月26日,广州市佳桐化妆品有限公司因其生产的“桐雨靓芳香染发霜(自然黑)”(批号:JT231201A,限期使有日期2026/11/28,包装规格(450mlX2))苯项目检验结论不符合《化妆品安全技术规范(2015年版)》,被予以行政处罚。另查明,该企业生产涉案批次桐雨靓芳香染发霜(自然黑)的原料、包装材料、工具、设备等物品非专用,还用来生产其他合格化妆品。广州市白云区市场监督管理局依据相关法律法规对其罚没约1.8万元。800瓶洗发水菌落超标,已流入市场——警惕这家企业的产品2024年7月25日,根据广州市白云区市场监督管理局送达的由广州市药品检验所出具的《化妆品监督抽检检验报告》(№:2023CIH2151),备案/生产企业为广州悦榕化妆品有限公司的产品“FUMFUNY梵芙尼鱼子酱魔力双效洗发乳”(批号:20230604E、限用日期:20260603、规格:250ml)检验结果菌落总数不符合规定。实际出厂的806瓶已全部分销,无法召回。执法部门对该企业处以罚没1.3万元的行政处罚。广东省药监局“点名”不合格染发膏——委托方、生产方皆被罚2024年7月23日,广东省药品监督管理局发布两则相关行政处罚信息:经南昌市检验检测中心检验,某企业委托另一企业生产的2批次魔歌染发膏(棕色)结果不符合规定,检出产品标签及注册资料载明的技术要求未标示的染发剂,构成经营未经注册的特殊化妆品的违法行为。经中国化学品查找与核实,确定委托企业为广州魔歌科技有限公司,在生产上述2批次染发膏(棕色)期间,没有对被委托厂家的生产活动进行监督,未能及时发现该厂家没有按照法定要求进行生产,未发现委托生产的以上2批次产品未经产品检验即上市销售,被罚款15.5万元;而其相应委托生产的厂家(暂未查明相关信息)在生产上述2批次染发膏时,未按照《化妆品生产质量管理规范》的要求组织生产,没有物料进货查验记录,没有完整的批生产记录,对成品没有进行检验,没有留样和留样记录,被罚款17万元。宣传暗示化妆品可治病?——直播3次,罚款3次2024年7月22日,衢州市宁思涵化妆品有限责任公司被处以3万元罚款。据悉,该企业于2024年4月1日、2024年4月6日、2024年4月13日在某平台直播间进行的普通化妆品、服饰类产品、普通食品的3场直播中,宣传暗示化妆品具有医疗作用和含有虚假或者引人误解的内容,涉嫌欺骗、误导消费者等。执法部门责令当事人消除影响,并对该企业以上3次虚假宣传行为各处罚款10000元。编辑视角:近期化妆品行业质量问题频发,引发了公众对化妆品安全的担忧。从化学分析的角度来看,海藻面膜中丰富的营养物质为细菌生长提供了条件,而防腐体系不完善则导致产品容易受到污染。这警示我们,化妆品生产企业必须重视产品质量,加强生产过程控制,完善防腐体系,确保产品安全有效。监管部门也应加大对化妆品行业的监管力度,严厉打击违法违规行为,维护消费者健康。
  • 单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例
    Hendriks L., Skjolding L. M., Robert T., 确定细胞中金属元素的生物利用率的传统方法一般需对细胞进行酸消解,然后利用溶液进样电感耦合等离子体质谱(ICP-MS)进行后续分析。这种方法的缺点是需要大量的细胞,并且只能为给定的细胞群体提供平均值1。众所周知,千人千面,不同群体以及同群体细胞的特异性在文献中也多有报道2。基于这个大前提,使用特定的分析方法对不同群或同群细胞进行逐序单个分析,获取与单个细胞特异性有关的大数据就尤其重要(见图1)。本文中介绍的单细胞-电感耦合等离子体质谱法(sc-ICP-MS)与之前介绍过的单颗粒ICP-MS(sp-ICP-MS)基本类似(微信公共号:粒粒皆信息:什么是单颗粒物ICP-MS质谱分析法?)。事实上,上述两种技术都依赖于相同的基本原理和icpTOF瞬时事件全谱多元素测量能力,从而可以获得由单一个体产生的微秒时间区间内的瞬时信号,例如单个纳米颗粒(NPs)或单个细胞。(译者注:这等同在拍一段有很多快速武术对打的电影场景,需要使用高速摄像机来捕捉每一个武打动作细节和变化,同时也不漏过颜色,声音等关键信息,这样才能最终呈现出高清120Hz的作品。) 单颗粒ICP-MS方法的基础概念和硬件构架3源于2003年Degueldre等发表的第一篇论文。在过去的二十年间,通过进样系统,数据采集硬件和数据处理专用软件的进一步发展和商业化,不断增加的科研文献见证了该技术领域的迅速成熟。在单颗粒ICP-MS上投入的研究和应用开发同样的也使单细胞ICP-MS分析受益。 在单细胞ICP-MS中,细胞悬浮液经超声波雾化后形成的液滴被带入ICP-MS等离子体中。细胞在等离子体中依次被汽化、原子化和最终离子化。每个细胞产生一个含有多种元素的离子云,在仪器上被检测为高于背景的时长几百微秒的单个信号峰。与单颗粒ICP-MS类似,记录到的尖峰频率与细胞数量浓度成正比,这些尖峰的强度则与细胞中该元素质量有关。这种技术已经成功的应用在测定海藻中的镁元素含量4,并进一步用于纳米颗粒物毒理学研究中评估细胞对纳米颗粒物的摄取情况5,6,7。 虽然单细胞ICP-MS的测量方法看起来很简单,但要获得真实可靠的数据,实施起来需要注重的细节很多。除了需要额外注意来自培养基的可能高背景信号和细胞在样品导入系统中的潜在破损,在单细胞研究中反复报道的一个主要瓶颈是细胞进样装置的低运输效率,这是因为与纳米颗粒物相比,细胞的尺寸更大,在传输过程中也更容易损失。事实上,传统的系统通常包括一个旋风式雾化室,是专为引入较小的溶液液滴而设计的,导致细胞传输效率低于10%。而用于单细胞导入的定制系统,包括改进的雾化器或全消耗喷雾室8,9,以及其他创新设计10,11,经过多年反复测试,已被验证可以高效传输单细胞进入ICP-MS。 另一个瓶颈在于质谱仪器质量分析器的性能:传统的ICP-MS仪器具有单四极杆或扇形场质量分析器,在进行单细胞分析时最多只能同时检测一到两种元素信息(只能拍黑白影片)。而在常见的单颗粒分析场景中,比如在纳米毒理学研究中,在试图量化纳米颗粒物(特征金属元素)和细胞(蛋白固有元素)的关联时,需要同时获得单细胞事件内多种元素浓度信息。为了获得微秒级事件信息全貌,快速且广谱分析的质量分析器,如飞行时间质量分析器等高精尖‘摄影器材’是必不可少的(译者注:例如,等同于可提供高清彩色120Hz影片给观众更加真实的IMAX观影体验)。图1:a)在对细胞进行酸消解后,通过传统的雾化法将溶液样品引入ICP-MS,并记录仪器获得的稳态信号。这种整体分析法对初始样品中所包含的数千个细胞获得一个平均值。然而这种实验是基于细胞是均匀的假设,而忽略了细胞具有多样性的事实。因此,少数细胞群(用绿色和紫色表示),在元素组成上虽与主类细胞有差异,却没有被体现在结果中,这完美的诠释了辛普森悖论。b)在单细胞ICP-MS方法中,将细胞悬浮液稀释后,在单位时间内仅有一个细胞个体被引入ICP-MS等离子体。每个细胞产生一个独立的离子云,作为信号峰被ICP-MS仪器记录。这种方法允许检测每一个单独的细胞,从而保证了细胞特异性信息的无损获取和保存。简单来说,在单细胞ICP-MS中,细胞是以个为单位进行分析的,可以根据它们不同的分析物含量识别出不同的群体,而不是仅仅产生一个平均值。icpTOF飞行时间质谱法 在飞行时间质谱法(TOF-MS)中,其基本原理是根据离子到达检测器前通过固定长度的飞行管的飞行时间来精确分辨离子。离子束在脉冲加速电压后具有相同的动能,但轻的离子会比重的离子获得更高的速率,进而更早到达检测器。测量所有离子的陆续到达时间可以得到一个连续时间谱,经过简单的校准和换算后可以得到一张全质谱谱图(一般6-280 Th)。TOF质量分析仪的主要优点是:对分析的元素及同位素的数量没有限制,而且全谱数据采集速度快(通常几十微秒就可以获得一张全元素谱图)。这样的快速全谱数据采集能力在处理单一实体(如单细胞)检测时尤其重要,因为单细胞产生的瞬时事件长度很短,一般在200-500微秒区间。 飞行时间技术在单细胞分析领域并不是一个新概念,最初是由Bandura在2009年提出的,其原型机12用于单个细胞的时间分辨分析13,从而为众所周知的 "质谱流式 "领域打开了大门。这项应用使用稳定的稀土金属同位素来标记细胞,从而允许通过其金属标记物来检测相应细胞14。除了展现了生物研究和药物筛选应用中的巨大潜力,质谱流式也被用于检测细菌细胞中的银纳米颗粒15。然而,由于质量检测范围有限(80 Da)和涉及染色的样品制备程序,质谱流式细胞技术无法检测许多固有元素。 与质谱流式不同的,如图2a) 所示的ICP-TOF (TOFWERK AG, 瑞士) 可以测量从质荷比6到280的全谱图16,从而可以覆盖轻质元素,如Na, Mg, P, S, K, Ca, Mn, Fe, Cu, Zn等。这些元素是活细胞的固有元素,它们的分布(也被称为细胞离子组17)可以作为细胞发育状态的指标18。例如,磷存在于核酸(DNA和RNA)中,也是ATP、CTP、GTP和UTP等能量化合物的重要成分。钠和钾在电信号的传输中起作用,而锌被不同的生物过程中的多种酶用作催化剂。由于ICP-TOF-MS的同时多元素检测能力,可以在多种元素的相关分析基础上进行指纹识别19。如图2b) 所示,镁、磷、锰、铁、铜和锌被鉴定为被分析藻类的本征指纹元素。不需要标记或染色,即可依据细胞的 "天然 "元素指纹来进行单细胞分析20,21。通过测量特定细胞类型的金属微量元素,则可以获得更细致的指纹信息。例如,海藻细胞富含镁等金属微量元素,镁是叶绿素的核心组成部分,对光合作用至关重要。因此,金属微量元素的组成可以作为一种独特的指纹来明确识别不同的细胞种类。通过测量单细胞的金属元素组分,可更好地了解由金属蛋白和金属酶调节的基本生物过程,从而解密细胞生命周期不同状态22。尽管细胞的生物化学并不完全反映在其离子组上,但通过监测其金属含量的变化,可以确定地获得对细胞状况和生物过程的更深入了解。 通过使用TOF质量分析仪作为检测器,可以动态系统地获得完整的质谱数据,从而可以对发现特定实体本身及其所处环境进行连续或高通量表征。因此在纳米毒理学背景下,人们可以很容易地确定纳米颗粒物是否与细胞相关联。图2:a) icpTOF仪器(TOFWERK AG, Thun, Switzerland)的示意图:在iCAP Q(Thermo Scientific, Bremen, Germany)的框架上搭配一套高分辨率飞行时间质量分析器。因此,ICP-TOF受益于与iCAP Q相同的ICP离子源、离子光学、碰撞/反应池技术和样品引入设备。b) 用48 µ s时间分辩率采集的淡水藻类细胞raphidocelis subcapitata的瞬时信号速率。c) 藻类细胞通常用于毒理学风险评估研究,这里在暴露于金纳米颗粒一段时间后进行分析,以调查其摄取情况。在ICP-TOF的全质量数范围内,可以根据检测细胞的本征元素指纹对细胞进行追踪,并能直接定量测量纳米颗粒物-细胞的关联。icpTOF单细胞分析应用实例 单一实体分析,与批量样品测量相比,能产生信号的质量相对有限,这对仪器灵敏度要求更高。下面的应用案例研究展示了icpTOF S2仪器(TOFWERK AG,瑞士)的性能指标:具有与单四极杆ICP-MS类似的高灵敏度,又可同时快速检测全谱信号,特别适合分析单一实体,如单细胞或纳米颗粒(NPs)等。随着工业和日常生活中纳米颗粒物的广泛使用,纳米安全和纳米毒理学在过去20年一直是深入研究的课题。纳米颗粒物的安全评估研究中的一个重要参数是其在细胞摄取的分析和量化。 透射电子显微镜(TEM)和扫描电子显微镜(SEM)具有高空间分辨率,它们经常被用于细胞内纳米颗粒物的分析23,24。尽管有令人印象深刻的成像能力,基于电子显微镜方法的一个主要缺点是对样品制备的繁琐要求。此外,由于没有额外的元素定量或自动图像分析,获得的图像是定性的且结果较难被解读25,26。如前所述,单细胞ICP-MS也可用于量化细胞对纳米颗粒物的摄取,根据观察到的信号峰的强度大小,提供与细胞相‘关联’的纳米颗粒数量的信息5,6。这类实验通常有以下三个明显的观察结果: 只检测到纳米颗粒物中的特征元素,表明溶液中存在纳米颗粒物 只检测到细胞固有元素而没有任何纳米颗粒物中的元素,表明细胞并没有与纳米颗粒物相关联 同时检测到细胞固有元素和纳米颗粒物中的元素,意味着两者有关联 根据观察到的相关联的纳米颗粒/细胞峰的频率和幅度,可以确定摄取了纳米颗粒物的细胞的百分比以及与每个藻类细胞相关的纳米颗粒数量的估计值。在理想的情况下,可以根据浓度和暴露时间动态地对海藻细胞和纳米颗粒数量的相关性的进行评估。 在本案例研究中,将海藻细胞暴露在BaSO4(NM-220)溶液中72小时,接着按照Merrifield等人提出的程序进行清洗5,去除未与细胞结合的纳米颗粒。在暴露后并在ISO8692藻类培养基中进行冲洗后27,样品中预计只包含与藻类细胞相关联的纳米颗粒物。随后,样品被储存在15毫升的试剂管中,用锡纸包裹,等待分析。 在使用四极杆ICP-MS进行单细胞的初始研究中,我们发现清洗后的细胞悬浮液中仍存在BaSO4纳米颗粒,如图3a所示。有学者认为未关联的纳米颗粒已经去除,而这些检测到的纳米颗粒是与海藻细胞相关联的。然而由于只测量了一种元素138Ba,并不能完全证实这一猜想。 我们使用单细胞ICP-TOF-MS(见图2a)重复了一个类似的实验。从图2b中我们可以知道被分析的藻类细胞的本征元素指纹,即只有同时检测到Mg、P、Mn和Fe等元素时才被认为检测到了藻类细胞。令人惊讶的是,即使暴露72小时后,BaSO4 纳米颗粒与水藻细胞的指纹信号没有显著关联(图3b)。可以看到,Ba仅与Mg和Fe的信号同时被检测到,而没有水藻的其他指纹信号同时出现。虽然缺失的元素信号强度有可能是低于仪器检测极限,但至少这说明检测到的元素与藻类细胞的本征元素指纹不一致。然而在检测到藻类细胞的指纹信号中,没有观测到Ba元素信号。综上所述,如果没有icpTOF瞬时多元素检测能力,在清洗后细胞悬浮液中检测到的纳米颗粒的Ba信号很容易被误解为是与藻类细胞相关联的颗粒物。图3:a)实验流程图。在样品暴露于纳米颗粒物72小时后,细胞被清洗以去除上清液中游离态的纳米颗粒物。b) 通过使用飞行时间质谱仪重复单细胞测量,可以跟踪细胞的元素指纹,以验证纳米颗粒物信号和细胞信号的是否同时出现。结果显示虽然纳米颗粒物和细胞没有直接关联,但Ba信号与Mg和Fe信号是一起出现的。 这些结果导致了对可能引发该现象的机制的讨论。一个合理的解释是海藻细胞通过释放胞外聚合物物质(EPS)来清除粘附在细胞表面的纳米颗粒物。EPS被认为是影响藻类细胞对纳米颗粒的生物利用率的关键因素28,29。EPS产量的增加可使藻类细胞主动脱落纳米颗粒,从而减轻摄取或吸附到细胞外部,而纳米颗粒仍然以被包含在EPS中的形式存在于溶液中。虽然缺乏关于这种行为的定量数据,但足以解释BaSO4纳米颗粒信号与Mg和Fe信号的契合。当然Fe与Ba信号的同时出现还可以被解释为溶解的Ba与ISO 8692培养基中的EDTA络合在了一起,而EDTA被添加在溶液中以保持Fe的生物可利用率。要回答这个问题,我们使用TEM观察到EPS聚集体中包裹有纳米颗粒(图4)。由于TEM局限于定性分析,再加上EPS结构微妙,这种包裹的确切机制和发生频率很难被量化。然而单细胞ICP-TOF-MS则可以直接对这一现象进行定量分析,而不需要对样品进行复杂的制备,同时还可以在较短的时间内分析更多的藻类细胞及EPS聚集体,提供更可靠的统计数据。此外,单细胞ICP-TOF-MS可以动态地从藻类悬浮液中不间断取样,评估这种清除行为的发生频率与样品浓度和时间的关系,进一步了解藻类细胞和纳米颗粒之间的相互作用。这种利用ICP-TOF研究动态摄取和清除行为的研究思路不仅限于藻类细胞,还可以扩展到纳米医学或纳米生物技术的其他类型细胞,如哺乳动物细胞或细菌。图4:一个藻类细胞(Raphidocelis subcapitata)的透射电子显微镜图像,该细胞之前暴露在银纳米颗粒物中,脱落的细胞外聚合物物质(EPS)含有银纳米颗粒。(由Louise H. S. Jensen和Sara N. Sø rensen提供)。 正如本研究强调的那样,尽管传统的四极杆质谱(sc-ICP-Q-MS)可以测量单细胞,但它最多只能同时测量一种或两种元素或同位素,所以即使检测到纳米颗粒信号也不能100%确定其与细胞直接关联。另外还需要TEM来确定颗粒物是否被藻类吸收在内部或简单附着在细胞外部。然而使用ICP-TOF-MS可以将被暴露在纳米颗粒物中藻类的离子组与对照藻类的离子组进行比较,从而评估它们的状况。这些信息对于从机理上理解海藻细胞与纳米颗粒物的相互作用非常有价值,并可以进一步促进开发以生理学为基础的纳米颗粒物风险评估工具。icpTOF结论与展望 单细胞ICP-TOF-MS是一个新兴的、令人兴奋且快速发展的研究领域。虽然尚需数年时间才能达到质谱流式技术在单细胞多参数分析方面的水平,但ICP-TOF-MS得益于灵敏度的提高和同时全谱检测能力,能够基于元素指纹检测未被标记的细胞,从而为新的实验设计创意提供可能性。例如,除了测量纳米颗粒物和细胞的相关性外,ICP-TOF-MS记录的多元素数据可用于评估细胞在纳米颗粒介导毒性影响下的不同状态。 除了液体样品引入方法之外,也可以使用激光剥蚀(LA)-ICP-TOF-MS进行单细胞分析30,31。通过将制备有细胞的载玻片放在样品台上并使用激光扫描,可以产生单个完整细胞层面上的元素分布二维图像,其中每个像素包含一个完整的全元素谱图。LA-ICP-TOF-MS成像的高空间分辨率对纳米毒理学研究特别有意义,因为它可以观察和定位纳米颗粒物在亚细胞结构中的聚集,以进一步了解和解释各种现象(如摄取、积累和释放纳米颗粒)。 此外,所生成的大量数据可以通过降维技术进行处理,如主成分分析(PCA)或机器学习工具,并提取与细胞状态和类型有关的信息,从而使细胞的分类变得更容易。这在质谱流式工作流程中是常见的处理方法。这项技术不仅限于纳米毒理学研究,还可以扩展到金属组学和细胞生物学中。无论如何,我们将继续努力改进飞行时间质谱ICP-TOF-MS技术,使其在更广阔的应用领域发挥作用。icpTOF致谢作者感谢Olga Meili和Aiga Mackevica校对本文并提供反馈。Lars M. Skjolding得到了PATROLS – Advanced Tools for NanoSafety Testing项目资助(760813)。感谢Louise Helene Sø gaard Jensen和Sara Nø rgaard Sø rensen允许使用图4中的TEM图像。最后特别感谢Robert Thomas邀请在Spectroscopy杂志中的 "原子视角专栏 "刊登此文。原文链接:Hendriks L., Skjolding L. M., Robert T., Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint, Spectroscopy, 2020, Volume 35, Issue 10, Pages 9–16https://www.spectroscopyonline.com/view/single-cell-analysis-by-inductively-coupled-plasma-time-of-flight-mass-spectrometry-to-quantify-algal-cell-interaction-with-nanoparticles-by-their-elemental-fingerprint (请点击左下角“阅读原文”跳转)本文由TOFWERK中国-南京拓服工坊科技编译,结论以英文原文为准。参考文献1 S. J. Altschuler and L. F. Wu, Cell, 2010, 141, 559–563.2 W. M. Elsasser, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 5126–5129.3 C. Degueldre and P. Y. Favarger, Colloids Surfaces A Physicochem. Eng. Asp., 2003, 217, 137–142.4 K. S. Ho and W. T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114–1122.5 R. C. Merrifield, C. Stephan and J. R. Lead, Environ. Sci. Technol., 2018, 52, 2271–2277.6 F. Abdolahpur Monikh, B. Fryer, D. Arenas-Lago, M. G. Vijver, G. Krishna Darbha, E. Valsami-Jones and W. J. G. M. Peijnenburg, Environ. Sci. Technol. Lett., 2019, 6, 732–738.7 I. L. Hsiao, F. S. Bierkandt, P. Reichardt, A. Luch, Y. J. Huang, N. Jakubowski, J. Tentschert and A. Haase, J. Nanobiotechnology, 2016, 14, 1–13.8 A. S. Groombridge, S. I. Miyashita, S. I. Fujii, K. Nagasawa, T. Okahashi, M. Ohata, T. Umemura, A. Takatsu, K. Inagaki and K. Chiba, Anal. Sci., 2013, 29, 597–603.9 M. Corte-Rodríguez, R. Á lvarez-Fernández García, P. García-Cancela, M. Montes-Bayón, J. Bettmer and D. . Kutscher, Curr. Trends Mass Spectrom., 2020, 18, 6–10.10 K. Shigeta, H. Traub, U. Panne, A. Okino, L. Rottmann and N. Jakubowski, J. Anal. At. Spectrom., 2013, 28, 646–656.11 P. E. Verboket, O. Borovinskaya, N. Meyer, D. Günther and P. S. Dittrich, Anal. Chem., 2014, 86, 6012–6018.12 D. R. Bandura, V. I. Baranov, O. I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J. E. Dick and S. D. Tanner, Anal. Chem., 2009, 81, 6813–6822.13 K. R. Atkuri, J. C. Stevens and H. Neubert, Drug Metab. Dispos., 2015, 43, 227–233.14 S. D. Tanner, V. I. Baranov, O. I. Ornatsky, D. R. Bandura and T. C. George, Cancer Immunol. Immunother., 2013.15 Y. Guo, S. Baumgart, H. J. Stä rk, H. Harms and S. Müller, Front. Microbiol., 2017, 8, 1–9.16 L. Hendriks, A. Gundlach-Graham, B. Hattendorf and D. Günther, J. Anal. At. Spectrom., , DOI:10.1039/c6ja00400h.17 M. Malinouski, N. M. Hasan, Y. Zhang, J. Seravalli, J. Lin, A. Avanesov, S. Lutsenko and V. N. Gladyshev, Nat. Commun., , DOI:10.1038/ncomms4301.18 D. E. Salt, I. Baxter and B. Lahner, Annu. Rev. Plant Biol., 2008, 59, 709–733.19 A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova, A. Gondikas, R. Kaegi, D. Günther, T. Hofmann and F. Von Der Kammer, Environ. Sci. Nano, 2017, 4, 307–314.20 O. Borovinskaya, S. Aulakh and R. Markus, Tofw. appilcation note, 2019, 1–3.21 M. von der Au, O. Borovinskaya, L. Flamigni, K. Kuhlmeier, C. Büchel and B. Meermann, Algal Res., 2020, 49, 101964.22 L. Mueller, H. Traub, N. Jakubowski, D. Drescher, V. I. Baranov and J. Kneipp, Anal. Bioanal. Chem., 2014, 406, 6963–6977.23 F. Piccapietra, C. G. Allue, L. Sigg and R. Behra, Environ. Sci. Technol., 2012, 46, 7390–7397.24 F. Perreault, A. Oukarroum, S. P. Melegari, W. G. Matias and R. Popovic, Chemosphere, 2012, 87, 1388–1394.25 L. H. S. Jensen, L. M. Skjolding, A. Thit, S. N. Sø rensen, C. Kø bler, K. Mø lhave and A. Baun, Environ. Toxicol. Chem., , DOI:10.1002/etc.3697.26 C. Brandenberger, M. J. D. Clift, D. Vanhecke, C. Mühlfeld, V. Stone, P. Gehr and B. Rothen-Rutishauser, Part. Fibre Toxicol., , DOI:10.1186/1743-8977-7-15.27 ISO, International Organization for Standarization. ISO 8692. Water quality - Fresh water algal growth inhibition test with unicellular green algae., 2012.28 J. Zhao, X. Cao, X. Liu, Z. Wang, C. Zhang, J. C. White and B. Xing, Nanotoxicology, , DOI:10.1080/17435390.2016.1206149.29 F. Chen, Z. Xiao, L. Yue, J. Wang, Y. Feng, X. Zhu, Z. Wang and B. Xing, Environ. Sci. Nano, 2019, 6, 1026–1042.30 S. Theiner, A. Schoeberl, S. Neumayer and G. Koellensperger, J. Anal. At. Spectrom., 2019, 34, 1272–1278.31 S. Theiner, A. Schweikert, C. Haberler, A. Peyrl and G. Koellensperger, Metallomics, , DOI:10.1039/d0mt00080a.
