当前位置: 仪器信息网 > 行业主题 > >

焊料球

仪器信息网焊料球专题为您整合焊料球相关的最新文章,在焊料球专题,您不仅可以免费浏览焊料球的资讯, 同时您还可以浏览焊料球的相关资料、解决方案,参与社区焊料球话题讨论。

焊料球相关的资讯

  • 云锡无铅锡基焊料光谱标准样品获得批准
    4月9日,云锡研究设计院分析检测中心收到了全国标准样品委员会核发的有证标准样品证书《国家质量监督检验检疫总局、国家标准化管理委员会联合发布中华人民共和国国家标准公告〔2015年第7号〕》:批准云锡研究设计院研制的无铅锡基焊料光谱标准样品,编号为GSB 04-3225-2014,有效期自2014年7月至2029年6月。  无铅锡基焊料光谱标准样品是2014年7月3日,经全国标准样品技术委员会有色分委会组织由26家单位33位代表组成的专家通过鉴定的。鉴定专家与会专家听取了研制的技术报告、审查了相关资料。通过质询和讨论,专家组一致认为:该标准样品成分设计合理,研制工艺科学;具有良好的均匀性和稳定性;结果准确、可靠;该标准样品的研制填补了国内空白,该技术指标达到了国内先进水平。  该证书的取得,标志着由云锡研究设计院经过一年多研制的无铅锡基焊料光标准样品获得了国家质量监督检验检疫总局及国家标准化管理委员会的批准,将面向全国客户销售。
  • Top-Unistar和Advacam联合推出光子计数、像素化X射线探测器探测模块加工解决方案
    北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,一直在积极探索和推广光子计数X射线探测技术在中国市场的应用,凭借过硬的技术理解,高效和快速的反馈赢得厂家和中国客户的一致赞誉。目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。我们根据Advacam在传感器研发、加工,晶圆焊撞和倒装焊接等加工的能力,在中国市场推出相应技术支持,为国内HPC探测器的研发团队(包括企业)就传感器加工、各种类型晶圆的焊撞和不同形状的混合像素探测器的倒装焊接等方面需求提供工艺服务。目前已为多家客户提供了满意的工艺解决方案,获得好评及持续服务合同。无尘室Advacam在Micronova拥有世界一流的无尘室。2600平方米的无尘室是北欧国家最大的硅基微结构制造、研发设施。有多种用于硅晶圆前端加工工具和完整的倒装芯片生产线。半导体材料的所有工艺服务均在芬兰埃斯波的Micronova工厂内完成。1. 传感器加工服务ADVACAM的标准产品包括在厚度为200 µm至1 mm的6英寸(150 mm)高电阻率硅晶圆上制造像素化,微带和二极管传感器。甚至可以使用成熟的载体晶圆技术来制造更薄的传感器(甚至只有几微米)。此外,ADVACAM还为大面积传感器组件提供了在8英寸(200毫米)高电阻率晶圆上的Si平面传感器处理工艺。ADVACAM专门制造无边缘的像素和微带传感器。无边缘传感器是整个传感器都对辐射敏感。该技术可提供小于1微米的非敏区域。无边缘传感器是在6英寸(150毫米)高电阻率硅晶圆上制造的,厚度为50 µm至675 µm。1.1 平面硅传感器可以制作任意极性的平面硅传感器,如p-on-n,n-on-n, n-on-p和p-on-p。p-stop和p-spray技术都可以用于阳极电极的电隔离。基于在6英寸和8英寸晶圆上加工的传感器均有低泄漏电流和高击穿电压的特点,通常比耗尽电压高许多倍。整个加工过程的交货时间很短。