  • 【瑞士步琦】还不知道如何包埋?不妨试试微胶囊造粒仪
    还不知道如何包埋?不妨试试步琦微胶囊造粒仪微胶囊造粒应用”疏水性液核微胶囊在许多行业中发挥着非常重要的作用,主要应用于香水、化妆品、造纸和农业等行业,近年来也在药物和生物活性(食品)行业中得到了应用。该方法允许大多数油或疏水液体被封装,以下物质是常见的例子:常见例子香熏油精油脂肪酸风味和香味Omega-3 鱼油疏水API碳氢化合物洗涤剂化妆品这种方法使被封装的物质(称为封装剂)免受许多不同的环境条件,如氧气,热量,pH值等的影响,并有助于延长其保质期,并实现缓释。与在微珠中封装油和疏水液体相比,使用核壳胶囊具有以下优点:使用核壳胶囊的优点更高的包封率-高达40%胶囊表面无包封剂更强的包封保护多种释放方式,瞬时释放或缓释使用BUCHI封装器提供的不同喷嘴,可以获得400 - 2200 μm之间的胶囊尺寸,同时获得狭窄的尺寸分布(±5%)。1应用案例介绍用海藻酸钙膜制备葵花籽油芯微胶囊(如图3)。设备仪器:封装器 B-390/B-395 Pro同心喷嘴系统:外壳喷嘴 400μm,核心喷嘴 150 μm泵送:气压(外壳材料)和注射泵/气压(芯材)搅拌器试剂聚合物:2.0% (w/v)海藻酸钠,用搅拌器溶解凝胶:100mm CaCl2,含 0.1% 吐温 80封装材料:葵花籽油纯化水2实验步骤将 4.0g 海藻酸钠粉末加入 200mL 水中。使用搅拌器将海藻酸钠完全溶解(图1)。让溶液静置,直至变清澈,并释放出其中所有的空气。气泡也可以通过放置在超声浴或真空下去除。▲ 图1. 聚合物制备将 1.47g CaCl2 和 0.1mL 吐温 80 溶于 100mL 水中。添加吐温 80 是为了降低胶凝溶液的表面张力,从而防止胶囊在进入溶液时破裂。海藻酸盐应首先通过喷嘴泵入,在获得稳定的液滴链后,应该开始通过核心喷嘴泵送葵花籽油。为了获得稳定的单中心液滴链(如图2),需要对两种流速进行微调,这些液滴在凝胶浴中固话产生液核微胶囊。让颗粒在 CaCl2 浴中变硬 20 分钟。最后用大量的水清洗胶囊。参数电压:大于 2000V流量:10(壳)和1.5(芯)mL/min频率:600hz压力:0.5bar振幅:3▲ 图2. 由葵花籽油核心组成的稳定液滴链包裹在海藻酸盐外壳内3实验结果▲ 图3. 使用 BUCHI B-395 Pro 生产的葵花籽油芯微胶囊的 40 倍图像收率:95%形态:球形载量:15%标准发展:±2.5%可以计算出葵花籽油(液体)微胶囊的载药量占比为:% = Vc / Vm * 100%其中:Vm 代表微胶囊体积Vc 代表液体芯的体积4结论海藻酸钠核壳胶囊可以应用于多种不同的液体和材料。胶囊内液体的装载量可高达 40%。封装器有不同的喷嘴尺寸,胶囊直径可在 400 ~ 2200μm 范围内选择。5参考文献 Whelehan and Marison (2011). Microencapsulation using vibrating technology. Journal of Microencapsulation 28:669-688.Whelehan and Marison (2011). Capsular perstraction as a novel methodology for the recovery and purification of geldanamycin. Biotechnology Progress 27:669-1077.
  • 【瑞士步琦】天然抗氧化剂的保护伞——使用步琦微胶囊造粒仪制备叶黄素微球和微胶囊
    1简介叶黄素是植物中常见的天然类胡萝卜素。外表为红橙色,具有天然抗氧化性能,因此也具有氧敏感性;此外,叶黄素基本上也不溶于水。叶黄素和类胡萝卜玉米黄质素存在于人类眼部视网膜中,对视觉非常重要。本研究的目的是保护抗氧化剂免于氧化,并使其在水中分散。因此,利用微胶囊造粒仪 B-390/B-395 Pro 仪器搭配气流振动喷嘴和同心喷嘴分别制备叶黄素微球和微胶囊。制备的微球呈球形、大小均匀,微胶囊由内核和外壳两种不同成分组成。如 下图所示,微球和微胶囊均呈现均匀的球形形貌。含叶黄素的微球模型含叶黄素的微胶囊模型2实验设备和材料实验设备:步琦微胶囊造粒仪 B-390/B-395 Pro实验材料:1.5%(w/w)和1.8%(w/w)海藻酸钠溶液0.1 M CaCl2样品1:7.5g 叶黄素粉末分散于 142.5g 浓度为 1.5% 的海藻酸钠溶液中样品2:5g 叶黄素粉末溶于 100mL 花生油中,磁力搅拌均匀3实验过程实验1:使用气流振动喷嘴制备包埋叶黄素的海藻酸钙基质的微球,仪器参数如下 表1所示。表1:实验 1 的过程参数。仪器微胶囊造粒仪 B-390气流振动喷嘴750 μm(核)/1.5 mm(壳)频率870 Hz进样(外置注射泵)样品1:5.45 mL/min压力1013 mbar喷嘴气体流量1 L/min分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)实验2:使用同心喷嘴制备包埋叶黄素油的核壳结构海藻酸钙微胶囊,仪器参数如下 表2 所示。表2:实验 2 的过程参数。仪器微胶囊造粒仪 B-395 Pro同心喷嘴450 μm(核)/ 700 μm(壳)频率300 Hz进样核:样品2(注射泵进样)壳:1.8 %海藻酸钠溶液(压力瓶进样)核进样速度11.5 mL/min压力300 mbar分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)4实验结果本实验成功使用气流振动喷嘴制得球型叶黄素微粒,如下图(a)所示。图中叶黄素粉末嵌入在海藻酸钙微球内部,微球直径尺寸在 300μm 到 600μm 之间。与叶黄素微球相比,实验2 制备的核壳结构叶黄素微胶囊如下图(b)所示。通过使用同心喷嘴,海藻酸盐基质形成的外壳可以将叶黄素油完全包覆,形成保护层,微胶囊直径在 1200μm 到 1400μm 之间。(a)使用气流振动喷嘴制得的叶黄素微球(b)使用同心喷嘴制得的叶黄素微胶囊5结论本研究提出两种使用微胶囊造粒仪包埋油溶性物质的可行方法,步琦微胶囊造粒仪 B-390 和 B-395 Pro 可用于制备含叶黄素的球型微粒和微胶囊。
  • BBC报道微胶囊造粒仪在细胞包埋方面的成功应用!
    激动人心的消息!!——BBC报道了微胶囊造粒仪在细胞包埋方面的成功应用! Doctors in London have cured a baby boy of a life-threatening disease which was destroying his liver. The boy was treated by implanting encapsulated liver cells. This is the first case reported worldwide so far. The liver cells were encapsulated in alginate using the Inotech Encapsulator IE-50R, which is a precursor model of the BUCHI Encapsulator B-395 Pro. BBC News showed also the Encapsulator IE-50R in the following report: http://www.bbc.co.uk/news/health-15745948 . 伦敦一名医生通过肝细胞微胶囊移植手术成功救治了一位患肝脏疾病的重症男婴。迄今为止,这是世界首例相关报道。肝细胞通过Inotech Encapsulator IE-50R也就是步琦公司现在的微胶囊造粒仪B-395 Pro,包埋在海藻酸钠中,形成微胶囊。另外,BBC新闻还报道了Encapsulator IE-50R在其他方面的应用,见下面链接:lhttp://www.bbc.co.uk/news/health-15745948 This report demonstrates that the Encapsulator is excellent for cell encapsulation. 该报道表明微胶囊造粒仪在细胞包埋方面有着优越性能。
  • 【行业应用】赛默飞发布蓝藻发酵液中的糖的检测方案
    赛默飞近日发布蓝藻发酵液中糖的检测方案。蓝藻可以进行光合作用,与高等植物叶绿素具有一定程度上的同源性,加上其研究体系简单,长期以来一直是研究光合作用的模式生物。除此之外,蓝藻还可以进行固氮作用,将大气中的氮气经固氮作用转化为可以利用的氮源,用于提高土壤的肥力。如果可以通过代谢工程改造蓝细菌生产蔗糖并提供给大肠杆菌等微生物发酵生产生物燃料,必将加速整个生物燃料的产业化进程,具有显著的意义。赛默飞发布的蓝藻发酵液中糖的检测方案,采用 Thermo ScientificTMDionexTM ICS-4000 毛细管 HPICTM系统和质谱联用法测定发酵液中的一些成分,分离测定7种糖,如蔗糖、乳糖、葡萄糖、海藻糖、葡萄糖甘油酯、甘露糖、果糖等。毛细管离子色谱常用色谱柱直径为0.4 mm,流速为10 μ L/min,其进样体积通常为0.4 μ L,与常规分析型离子色谱相比,其灵敏度是常规离子色谱的近百倍。毛细管离子色谱的流速是10 μ L/min,符合质谱对低流速的需求。本方法在柱后乙腈溶液中添加了少量乙酸钠,以提高糖在质谱中的重现性。此方法的建立有利于了解其基因改造效果,对于充分利用蓝藻意义重大。毛细管离子色谱质谱联用测定糖方法操作简便,重复性好,线性范围内相关性好,准确度高,进一步拓展了毛细管离子色谱的应用范围,具有较高的实用价值。应用文章下载链接:https://tools.thermofisher.com/content/sfs/brochures/Capillary-ion-chromatography-mass-spectrometry-method-determination-carbohydrate-blue-green-algae-fermentation-liquor.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 【瑞士步琦】喷雾干燥制备鼠李糖乳杆菌微胶囊研究
    喷雾干燥技术微囊化鼠李糖乳杆菌ATCC 7469益生菌是一种活的微生物,当摄入足够的量时会对健康有益,只有在生存能力(107-1010 CUF m/L)得到保护的情况下才能发挥其作用。益生菌通常是乳杆菌和双岐杆菌,它们常与胃肠道有关;它们通常以冻干培养物的形式供应,或者被雾化并直接添加到食物中。益生菌功能食品在市场上需求量很大,酸奶和发酵乳制品通常被用作这类生物活性微生物的载体;然而,人们对在其他类型的非乳制品基质中掺入益生菌菌株越来越感兴趣,尤其是对于患有乳糖不耐受症、对酪蛋白过敏或与乳制品有关的其它问题的消费者。一些研究报告了微胶囊益生菌的应用。例如,将益生菌菌株掺入奶酪、巧克力涂层和巧克力中,以及掺入果汁、蛋黄酱、黄油、肉类和烘焙产品等非乳制品中。益生菌菌株对胃肠道健康很重要,因为它们可以预防肠道炎症,为上皮细胞提供保护,并调节抗体。它们可以产生细胞因子或趋化因子,改善乳糖不耐受,增加对结直肠癌的保护,抑制幽门螺杆菌活性,并用于治疗食物过敏和预防急性腹泻。然而,这些微生物有不幸的缺陷,特别是在菌株存活方面。喷雾干燥是微胶囊化最广泛使用的方法之一,因为其成本低,在最佳干燥条件下具有高存活率,并且在配方中加入了保护剂。近年来,乳清蛋白作为益生菌保护剂的使用获得了越来越多的兴趣,因为这些蛋白是提高益生菌活性的天然载体,并且由于结构和理化特征,可以作为胃肠道中的递送系统。蛋白质可以在干燥过程中增加益生菌的存活率,因为它们能够形成降低热应力的保护膜。糖的添加也会影响干燥的益生菌制剂的存活。研究人员肯定了糖(如肌醇、山梨醇、果糖、乳糖、葡萄糖和海藻糖)对脱水细菌细胞的保护作用。研究发现,海藻糖等糖是一种能够通过氢键与蛋白质分子相互作用的二糖;它可以在脱水和再水化过程中替代蛋白质周围的水分子,形成一种玻璃状基质,稳定生物大分子。科学家研究了使用奶酪乳清与淀粉、阿拉伯胶、麦芽糖糊精和乳清蛋白浓缩物联合干燥鼠李糖乳杆菌 64 的载体剂选择。另一方面,干燥温度是影响存活率的因素。例如,喷雾干燥的植物乳杆菌 WCFS1 再低干燥温度下表现出较高的存活率。在此背景下,本研究以 WPC、麦芽糊精和海藻糖为原料,采用喷雾干燥的方法对鼠李糖乳杆菌 ATCC 7469 进行微囊化,并评估微囊化对细胞活力和干粉性能的影响。以喷雾干燥条件(包括进口温度、空气流量和进料泵)为自变量,益生菌存活率、水分含量、水分活性和有效产量为因变量。采用响应面法对喷雾干燥包裹的鼠李糖乳杆菌的存活率进行了优化,并对粉末的稳定性进行了评估。1样品制备按最佳稳定性配方乳清浓缩蛋白:麦芽糊精:海藻糖(75:10:15)的比例采用超滤的方法制备乳制品悬浮液。将冻干的鼠李糖乳杆菌 ATCC 7469 菌株悬浮于 2ml 培养基中,在 MRS 肉汤(蛋白胨:10.0g,牛肉浸粉:10.0g,酵母浸粉:5.0g,葡萄糖:20.0g,吐温80:1.0g,磷酸氢二钾:2.0g,醋酸钠:5.0g,柠檬酸铵:2.0g,硫酸镁:0.1g,硫酸锰:0.05g,pH6.2±0.2,25℃)中重新激活制备细菌悬浮液。2实验过程在磁力搅拌下将鼠李糖乳杆菌 ATCC 7469 菌株悬浮液添加到每个乳悬浮液中,在微囊化过程期间使所述分散液保持在恒定的搅拌状态。喷雾干燥仪选用瑞士步琦 B-290,通过改变进口温度(120℃-180℃)、干燥空气流量(70%-90%,即:28-35m3/h)和进料量(10%-55%,即 3-17mL/min)来进行工艺摸索。▲S-300工艺探索采用响应面法和二次复合中心设计对益生菌微囊化进行了优化,其自变量有进口温度、空气流速和进料流量。在最优理论条件下进行了三次实验验证。图1 考察了菌株存活率的响应面变化。由图可知存活率与出口温度呈反比,低温时存活率在 69%、高温时存活率在 23%。其他科学家在使用含益生元的脱脂乳制备鼠李糖乳杆菌 GG(ATCC 53,103),70℃ 时的存活率为 76%。也跟我们的研究结果相吻合。图2 考察了水分含量的响应面变化。从图可得到进口温度与水分含量之间呈反比关系,当进口温度与进料量较高时,粉末的水分含量较低,结合存活率考虑,水分含量在 3.0%-5.8% 之间,与其他报道的数值相接近。图3 考察了水活度的响应面变化。在较高的进口温度下,进料量和气体流量得到了较低的水活度值,因素与结果之间呈反比关系。其他使用麦芽糊精、乳清蛋白浓缩物和葡萄糖的相关研究中,水活度的值与本研究中活性最高的粉末报告结果一致。3实验结果确定益生菌的包封中壁材的最佳比例对于提高微生物对抗整个胃肠道条件的稳定性很重要。在干燥过程中指定最佳条件以最大限度地提高作为壁材的蛋白质-海藻糖-麦芽糊精混合物的保护能力并因此提高鼠李糖的存活值也是重要的。因此,使用响应面方法确定干燥过程的最佳条件。表2显示了鼠李糖乳杆菌微囊化的最佳操作参数,结果表明,理论模型可以很好地近似实验值(差异<10%)。得到的最佳喷雾干燥条件是进口温度、空气流量和进料泵流量分别为169℃、33m3/h和16ml/min,存活率为70%,吸气率为84%,出口温度为52℃,总体满意度为0.96。物理性质评价如图4所示,得到的粉末水活性动力学显示了较高的吸水能力,这可能是海藻糖作为低分子量碳水化合物,表现出的分子运动和扩散效应,与用于包封基质的典型吸水行为一致。吸湿性随着储存时间的延长有增加的趋势,直到达到某种程度的平衡。因此加入了 WPC 来降低吸湿性,因为它的表面活性和形成具有较高 Tg 膜的能力。粒径和形态结果如图5显示。(a)在最佳工艺参数上制备的粉体,其微胶囊紧凑,类球形形状,具有不同的大小和不规则的表面与压痕,外表面显示无裂缝或破坏的墙壁,这是确保更高的保护和更低的气体渗透性的基础。4结论结果表明,蛋白质-海藻糖-麦芽糊精混合物是包裹鼠李糖乳杆菌的良好壁材,在干燥过程中表现出重要的热保护作用,并提高了其存活率;通过响应面方法优化的喷雾干燥工艺条件生产的微胶囊具有可接受的理化性质——水分、水活性、吸湿性和粒径等,为益生菌的微囊化提供了思路。5文献来源Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose.
  • 文献速递ㅣ植物活体成像在藻类研究中的应用
    ● 快讯近日,中国科学院烟台海岸带研究所,中国科学院海岸环境过程与生态修复重点实验室的吕剑,张翠和武君研究团队在《Frontiers of Environmental Science & Engineering》(IF=3.85)发表了题为“Removal of steroid hormones from mariculture system using seaweed Caulerpa lentillifera ”的研究论文,揭示海水养殖系统中不同种类的海藻对类固醇激素的去除作用。海水养殖是提高沿海地区经济和生活水平的最重要产业之一。然而,海水养殖系统会产生各种污染物,并排放到环境中,对生态和健康造成有害影响。只有减少与海产养殖活动相关的负面环境影响,才可以实现该行业的长期可持续性。在循环式水产养殖过程中的污染物,如含氮废物和类固醇激素的不断积累,对水产养殖系统的负面影响最为显著。本文研究不同海藻(海葡萄、石莼、龙须菜和刺松藻)在海水养殖系统中对类固醇激素(Steroid hormones)的去除率。研究人员对不同种类的活海藻样品在用17β-雌二醇(E2)和17α-乙炔雌二醇(EE2)处理 24 小时后,立即使用 PlantView 100 植物活体成像系统观测海藻中有机污染物 E2 和 EE2 在海藻中的分布。结果显示,海葡萄对类固醇激素的去除效果最好。海葡萄在12小时内,通过初始快速生物吸附、缓慢积累和生物降解等过程,对浓度为10 μg/L 的E2 或 EE2 去除率超过90%。说明,利用海葡萄可以同时去除海水养殖废水中的类固醇激素和营养物质,同时也表明海葡萄在水温相对较高的工业化海水养殖系统中具有良好的应用前景。通过使用植物活体成像系统进行了长达三周的连续追踪成像后,海葡萄仍然能够同时有效地去除E2和EE2。综上结果表明,利用海葡萄可以同时去除海水养殖废水中的类固醇激素和营养物质。本研究中,E2或EE2在藻类中的积累结果(3D数据视图),由广州博鹭腾生物科技有限公司的PlantView100植物活体成像系统软件进行拍摄与分析
  • 欧盟批准两种添加剂用于发酵葡萄汁基饮料
    据欧盟网站消息,12月5日欧盟委员会发布(EU)No 1148/2012号条例,批准二氧化硫-亚硫酸盐、海藻酸-1,2-丙二醇酯(propane-1, 2-diol alginate )用于发酵葡萄汁基饮料。  据了解,二氧化硫-亚硫酸盐用于发酵葡萄汁基饮料可起到抗氧化与抑菌的作用,还可抑制第二轮发酵期间多余酵母菌的生长 海藻酸-1,2-丙二醇酯用于发酵葡萄汁基饮料可起到稳定二氧化碳泡沫的作用。  新条例规定,二氧化硫-亚硫酸盐用于发酵葡萄汁基饮料时,最大使用限量为20mg/kg,海藻酸-1,2-丙二醇酯用于发酵葡萄汁基饮料时的最大使用限量为100mg/kg。
  • 低价雪糕滥用添加剂与食用胶 融化即变胶状
    这支冰棍在常温放置24小时后,变成了一摊胶状物。  今年是济南30多年来入夏最早的一年,冷食跟着提前热销。但一支冰糕常温放置24小时后,竟成了一摊胶状物,让市民吃着有些担心。生产厂家称,这是一种新型果冻冰糕,不完全融化属于正常。专家指出,这可能是增稠剂添加过量所致。  7日,记者调查发现,越便宜的冰糕添加剂越多,有的多达十几种。业内人士透露,一些企业为了节省成本,找香料、增稠剂来“帮忙”调出好滋味。  市民质疑:冰糕化成胶状物,还能吃么?  “冰棍化成了一摊黏糊糊的胶状物,这是怎么回事?”家住省城闵子骞路附近的市民王先生说,6日天气很热,他就把刚买的冰棍放进啤酒里想给啤酒降温。令人意外的是,冰棍在啤酒中半小时后还没完全融化。王先生取出来一看,冰棍变成了一团软软的胶状物。  王先生看到包装纸上写着,这是一款水晶舌头果冻冰棍,上面添加剂有十余种:黄原胶、卡拉胶、魔芋胶、刺槐豆胶、柠檬酸、苹果酸、甜蜜素、安赛蜜、阿斯巴甜、糖精钠、食用荔枝香精等。“一支冰棍十几种添加剂,会不会超标?”王先生有些担心,原以为买这种白色冰棍,香精和色素会比较少,现在才发现添加剂并不比五颜六色的雪糕少。  记者将一支没有拆包装的舌头果冻冰棍放在常温下24小时,冰棍仍未完全融化,而是缩成一块黏糊糊的胶状物。摸着比果冻稍软,不易捏碎,闻起来香气很浓。随后,记者以消费者的身份咨询该冰糕的生产厂家。对方称,这是一种新型果冻冰糕,不能完全融化属于正常。冰糕虽采用老包装但符合新国标,应该不会有质量问题。至于那一摊胶状物,对方建议暂时不要食用。  市场调查:添加剂种类越多,冷食价格越低  7日,记者走访了省城大润发超市,不少市民正在购买冷食。记者随手查看了几盒雪糕,发现外包装上都标识了食品添加剂种类。  在一款水果口味的雪糕外包装上,标有柠檬酸、甜蜜素、卡拉胶等12种食品添加剂,而旁边一桶蒙牛巧克力口味的冰激凌,其乳化剂、色素、增稠剂等添加剂的数量有10种。记者发现,雪糕中食品添加剂数量的多少,和雪糕价格也有关系。售价三四元一盒的雪糕,食品添加剂数量大都在10种以上 二三十元一盒的雪糕,添加剂数量大都有五六种 而一盒售价27元的八喜雪糕,仅有5种添加剂。  对此,济南群康集团董事长、济南市食品工业协会常务副会长、冷食分会会长于宏昌指出,在冷饮中,国家允许使用的添加剂不到30种。因为结晶体不同,冰糕、雪糕、冰激凌也有各自的标准。其中,冰糕也就是冰棍,它的成分一般只有水、糖和添加剂,水的含量应是95%,添加剂不能超过总重量的5%。雪糕和冰激凌则对总干物投放量有要求,雪糕总干物为15%到25%,这里的总干物指奶、玉米淀粉、饴糖、蔗糖 冰激凌总干物含量为25%到40%,这里的总干物指奶或还原奶。  对于价格低廉的雪糕添加剂较多的现状,于宏昌指出,这是企业降低成本的表现。雪糕中如果添加水果、牛奶等,成本压力大。一些企业节省成本又想提升口味,就需要一些香料、增稠剂来“帮忙”。“所以,市民购买冰棍雪糕时,尽量不要购买过于鲜亮的。”  专家说法:添加剂叠加用量,没有具体标准  “冰糕融成一摊胶状物,应该是配方不合理,可能是食用胶添加过量所致。”于宏昌表示,正常情况下,冰糕中添加剂含量很少,不会出现这种情况,而雪糕、冰激凌更是只会化成水。  质监部门的工作人员表示,根据国家标准,黄原胶、卡拉胶、刺槐豆胶这种添加剂的使用量没有最高量,属于相对较安全的添加剂,食品企业可以根据需要适量添加。  对此,山东省轻工业学院食品与生物工程学院赵教授表示,根据该款冰棍外包装上的标识来看,执行的是SB/T10016标准,这是一个商业推荐性标准,但冰棍中的食品添加含量多少,必须要符合国家食品添加剂使用标准(GB2760_2011)。目前关于食品添加剂的标准仍不够具体详细,尽管每种食品添加剂都在规定含量内,但仍可能存在一些问题。比如,冰棍中同时添加了多种防腐剂、色素,“多种增稠剂的叠加含量就有可能超标了,但关于食品添加剂叠加含量应控制在多少,国家目前并没有具体的标准。”  搜狐健康补充阅读:  问题:我国食品添加剂到底有哪些?  解答:  目前我国食品添加剂目录中有1960多种添加剂,共有22类。分别是(1)防腐剂(2)抗氧化剂(3)发色剂(4)漂白剂(5)酸味剂(6)凝固剂(7)疏松剂(8)增稠剂(9)消泡剂(10)甜味剂(11)着色剂(12)乳化剂(13)品质改良剂(14)抗结剂(15)增味剂(16)酶制剂(17)被膜剂(18)发泡剂(19)保鲜剂(20)香料(21)营养强化剂(22)其他添加剂【阅读:详细解读日常食品添加剂的危害】  问题:食品增稠剂都有些什么?  解答:  由含有多糖类粘质物的植物和藻类制取,如淀粉、果胶、琼脂和海藻酸等,也有从蛋白质的动物原料制取,如明胶和酪蛋白等。少数是人工合成的,如聚丙烯酸钠。常用的增稠剂有淀粉、琼脂、明胶、藻蛋白酸钠、果胶、藻蛋白酸丙二酯、羧甲基纤维素及其盐类的各种变性淀粉(如酸处理淀粉、碱处理淀粉、漂白淀粉、氧化淀粉、乙酸酯化淀粉等)。植物胶类有阿拉伯树胶、瓜尔豆胶(guar gum)和黄原胶(xanthan gum)等。  问题:明胶是什么?  解答:  明胶其实是一种蛋白质,它是用动物的皮或骨头水解熬制而成。人们喜欢吃猪皮、凤爪,并传说吃胶原蛋白美容,明胶就是胶原蛋白煮后的产物,肉皮冻也是明胶的凝冻。只要是食用级明胶,就不用担心。被许多人当作"神奇保健品"的阿胶,只不过是选材和工艺上有所不同,跟明胶并无本质差异。  问题:哪些食物里可能会添加明胶?  解答:  一般而言,在食品加工中,明胶的使用量不大,主要作用有增稠、增加稳定性、成胶等。但是它的用途非常广泛,在主食,如酸辣粉、米线里 肉制品,如火腿肠、肉馅里 饮料,如酸性饮料、啤酒里 零食,如龟苓膏、老酸奶、冰激凌、棉花糖、橡皮糖里,都可能有它的身影。  问题:食品明胶会对健康有什么影响?  解答:  食品中的明胶是一种不完全蛋白质,人体对其的吸收利用率很低。而果冻和龟苓膏中的卡拉胶除了"白占"胃容量之外,更没有任何营养成分。因此,尤其儿童要少吃含食用胶的食品,它会影响其他营养食品的摄入,可能导致儿童营养不良。  问题:如果实在对食品中的明胶不放心,有没有远离明胶的办法呢?  解答:  四点能帮你远离明胶,1.不买皮冻、肉冻、水晶肠、灌汤包等食品。2.买酸奶不要追求浓稠或成冻,天然酸奶经过摇晃搅拌之后会变稀,比牛奶稠不了多少。3.少吃各种软糖、雪糕、冰激凌等产品。4.别买太便宜的产品。  问题:果冻中用的是卡拉胶和魔芋胶,我还听说有果胶,食物中常用的有哪些"胶"呢?  解答:  常用的水胶体,其实都是"天然产物"。它们有的来自海藻的提取物,比如琼脂和卡拉胶 有的来自橘子皮和苹果榨汁后的残渣,比如果胶 有的来自植物的种子,比如阿拉伯胶、瓜尔豆胶、槐豆胶 还有一些水胶体由微生物发酵得到,比如黄原胶。多数的水胶体是直接的提取物,只有很少数经过一定的加工,比如羧甲基纤维素(CMC)。广泛检验表明,它们对健康并没有危害。
  • AB Sciex:LC-MS/MS分析海洋及淡水中的藻类生物毒素
    AB Sciex 赵贵平工程师海洋毒素的起源:海上漂浮的藻类曾经被诗人称为“自由自在美丽漂荡的精灵”,但近几年却成了可怕的“海怪” 它会因环境的影响而高速繁殖,浓度达到一定值时,水面因之变色,形成赤潮。赤潮所含藻类几乎都有毒性,这类毒素是目前已知的最毒的有机化合物,人食用了含有贝类毒素的贝类后可能引起中毒死亡。  海藻毒素按作用可分为:麻痹性海藻毒素(PSP)、腹泻性海藻毒素(DSP)、神经毒性海藻毒素(NSP)、失忆性海藻毒素(ASP)。  分析检测这类物质的挑战:需要建立通用的、综合的、灵敏的和准确的方法来分析各种毒素,同时分析宽范围的、类型繁多的各种毒素,每一类中还存在多种结构变化,在问题出现之前,就能够检测到和确定新毒素。  检测技术的演变:许多年来,用活体小鼠做生物实验是检测贝毒素的主要方法,现在有时还是“黄金”方法 用化学方法检测毒素变得日趋重要 希望有可检测多种(类)毒素的方法 现在LC/MS/MS方法已成为主要技术分析手段,主要困难是定量内标和参考物,大部分生物毒素可以由NRC来提供认证的参考物质(CRMs,Certified Reference Materials) NRC-National Research Council, Canada。
  • 迅数科技参加全国藻类多样性和藻类分类学术研讨会
    2010年8月6日,第二届全国&ldquo 藻类多样性和分类&rdquo 学术研讨会在山西大学隆重召开,来自全国各地的29个科研院所参加了此次大会。开幕式由谢树莲教授主持,中科院海洋研究所、中科院水生生物研究所、中科院地理湖泊研究所、中科院武汉植物园、中国海洋大学、厦门大学、上海师范大学、上海海洋大学等科研单位和高校。迅数科技公司代表谢尚托先生应邀在会上做了主题为&ldquo Algacount智能藻类鉴定计数系统的研发和应用&rdquo 的技术报告,受到与会代表的欢迎。 会议上,大会主题报告邀请了不同科研单位的各界藻类学专家,其报告内容分别为:齐雨藻教授的&ldquo 硅藻分类系统与系统学研究进展&rdquo ,高亚辉教授的&ldquo 海洋浮游植物种类自动识别技术&rdquo ,许璞教授的&ldquo 关于红毛菜植物生物多样性及系统发育的探讨&rdquo ,胡鸿钧研究员的&ldquo 论藻类的系统发育、系统分类及生物多样性&rdquo ,李仁辉研究员的&ldquo 中国典型水花蓝藻微囊藻的形态型,分子型和有毒型&rdquo ,王宏伟教授的&ldquo 管形藻属的分子系统学研究&rdquo ,丁兰平博士的&ldquo 强壮硬毛藻的实验分类学&rdquo ,吴忠兴的&ldquo 我国淡水浮游鱼腥藻的系统学分类&rdquo ,张琪的&ldquo 淡水拟多甲藻属水花形成种的形态差异&rdquo ,刘妍的&ldquo Internal valves in poulations of Meridion circulare (Greville) C.A Agardh from the A&rsquo er Mountain region of northeastern China: Imlications for taxonomy and systematcs.&rdquo ,吉莉的&ldquo Molecular Systemetics of the Four Endemic Batrachospermum (Rhodophyta) Species in China with Multilocus Data.&rdquo ,陈伟洲的&ldquo 广东南澳岛底栖大型海藻多样性的研究&rdquo ,姚雪的&ldquo 大型海藻分子分类策略研究及应用探讨&rdquo ,胡变芳的&ldquo The spatial and temporal distribution of epiphytic algae on three stream macoralgae in Xin&rsquo an Spring,North China.&rdquo ,扬扬的&ldquo 生态浮床对河流生态恢复中浮游生物群落结构演替的影响研究&rdquo ,朱建一老师的&ldquo 红毛藻植物的染色体观察&rdquo 和林燊的&ldquo 基于转座子系统的蓝藻基因组多样性&rdquo 。还有多位专家学者发表了报告。与会人员认真听取了各专业领域研究者的报告并提出问题,进行了热烈的学术讨论。 与会专家认为:藻类水华已成为国内外普遍关注的环境问题, 而如何快速鉴定水华种类非常重要。 &ldquo 显微镜检观察技术&rdquo 是目前有害藻华(Harmful Algal Blooms,HABs)(包括海洋赤潮和淡水水华)生物定性及定量监测研究的主要技术手段。然而,显微观察技术需要专业人员操作,对专业技术知识和经验要求非常高。我国的藻类监测人员急需能够满足系统性藻类研究需要的藻类分类图谱和专业研究设备! 迅数科技在会上展示的Algacount智能藻类鉴定计数系统,是针对我国大范围开展藻类监测工作需要,开发出的帮助藻类鉴定分析技术人员进行藻类鉴定和藻类计数的专门技术装备,受到代表们的赞扬和高度评价。(2010.8.23)
  • 美国完成团藻基因组测序 有望破解光合作用玄机
    在为交通运输提供碳中性(平衡)燃料这条漫长且艰难的道路上,美国能源部正寻求多种途径力图实现自己的目标。能源部的努力包括探寻自然界中潜在的新型燃料资源,它们包括从陆地上可作为纤维质原料的植物(如快速生长的树木和多年生牧草)到水中及其他生长环境中的产油生物(如海藻和细菌),极具多样性。  对生物燃料研究人员而言,近期美国《科学》杂志刊登的一项成果无疑是一条喜讯。根据该杂志的报道,美国能源部联合基因组研究所(JGI)和索尔克研究所领导的研究人员破译了carteri团藻(Volvox)的基因组。carteri团藻是一种多细胞海藻,它通过光合作用获取光能。  藻类光合作用藏&ldquo 玄机&rdquo   据悉,美国能源部之所以大力支持光合成生物体内复杂机制的研究,为的是更好地认识生物体如何将阳光转换成能量,以及光合成细胞如何控制生物的新陈代谢过程。这些信息有助于未来可再生生物燃料的生产。  在《科学》杂志刊登的文章中,研究人员将团藻基因组同其近亲单细胞莱茵衣藻(Chlamydomonas reinhardtii)的基因组进行了比较。3年前,联合基因组研究所曾破译了莱茵衣藻的基因组。衣藻是人们深入研究的潜在的海藻生物燃料资源。团藻和衣藻均属于团藻目家族,团藻基因测序的重要价值在于它可以作为衣藻基因参照物(对比物),研究人员通过数据比较来研究它们的光合作用机理以及多细胞生物的演化。  与衣藻不同,团藻包含两种细胞:一种是数量较少的生殖细胞,另一种则是数量较多的体细胞。生殖细胞能够分化形成新的菌落,与此同时,体细胞则提供机动力,并分泌能导致生物体扩展的细胞外基质。团藻内两种细胞的分工使得团藻比衣藻生长和游动都要快,从而帮助团藻能够躲避捕食者,同时在更深的水域获取营养。  文章第一合著者、索尔克研究所科学家吉姆· 伍曼表示,团藻特别令人着迷的地方是它如何有选择地减少光合作用或调节光合作用以支持另一种细胞。虽然目前人们还没有很好地认识团藻的这一特性,但该特性有可能帮助人们通过转基因工程让光合生物进行相应变化,生产生物燃料或其他产品。  并不是&ldquo 越小越简单&rdquo   联合基因组研究所生物信息学家西蒙· 普鲁克尼克解释说,研究团藻目生物的兴趣点在于单细胞祖先在较短的进化时间段演化成多细胞和复杂的细胞过程。研究人员发现,尽管团藻和衣藻两种生物的复杂程度和生命史存在很大差异,二者的基因组却有相似的蛋白编码潜能。与莱茵衣藻相比,专家在团藻细胞内只发现了很少该生物特有的基因,也就是说,多细胞的团藻基因组缺乏创新。因此,越小越简单的理念开始受到挑战,科研人员由此推断,从单细胞生物演变为多细胞生物并非必须大幅提高基因的数目,在这种演变中,基因如何以及何时编码合成特定的蛋白才具有决定意义。相信随着更多的单分子生物的基因组被破译,人们对此将会有更多的了解。  分析显示,大约有1800个蛋白质家族属于团藻和衣藻所独有。这些蛋白质家族是多细胞物种生长和发生形态变化的基因物质资源,尤其是经查明,某些蛋白质家族与多细胞体相关。团藻和衣藻在利用这些蛋白质家族方面的不同之处将是人们未来准备研究的问题。伍曼表示,团藻基因组为衣藻基因组工程以及精确认识形态进化和蛋白质创新增加了巨大的价值,现在人们需要静下来研究这些基因的功能。  普鲁克尼克认为,团藻和衣藻作为易驾驭的实验模式生物,它们的信息可以被人们广泛使用,包括那些对团藻生物学不感兴趣的研究人员。他表示,团藻基因组是指导其对目标领域进行深入研究的极好资源。  华盛顿大学名誉教授大卫· 科克预计,由于团藻基因组的破译,在未来5年里,研究团藻的群体人数将迅速增加。他说:&ldquo 认识多细胞体的起源是我毕生的兴趣,随着基因组测序完成,这项工作开始起步了。现在,人们可以轻而易举地获得更多的答案。真希望自己出生得晚些,这样可以成为研究的参与者。不过,我将在一旁为研究者欢呼。&rdquo
  • 【瑞士步琦】冷冻干燥含酵母菌的微球应用
    瑞士步琦冷冻干燥含酵母菌的微球应用冷冻干燥应用”益生菌是一种有益于人体健康的微生物,常被用于改善肠道菌群。微胶囊包埋技术可以帮助保护菌株,延长其在体内的存活时间,不易受外界环境的影响而失活。因此,在生产益生菌产品时,需要考虑选择合适的微胶囊技术,以确保益生菌的稳定性和活性。下面这篇应用非常好的结合了微胶囊包埋和冷冻干燥技术,证明菌种经过包埋干燥后仍具有生物活性,为发酵工艺和食品转化等领域开辟新的可能性。1介绍冷冻干燥,也称为冻干是一种非常通用的脱水方法,常用于保存微生物、食物或药物,如蛋白质类药物。它将冷冻和干燥结合在一个独特的操作中,可以创造出高质量的干燥终产品。冷冻干燥通常用于保存微生物培养物,因为它具有不可忽视的优点:储存的方便性和增加邮寄微生物的可能性。此外,制得的产品只需要少量维护,培养基在储存过程中不会受到污染,微生物可以长时间保持活力。然而,众所周知,冷冻干燥技术对微生物至关重要,因为它对微生物的生存能力和生理状态都有负面影响。根据方法和生物体的不同,微生物存活率也各有不同;然而,活力水平明显低于液氮储存 2。观察到的活力下降主要是由于一些不良副作用引起的,例如细胞内冰晶的形成1、敏感蛋白的变性或在此过程中膜脂质的物理状态发生一些不可逆的变化 3,5。为了防止这种影响,通常在冷冻或冷冻干燥前使用脱脂牛奶、蔗糖、甘油、 DMSO 或海藻糖等作为冻干保护物质1,3。据报道,海藻糖在干燥、冷冻、渗透胁迫和热休克等极端环境下对酵母和细菌具有保护作用。这些保护效果与膜的稳定和酶活性的保存有关。关于海藻糖的保护作用,已经报道了几种假设。一些报道认为它的作用是通过多个外部氢键取代参与维持蛋白质三级结构的水分子,另一些报道认为它形成玻璃态结构以确保物理稳定性。除了发酵过程或食品转化,酿酒酵母或乳酸菌等微生物在益生菌膳食食品和饲料补充剂领域具有重要的经济意义。然而,这些应用需要在储存过程中保持细胞活力。通过造粒和冷冻干燥技术相结合,可以得到大小和组成均匀的无尘颗粒。由于具有更高的颗粒表面积,这使得产品将具有良好的颗粒流动性,更容易掌握的剂量和更快的产品复原性。尽管存在上述挑战,冷冻干燥仍然是一种酵母、孢子真菌和细菌的方便保存方法,因为它们的长期生存能力通常保持得相当好,而且菌株的储存和分发要求也很简单。因此,本应用旨在生产酿酒酵母颗粒作为模型微生物,使用微胶囊造粒仪 Encapsulator B-390 作为造粒机,将酵母悬浮液挤压进入液氮中形成单分散球体,然后使用冷冻干燥机 Lyovapor&trade L – 200 进行冷冻干燥处理。2仪器,试剂和器材仪器:ESCO NordicSafe, Biosafety Cabinet Class IIBUCHI 微胶囊造粒仪 Encapsulator B-390BUCHI 冷冻干燥机 LyovaporTM L-200 Pro,干燥腔体搭配可加热搁板BUCHI LyovaporTM Software试剂:YPD 培养基, Sigma Aldrich海藻糖, Sigma Aldrich脱脂奶粉琼脂去离子水液氮器材:玻璃培养皿液氮杜瓦瓶3实验本应用中描述的工作是在无菌条件下进行的。将 84g 市售面包酵母悬浮溶解在 50mL 无菌 YPD 培养基(Sigma Aldrich)中。在酵母悬浮液中加入 50mL 无菌冻干保护剂培养基(5g 海藻糖(Sigma Aldrich)和 5g 脱脂牛奶溶于去离子水中),然后用微胶囊造粒仪 B-390 进行制粒(表1)。将挤压后的液滴收集在液氮浴中冷冻,然后转移到不锈钢托盘中,保存在 -25°C 的冰箱中进行冷冻干燥。