Advacam为晶圆连续加工提供了可能,包括可通过凸点下金属层沉积、凸点焊接,将晶圆切成小块,完成传感器和读出芯片的倒装焊接。我们还提供探测器模块与PCB的引线键合。进入熔炉的8英寸硅芯片1.2 无边 Si传感器各种尺寸的无边缘传感器经过了严密的制造和进一步加工。Advacam不仅可以提供无边缘传感器加工服务,还可以提供整个加工过程,通过凸点下金属层沉积和倒装焊接步骤以提供一整个无边缘传感器模块。将无边缘传感器用于大面积拼接可以优化生产良率。这是目前只有ADVACAM能提供的独特服务。平面传感器(左),像素矩阵周围的无效区域较宽。无边缘传感器(右侧)在传感器的物理边缘也敏感。过往案例- 左右滑动查看更多 -2. 晶圆焊撞ADVACAM使用电化学电镀工艺在6- 8英寸晶圆上沉积UBM和焊料凸点。焊撞工艺只适用于完整的晶圆(而非单个芯片)。沉积的焊料凸点的直径和间距分别从20 µm和40 µm开始。晶圆凸块工艺需要一层掩模。该工艺与标准的8英寸 CMOS芯片(带有缺口)以及6英寸和8英寸硅传感器晶圆兼容。2.1 高温焊撞ADVACAM提供的典型焊料合金是共SnPb(63:37)和InSn(52:48)合金。如果客户要求,还可沉积AgSn焊料。高温焊撞适用于Si或GaAs传感器的倒装焊接。小间距焊球凸点2.2 低温焊撞InSn焊料用于化合物半导体传感器的低温焊接。这些传感器,如CdTe和CdZnTe,通常对温度敏感,它们的热膨胀系数明显大于硅。低温焊料凸点沉积在读出ASIC的每第二个像素点上2.3 焊撞技术由于沉积率高,清晰的化学机理、沉积均匀性好,电镀已被广泛应用于倒装芯片凸点的沉积。UBM和焊料凸点都将使用相同的光刻胶掩模依次沉积。电镀通常需要一个掩模层和一个光刻流程。UBM/焊料在光刻胶开口处电沉积,在去除光刻胶后,沉积的金属层充当蚀刻晶圆导电种子层的掩模。尽管电镀过程很简单,但该过程对不同材料的化学相容性非常敏感。图片描绘了一个像素在电镀工艺的不同步骤中:1)芯片清洁,2)场金属沉积(粘附/种子层),3)厚胶光刻,4)UBM电镀,5)焊料电镀,6)光刻胶剥离,7)湿法蚀刻种子层,8)湿法蚀刻粘合层,9)回流焊。3. 倒装焊接ADVACAM一直参与各种间距和尺寸的混合像素探测器的倒装焊接,多年来累积了特殊的能力。今天,ADVACAM为客户的高价值组件提供商用倒装芯片服务。除了以生产为导向的工作外,ADVACAM还帮助客户进行研发项目。3.1 标准倒装焊接大多数倒装芯片的委托工作是在硅传感器模块上粘合CMOS芯片,但是复合半导体传感器(GaAs, CdTe和CdZnTe)越来越受欢迎。ADVACAM已经为这些传感器开发了自己的晶圆焊撞和倒装焊接工艺,如今它们通常能以高成功率进行倒装焊接。典型的焊料结构是将焊料凸点与UBM一起沉积在ASIC读出晶圆上,并且传感器晶圆具有可焊接的UBM焊盘。Si传感器倒装焊接到CMOS读出芯片模块的横截面SEM图像3.2 特殊的倒装焊接在特殊的元件(如带有Cu Through Silicon Vias(TSV)的CMOS芯片)中,最好是将焊料凸点沉积在传感器晶圆上而非是在非常昂贵的带TSV的CMOS芯片上。无边缘传感器倒装焊接到薄的MPX3 TSV 芯片4. 其他服务ADVACAM还提供其他一些与半导体传感器制造和微封装相关的服务,以便为其苛刻的客户提供一站式交钥匙解决方案。ADVACAM正在不断扩大我们的服务组合,提供新的技术解决方案。4. 1 晶圆切割服务ADVACAM使用传统的金刚石刀片切割提供定制切割服务。传感器晶圆的切割非常敏感,因为微裂纹可能会引入大量的泄漏电流。