表1:微胶囊包埋参数_300μm 喷嘴1mm 喷嘴频率[Hz]68060电压[V]7502500压力[mbar]500500冷冻干燥步骤(初级干燥和次级干燥)使用 LyovaporTM 编程软件,如表 2 所示。使用 LyovaporTM L-200 Pro 干燥腔体、可加热的搁板和环境空气。表2:初级干燥和次级干燥冻干参数无酵母菌微球采用与含酵母菌微球相同成分培养基和参数进行制备。冷冻干燥后,将 1mL 无菌水加入 1mL 微球中,用以复原样品。对于含有酵母菌的菌珠,对每个重组溶液进行10倍、100 倍和 1000 倍的连续稀释。将复原后的溶液和稀释液分别涂于 YPD 琼脂平板上,如图 1 所示。琼脂板在 28℃ 培养 24h,评价细胞活力。▲ 图1:琼脂平板上的酵母活力测试4结果与讨论含有酵母的微球可以通过使用微胶囊造粒仪 B-390 进行包埋制备,结果表明:用微胶囊造粒仪 B-390 将酵母滴入液氮中,可使酵母迅速颗粒化;用 300μm 的喷嘴和 1mm 的喷嘴分别制备了 700μm 和 1500μm 左右的微球。仅使用含冻干保护剂介质的溶液也得到了类似的结果。如图 2 所示,冻干后的微球在形状和大小上与湿冻微球保持相似。▲ 图2:用微胶囊造粒仪 B-390 制得的 300μm 酵母微球,在冻干前(左)后(右)的对比通过扫描电镜对其结构进行分析。在图 3 中,可以观察到含有酵母的球珠(下两图)和仅由冻干保护剂培养基制成的球珠(上两图)在形态上的差异。含有酵母菌的微球具有由 5μm 颗粒组成的粗糙结构,可以认为是微生物,而只含有冻干保护剂的微球具有更光滑的结构。▲ 图3:含酵母菌的冻干微球(下)和不含酵母菌冻干微球(上)的结构对比当冷冻干燥时,考虑到膜中脂质物理状态的变化或由于某些蛋白质结构的变化,生物系统可能受到破坏3,9。为了验证酵母菌的活力,将酵母菌重新水合,稀释,并在 28°C 的 YPD 琼脂板上培养 24 小时。图 4 证实了文献报道的内容,即便失去了部分活力,酵母在冻干后仍然可以生长2,4,6,10。▲ 图4:在 28℃ 琼脂板中培养 24 小时后的酵母菌活力5结论含有酵母菌的微粒可以很容易地用微胶囊造粒仪 B-390 进行制备,并使用冻干机 LyovaporTM L-200 进行冷冻干燥处理。B-390 的喷嘴直径分别为300 μm和1000 μm,制得的微粒直径分别为 700μm 和 1500μm。冷冻干燥后,珠粒的大小和形状没有变化。该颗粒流动性好,容易掌握使用剂量,且与水混合后溶解速度快。冻干后的微生物在贮藏过程中仍能保持良好的活力,并能在复水化后成功生长。在本应用中,造粒包埋和冷冻干燥的结合显示出了非常好的实验结果。它可以在发酵工艺和食品转化等领域开辟新的可能性,有利于生产制备剂量易控制和重组的培养发酵剂;另外,在益生菌和食品补充剂领域中获得无尘且可自由流动的粉末,同时保证产品颗粒大小和组成的均匀度。6参考文献N’Guessan, F. K. Coulibaly, H. W. Alloue-Boraud, M. W. A. Cot, M. Djè, K. M. Production of Freeze-Dried Yeast Culture for the Brewing of Traditional Sorghum Beer, Tchapalo. Food Sci. Nutr. 2016, 4 (1), 34–41.Bond, C. Freeze-Drying of Yeast Cultures. In Cryopreservation and Freeze-Drying Protocols Day, J., Stacey, G., Eds. Methods in Molecular BiologyTM Humana Press, 2007 pp 99–107.Leslie, S. B. Israeli, E. Lighthart, B. Crowe, J. H. Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ.Microbiol. 1995, 61 (10), 3592–3597.Miyamoto-Shinohara, Y. Imaizumi, T. Sukenobe, J. Murakami, Y. Kawamura, S. Komatsu, Y. Survival Rate of Microbes after Freeze-Drying and Long-Term Storage.Cryobiology 2000, 41 (3), 251–255.Wolkers, W. F. Tablin, F. Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 131 (3), 535–543.Lodato, P. Huergo, M. S. de Buera, M. P. Viability and Thermal Stability of a Strain of Saccharomyces Cerevisiae Freeze-Dried in Different Sugar and Polymer Matrices. Appl. Microbiol. Biotechnol. 1999, 52 (2), 215–220.Strasser, S. Neureiter, M. Geppl, M. Braun, R. Danner, H. Influence of Lyophilization,Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107 (1), 167–177.Miyamoto, T. (Kyushu U. Kawabata, K. Honjoh, K. Hatano, S. Effects of Trehalose on Freeze Tolerance of Baker’s Yeast. J. Fac. Agric. - Kyushu Univ. Jpn. 1996.Giulio, B. D. Orlando, P. Barba, G. Coppola, R. Rosa, M. D. Sada, A. Prisco, P. P. D. Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21 (5), 739–746.Cerrutti, P. Huergo, M. S. de Galvagno, M. Schebor, C. Buera, M. del P. Commercial Baker’s Yeast Stability as Affected by Intracellular Content of Trehalose, Dehydration Procedure and the Physical Properties of External Matrices. Appl. Microbiol. Biotechnol. 2000, 54 (4), 575–580.
  • Algacount藻类计数仪在中国藻类学年会获肯定
    2009.11.15-18日,迅数科技应邀参加了在珠海举办的“庆祝中国藻类学会成立30周年暨第15次学术讨论会”并设展台,来自全国56个单位的330位代表参加了本次大会。其中包括藻类学会成立的发起人、创会会员、知名藻类学前辈和藻类学中青年学术骨干。 会议全面回顾了藻类学会成立30年来取得的重要进展,我国老一代藻类学研究专家胡鸿均先生、张宪孔先生、费修绠先生等前辈学者就中国藻类学研究的历史和中国藻类学会的成立做了回顾。会议共有11个特邀大会报告,美国藻类学会主席Susan H.Brawley,美国国家可再生能源实验室的虞剑平博士受邀参加会议并分别就美国大型海藻和能源微藻研究方面最新进展作了大会专题报告。会议还颁发了首届“中国藻类学研究优秀论文奖”。 迅数科技现场展出的Algacount 藻类计数仪和藻类辅助鉴定计数仪受到与会代表的广泛好评。多位老师表示:传统镜检法需连续观察100个视野,实验人员极易疲劳,同时手工计算每个类别藻种数量,不仅效率低,而且容易漏数、重复计数,而迅数藻类计数分析系统替代传统人工镜检,实现各类藻细胞的分类标记、自动累计和优势藻自动判断排序,给藻类监测领域带来创新应用。 迅数科技代表介绍: Algacount 藻类计数仪和藻类辅助鉴定计数仪是针对当前我国藻类监测技术手段的匮乏现状和人工镜检进行藻类监测的低效率,由迅数科技于2009年10月倾力推出的最新产品。 这种新设备采用了真彩高解析度CCD,流程化藻类分类计数软件和Algacount专家辅助鉴定技术。能自动连续获取生物显微镜的光学信号,并转化为显微数字图像,然后对每张图像的各种浮游藻进行分类计数标记,再通过对100个视野中分类标记的藻自动累计,实现藻密度的自动换算和优势种自动判定。高端仪器还同时配备功能强大的Algacount专家辅助鉴定搜索库,含11门、350属、1500种藻类文字描述、特征图、及精美显微照片,对已有藻类图片,根据形态学、快速鉴别藻类所属种类。仪器还尤其适合水生生物鉴定分析技术人员的快速培训。
  • 西湖大学周南嘉/陶亮合作《Nature Electronics》:3D打印软水凝胶电子器件!
    近年来开发了许多用于医疗保健的软性电子设备,它们提供了包括生物信号检测、健康监测、神经刺激、脑机接口等一系列的功能。为了实现可伸展性,电路和互连是通过将刚性导电材料图案化为蛇形几何形状或使用内在可伸展的导体。然而,弹性体和生物组织的力学和化学特性不匹配的情况不可避免地存在,这可能导致免疫反应,损害电子产品的功能。基于水凝胶的电子器件可以与生物组织有内在的相似性,在生物医学应用中具有潜在的用途。理想情况下,这种水凝胶电子器件应该提供可定制的三维电路,但用现有的材料和制造方法制作封装在水凝胶基质中的复杂三维电路是具有挑战性的。鉴于此,西湖大学周南嘉、陶亮团队报告了使用基于可固化水凝胶的支撑基质和可拉伸银水凝胶墨水的水凝胶电子器件的三维打印。支撑基质具有屈服应力流体行为,因此移动打印机喷嘴产生的剪切力会产生暂时的流体状状态,从而可以在银水凝胶墨水电路和电子元件的基质中准确放置。印刷后,整个矩阵和嵌入式电路可以在 60°C 下固化,形成柔软(杨氏模量小于 5 kPa)和可拉伸(伸长率约为 18)的单片水凝胶电子器件,而导电油墨表现出约1.4×103 S cm-1。研究人员进一步使用该三维打印方法来创建应变传感器、电感器和生物电极。相关研究成果以题为“Three-dimensional printing of soft hydrogel electronics”发表在最新一期《Nature Electronics》上。本文第一作者为西湖大学Hui Yue 与Yao Yuan 。【EM3DP的材料设计】作者通过利用海藻酸盐-PAM双网络水凝胶的正交交联机制开发了一种可固化的水凝胶基质:海藻酸盐链与Ca2+形成离子交联,而PAM网络是由丙烯酰胺和交联剂通过自由基聚合共价交联形成的(图1a)。然后将这种离子交联的凝胶粉碎、过滤和脱气,以产生平均直径约为20μm的透明的水凝胶微粒,并表现出屈服应力流体行为;并将它作为EM3DP的支持基质(图1b)。接下来作者通过将准备好的支撑基质凝胶与5μm大小的Ag薄片以及甘油和水溶性聚合物(例如聚乙烯吡咯烷酮)混合来开发导电油墨(图1a),EM3DP在定制的直接墨水书写平台上进行(图1b)。印刷后,水凝胶在60°C下加热以触发PAM的自由基聚合,固化整个基质和嵌入式电路(图1c(i),(ii)),Ag薄片在水凝胶中形成渗透通道,在墨水和基质之间没有观察到明显的接缝(图1c(iii),(iv))。如图1d所示,固化后的嵌入电路的水凝胶可以承受较大程度的拉伸和扭曲,一旦应力消除,可以完全恢复到原来的形状。图1e进一步证明EM3DP在制造自由形式3D结构方面的能力。图 1. 通过 EM3DP 制造水凝胶电子器件【基质和导电油墨的流变特性】在固定的交联剂/单体质量比下,无论藻酸盐含量如何,所有支撑基质都表现出剪切稀化行为(图2a),并且它们的粘度、储能模量(G')和损耗模量(G”)随着藻酸盐含量从0.99%上升到2.31%(图2b)。藻酸盐含量为0.99%的基质像液体一样流动,而藻酸盐含量为1.65%和2.31%的基质表现为凝胶(图2c)。考虑到其中间的流变特性,使用藻酸盐含量为1.65%的基质凝胶来制备导电油墨。将Ag薄片添加到基质凝胶中会增加其粘度(图2d)),表明Ag薄片既充当导电填料又充当流变改性剂。与原始基质凝胶相比,1.5×Ag墨水(Ag/水凝胶质量比=1.5)显示出大约十倍的粘度增加,而其剪切稀化行为保持不变。随着Ag/水凝胶质量比从0增加到1.5,墨水的G'和G”值也显示出大幅增加(图2e)。作者通过优化打印参数,包括压力和喷嘴移动速度,可以精确控制打印出的墨丝宽度与喷嘴内径一致(图2f),并且所有灯丝都呈现出近乎圆形的横截面。打印的长丝在热固化过程中没有表现出明显的形状变化或起泡。图 2. 支撑基质和导电油墨的流变特性【固化水凝胶基质的机械性能】图3a、b比较了通过传统的一锅法(非粉碎)和本文方法(粉碎)制备的藻酸盐-PAM水凝胶在固定交联剂/单体质量比和不同藻酸盐含量下的拉伸应力-应变曲线。随着藻酸盐含量从0.99%增加到2.31%,未粉碎和粉碎水凝胶的拉伸杨氏模量分别从5.35增加到7.69kPa和从2.80增加到3.71kPa(图3c)。在固定的藻酸盐含量(1.65%)下,将水凝胶的交联剂/单体质量比从0.016%提高到0.082%会导致拉伸杨氏模量从3.05略微增加到3.30kPa,但λ从11.3大幅提高到19.5(图3e、f)。图 3. 固化水凝胶基质的拉伸机械性能【导电油墨的电性能】作者制备了具有随机和分离分布的Ag薄片的Ag-水凝胶复合材料。具有随机分散的Ag薄片的复合材料未能形成相互连接的导电通路(图4a)。相反,在分离的复合材料中,Ag薄片在水凝胶域之间的边界处密集堆积并彼此紧密接触(图4a(右红线))。结果,随着Ag/水凝胶质量比分别从0增加到0.5、1.0和1.5,分离的Ag-水凝胶复合材料的电导率从1.5×10–3增加到2.1×101、4.0×102和1.4×103&thinsp S cm–1(图4b)。在相同的Ag/水凝胶质量比(0.5、1.0和1.5)下,具有随机分布的Ag薄片的Ag-水凝胶复合材料的电导率分别仅为6.9×10–3、6.9×101和3.4×102&thinsp S cm–1。作者接下来表征了Ag-水凝胶复合材料在拉伸应变下的电性能(图4c)。作者使用0.5×Ag、1.0×Ag和1.5×Ag的油墨印刷了线宽为250μm、长度为18mm的线性水凝胶电阻,显示初始电阻(R0)分别为246.5、10.9和3.7 Ω(图4d)。在慢速(5mm/s)循环拉伸试验(300%的应变)下,1.5×Ag电阻的R/R0值在前50个循环中从2.7略微增加到3.1,但之后保持稳定(图4e)。打印的气动执行器可以通过测量曲率传感器的R/R0变化来检测(图4g,f)。图 4. Ag-水凝胶导电油墨和印刷的可拉伸水凝胶电子器件的电特性【功能性水凝胶电子产品的制造及生物医学应用】为了说明EM3DP技术的多功能性,作者制造了一系列不同的水凝胶电子设备:电阻传感器、配备曲率传感器的执行器、电感器和生物医学电极。印刷设备表现出出色的机械稳定性和电气性能(图5a-f),以及与外部环境(如商业组件、设备引线和生物组织)的简单和保形接口(图6a-k)。与现有的水凝胶电子产品制造方法相比,本文的材料和制造方法可提供高精度、可设计性和自动化。因此,该方法应该为用于诊断和治疗设备的柔软、可定制的3D水凝胶电子设备开辟新的设计可能性。图 5. 功能性水凝胶电子器件的制造图 6. 3D 打印全水凝胶电极的生物医学应用【小结】作者报告了使用可固化的基于水凝胶的支撑基质和导电银(Ag)水凝胶墨水的水凝胶电子的EM3DP。颗粒状的离子交联水凝胶表现出一种屈服应力的流体行为,使其能够适应具有高导电性(1.4×103 Scm-1)和伸展性的导电油墨的沉积。当喷嘴产生的剪切应力大于屈服应力时,3D打印机喷嘴的运动会使水凝胶基质过渡到暂时的流体状态,然后再返回到固体状态。打印后,基质和墨水可以通过激活共价交联机制而固化在一起,从而形成柔软(杨氏模量,5Ka)和可拉伸(伸长率约18)的整体水凝胶,将电路包裹起来。作者使用3D打印方法来创建一系列基于水凝胶的电子设备,包括应变传感器、配备曲率传感器的执行器、电感和生物医学电极。发光二极管(LED)和射频识别(RFID)芯片等电子元件也可以通过自动混合打印工艺轻易地纳入电路中,以扩大打印设备和电路的功能。来源:高分子科学前沿
  • 聚焦碳监测!Sercon同位素检测系统助力温室气体精准溯源
    引言我国的碳达峰碳中和是国际上排放规模最大、排放降速最快、转型任务最重、投入成本最高的复杂系统工程。为贯彻2021年全国生态环境保护工作会议精神,生态环境部编制了《碳监测评估试点工作方案》(环办监测函〔2021〕435号),推进碳监测评估体系建设,为落实减污降碳总要求作出积极贡献。方案选取上海、杭州太原等16个城市,试点开展大气中主要温室气体浓度监测,探索自上而下的碳排放量反演方法,形成技术指南,构建温室气体监测量值溯源体系。并试点开展盐沼、红树林、海草床和海藻养殖海洋碳汇监测,构建典型海岸带生态系统和海藻养殖碳汇监测技术体系。检测项目包括:高精度CO2、高精度CH4、高精度气象参数,碳同位素(13CO2)和碳同位素(14CO2)等。 Cercon CryoFlex- HS2022 IRMS:高效准确的温室气体同位素检测系统二氧化碳(CO₂)、氧化亚氮(N₂O)、甲烷(CH₄)是大气中主要的温室气体。产生温室气体的因素复杂多样,且排放主体难以确定。与过去更注重末端降碳减排相比,如今越来越多的城市开始将功课前移,对温室气体的“精准溯源”成为治理的第一步,实现精细化排查。英国Sercon公司开发的CryoFlex-HS2022 IRMS系统为温室气体的同位素检测提供了全面的解决方案。图1 CryoFlex-HS2022 IRMS系统左侧为CryoFlex-CryoGas系统,包含 GC柱、CO/CO2 化学捕集器及开放式杜瓦瓶液氮系统;右侧为HS2022稳定同位素比质谱其中CryoFlex是一款多功能痕量气体净化富集装置,基于冷冻富集聚焦及色谱分离原理,并借助化学捕集和热解/燃烧技术,对温室气体(CO2、CH4、N2O)以及CO、N2、NO等多种气体进行富集净化,并与HS2022稳定同位素比质谱联机,用于测定C、H、O、N等多元素的稳定同位素比值。图2 CryoFlex系统原理结构示意δ13C-CH4 测定:样品经CO/CO2化学捕集,通过低温回路T1(-196℃),去除可冷凝气体后进入热解炉将CH4燃烧生成的CO2冷凝保留在T2中,升温使CO2蒸发转移到T3,并从T3 转移到色谱柱中进行痕量气体分离。最后通过 HS2022-IRMS测定δ13C-CH4。性能测试结果图3测试表明HS2022-IRMS系统可精确测量100 mL空气样品中的δ13C-CH4和δ2H-CH4值,可达理想的识别精度(分别为0.3‰和3.0‰)。图 3 δ13C-CH4 (A)和δ2H-CH4(B), 100 and 0.8 nmol CH4天然样品中CH4同位素比值变化极大,而HS2022- IRMS系统较宽的动态范围,可将样品记忆效应的影响降至最低。图4显示HS2022-IRMS系统系统用于测定δ13C-CH4和δ2H-CH4,结果均在允许误差范围内,且未观察到明显的样品残留。 图4 同位素残留试验Sercon CryoFlex- HS2022 IRMS稳定同位素比质谱系统的优势:l HS2022稳定同位素比质谱采用全不锈钢和金属垫圈结构的质谱飞行管,确保高真空度,最小化本底;l 离子源采用高稳定性、长寿命镀钍灯丝;l 真正的差动泵真空系统,真空度低至1×10-9mbar,确保离子传输效率;l 离子源配备额外真空泵,保证离子化效率,减少副反应;l 卓越的灵敏度及联机精度;l CryoFlex痕量气体富集净化系统采用一体化设计,集转化炉和冷阱与一体,无需额外管路连接,可轻松完成痕量气体的净化富集;l CryoFlex可配置1500℃高温的裂解炉,用于CH4中H的转化;l 自动进样器可适配 6 /12/30/60/125/ 250 mL等多种规格的样品瓶;l CryoFlex也可作为多功能接口与多种外设(如TOC、LA)联机使用。
  • 助力大国制造 3家仪器厂商获“制造业单项冠军”称号
    为引导制造业企业专注创新和质量提升,在更多细分产品领域形成全球市场、技术等方面领先的单项冠军地位,提升我国制造业国际竞争力,工信部日前公示第二批制造业单项冠军企业和单项冠军产品名单,共71家公司获评单项冠军示范企业,20家荣获单项冠军培育企业。  威视技术股份有限公司、宁波永新光学股份有限公司、海默科技(集团)股份有限公司榜上有名,主营产品分别为货物与车辆安检设备、光学显微镜及多相流量计。名单如下:第二批制造业单项冠军公示名单  一、单项冠军示范企业(71家)编号示范企业名称注册地主营产品1同方威视技术股份有限公司北京货物与车辆安检设备2北京大豪科技股份有限公司北京刺绣机电脑控制系统3北新集团建材股份有限公司北京纸面石膏板4天津汽车模具股份有限公司天津乘用车覆盖件冲压模具5中材(天津)粉体技术装备有限公司天津立式辊磨机6晨光生物科技集团股份有限公司河北食品着色剂7中国第一重型机械集团大连加氢反应器制造有限公司辽宁百万千瓦核反应堆压力容器8大连华阳新材料科技股份有限公司辽宁非织造布生产线联合机9辽宁忠旺集团有限公司辽宁工业铝挤压材10哈尔滨东盛金属材料有限公司黑龙江铝合金添加剂11上海集优机械股份有限公司上海高强度紧固件12上海华峰超纤材料股份有限公司上海海岛型超纤非织造基布13沪东重机有限公司上海船用低速柴油机14常州天合光能有限公司江苏光伏组件15江苏中能硅业科技发展有限公司江苏太阳能级多晶硅16张家港康得新光电材料有限公司江苏显示用光学膜17江苏力星通用钢球股份有限公司江苏精密轴承钢球18常熟市龙腾特种钢有限公司江苏预应力混凝土用钢棒19红宝丽集团股份有限公司江苏聚氨酯硬泡组合聚醚20江苏鹏飞集团股份有限公司江苏水泥回转窑21江苏苏博特新材料股份有限公司江苏减水剂22浙江水晶光电科技股份有限公司浙江精密光电薄膜元器件23宁波舜宇光电信息有限公司浙江手机摄像模组24杭州海康威视数字技术股份有限公司浙江视频监控产品25宁波激智科技股份有限公司浙江液晶显示模组26万丰奥特控股集团有限公司浙江铝合金轮毂27浙江双环传动机械股份有限公司浙江机动车辆齿轮28东睦新材料集团股份有限公司浙江粉末冶金零件29浙江久立特材科技股份有限公司浙江工业用不锈钢管30浙江华峰新材料股份有限公司浙江聚氨酯鞋底原液31杰克缝纫机股份有限公司浙江工业用缝纫机32桐昆集团股份有限公司浙江涤纶长丝33宁波康赛妮毛绒制品有限公司浙江粗梳羊绒纱线34宁波慈星股份有限公司浙江电脑针织横机35新凤鸣集团股份有限公司浙江涤纶长丝36安徽国星生物化学有限公司安徽吡啶碱37安徽安利材料科技股份有限公司安徽聚氨酯合成革38厦门宏发电声股份有限公司福建控制继电器39厦门法拉电子股份有限公司福建薄膜电容器40福建新大陆支付技术有限公司福建转账POS机41福建龙净环保股份有限公司福建除尘设备42福耀玻璃工业集团股份有限公司福建汽车安全玻璃43长乐力恒锦纶科技有限公司福建锦纶长丝44华意压缩机股份有限公司江西冰箱压缩机45山东凯盛新材料股份有限公司山东氯化亚砜46青岛明月海藻集团有限公司山东海藻酸盐47玫德集团有限公司山东可锻性铸铁及铸钢管子附件48文登威力工具集团有限公司山东可调手动扳手及扳钳49泰山体育产业集团有限公司山东体育器材50山东如意毛纺服装集团股份有限公司山东纯毛机织物51鲁泰纺织股份有限公司山东色织布52泰安路德工程材料有限公司山东合成纤维制经编织物53淄博大染坊丝绸集团有限公司山东丝绸面料54青岛环球集团股份有限公司山东棉纺粗纱机55烟台中集来福士海洋工程有限公司山东半潜式钻井平台56山东环球渔具股份有限公司山东钓鱼竿57郑州宇通客车股份有限公司河南大中型客车58中铁工程装备集团有限公司河南全断面隧道掘进机59河南威猛振动设备股份有限公司河南振动筛60卫华集团有限公司河南通用桥式起重机61武汉光迅科技股份有限公司湖北光纤接入用光电子器件与模块62中石化四机石油机械有限公司湖北固井压裂设备63株洲硬质合金集团有限公司湖南硬质合金64佛山市恒力泰机械有限公司广东液压自动压砖机65佛山市三水凤铝铝业有限公司广东铝合金建筑型材66广东精铟海洋工程股份有限公司广东自升式海洋工程平台升降锁紧系统67重庆昌元化工集团有限公司重庆锰酸盐、高锰酸钾盐68成都成高阀门有限公司四川管线球阀69贵州钢绳股份有限公司贵州钢丝绳70陕西宝光真空电器股份有限公司陕西真空开关管71国投新疆罗布泊钾盐有限责任公司新疆农用硫酸钾  二、单项冠军培育企业(20家)编号培育企业名称注册地主营产品1得力集团有限公司浙江文具2宁波弘讯科技股份有限公司浙江塑机控制系统3电光防爆科技股份有限公司浙江矿用防爆电器开关4宁波亚德客自动化工业有限公司浙江气动元件5宁波永新光学股份有限公司浙江光学显微镜6宁波柯力传感科技股份有限公司浙江应变式传感器7百隆东方股份有限公司浙江色纺纱8宁波戴维医疗器械股份有限公司浙江婴儿培养箱9安徽合力股份有限公司安徽叉车10福建升腾资讯有限公司福建瘦客户机11山东金帝精密机械科技股份有限公司山东轴承保持架12山东泰和水处理科技股份有限公司山东水质稳定剂13山东祥维斯生物科技股份有限公司山东甜菜碱14威海海马地毯集团有限公司山东阿克明斯地毯15湖北鼎龙控股股份有限公司湖北硒鼓16广州市浩洋电子股份有限公司广东影视舞台灯17四川宏华石油设备有限公司四川石油钻探开采专用设备18西部超导材料科技股份有限公司陕西航空用钛合金棒材19海默科技(集团)股份有限公司甘肃多相流量计20青海盐湖工业股份有限公司青海氯化钾
  • 工业和信息化部批准《工业用导电和抗静电橡胶板》等412项行业标准、2项行业标准修改单、11项行业标准外文版、122项行业计量技术规范
    工业和信息化部批准《工业用导电和抗静电橡胶板》等412项行业标准(见附件1)。其中,化工行业55项、黑色冶金行业18项、有色金属行业1项、建材行业3项、机械行业38项、轻工行业68项、纺织行业7项、兵工民品3项、电子行业53项、通信行业166项。批准《肥料级磷酸二氢钾》等2项行业标准修改单(见附件2)。其中,石化行业1项、黑色冶金行业1项。批准《海藻酸类肥料》等11项行业标准外文版(见附件3)。其中,化工行业9项、轻工行业1项、纺织行业1项。批准《甲醇气体检测报警器校准规范》等122项行业计量技术规范(见附件4)。其中,石化行业25项、有色金属行业5项、建材行业14项、机械行业24项、轻工行业7项、纺织行业9项、兵工民品行业10项、电子行业18项、通信行业10项。现予公布。行业标准修改单自发布之日起实施。以上化工行业标准(含外文版)由化学工业出版社出版,黑色冶金行业标准及有色金属行业标准由冶金工业出版社出版,有色金属行业工程建设标准由中国计划出版社出版,建材行业标准由中国建材工业出版社出版,机械行业标准由机械工业出版社出版,轻工行业标准(含外文版)由中国轻工业出版社出版,纺织行业标准(含外文版)由中国纺织出版社出版,兵工民品行业标准由中国兵器工业标准化研究所组织出版,电子行业标准由中国电子技术标准化研究院组织出版,通信行业标准由人民邮电出版社出版。以上石化行业、纺织行业计量技术规范由中国质检出版社出版,有色金属行业计量技术规范由冶金工业出版社出版,建材行业计量技术规范由中国建材工业出版社出版,机械行业计量技术规范由机械工业出版社出版,轻工行业计量技术规范由中国轻工业出版社出版,兵工民品行业计量技术规范由中国兵器工业标准化研究所组织出版,电子行业计量技术规范由中国电子技术标准化研究院组织出版,通信行业计量技术规范由中国信息通信研究院组织出版。附件:1.412项行业标准编号、名称、主要内容等一览表2.2项行业标准修改通知单3.11项行业标准外文版名称及主要内容等一览表4.122项行业计量技术规范编号、名称、主要内容等一览表工业和信息化部2023年7月28日
  • 核污染食品遭遇监管难题
    福岛核事故发生后,福岛及其周边地区的蔬菜、鲜奶、鱼类、贝类等相继被检测出碘-131、铯-134、铯-137等放射性物质。日本政府13日针对福岛县5市8町3村出产的鲜香菇发布"禁运令",同时对福岛县饭馆村出产的香菇发布更为严格的"禁食令",此举令消费者感到极大不安,同时也给日本食品安全监管体系出了道难题。  在日本,内阁府食品安全委员会负责食品安全评估,厚生劳动省和农林水产省根据《食品卫生法》等具体法规负责食品和农牧水产品的安全监管。但这些法规条文中,恰恰没有关于食品中放射性物质含量的安全标准。  根据规定,只有以首相为本部长的日本原子能灾害对策本部才有权根据《原子能灾害对策特别措施法》,下达"限制食用""禁止流通""解除禁令"等指示,厚生劳动省则负责含放射性物质食品的检测、监管。  福岛核泄漏事故发生后,厚生劳动省食品安全部匆匆制定出食品辐射值"暂行标准",设定了安全上限,要求不得食用和销售"超标"食品。  但这张行政指令需要各级部门"追认".厚生劳动省随后开始征求各级部门的意见。很快,"暂行标准"正式获得批准。  但是,新的问题又出现了。4日当天,茨城县渔民捕捞的玉筋鱼中检出放射性碘活度达每千克4080贝克勒尔。而就在10天前,原子能安全委员会发表声明称,因海水稀释作用,放射性物质对鱼类贝类和海藻的影响可以忽略,无需给鱼类贝类设定安全上限。厚生劳动省食品安全部5日只好再次发出通告:鱼类贝类参照蔬菜的放射性碘活度安全标准,即每千克上限为2000贝克勒尔。  "标准"是有了,但无论是生产者,还是消费者,不安心理并未完全打消。原子能防灾指导手册中曾特意指出,这些放射性物质摄入量指标只是"紧急事态"下作为"防护对策"而定,并非是衡量对人体安全与否的绝对指标,而福岛核事故一旦长期化,"紧急事态"的前提就不存在了。  此外,"暂行标准"尚未涉及的放射性物质怎么办?日本文部科学省12日宣布,从福岛第一核电站30公里以外区域检测出放射性锶-89和锶-90,由于量极少,这些放射性锶不会对健康造成影响。然而,NHK电视台资深科技记者山崎淑行却认为,锶的成分类似钙,进入人体后容易富集在骨骼,其中锶-90的半衰期长达29年,长期"体内辐射"可能增加致癌风险,应尽快设定放射性锶的安全上限。  面对福岛核事故带来的这么多棘手问题,日本的食品监管体系如何应对不仅是摆在日本政府面前的一个难题,也值得各国思考。
  • 多家果冻企业产品被地方监管部门要求下架
    多家果冻企业产品被地方监管部门要求下架 &ldquo 果冻究竟有没有含工业明胶?这东西还能吃吗?&rdquo 近日,有实名认证微博声称&ldquo 老酸奶和果冻含有破皮鞋炼制的明胶&rdquo ,在网上引发消费者对果冻产品的强烈质疑。对于果冻&ldquo 内幕说&rdquo 事件,中国食品工业协会糖果专业委员会在相关函件中表示,不能排除未来代表行业对微博信息发布者进行起诉的可能。 中国奶业协会副会长兼秘书长谷继承则表示:&ldquo 从有关部门公布的检测结果看,我们的乳品质量处于历史最好时期。因此我们相信,正规的乳品加工企业不可能在乳制品中添加所谓的工业明胶。&rdquo 监管从未发现果冻企业用明胶 中国食品工业协会糖果专业委员会10日发表声明显示,果冻中的增稠剂通常来源于卡拉胶、海藻酸钠等海藻提取物或者其他膳食纤维。 晋江市质量技术监督局食品生产监管股股长颜金杯告诉记者,卡拉胶一般是从海藻等植物中提取,而明胶来源于动物皮革,两者完全不一样。按照国家添加剂卫生使用标准,卡拉胶可以根据生产需要适量使用,对人体没有危害。 他还表示,多年的监管过程中没有发现果冻企业使用明胶的情况。 福建省质量技术监督局提供给记者的资料显示,2010年以来,每年均组织对果冻产品实施省级监督抽查,对果冻产品的规格、铅、总砷、铜、菌落总数等项目进行检验。 共监督抽查155批次,仅3批次不合格,2批次果冻产品实物质量指标(糖精钠、菌落总数、安赛蜜)不合格,1批次果冻产品警示语标注不合格,均和明胶没有关系。影响多家果冻企业被要求下架 &ldquo &hellip &hellip 尽管我们分别在电话中和协会的官网上作了充分的说明,但仍然能够强烈地感觉到消费者的担忧和疑虑。更为严重的是,据我会刚刚收到的消息,已经有多家果冻企业陆续接到多个地方监管管理部门要求&lsquo 果冻产品全面下架待检查&rsquo 的通知。&rdquo 福建亲亲股份有限公司行政部总经理肖锦根向记者展示中国食品工业协会糖果专业委员会11日的一份函件。 &ldquo 每年的1月份到中秋之前的这段时间是果冻销售旺季,目前冲击波已经出现了。&rdquo 福建亲亲股份有限公司品质管理部副总经理辛亚东说。 &ldquo 虽然短短几天没法全面评估我们的损失,但可以肯定对我们行业影响很大。&rdquo 蜡笔小新(福建)食品工业有限公司品牌管理中心负责人王小喜说,这个传言最糟糕的就是&ldquo 不细说&rdquo ,让大家都去猜测。我们很担心消费者因为不了解果冻知识而产生&ldquo 大不了不吃&rdquo 或者&ldquo 少吃点&rdquo 的想法,而这几乎难以避免。声音 &ldquo 在互联网这一越来越广阔的平台上,网民和博主应该加强自律,名人更应该自律&hellip &hellip 不能排除未来代表行业对微博信息发布者进行起诉的可能。&rdquo &mdash &mdash 中国食品工业协会糖果专业委员会在相关函件中表示来源:新京报
  • 厉害了!武汉一化学副教授研发出“不醉酒”
    酒精穿肠过,喝了却不醉。中南民族大学化学与材料学院副教授王利华研发了一种“不醉酒”。  王利华介绍,喝醉酒主要是酒液下肚以后,乙醇进入血液,并在全身循环,从而影响大脑意识,此时驾车就有醉驾风险。王利华研发的“不醉酒”控制了乙醇进入血液的时间和量。为了达到这个目的,王利华在白酒里加入了一些特定的可食用物质,这样的“酒”喝下后,在胃里形成了凝胶,大部分乙醇被固定,从而减少了进入血液的乙醇量。“经过测试,9人饮用100毫升以内‘不醉酒’1.5小时后,只有1人达到酒驾。”  在实验室,王利华还原了这一过程。在一盆人工胃液中,倒入加了食品级海藻酸钠等物质的普通白酒,搅拌后,可以观察到酒与胃液的界面产生了稳定凝胶层。“海藻酸钠遇到胃液里的酸形成了果冻的形态,把乙醇包在其中。”王利华还表示,喝下“不醉酒”后,最终会通过消化道的微生物降解掉,或者进入大肠直接排泄掉。  解决了喝了不醉的问题,但“不醉酒”好喝吗?“‘不醉酒’保留了酒的嗅觉和口感。”试酒组成员、大四学生李亚超告诉记者,样酒唯一缺点就是入口有粘稠感。目前,王利华已为他的“不醉酒”申请专利。
  • 【瑞士步琦】助您轻松解决RNA的干燥和递送
    RNA 的干燥和递送平台在过去几年中,脂质纳米颗粒(LNPs)已被发现是 RNA 传递的有效载体,有多个传染病和癌症治疗的临床试验可证实。以 mRNA 为载体的疫苗对于治疗严重疾病如严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)的成功一定程度上可归功于开发了包含 mRNA 的 LNPs 以实现有效的细胞内传递。本文探讨了喷雾干燥工艺作为冻干以外的另一种脱水过程,可以提高 LNPs 的稳定性并提供可替代的给药途径。▲图1.聚乙二醇化脂质纳米颗粒和脂质体的示意图RNA 疫苗的挑战疫苗液体配方的稳定性问题可能成为其工业化和分销的障碍。高温可能会影响疫苗的稳定性因此,通常需要冷链系统来保持疫苗的活性。mRNA 储存过程中的化学不稳定性包括 N-糖苷键的水解、磷酸二酯键的水解、胞嘧啶衍生物的脱氨和核碱基或糖部分的氧化。然而,当疫苗转化为干粉时,可获得更强的热稳定性和更长的保质期。利用冻干技术制备 RNA 疫苗冻干或冷冻干燥是干燥疫苗最常用的方法,处理过程由三部分组成:组成部分形成冰晶的冷冻过程通过低温升华除去冷冻水的初级干燥过程通过解析干燥除去残留水的次级干燥过程较高的冷冻温度、较慢的冷冻速率和较长的次级干燥时间都有利于干燥过程的稳定性。然而,在这个复杂的过程中会产生应力源,如冷冻和干燥应力。冰对颗粒产生的机械应力和 PEG 层的结晶会导致颗粒融合,这些都是在冷冻过程中可能发生的情况。冷冻保护剂或冻干保护剂等辅料是在冻干前添加到颗粒悬浮液中的稳定剂,最常用的是糖类(如海藻糖)或糖醇(如甘露醇)。关于使用冷冻保护剂或冻干保护剂来稳定纳米颗粒的几个理论中,非晶玻璃理论最为广泛接受,具体是指在冷冻过程中,冷冻保护剂凝固成颗粒周围的无定形玻璃,保护它们免受融合。2007 年,Jones 等人报道,在冷冻干燥之前,在自扩增 RNA 中加入海藻糖,可以在冷藏条件下保持至少 10 个月的稳定性,并且在转染后,观察到了高水平表达[1]。几年后,mRNA 疫苗对传染病(流感)的有效性首次在动物模型中得到证实。冻干的 mRNA 流感疫苗在小鼠免疫前 37°C 可以稳定保存 3 周[2]。该研究小组在后来的一篇论文中报道,在 70°C 条件下暴露于抗狂犬病感染的非复制 mRNA 疫苗并不影响其保护能力[3]。CureVac 也报道,另一种同样抗狂犬病的 mRNA 疫苗经海藻糖冻干,在 5-25°C 下可以稳定保存3年,在 40°C 可稳定保存 6 个月[4]。最近,发表了一项关于 mRNA 负载 LNPs 的研究,Zhao 等人比较了两种不同的长期储存mRNA纳米颗粒的方法。他们观察到,尽管使用 20% (w/v)的蔗糖或海藻糖稳定了纳米颗粒的大小和 mRNA 的体外递送效率,但相同的颗粒在体内递送效率不高。原因可能是在冻干和重构过程中纳米颗粒结构发生了变化。在添加 5% (w/v)蔗糖或海藻糖的液氮中冷冻装载 mRNA 的 LNPs 可能是长期储存的替代方案[5]。利用喷雾干燥技术制备 RNA 疫苗喷雾干燥提供了一种替代方法来生产干燥疫苗,这种疫苗能耗更低,操作成本更低,并且避免了细胞冷冻和高真空。喷雾干燥是一个连续的干燥过程,它包括四个主要阶段:主要阶段液体进料的雾化热干燥气体与雾化喷雾的接触干燥颗粒的形成颗粒的气固分离一个重要的观点是,喷雾干燥疫苗可用于非传统给药途径,如口服、肺部或鼻内途径。尽管有这些优点,但在喷雾干燥过程中,由于高温和剪切力,系统可能不稳定。热应力和剪应力都增加了动能,加剧了颗粒的碰撞。在此过程中脂质部分熔化也会导致颗粒聚集,因此建议使用熔点高于 70℃ 的脂质。粒径分布、聚合物分散性指数(Pdi)接近1和高变异系数的差异是颗粒聚集的信号。可以通过添加合适的稳定剂或使用酒精来代替水溶液分散介质可以降低热应力。另一方面,可以通过使用低脂质含量或添加稳定剂来最小化剪切应力。糖类是最常用的稳定剂,但也常添加其他辅料,如二价离子、蛋白质、表面活性剂和聚合物。1998 年,医药领域首次对脂质纳米颗粒进行喷雾干燥研究,其作者展示了将固体 LNP 悬浮液成功转化为粉末形式,使用非常低的脂质浓度(1%)和高海藻糖浓度(25%)作为喷雾干燥基质[6]。在喷雾干燥之前,在脂质纳米颗粒上添加生物聚合物,如酪蛋白、果胶或木瓜蛋白酶,可以有效防止 LNP 聚集。Gaspar 等人用木瓜蛋白酶层覆盖固体 LNP,然后用海藻糖或甘露醇喷雾干燥[7]。也有报道将装载姜黄素的固体 LNP 用一层果胶进行喷雾干燥,然后进行化学交联。交联确实可以改善固体 LNP 的物理化学性质[8]。作者也使用了不同的天然多糖,如果胶、卡拉胶、羧甲基纤维素、阿拉伯胶和海藻酸盐作为壁材,但都发生了颗粒聚集。而用果胶或卡拉胶喷雾干燥含有 20-30% 油酸的 LNP 可获得稳定的粉末颗粒[9]。文献中报道了聚合物杂交 LNP,例如用透明质酸与聚丙烯酸交联制备了阿昔洛韦载药聚合物混合脂质纳米颗粒。与常规制剂相比,阿昔洛韦的溶解度可提高 30%,提高了其作为口服给药系统的生物利用度[10]。最近,Dormenval 等人用甘露醇作为稳定赋形剂制备了喷雾干燥负载 siRNA 的聚合物杂化 LNP。该小组还打算使用微流体技术进一步扩大工艺规模[11]。目前为止,还没有商业化的喷雾干燥疫苗。然而,已有药企开展了一些研究,特别是以流感和结核病为重点的研究。关于喷雾干燥的 mRNA 治疗目前报道研究较少,与喷雾干燥的 mRNA 载药 LNPs 也较少。Patel等人首次报道可吸入的 mRNA 递送,在他们的研究中, mRNA 通过雾化方式由超支化聚氨基酯(hPBAEs)传递给小鼠,在小鼠肺上皮中观察到高水平的基因表达[12]。最近香港大学的研究人员首次表明,可以使用喷雾干燥和喷雾冷冻干燥制备可吸入的 mRNA 干粉。这种聚乙二醇化的 KL4/mRNA 复合物在健康小鼠的肺中产生了良好的基因表达,并且没有引起明显的毒性和炎症反应[13]。结论基于临床前和临床研究,使用 LNPs 作为纳米载体的 mRNA 疫苗已显示出治疗多种化学疾病包括传染病和癌症的巨大潜力。LNPs 与其他载体相比具有多种优势: mRNA 保护、更高载荷的递送、靶配体的结合以及与佐剂的共传递。通常情况下,mRNA 疫苗制剂以液态开发并冷冻储存。为了优化其分布和储存能力,人们对开发耐热的 mRNA 配方产生了兴趣。喷雾干燥是传统冻干技术的一个不错替代选择,因为喷雾干燥在颗粒工程和非传统疫苗给药途径有天然优势。关注瑞士步琦,无论是冻干技术还是喷雾干燥,都能为您的 RNA 干粉制备提供完美解决方案。▲L-300 冻干机▲S-300 喷雾干燥仪5参考文献Jones KL, Drane D, Gowans EJ. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques. 2007 43(5):675–681.Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012 30(12):1210–1216.Stitz L, Vogel A, Schnee M, et al. A thermostable messenger RNA based vaccine against rabies. PLoS Negl Trop Dis. 2017 11(12):e0006108.Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017 390(10101):1511–1520.Zhao P, Hou X, Yan J, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater. 2020 5(2):358–363.Freitas C, Müller RH. Spray-drying of solid lipid nanoparticles (SLNTM). Eur J Pharm Biopharm. 1998 46(2):145–151.Gaspar DP, Serra C, Lino PR, et al. Microencapsulated SLN: an innovative strategy for pulmonary protein delivery. Int J Pharm. 2017 516(1–2):231–246.Wang T, Ma X, Lei Y, et al. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf B Biointerfaces. 2016 148:1–11.Wang T, Hu Q, Zhou M, et al. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology. Int J Pharm. 2016 511:219–222.Sithole MN, Choonara YE, du Toit LC, et al. Development of a novel polymeric nanocomposite complex for drugs with low bioavailability. AAPS PharmSciTech. 2018 19:303–314.Lokras C, Cano-Garcia A, Wadhwa G, et al. Identification of factors of importance for spray drying of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles for inhalation. Pharm Res. 2019 36:142.Patel AK, Kaczmarek JC, Bose S, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 2019 31:e1805116.Qiu Y, Man R, Liao Q, et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019 314:102–115.