ADVACAM专门从事非标准切割工艺,慢进料速度可优化切割质量。采用分步切割(两次切割)可以获得最佳切割质量。CMOS芯片保护环的精细切割4.2 Timepix读出芯片探测ADVACAM具有自动探测Timepix读出芯片的能力,从而对优质和劣质芯片进行分类和区分。这种技术与焊撞一起节省了客户的时间和金钱,避免了对晶圆的不必要污染。CMOS读出晶圆探测图和根据其特性分类的芯片4.3 传感器和掩模设计服务ADVACAM还提供半导体传感器设计服务,并通过光刻掩模设计帮助其客户获得所需的元件性能。最佳的传感器设计需要了解完整的半导体工艺,从材料到选择合适的触点和保护环,以及传感器的倒装焊接。布局通常以gds格式交付给客户。Si传感器芯片的一角的近视图
  • 高性能制造技术与重大装备等18个重点专项2021申报指南征求意见
    2月1日,科技部发布关于对“十四五”国家重点研发计划“氢能技术”、“先进结构与复合材料”、“高性能制造技术与重大装备”等18个重点专项2021年度项目申报指南征求意见的通知。本次征求意见重点针对指南方向提出的目标指标和相关内容的合理性、科学性、先进性等方面听取各方意见和建议。科技部将会同有关部门、专业机构和专家,认真研究收到的意见和建议,修改完善相关重点专项的项目申报指南。征集到的意见和建议,将不再反馈和回复。征求意见时间为2021年2月1日至2021年2月21日,修改意见请于2月21日24点之前发至电子邮箱。 联系方式:重点专项名称邮箱地址氢能技术gxs_njc@most.cn储能与智能电网技术新能源汽车交通基础设施高性能计算gxs_xxc@most.cn信息光子技术多模态网络与通信区块链网络空间安全治理gxs_zdhc@most.cn智能传感器工业软件高性能制造技术与重大装备先进结构与复合材料gxs_clc@most.cn高端功能与智能材料新型显示与战略性电子材料稀土新材料地球观测与导航gxs_fwyc@most.cn文化科技与现代服务业 附件:1.“十四五”国家重点研发计划“氢能技术”重点专项2021年度项目申报指南(征求意见稿).pdf2.“十四五”国家重点研发计划“储能与智能电网技术”重点专项2021年度项目申报指南(征求意见稿).pdf3.“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿).pdf4.“十四五”国家重点研发计划“交通基础设施”重点专项2021年度项目申报指南(征求意见稿).pdf5.“十四五”国家重点研发计划“高性能计算”重点专项2021年度项目申报指南(征求意见稿).pdf6.“十四五”国家重点研发计划“信息光子技术”重点专项2021年度项目申报指南(征求意见稿).pdf7.“十四五”国家重点研发计划“多模态网络与通信”重点专项2021年度项目申报指南(征求意见稿).pdf8.“十四五”国家重点研发计划“区块链”重点专项2021年度项目申报指南(征求意见稿).pdf9.“十四五”国家重点研发计划“网络空间安全治理”重点专项2021年度项目申报指南(征求意见稿).pdf10.“十四五”国家重点研发计划“智能传感器”重点专项2021年度项目申报指南(征求意见稿).pdf11.“十四五”国家重点研发计划“工业软件”重点专项2021年度项目申报指南(征求意见稿).pdf12.“十四五”国家重点研发计划“高性能制造技术与重大装备”重点专项2021年度项目申报指南(征求意见稿).pdf13.