  • 工业和信息化部关于111项行业标准、9项行业标准外文版及2项行业标准修改单报批公示
    根据行业标准制修订计划,相关标准化技术组织已完成《橡胶家用手套》等55项化工行业标准、《金刚石线母线钢丝》等18项黑色冶金行业标准、《电喷枪》等38项机械行业标准的制修订工作,《海藻酸类肥料》等9项化工行业标准外文版的编制工作,《肥料级磷酸二氢钾》1项化工行业标准及《焦炭孔隙构造及原料煤岩相显微分析方法》1项黑色冶金行业标准的修改工作。在以上标准、标准外文版及标准修改单发布之前,为进一步听取社会各界意见,现予以公示,截止日期2023年5月19日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2023年4月19日-2023年5月19日附件:1.111项行业标准名称及主要内容等一览表2.9项行业标准外文版名称及主要内容等一览表3.1项化工行业标准修改单4.1项黑色冶金行业标准修改单工业和信息化部科技司2023年4月19日附件1111项行业标准名称及主要内容等一览表序号标准编号标准名称标准主要内容代替标准采标情况化工行业1 HG/T 2888-2023橡胶家用手套 本文件规定了橡胶家用手套的要求、试验方法、检验规则以及标识、包装、运输和贮存。手套的安全和正确使用方法不在本文件范围之内。 本文件适用于以天然橡胶胶乳或丁腈橡胶胶乳、天然橡胶胶乳与丁腈橡胶胶乳并用为主体材料制成的可作为家用的绒里及光里手套。HG/T 2888-20102 HG/T 2821.1-2023V带和多楔带用浸胶聚酯线绳 第1部分:硬线绳 本文件规定了V带和多楔带用浸胶聚酯硬线绳的产品分类、技术要求、试验方法与试验环境、检验规则以及标志、包装、贮存和运输。 本文件适用于V带和多楔带用浸胶聚酯硬线绳的品质鉴定和验收,其他橡胶制品用浸胶聚酯硬线绳也可以参照执行。HG/T 2821.1-20133 HG/T 2737-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯球阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)球阀的材料、设计、零部件设计、制造和装配、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.6MPa,使用温度:ABS为-40℃~70℃、 PVC-U为-5℃~60℃、PVC-C为-5℃~95℃、PPH为-10℃~90℃、PVDF为-40℃~120℃、FRPP为-14℃~100℃,公称通径大于或等于DN15mm至DN300mm的法兰连接和对接连接式球阀。HG/T 2737-20044 HG/T 2643-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯隔膜阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)屋脊式隔膜阀的材料、设计、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.0MPa,使用温度:ABS隔膜阀为-40℃~70℃;PVC-U隔膜阀为-5℃~60℃、PVC-C隔膜阀为-5℃~95℃;PPH隔膜阀为-10℃~90℃;PVDF隔膜阀为-40℃~120℃;FRPP隔膜阀为-14℃~100℃,公称通径大于或等于DN15mm至DN250mm的法兰连接式和对接连接式隔膜阀。公称通径大于DN250mm的隔膜阀可参照使用。HG/T 2643-19945 HG/T 3731-2023非金属化工设备 玻璃纤维增强聚氯乙烯复合管和管件 本文件规定了玻璃纤维增强聚氯乙烯复合管和管件的原材料、设计、制造、要求、试验方法、检验规则、标志、包装、运输、贮存及随行文件。 本文件适用于以硬聚氯乙烯(PVC-U)或氯化聚氯乙烯 (PVC-C)热塑性塑料为内衬,以不饱和聚酯树脂、环氧乙烯基酯树脂为基体,以玻璃纤维纱或其织物为增强材料,公称直径大于或等于20mm至1 200 mm,工作温度:以PVC-U为内衬时,为-5℃~70℃,以PVC-C为内衬时,为-5℃~95℃;设计压力小于或等于1.6MPa的玻璃纤维增强聚氯乙烯复合管和管件。HG/T 3731-20046 HG/T 6158-2023硫化促进剂 二异丁基二硫代氨基甲酸锌(ZDIBC) 本文件规定了硫化促进剂二异丁基二硫代氨基甲酸锌(简称硫化促进剂ZDIBC)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以二异丁胺、二硫化碳、含锌化合物为主要原料经反应制得的硫化促进剂ZDIBC。7 HG/T 6159-2023橡胶防老剂 2-巯基-4(或5)-甲基苯并咪唑锌(ZMMBI) 本文件规定了橡胶防老剂2-巯基-4(或5)-甲基苯并咪唑锌(简称橡胶防老剂ZMMBI)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以2-巯基-4(或5)-甲基苯并咪唑、液碱、硫酸锌(或氯化锌)等为主要原料制得的橡胶防老剂ZMMBI。8 HG/T 3062-2023橡胶配合剂 沉淀水合二氧化硅 二氧化硅含量的测定 本文件规定了橡胶配合剂沉淀水合二氧化硅中二氧化硅含量的测定方法。 本文件适用于橡胶配合剂沉淀水合二氧化硅。HG/T 3062-2008ISO 3262-19:2000,MOD9 HG/T 6160-2023橡胶配合剂 硅橡胶用气相二氧化硅 本文件规定了硅橡胶用气相二氧化硅技术要求、测试方法、检验判定规则、取样及包装、标识、贮存与运输。 本文件适用于硅橡胶用气相二氧化硅。ISO 18473-3:2018,MOD10 HG/T 6161-2023硫化促进剂 N-环己基-双(2-苯并噻唑)次磺酰亚胺(CBBS) 本文件规定了硫化促进剂N-环己基-双(2-苯并噻唑)次磺酰亚胺(简称硫化促进剂CBBS)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以苯胺、环己胺、二硫化碳为主要原料经氧化反应制得的硫化促进剂CBBS。11 HG/T 6181-2023发动机油底壳橡胶密封垫 本文件规定了发动机油底壳橡胶密封垫的符号、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于发动机油底壳橡胶密封垫。12 HG/T 6183-2023球墨铸铁管接口防滑止脱橡胶密封圈 本文件规定了球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈。13 HG/T 6162-2023复配抗氧剂试验方法 本文件规定了复配抗氧剂的外观、加热减量、细粉含量、颗粒长度符合率、颗粒直径、堆积密度、溶解性、透光率、组分含量的试验方法。 本文件适用于复配抗氧剂产品的检测。 本方法中组分含量的测定方法适用于抗氧剂含量大于5%的复配抗氧剂。14 HG/T 6163-2023橡胶助剂 预分散母料试验方法 本文件规定了橡胶助剂预分散母料的术语和定义、试验方法。 本文件适用于表面不粘连、橡胶助剂含量大于40%、载体是聚合物的橡胶助剂预分散母料。15 HG/T 2490-2023疏浚用钢丝或织物增强的橡胶软管和软管组合件 规范 本文件规定了二个型别、七个类别和三个级别的公称内径从100到1300的疏浚用钢丝或织物增强的橡胶软管和软管组合件的要求。在每一个类别内,所有级别和尺寸都具有相同的最大工作压力。本文件适用于在-20℃到+40℃环境温度下输送或吸引的相对密度介于1.0到2.3之间的混有泥浆、沙砾、珊瑚和小石头的海水或淡水的橡胶软管。本文件适用的软管分为以下两个型别:Ⅰ型 漂浮型,仅用于输送,包括为软管提供浮力的漂浮材料;Ⅱ型 非漂浮型,用于输送和吸引。本文件没有对软管或软管组合件的使用寿命作出规定。用户如有此要求,应与软管制造商协商。HG/T 2490-2011ISO 28017:2018,MOD16 HG/T 3038-2023吸油和排油用橡胶软管及软管组合件 规范 本文件规定了4种型别的用于输送石油包括原油和其它液体石油产品的排吸油软管及软管组合件的性能。每种型别依据芳烃含量划分为3个组别。本文件不适用于输送液化石油气和液化天然气。 符合本文件的软管组合件能够在-20 ℃~+80 ℃温度范围内使用。 所规定的软管公称内径范围从50~500,可为光滑内壁、粗糙内壁、铠装粗糙内壁和轻量型。HG/T 3038-2008、HG/T 3039-2008ISO 1823:2015,IDT17 HG/T 3041-2023油槽车输送燃油用橡胶软管和软管组合件 本文件规定了两组最大工作压力为1.0 MPa的装、卸液态烃类燃油用橡胶软管和软管组合件的要求。 两组软管都设计用于: a) 芳烃体积含量不超过50%、含氧化合物含量达到15%的烃类燃油。 b) 工作温度范围为-30 ℃~+70 ℃,静态贮存温度为-50 ℃~+70 ℃。注:若软管用于-30 ℃以下的温度,最终用户宜向制造商咨询。本文件不适用于LPG系统、航空燃油系统、燃油站系统或海上使用的软管和软管组合件。HG/T 3041-2009ISO 2929:2021,IDT18 HG/T 6164.1-2023流体传输用大口径扁置橡胶软管规范 第1部分:输水软管 本文件规定了流体传输用大口径扁置输水橡胶软管的结构、技术要求、检验规则、标志、包装、运输、贮存。 本文件适用于公称内径不小于100、输送不超过70 ℃的压裂液、油气田供排水、农业灌溉、应急(消防、抢险)供排水、管道修复等系统用扁置软管。19 HG/T 6165-2023汽车发动机点火线圈橡胶护套 本文件规定了汽车发动机点火线圈橡胶护套的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本文件适用于以汽油、乙醇汽油、天然气及氢气为燃料的汽车发动机点火线圈橡胶护套。20 HG/T 4116-2023滚筒洗衣机观察窗橡胶密封垫 本文件规定了滚筒洗衣机观察窗橡胶密封垫的结构、要求、检验规则、标志、包装、运输和贮存,描述了滚筒洗衣机观察窗橡胶密封垫的性能试验方法。 本文件适用于烘干型和非烘干型滚筒洗衣机用喷涂或非喷涂观察窗橡胶密封垫。HG/T 4116-200921 HG/T 6166-2023织物浸渍聚氨酯胶乳手套 本文件规定了织物浸渍聚氨酯胶乳手套的术语与定义、分类、要求、检验规则、试验方法、包装、标志、运输和贮存。 本文件适用于以织物为内衬、表面经过浸渍聚氨酯胶乳而制成的手套。22 HG/T 4786-2023胶乳色浆 本文件规定了胶乳制品用水性色浆的要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于天然胶乳和丁苯胶乳、丁腈胶乳、丁基胶乳、氯丁胶乳等合成胶乳制品用水性色浆。HG/T 4786-201423 HG/T 4666-2023胶乳海绵 本文件规定了胶乳海绵的要求、试验方法、检验规则和包装、标志、运输和贮存。 本文件适用于由天然胶乳、丁苯胶乳、氯丁胶乳、天然胶乳和丁苯胶乳并用、氯丁胶乳和丁苯胶乳并用以及氯丁胶乳和天然胶乳并用制成的海绵。HG/T 4666-201424 HG/T 2949-2023电绝缘橡胶板 本文件规定了电绝缘橡胶板的外观质量、规格尺寸、电性能、物理性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成的,作为电气设备辅助安全用具的电绝缘橡胶板的合格评定。HG/T 2949-199925 HG/T 2793-2023工业用导电和抗静电橡胶板 本文件规定了工业用导电和抗静电橡胶板的规格尺寸及公差、外观、性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成,用于需要采取预防措施防止静电积累场所,对人员和物体起到安全防护作用的胶板的合格评定。HG/T 2793-199626 HG/T 4615-2023增塑剂 柠檬酸三丁酯(TBC) 本文件规定了增塑剂柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化法制得的增塑剂TBC。HG/T 4615-201427 HG/T 4616-2023增塑剂 乙酰柠檬酸三丁酯(ATBC) 本文件规定了增塑剂乙酰柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化,用乙酸酐乙酰化制得的增塑剂ATBC。HG/T 4616-201428 HG/T 6137-2023摆锤式轿车轮胎撞击试验机 本文件规定了摆锤式轿车轮胎撞击试验机的结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于采用摆锤法进行轿车轮胎耐撞击性能测试的设备。29 HG/T 6138-2023比表面积及孔径分析仪 本文件规定了比表面积及孔径分析仪的术语和定义、结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于根据静态气体吸附法对橡胶添加剂如炭黑或其他粉体材料进行比表面积及孔径分布测试的分析仪。30 HG/T 2041-2023橡胶厚度计 本文件规定了橡胶厚度计的结构与参数、要求、检验方法、检验规则、标志、包装、运输和贮存及随机文件。 本文件适用于橡胶及类似材料厚度测量的仪器。HG/T 2041-200931 HG/T 2068-2023橡胶快速塑性计 本文件规定了橡胶快速塑性计的术语和定义、结构、要求、检验方法、检验规则及标志、包装、运输、贮存和随机文件。 本文件适用于测定天然胶和未硫化胶快速塑性值及天然胶塑性保持指数测试的设备。HG/T 2068-200932 HG/T 2070-2023橡胶压缩屈挠试验机 本文件规定了橡胶压缩屈挠试验机的结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于硬度为30IRHD~85IRHD硫化橡胶压缩屈挠性能测定的仪器。HG/T 2070-200933 HG/T 2875-2023橡塑鞋微孔材料交联密度特征值试验方法本文件规定了橡塑鞋微孔材料交联密度特征值的试验方法。 本文件适用于橡塑鞋微孔材料交联密度特征值的测定。HG/T 2875-199734 HG/T 2878-2023胶鞋试穿试验规则本文件规定了一种制鞋者对鞋的工艺、材料、型号、结构等方面改变以后,通过人体试穿对已设定性能的鞋类进行对比评估的试验方法。本文件规定了术语和定义,试穿分类,受试者的选择,以及试验鞋功能性试验和耐久性试验的评判程序。 本文件适用于各类鞋、靴等,用于验证制鞋工艺、材料、型号、结构等的改变对鞋的功能性和穿着耐久性的影响。HG/T 2878-199735 HG/T 3611-2023鞋类模拟行走(寿命)试验方法 本文件规定了鞋类模拟行走(寿命)试验方法。 本文件适用于能紧固于试验仿生足的各类鞋(靴)模拟行走试验,不适用于专业用鞋(靴)和拖鞋的模拟行走试验。HG/T 3611-199936 HG/T 3084-2023注塑鞋 本文件规定了注塑鞋的术语和定义、分类、要求、试验方法、检验规则及标志、包装、运输、贮存。 本文件适用于外底以SBS、PVC、PU等高分子弹性体为主要材料,鞋面以合成或天然材料为主要材料,通过注射成型工艺生产的一般穿用的鞋。HG/T 3084-201037 HG/T 4823-2023电池用硫酸锰 本文件规定了电池用硫酸锰的分类、要求、试验方法、检验规则、标志和随行文件、包装、运输、贮存。 本文件适用于电池用硫酸锰。 注:本产品主要用于制备二次锂电池正极材料前驱体(镍钴锰三元素复合氢氧化物、镍锰二元素氢氧化物等),也可用于制造其他锰盐。HG/T 4823-201538 HG/T 2774-2023工业改性超细沉淀硫酸钡 本文件规定了工业改性超细沉淀硫酸钡的分类、要求、试验方法、检验规则、标志和随行文件、包装、运输、贮存。 本文件适用于工业改性超细沉淀硫酸钡。 注:该产品主要在塑料、涂料、油墨、颜料、橡胶等行业中用作填料。HG/T 2774-200939 HG/T 4501-2023工业氯化锶 本文件规定了工业氯化锶的要求、试验方法、检验规则、标志和随行文件、包装、运输、贮存。 本文件适用于工业氯化锶。 注:该产品主要用作磁性材料、烟火、制药、颜料、玻璃、电解金属钠的助熔剂、试剂、汽车尾气处理以及生产其他锶盐的原材料等。HG/T 4501-201340 HG/T 4506-2023工业氢氧化钴 本文件规定了工业氢氧化钴的分类、要求、试验方法、检验规则、标志、标签、包装、运输、贮存。 本文件适用于工业氢氧化钴。 注:该产品主要用于Ⅰ类为电池工业用、Ⅱ类为电子工业用原料,陶瓷工业中用作着色剂,油墨、涂料、油漆催干剂,子午轮胎快速粘接剂和生产其它钴盐的原料。HG/T 4506-201341 HG/T 4315-2023工业速溶粉状硅酸钠 本文件规定了工业速溶粉状硅酸钠的分型、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存。 本文件适用于速溶粉状硅酸钠产品。 注:本产品主要用于生产耐火材料粘结剂、洗涤助剂、土壤改良剂、选矿抑制剂、耐酸水泥添加剂、化学灌浆助剂、钛白粉覆膜剂、工业水处理剂等。HG/T 4315-201242 HG/T 4520-2023工业碳酸钴 本文件规定了工业碳酸钴的要求、试验方法、检验规则、标志和随行文件、包装、运输、贮存。 本文件适用于工业碳酸钴。 注:该产品主要用作生产锂离子电池材料、石化行业催化剂、陶瓷工业着色剂、采矿行业选矿剂、伪装涂料和化学温度指示剂等,用于生产其它钴盐、氧化钴及金属钴的原料。HG/T 4520-201343 HG/T 3591-2023工业焦磷酸钾 本文件规定了工业焦磷酸钾的分类、要求、试验方法、检验规则、标志和随行文件、包装、运输和贮存。 本文件适用于工业焦磷酸钾。 注:该产品主要用于无氰电镀,也用于表面处理剂、高档洗涤剂、油漆涂料、清洁剂、分散剂、缓冲剂等的生产。HG/T 3591-200944 HG/T 3584-2023工业硼氢化钾 本文件规定了工业硼氢化钾要求、试验方法、检验规则、标签和随行文件、包装、运输和贮存。 本文件适用于工业硼氢化钾。 注:该产品主要用于医药中间体、农药、香料、造纸及其他精细化工产品的还原剂、储氢材料的原料和含汞废水的处理等。HG/T 3584-201145 HG/T 3585-2023工业硼氢化钠 本文件规定了工业硼氢化钠的分类、要求、试验方法、检验规则、标签和随行文件、包装、运输、贮存。 本文件适用于工业硼氢化钠。 注:该产品主要用作制造硼氢化钾及用于医药中间体生产、农药香料、造纸及其他精细化工产品的还原剂,也可用于造纸漂白、含汞废水处理、储氢材料的原料及贵重金属回收等。HG/T 3585-200946 HG/T 2841-2023水处理剂 氨基三亚甲基膦酸 本文件规定了水处理剂 氨基三亚甲基膦酸(ATMP)的要求、试验方法、检验规则及标志、包装、运输和贮存。 本文件适用于水处理剂 氨基三亚甲基膦酸产品的检测。该产品主要用作工业水处理中的阻垢剂、缓蚀剂。HG/T 2841-200547 HG/T 3777-2023水处理剂 二亚乙基三胺五亚甲基膦酸 本文件规定了水处理剂 二亚乙基三胺五亚甲基膦酸(DTPMP)的要求、试验方法、检验规则及标志、包装、运输和贮存。 本文件适用于水处理剂 二亚乙基三胺五亚甲基膦酸产品的检测。该产品主要用作工业水处理中的阻垢缓蚀剂,也可用作过氧化物稳定剂、贵重金属萃取剂及电镀行业金属离子均布剂等。HG/T 3777-200548 HG/T 3519-2023工业循环冷却水中苯并三氮唑的测定 本文件规定了工业循环冷却水及复配药剂中苯并三氮唑的测定方法。 本文件中紫外分光光度法适用于循环冷却水系统中苯并三氮唑及甲基苯并三氮唑的测定,也适用于复配药剂中苯并三氮唑及甲基苯并三氮唑的测定,测定范围为0.4 mg/L~20mg/L。高效液相色谱法适用于复配药剂中苯并三氮唑及甲基苯并三氮唑的测定,测定范围为0.3%~3%。HG/T 3519-201249 HG/T 6184-2023C.I.分散红277(分散荧光红G) 本文件规定了C.I.分散红277(分散荧光红G)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本文件适用于C.I.分散红277(分散荧光红G)的产品质量控制。50 HG/T 6185-2023C.I.分散黄184:1(分散荧光黄10GN) 本文件规定了C.I.分散黄184:1(分散荧光黄10GN)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本文件适用于C.I.分散黄184:1(分散荧光黄10GN)的产品质量控制。51 HG/T 6186-2023C.I.分散黄82(分散荧光黄8GFF) 本文件规定了C.I.分散黄82(分散荧光黄8GFF)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本文件适用于C.I.分散黄82(分散荧光黄8GFF)的产品质量控制。52 HG/T 4157-2023C.I.酸性黄117(酸性艳黄P-3R) 本文件规定了C.I.酸性黄117(酸性艳黄P-3R)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本文件适用于C.I.酸性黄117(酸性艳黄P-3R)的产品质量控制。HG/T 4157-201053 HG/T 4158-2023C.I.酸性红249(酸性艳红P-5B) 本文件规定了C.I.酸性红249(酸性艳红P-5B、弱酸性艳红B)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本文件适用于C.I.酸性红249 (酸性艳红P-5B)的产品质量控制。HG/T 4158-201054 HG/T 2556-2023C.I.荧光增白剂135 本文件规定了C.I.荧光增白剂135(荧光增白剂DT)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本文件适用于C.I.荧光增白剂135的产品质量控制。HG/T 2556-200955 HG/T 2590-2023C.I.荧光增白剂199(荧光增白剂ER-I) 本文件规定了C.I.荧光增白剂199(荧光增白剂ER-Ⅰ)产品的要求、采样、试验方法、检验规则以及标志、标签、包装、运输和贮存。 本文件适用于C.I.荧光增白剂199(荧光增白剂ER-Ⅰ)的产品质量控制。HG/T 2590-2009黑色冶金行业56 YB/T 6106-2023汽车紧固件用冷镦钢盘条 本文件规定了汽车紧固件用冷镦钢盘条的术语和定义、订货内容、分类及代号、尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书。 本文件适用于公称直径为5mm~42mm的汽车紧固件用冷镦钢盘条。57 YB/T 6108-2023不锈钢彩色涂层钢板及钢带 本文件规定了不锈钢彩色涂层钢板及钢带的牌号表示方法、分类及代号,订货内容,尺寸、外形、重量、技术要求,试验方法,检验规则,包装、标志及质量证明书。 本文件适用于建筑内、外用途的不锈钢彩色涂层钢板及钢带。家电及其他用途的不锈钢彩涂板可参考使用。58 YB/T 6107-2023装饰用不锈钢冷轧钢板及钢带 本文件规定了装饰用不锈钢冷轧钢板及钢带的牌号、尺寸、外形、技术要求、试验方法、检验规则、包装、标志及产品质量证明书。 本文件适用于厚度0.25 mm~5.00 mm用于制作装饰板和装饰焊接钢管的不锈钢冷轧钢板及钢带。59 YB/T 6105-2023金刚石线母线钢丝 本文件规定了金刚石线母线钢丝的术语和定义、标记、订货内容、尺寸、外形、长度及允许偏差、技术要求、试验方法、检验规则和包装、标志、运输、贮存及质量证明书等要求。 本文件适用于公称直径范围为30μm~70μm的切割硅片用金刚石线微细母线钢丝。60 YB/T 4330-2023大直径奥氏体不锈钢无缝钢管 本文件规定了大直径奥氏体不锈钢无缝钢管的分类、代号、订货内容、尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明书。 本文件适用于外径不小于426 mm的石化、化工、电站等领域用奥氏体不锈钢无缝钢管。YB/T 4330-201361 YB/T 4370-2023城镇燃气输送用不锈钢焊接钢管 本文件规定了城镇燃气输送用不锈钢焊接钢管的分类及代号、订货内容、尺寸、外形、重量及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书。 本文件适用于公称压力(PN)不超过0.4 MPa的城镇燃气输送用不锈钢焊接钢管。YB/T 4370-201462 YB/T 6103-2023汽车胀断连杆用非调质结构钢棒 本文件规定了汽车胀断连杆用非调质结构钢棒的尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志及质量证明书。 本文件适用于汽车胀断连杆用公称直径30mm~130mm的非调质结构钢棒。63 YB/T 6104-2023线材用砂带除锈机技术规范 本文件规定了线材用砂带除锈机的术语和定义、型式及基本参数、订货内容、技术要求、试验方法与验收规则、标志、包装、运输与贮存和制造保证。 本文件适用于采取砂带磨削形式对制丝用线材、热处理半成品钢丝表面氧化铁皮及锈迹的清除。64 YB/T 5183-2023汽车附件、内燃机、软轴用异型钢丝 本文件规定了汽车附件、内燃机、软轴用异型钢丝的术语和定义、分类与代号、订货内容、尺寸、外形及允许偏差、技术要求、试验方法、检验规则、包装、标志和质量证明书等。 本文件适用于汽车制造等行业制造玻璃升降器、挡圈、雨刷器、车门、滑块、锁、座椅用调角器等汽车附件用的异型钢丝,制造内燃机活塞环、卡环、组合油环用的扁钢丝,软轴用的扁钢丝。YB/T 5183-200665 YB/T 6109-2023铬-锰-镍-氮系奥氏体不锈钢冷轧钢板和钢带 本文件规定了铬-锰-镍-氮系奥氏体不锈钢冷轧钢板和钢带的订货内容、牌号、尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志及质量证明书。 本文件适用于铬-锰-镍-氮系奥氏体不锈钢冷轧宽钢带及其卷切定尺钢板、纵剪冷轧宽钢带及其卷切定尺钢带、冷轧窄钢带及其卷切定尺钢带,也适用于单张轧制的钢板。66 YB/T 6110-2023铬-锰-镍-氮系奥氏体不锈钢热轧钢板和钢带 本文件规定了铬-锰-镍-氮系奥氏体不锈钢热轧钢板和钢带的订货内容、牌号、尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志及质量证明书。 本文件适用于铬-锰-镍-氮系奥氏体不锈钢热轧厚钢板、热轧宽钢带及其卷切定尺钢板、纵剪宽钢带,也适用于不锈钢热轧窄钢带及其卷切定尺钢带。67 YB/T 6111-2023电解金属铬 本文件规定了电解金属铬的技术要求、试验方法、检验规则、包装、储运、标志和质量证明书。 本文件适用于电解法生产的片状高纯金属铬。68 YB/T 6112-2023流体输送用不锈钢波纹管及管件 本文件规定了流体输送用不锈钢波纹管及管件的术语和定义、分类及代号、尺寸、外形及允许偏差、技术要求、试验方法、检验规则、包装、标志、运输和贮存。 本文件适用于输送公称压力不大于1.6 MPa的生活用(冷、热)水、压缩空气、燃气等用途的波纹管、管件及附件。69 YB/T 6113-2023电加热炉碳化硅导热体 本文件规定了电加热炉碳化硅导热体的术语和定义、牌号、技术要求、试验方法、质量评定程序、包装、标志、运输、储存和质量证明书。 本文件主要适用于电加热炉导热体为碳化硅的制品。70 YB/T 116-2023炉辊用耐火浇注料 本文件规定了炉辊用耐火浇注料的术语和定义、分类和牌号、技术要求、试验方法、质量评定程序、包装、标志、运输、储存和质量证明书。 本文件适用于辊底炉炉辊用耐火浇注料。YB/T 116-199771 YB/T 4126-2023高炉出铁沟浇注料 本文件规定了高炉出铁沟浇注料的术语和定义、牌号、技术要求、试验方法、质量评定程序、包装、标志、运输、储存和质量证明书。 本文件适用于高炉主沟、铁沟、渣沟和摆动流槽等部位的工作层耐火浇注料(含预制件),以及热修补用喷涂料。YB/T 4126-201272 YB/T 4129-2023塑性相复合刚玉砖 本文件规定了塑性相复合刚玉砖的术语和定义、牌号、技术要求、试验方法、质量评定程序、包装、标志、运输和质量证明书。 本文件主要适用于砌筑高炉炉缸、炉底内衬用砖。YB/T 4129-200573 YB/T 4193-2023抗结皮耐火浇注料 本文件规定了抗结皮耐火浇注料的术语和定义、牌号、技术要求、试验方法、质量评定程序、包装、标志、运输、储存和质量证明书。 本文件适用于新型干法水泥窑使用的抗结皮耐火浇注料。YB/T 4193-2009机械行业74 JB/T 14538-2023电喷枪 本文件规定了电喷枪的型式和型号和技术要求,描述了相应的试验及检验方法,规定了检验规则、标志和包装及保修期限。 本文件适用于以单相交流电220V/50Hz或直流标称电压不高于60V为电源,电动机或电磁铁驱动,额定压力小于2500 kPa的电喷枪的制造。 本文件不适用于额定压力≥2500 kPa的高压喷枪或食品加工、农药喷洒及类似用途的喷枪。75 JB/T 14360-2023大型水轮机模压叶片 技术规范 本文件规定了大型水轮机模压叶片的订货要求、制造工艺和技术要求,描述了相应的试验方法,规定了检验规则和质量证明书及标识和包装。 本文件适用于大型混流式水轮机(含抽水蓄能水泵水轮机)转轮模压叶片的制造,中小型水轮机叶片和其他水力机械叶片的制造可参考使用。76 JB/T 14361-20232.5MW以上风力发电机组偏航齿圈大型环锻件 技术规范 本文件规定了2.5MW以上风力发电机组偏航齿圈大型环锻件的订货要求、制造工艺和技术要求,描述了相应的试验方法,规定了检验规则和质量证明书及标识、包装和运输。 本文件适用于2.5MW以上风力发电机组偏航齿圈大型环锻件的制造。77 JB/T 14362-2023铝带铸轧机复合轧辊 技术规范 本文件规定了铝带铸轧机复合轧辊的订货要求、制造工艺和技术要求,描述了相应的试验方法,规定了检验规则和质量证明书及标识和包装。 本文件适用于铝带铸轧机锻钢材质复合轧辊的制造。78 JB/T 14363-2023型钢轧机复合辊环 技术规范 本文件规定了型钢轧机复合辊环的订货要求、制造工艺和技术要求,描述了相应的试验方法,规定了检验规则和质量证明书及标识和包装。 本文件适用于轧制金属材料的型钢轧机复合辊环的制造,其他用途的辊环的制造可参照使用。79 JB/T 14415-2023内燃机 混合动力冷却系统 电机智能冷却模块 本文件规定了混合动力冷却系统中电机智能冷却模块的技术要求,描述了相应的检验方法,规定了检验规则以及标志、包装、运输和贮存。 本文件适用于混合动力冷却系统中电机智能冷却模块的制造。80 JB/T 14416-2023内燃机 混合动力系统 通用技术规范 本文件规定了内燃机混合动力系统的技术要求,描述了相应的试验方法,规定了检验规则和标志与标识以及包装、运输和贮存。 本文件适用于GB/T 15089所定义的M类和N类的车用油-电和天然气-电混合动力系统的制造,非道路用油(天然气)-电混合动力系统的制造可参照使用。81 JB/T 14417-2023内燃机 混合动力系统 台架试验方法 本文件规定了内燃机混合动力系统台架试验的试验条件、试验项目和试验报告,描述了相应的试验方法。 本文件适用于GB/T 15089所定义的M类和N类的车用油-电混合动力系统的检测活动,天然气-电混合动力系统以及非道路用油(天然气)-电混合动力系统的检测可参考使用。82 JB/T 14410-2023柴油机 涂覆式钒基SCR催化剂 化学成分分析方法 本文件规定了柴油机涂覆式钒基SCR(选择性催化还原)催化剂化学成分的分析方法。 本文件适用于柴油机涂覆式钒基SCR(选择性催化还原)催化剂中钒(V)和钨(W)等主要活性元素的含量分析。83 JB/T 14411-2023柴油机 涂覆式分子筛SCR催化剂 化学成分分析方法 本文件规定了柴油机涂覆式分子筛SCR(选择性催化还原)催化剂化学成分的分析方法。 本文件适用于柴油机涂覆式分子筛SCR(选择性催化还原)催化剂中活性组分铜(Cu)和铁(Fe)元素的含量分析。84 JB/T 14412-2023电控内燃机 机油滤清器 技术规范 本文件规定了金属材料承压壳体的电控内燃机全流式机油滤清器总成的技术要求,描述了相应的试验方法,规定了检验规则以及标志、包装、运输与贮存。 本文件适用于金属材料承压壳体的电控内燃机全流式机油滤清器总成的制造。85 JB/T 14413-2023电控汽油机 汽油滤清器 本文件规定了电控汽油机汽油滤清器总成的技术要求,描述了相应的试验方法,规定了检验规则以及标志、包装、运输与贮存。 本文件适用于额定体积流量为 3.5 L/min或发动机额定功率为 300 kW及以下的电控汽油机汽油滤清器总成的制造,额定体积流量大于 3.5 L/min或发动机额定功率大于 300 kW的电控汽油机汽油滤清器总成的制造可参照使用。86 JB/T 14414-2023内燃机 等温淬火贝氏体气缸套 金相检验 本文件规定了往复式内燃机等温淬火贝氏体铸铁气缸套金相组织的技术要求,描述了相应的检验与评定方法,规定了显微组织级别图。 本文件适用于气缸直径不大于 200 mm 的往复式内燃机等温淬火贝氏体铸铁气缸套金相组织的检测活动。87 JB/T 14418-2023内燃机 激光刻线气缸套 技术规范 本文件规定了激光刻线气缸套的技术要求,描述了相应的检验方法,规定了检验规则以及标志、包装、运输和贮存。 本文件适用于气缸套直径小于或等于 200mm 的往复式内燃机激光刻线气缸套的制造。88 JB/T 14419-2023内燃机 进气压力电子旁通阀(EBV)技术规范 本文件规定了内燃机进气压力电子旁通阀(EBV)的结构型式和技术要求,描述了相应的试验方法,规定了检验规则以及标志、包装、运输和储存。 本文件适用于内燃机进气系统压力调节用电子旁通阀的制造,内燃机进气系统其它用途电子旁通阀的制造可参照使用。89 JB/T 14420-2023内燃机 排放后处理催化剂 分类和命名规则 本文件规定了内燃机排放后处理催化剂的分类、型号和命名。 本文件适用于内燃机排放后处理催化剂的分类和命名。90 JB/T 9750.1-2023内燃机 气门摇臂和摇臂轴技术规范 第1部分:气门摇臂 本文件规定了内燃机气门摇臂的结构型式和技术要求,描述了相应的检验方法,规定了检验规则以及标志、 包装、 运输和贮存。 本文件适用于气缸直径小于或等于200mm的往复式内燃机用钢制及铸铁气门摇臂本体(不包含组合摇臂上的气门调整螺钉、滚轮、滚针轴承和销轴等附件)的制造。JB/T 9750.1-201191 JB/T 9750.2-2023内燃机 气门摇臂和摇臂轴技术规范 第2部分:气门摇臂轴 本文件规定了内燃机气门摇臂轴的技术要求,描述了相应的检验方法,规定了检验规则以及标志、包装、运输和贮存。 本文件适用于气缸直径不大于200mm的往复式内燃机用气门摇臂轴的制造。JB/T 9750.2-201192 JB/T 14421-2023内燃机 塑料膨胀水箱 技术规范 本文件规定了内燃机冷却系统中塑料膨胀水箱的产品结构和技术要求,描述了相应的试验方法,规定了检验规则以及标志、包装、运输和贮存。 本文件适用于往复式内燃机冷却系统用塑料膨胀水箱的制造。93 JB/T 14422-2023涡轮增压器 叶轮低周疲劳试验方法 本文件规定了内燃机用涡轮增压器叶轮低周疲劳试验的试验装置和试验条件,描述了相应的试验方法,规定了数据采集和数据处理。 本文件适用于车用、船用、工程机械、农林机械、发电及其它用途的内燃机(包括柴油机、汽油机和天然气发动机等)用增压器的叶轮低周疲劳检测活动。94 JB/T 14425-2023电磁隔膜计量泵 本文件规定了电磁隔膜计量泵的信息确认、型式与基本参数和技术要求,描述了相应的试验方法,规定了检验规则和交付准备及标志、包装和贮存。 本文件适用于大气压86kPa~106kPa,温度-20℃~+70℃,湿度30%~95%RH的环境条件下,输送温度为-15℃~+85℃,粘度为0.3mm2/s~200mm2/s的不含固体颗粒的液体的电磁隔膜计量泵的制造。95 JB/T 14426-2023往复式气液混输泵装置 本文件规定了往复式气液混输泵装置的信息确认和技术要求,描述了相应的试验方法,规定了检验规则和交付准备及标志、包装和贮存。 本文件适用于输送介质为不含颗粒的石油伴生气、天然气或页岩气等气体与液体混合的气液两相介质,额定排出压力不超过6.0MPa,流量不超过500m3/h,介质温度5℃~85℃,介质含气率0~100%,运动黏度不超过1500mm2/s的往复式气液混输泵装置的制造。96 JB/T 7550-2023空气分离设备用切换蝶阀 本文件规定了气动双位式切换蝶阀的结构型式和技术要求,描述了相应的试验方法,规定了检验规则和标志及防护、包装和贮运。 本文件适用于大、中和小型空气分离设备中气体切换,公称压力为PN6~PN40、公称尺寸为DN80~DN1600;压力等级Class150~Class300、公称尺寸NPS3~NPS64的气动双位式切换蝶阀的制造。JB/T 7550-200797 JB/T 6895-2023铝制空气分离设备安装焊接技术规范 本文件规定了铝制空气分离设备压力容器和压力管道的安装焊接技术要求,描述了相应的试验方法,规定了检验规则。 本文件适用于铝制空气分离设备压力容器和压力管道安装的焊接,非压力容器和非压力管道安装的焊接可参照执行。JB/T 6895-200698 JB/T 7260-2023空气分离设备 铜焊缝射线照相和质量分级 本文件规定了焊接方法为气焊、氩弧焊及气焊和氩弧焊的组合焊(也可采用电焊、埋弧焊及电焊和埋弧焊的组合焊)的熔化焊对接接头的X射线照相方法,规定了焊缝质量的分级。 本文件适用于空气分离设备中母材为铜及铜合金且厚度不大于20mm的熔化焊对接接头的检测和分级活动,其他母材与铜或铜合金的熔化焊对接接头的检测和分级活动可参照使用。JB/T 7260-199499 JB/T 9078.1-2023天然气分离设备 第1部分:技术规范 本文件规定了天然气(含油田伴生气)分离设备的技术要求,描述了相应的试验方法,规定了检验规则及标志、包装、运输和贮存。 本文件适用于以透平膨胀机或带辅助制冷的透平膨胀机深冷法从天然气中分离并加工成乙烷或乙烷以上液烃产品的天然气分离设备的制造。JB/T 9078.1-1999100 JB/T 9078.2-2023天然气分离设备 第2部分:性能试验方法 本文件规定了天然气(含油田伴生气)分离设备的性能试验方法。 本文件适用于以透平膨胀机或带辅助制冷的透平膨胀机深冷法从天然气中分离并加工成乙烷或乙烷以上液烃产品的天然气分离设备性能的检测活动。JB/T 9078.2-1999101 JB/T 7551-2023天然气分离与液化设备 术语 本文件规定了天然气分离与液化设备的术语。 本文件适用于天然气分离与液化设备术语的引用或规范使用等各类应用。JB/T 7551-1994102 JB/T 8168-2023脉冲电容器及直流电容器 本文件规定了脉冲电容器和直流电容器的型号命名与产品分类、使用条件、技术要求、试验分类和试验项目,描述了相应的试验方法,规定了安全要求及标志。 本文件适用于1 kV~500 kV的脉冲电容器和直流电容器的制造。 本文件不包括下列电容器:——电力电子电容器(参见GB/T 17702);——高压直流输电系统用直流滤波电容器(参见GB/T 20993);——电子设备用固定电容器(参见GB/T 6346、GB/T 14579—2013);——轨道交通 机车车辆设备 电力电子电容器(参见GB/T 25121系列)。JB/T 8168-1999103 JB/T 10764-2023无损检测 常压金属储罐声发射检测及评价方法 本文件规定了常压金属储罐壁板与底板的声发射检测与评价方法。 本文件适用于工作介质为气体或液体、工作压力为常压或小于0.1MPa的低压新制造和在用地上金属立式储罐壁板与底板的声发射检测。JB/T 10764-2007104 JB/T 10765-2023无损检测 常压金属储罐漏磁检测方法 本文件规定了常压金属储罐底板的漏磁检测方法及结果评价。 本文件适用于工作压力为常压或小于0.1MPa的低压的地上铁磁性金属储罐底板母材不连续的漏磁检测。 本文件不适用于储罐底板焊缝。JB/T 10765-2007105 JB/T 3857-2023变压器专用设备 卧式绕线机 本文件规定了变压器专用设备卧式绕线机的型号和技术要求,描述了相应的试验方法,规定了检验规则,标牌、包装、运输和贮存以及装使用与维护要求。 本文件适用于变压器专用设备卧式绕线机的制造。JB/T 3857-2010106 JB/T 9658-2023变压器专用设备 硅钢片纵剪生产线 本文件规定了变压器专用设备硅钢片纵剪生产线的型号和技术要求,描述了相应的试验方法,规定了检验规则,标牌、包装、运输和贮存安装使用与维护等要求。 本文件适用于变压器专用设备硅钢片纵剪生产线的制造。JB/T 9658-2008107 JB/T 10918-2023变压器专用设备 硅钢片横剪生产线 本文件规定了变压器专用设备硅钢片横剪生产线的型号和技术要求,描述了相应的试验方法,规定了检验规则,标牌、包装、运输和贮存及安装使用和维护等要求。 本文件适用于变压器专用设备硅钢片横剪生产线的制造。JB/T 10918-2008108 JB/T 11146-2023变压器专用设备 箔式线圈绕制机 本文件规定了变压器专用设备箔式线圈绕制机的型号和技术要求,描述了相应的试验方法,规定了检验规则,标牌、包装、运输和贮存及安装使用与维护等要求。 本文件适用于变压器专用设备箔式线圈绕制机的生产。JB/T 11146-2011109 JB/T 11148-2023干式空心电抗器专用设备 立式绕线机 本文件规定了干式空心电抗器专用设备立式绕线、绕纱机的型号和技术要求,描述了相应的试验方法,规定了检验规则,标牌、包装、运输和贮存及安装使用与维护等要求。 本文件适用于干式空心电抗器专用设备立式绕线及绕纱设备的制造。JB/T 11148-2011110 JB/T 10941-2023合成薄膜绝缘电流互感器 本文件规定了合成薄膜绝缘电流互感器的正常和特殊使用条件、额定值以及设计和结构,描述了相应的试验方法,规定了运输、储存、安装、运行和维修规则以及安全性和产品对自然环境的影响。 本文件适用于频率为15Hz~100Hz、供电气测量仪表和电气保护装置用的合成薄膜绝缘电流互感器的制造。JB/T 10941-2010111 JB/T 7072-2023水轮机调速器及油压装置 系列型谱 本文件规定了水轮机调速器及油压装置的产品分类、系列型谱编制原则和型号编制方法。 本文件适用于各式水轮机配套的调速器及其油压装置的选型、设计和制造。JB/T 7072-2004、JB/T 2832-2004 附件29项行业标准外文版名称及主要内容等一览表序号标准编号标准名称(中文)标准名称(外文)标准主要内容项目类型翻译语种化工行业1 HG/T 5050-2016海藻酸类肥料Alginic acid fertilizer本标准规定了海藻酸类肥料的术语和定义、产品类型、要求、试验方法、检验规则、标识、包装、运输和贮存。本标准适用于将以海藻为主要原料制备的海藻酸增效剂,添加到肥料生产过程中制成的含有一定量海藻酸的海藻酸包膜尿素、含部分海藻酸包膜尿素的掺混肥料、海藻酸复合肥料、含海藻酸水溶肥料。翻译已有标准英语2 HG/T 5049-2016含海藻酸尿素Urea containing alginic acid本标准规定了含海藻酸尿素的术语和定义、要求、试验方法、检验规则、标识、包装、运输与贮存。本标准适用于将以海藻为主要原料制备的海藻酸增效液,添加到尿素生产过程中,通过尿素造粒工艺技术制成的含海藻酸尿素。翻译已有标准英语3 HG/T 5515-2019含海藻酸磷酸一铵、磷酸二铵Monoammonium phosphate and diammonium phosphate containing alginic acid本标准规定了含海藻酸磷酸一铵、磷酸二铵的术语和定义、要求、试验方法、检验规则、标识、包装、运输与贮存。本标准适用于将以海藻为主要原料制备的海藻液或海藻粉添加到磷酸一铵、磷酸二铵生产过程中制成的含海藻酸磷酸一铵、磷酸二铵。翻译已有标准英语4 HG/T 2051.1-2019搪玻璃搅拌器 锚式搅拌器Glass-lined agitator - Anchor type本标准规定了搪玻璃搅拌容器用搪玻璃锚式搅拌器的型式、基本参数、主要尺寸、要求及包装、运输和贮存。本标准适用于公称容积50L~5 000L,设计温度为-20℃~200℃,搅拌器公称转速50r/min~80r/min的搪玻璃开式搅拌容器用搪玻璃锚式搅拌器。翻译已有标准英语5 HG/T 2051.2-2019搪玻璃搅拌器 框式搅拌器Glass-lined agitator - Gate type本标准规定了搪玻璃搅拌容器用搪玻璃框式搅拌器的型式、基本参数、主要尺寸、要求、包装、运输和贮存。本标准适用于公称容积50L~5 000L,设计温度为-20℃~200℃,搅拌器公称转速50r/min~80r/min的搪玻璃开式搅拌容器用搪玻璃框式搅拌器。翻译已有标准英语6 HG/T 2051.3-2019搪玻璃搅拌器 叶轮式搅拌器Glass-lined agitator - Retreat curve impeller type本标准规定了搪玻璃搅拌容器用搪玻璃叶轮式搅拌器的型式、基本参数、主要尺寸、要求、包装、运输和贮存。本标准适用于公称容积50L~40 000L,设计温度为-20℃~200℃,搅拌器公称转速70r/min~125r/min且搅拌器锚翼端部的线速度小于等于8m/s的搪玻璃搅拌容器用搪玻璃叶轮式搅拌器。翻译已有标准英语7 HG/T 2051.4-2019搪玻璃搅拌器 桨式搅拌器Glass-lined agitator - Pitch blade turbine type本标准规定了搪玻璃搅拌容器用搪玻璃桨式搅拌器的型式、基本参数、主要尺寸、要求、包装、运输和贮存。本标准适用于公称容积50L~40 000L,设计温度为-20℃~200℃,搅拌器公称转速70r/min~125r/min,且搅拌器锚翼端部的线速度小于等于7m/s的搪玻璃搅拌容器用搪玻璃桨式搅拌器。翻译已有标准英语8 HG/T 2052-2019搪玻璃设备 传动装置Drive for glass-lined vessel with agitator本标准规定了搪玻璃搅拌容器用传动装置的型式、基本参数及主要尺寸、要求、标记及其示例、装配、标志、包装、运输和贮存。本标准适用于搪玻璃搅拌容器用传动装置。翻译已有标准英语9 HG/T 5751-2020动力电池外壳用绝缘阻燃胶粘带Flame retardant insulation tape for EV battery本标准规定了动力电池外壳用绝缘阻燃胶粘带的分类、要求、试验方法、检验规则、标志、包装、运输及贮存。本标准适用于以塑料薄膜(如聚对苯二甲酸乙二酯塑料薄膜,简称PET和聚酰亚胺塑料薄膜,简称PI)为基材,单面均匀涂布压敏胶粘剂的单面绝缘阻燃胶粘带。翻译已有标准英语附件3 1项化工行业标准修改单HG/T 2321-2016《肥料级磷酸二氢钾》第1号修改单(报批稿) 4.9.1更改数值:“使用带有玻璃电极与甘汞电极的酸度计,测定磷酸二氢钾浓度为3g/L溶液的pH值”更改为“使用带有玻璃电极与甘汞电极的酸度计,测定磷酸二氢钾浓度为30g/L溶液的pH值”。b. 4.9.3.1更改数值: “酸度计:带有玻璃电极、甘汞电极,灵敏度为0.1pH单位”更改为“酸度计:带有玻璃电极、甘汞电极,灵敏度为0.01pH单位”。
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2--- _10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8~2.8表5:甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响在10 mM缓冲液中,甘氨酸浓度越高,pH值变化越明显,另外通过用同步X射线衍射法监测溶质结晶程度,磷酸盐缓冲液对甘氨酸结晶具有浓度依赖性抑制作用,20%W/V甘氨酸和50-200mM缓冲液,缓冲液浓度越高,抑制作用越强,并且在-20℃进行退火处理,能够增强甘氨酸的结晶度。pH的改变能够引起蛋白凝聚,可以通过降低缓冲液浓度,使用不结晶的缓冲液,通过蛋白,糖来抑制缓冲液结晶,并且某些蛋白本身就具有pH缓冲的功能(Pikal-Cleland et al., J. Pharm. Sci. 2002;Varshney et al., Pharm. Res. 2007;Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel. 2020 Sundarmurathi and Suryanarayanan, J. Phys. Chem. B. 2011 Gokarnet al., J. Pharm. Sci. 2008)。 03.总结 冻干配方成分之间具有复杂的相互作用,某些组分可以通过改变其他组分的相行为来影响其功能性,必须正确选择配方中赋形剂的浓度,使得每种成分能够维持其*的物理形态,发挥应有的功能性。评论抽免费礼品活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • 我国科学家研制“龙虾壳”新型仿生材料
    近日,中国科学技术大学俞书宏院士团队首次提出了非连续布利冈(Bouligand)结构的设想,并发展了一种程序化组装纳米纤维的方法,成功地创制出一种新型的轻质高强仿生非连续布利冈结构纳米复合材料,实现了非连续纤维桥连和布利冈构造诱导裂纹偏转的协同增韧。该成果为研制高性能结构材料提供了新的组装方法。相关论文日前发表在国际期刊《物质》上。布利冈结构由单向纳米纤维片层螺旋堆叠构成,在骨、鱼鳞、龙虾壳等多种生物材料中广泛存在,是一种典型的纤维增强结构,直接决定这些生物材料的卓越力学性能。然而,蕴藏在自然布利冈结构中的智慧仍未得到充分开发和运用,已实现的仿生布利冈结构与自然布利冈结构相比,无论在结构层级还是结构精度方面都相差甚远。研究人员基于所开发的有序组装纳米纤维基元的程序化装置,以环境友好的硬硅钙石纳米纤维和海藻酸钠为原料,通过螺旋组装硬硅钙石纳米纤维于海藻酸钠基体中,并结合溶胶—凝胶—薄膜转变过程,成功制备了非连续布利冈结构纳米复合材料。实验表明,该材料展现了卓越的力学性能,优于许多如鱼鳞片、层状骨、蟹螯等天然布利冈结构材料以及仿生布利冈结构类似物和部分工程纤维复合材料。进一步通过断口微结构分析与理论模拟发现,该材料表现出裂纹偏转和纤维桥连增韧机制。这种仿生纳米复合材料具有广泛的应用前景,可作为高损伤容忍性能的骨修复材料等,对于今后开发新型纳米纤维复合材料、提升传统纤维增强复合材料的性能具有重要的指导意义
  • 【阿拉丁】FITC标记多糖——荧光探针下的多糖世界
    FITC标记多糖——荧光探针下的多糖世界 荧光素异硫氰酸酯(Fluorescein Isothiocyanate, FITC)是一种绿色荧光染料,广泛应用于生物标记和成像技术。多糖作为重要的生物大分子,参与了众多生物过程和功能。将FITC标记在多糖上,使其在荧光显微镜或流式细胞仪等设备下进行可视化和定量分析,在生物医学研究中具有重要意义。本文将着重介绍几类常见的FITC标记多糖,并详细讨论其在实验技术和生物医学应用中的重要作用。 常见的FITC标记多糖 FITC标记透明质酸 透明质酸(Hyaluronic Acid, HA)是一种天然存在于结缔组织、上皮组织和神经组织中的多糖。它在组织修复、细胞迁移、肿瘤生物学等方面具有重要作用。通过FITC标记透明质酸,可以实现对其在细胞和组织中的动态分布和代谢途径进行研究。 FITC标记葡聚糖 葡聚糖(Dextran)是一种由葡萄糖单元组成的多糖,常用于血浆扩容剂和药物载体。FITC标记葡聚糖主要用于研究其在生物体内的分布和清除过程,以及在药物输送系统中的作用。 FITC标记几丁质和壳聚糖 几丁质(Chitin)和壳聚糖(Chitosan)是由N-乙酰葡糖胺和葡糖胺组成的多糖,广泛存在于甲壳类动物的外骨骼中。FITC标记几丁质和壳聚糖用于研究其在生物降解、生物相容性以及作为药物递送载体中的应用。 FITC标记海藻酸钠 海藻酸钠(Sodium Alginate)是一种从褐藻中提取的阴离子多糖,常用于生物材料和药物递送系统。通过FITC标记海藻酸钠,可以研究其在生物材料中的作用和性能,如细胞包裹和释放机制。 实验技术 荧光显微镜成像 FITC标记多糖在荧光显微镜下具有优异的成像效果。通过共聚焦显微镜,可以获得多糖在细胞内外的三维分布图像,研究其在细胞迁移、组织修复和药物递送中的动态变化。1. 样品制备:将FITC标记的多糖加入细胞培养基中,与细胞共同孵育一段时间后,固定细胞并进行染色。2. 成像:使用共聚焦显微镜对样品进行成像,获取多糖在细胞中的分布图像。 流式细胞术分析 流式细胞术是用于定量分析FITC标记多糖在细胞表面结合和摄取情况的重要技术。通过检测细胞内外的荧光强度,可以研究多糖与细胞表面受体的相互作用及其在细胞内的代谢过程。1. 细胞处理:将FITC标记的多糖加入细胞悬液中,与细胞孵育适当时间后,用缓冲液洗涤去除未结合的多糖。2. 检测分析:使用流式细胞仪检测细胞的荧光强度,分析多糖在细胞中的结合和摄取情况。 生物材料表征 FITC标记多糖在生物材料中的应用广泛,通过荧光标记技术可以直观地观察多糖在材料中的分布和降解情况。1. 材料制备:将FITC标记的多糖掺入生物材料中,制备成所需形态(如水凝胶、薄膜)。2. 表征分析:使用荧光显微镜或荧光光谱仪检测材料中的荧光分布,研究多糖在材料中的分布和降解特性。 生物医学应用 细胞成像与跟踪 FITC标记透明质酸、葡聚糖等多糖在细胞成像中应用广泛。通过荧光显微镜,可以实时跟踪多糖在细胞内外的分布,研究其在细胞迁移、组织修复和肿瘤生物学中的作用。1. 细胞迁移:FITC标记透明质酸可以用于研究其在细胞迁移过程中的作用,揭示其在创伤愈合和癌细胞转移中的机制。2. 组织修复:通过标记透明质酸,可以研究其在组织修复中的分布和作用,优化治疗策略。 药物递送系统 FITC标记海藻酸钠、壳聚糖等多糖在药物递送系统中的应用,为提高药物的靶向性和疗效提供了新的思路。通过荧光追踪技术,可以监测药物在体内的分布和释放情况,优化药物递送系统。1. 药物释放监测:FITC标记海藻酸钠微球可以用于研究其作为抗癌药物载体的效果,追踪药物在肿瘤组织中的释放和分布。2. 靶向递送:FITC标记壳聚糖纳米粒子可以用于研究其在靶向递送中的性能,提高药物的治疗效果和减少副作用。 疾病诊断与治疗 FITC标记多糖在疾病诊断和治疗中具有重要应用。通过荧光标记技术,可以开发新的生物标志物用于疾病的早期诊断和疗效监测。1. 早期诊断:FITC标记透明质酸可以用于检测血清中透明质酸水平的变化,作为肝纤维化的早期诊断标志物。2. 疗效监测:通过标记多糖,可以实时监测治疗过程中生物分子的动态变化,评估治疗效果。 生物相容性与免疫研究 FITC标记几丁质和壳聚糖在生物相容性和免疫研究中应用广泛。通过荧光标记技术,可以直观地观察多糖与细胞或组织的相互作用,评估其生物安全性和免疫调节作用。1. 生物相容性:FITC标记壳聚糖可以用于研究其在生物医用植入材料中的生物相容性,优化其制备工艺和应用效果。2. 免疫调节:FITC标记细菌多糖可以用于研究其在免疫细胞中的摄取和处理机制,揭示其在感染和免疫调节中的作用。 技术挑战与解决方案 尽管FITC标记多糖在生物医学研究中具有广泛的应用前景,但在实际操作中仍存在一些技术挑战。1. 标记效率:多糖分子结构复杂,标记位点有限,可能导致标记效率较低。通过优化反应条件,如调整pH值、反应温度和时间,可以提高标记效率。2. 标记均一性:多糖分子大小和结构的异质性可能导致标记的不均一性。为克服这一问题,可以通过改进多糖的纯化和预处理方法,获得更加均一的多糖样品。3. 标记稳定性:FITC标记的多糖在储存和使用过程中,可能会发生荧光淬灭或脱落。为提高标记稳定性,可以优化标记反应条件,并在储存和使用过程中注意避光、防潮,低温保存。 未来发展方向 随着生物医学技术的发展,FITC标记多糖的应用前景将更加广阔。1. 多功能标记:通过结合多种荧光染料,可以实现多功能标记,研究多种生物分子的相互作用和调控机制。2. 智能药物递送:开发基于FITC标记多糖的智能药物递送系统,实现药物的可控释放和靶向治疗,提高治疗效果。3. 高通量筛选:通过高通量筛选技术,开发新型FITC标记多糖,应用于生物医学研究和临床诊断。 结论 FITC标记多糖在生物实验和生物医学研究中具有重要应用。通过荧光标记技术,可以实现多糖在细胞和体内的可视化和定量分析,促进了多糖在细胞迁移、组织修复、药物递送、疾病诊断和治疗等方面的研究。尽管在技术应用中仍面临一些挑战,但通过不断优化和改进,FITC标记多糖将在未来生物医学领域发挥更加重要的作用。 阿拉丁:https://www.aladdin-e.com
  • 欧盟修改食品增补剂重金属限量标准
    日前,欧盟颁布了修改对食品内重金属污染物制定最大限量的第(EC)1881/2006号法规。该草案重新规定了对食品增补剂内的铅、汞及镉的最大限量。其中,建议所有食品增补剂内铅的最大限量为3.0 mg/kg 汞的最大限量为0.10 mg/kg 单独由或主要由干海藻或海藻派生品构成的食品增补剂内,镉的最大限量为3.0 mg/kg,其他食品增补剂内镉的最大限量拟定为1.0 mg/kg。法案预定在2009年施行。  近年来,重金属污染受到各国政府的关注。欧美等国多次修订了重金属限量标准。如欧盟在2005年发布的(EC)78/2005法案中修订了食品中重金属限量,并于同一年在欧盟国家勒令停止销售含有硒酵母、镉、硼等多种营养素的保健品。2006到2007年,日本劳动省决定对中国输日蔬菜水果的重金属铅、砷含量进行不定期抽样检测。韩国也在2005年发布了关于中草药中农残金属限量的修正案。欧盟此次法规的修订,同样是出于对食品安全和公众健康考虑,但也提高了食品出口商的技术门槛。  国外对食品技术性标准的不断提高和对中国食品安全问题的炒作势必对我国食品生产企业带来不利影响。为应对今年严峻的外贸形势,广大企业需自发地建立质量保障体系,加大研究力度和技术创新,关注出口市场的最新标准和要求。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制