“十四五”国家重点研发计划“先进结构与复合材料”重点专项2021年度项目申报指南(征求意见稿).pdf14.“十四五”国家重点研发计划“高端功能与智能材料”重点专项2021年度项目申报指南(征求意见稿).pdf15.“十四五”国家重点研发计划“新型显示与战略性电子材料”重点专项2021年度项目申报指南(征求意见稿).pdf16.“十四五”国家重点研发计划“稀土新材料”重点专项2021年度项目申报指南(征求意见稿).pdf17.“十四五”国家重点研发计划“地球观测与导航”重点专项2021年度项目申报指南(征求意见稿).pdf18.“十四五”国家重点研发计划“文化科技与现代服务业”重点专项2021年度项目申报指南(征求意见稿).pdf关于“高性能制造技术与重大装备”重点专项2021年度项目申报指南(征求意见稿)稿中提到,本重点专项的总体目标是:围绕国家战略产业高端产品及重大工程关键装备在复杂环境、复杂工况下高性能可靠服役需求,突破高性能制造前沿基础理论和共性关键技术,研制具有高精度、高可靠、高效率、智能化、绿色化等高性能特征的基础件、基础制造工艺及装备等,实施重大装备的集成示范应用,推动制造技术向材料-结构-功能一体化的高性能设计制造转变,实现高性能制造技术和重大装备的自主可控,增强我国战略性高端产品和重大工程关键装备的核心竞争力。2021年度指南部署坚持“需求牵引、整机带动、 分步实施、重点突出”的原则,拟围绕高性能制造的基础前沿技术、共性关键技术、重大装备应用示范3个技术方向, 启动18个指南任务。1. 基础前沿技术1.1 重大装备设计基础前沿研究内容:研究性能/功能驱动的复杂装备机-电-液-智耦合设计理论与方法、材料-结构-组织-表界面一体化的高性能构件设计模型与方法、极端环境和复杂工况服役关键特性参数的表征与评价等重大装备及关键构件的设计新原理、新方法。1.2 高性能基础件基础前沿研究内容:面向轴承、齿轮、液压元件等基础件高性能服役需求,研究极端工况下接触界面动力学理论及服役性能调控方法、材料-结构-功能一体化的设计制造理论和方法、极端条件下的服役性能先进测试理论与方法等,为新型高性能基础件研发提供支持。1.3 高性能制造工艺基础前沿研究内容:研究高性能制造过程中的加工、成形、表面改性、焊接、装配等新原理与技术,重点突破难加工材料构件的高效精密加工、复杂结构形性协同成形、大差异异质材料高可靠连接/高强度焊接等新工艺。2. 共性关键技术2.1 耐高温抗腐蚀传动系统轴承研究内容:研究轴承高温、腐蚀环境适配性设计方法; 突破轴承自润滑与供油润滑技术、轴承高功率密度适应性技术、轴承高精度及长寿命关键技术、轴承性能及寿命试验验证技术等;研发耐高温、抗腐蚀环境传动系统轴承,建设基于工业性验证平台的轴承性能试验平台。2.2 深海高可靠耐腐蚀齿轮箱研究内容:突破深海装备齿轮箱可靠性及减振降噪设计、关键构件形性可控制造、基于深海环境的齿轮箱温压差等多物理场耦合、开放环境下防腐与密封、智能故障诊断及健康监测等关键技术,搭建深海装备齿轮箱模拟环境试验平台,研制深海装备齿轮箱。2.3 内曲线低速大扭矩液压马达研究内容:研究内曲线马达低速重载摩擦副的油膜承载特性、界面轮廓形貌设计方法、马达低速稳定性机理等,突破高效率配油系统设计、摩擦副材料及表面功能改性、内凸轮曲线轮廓精密加工等关键技术,开发界面参数评价与测试设备,研制内曲线低速大扭矩液压马达。2.4 航空液压系统高性能密封件研究内容:研究航空液压系统高性能密封件材料与性能评价技术与标准;突破高性能密封-主机系统协同设计、密封件高形状精度与高质量表面加工、可靠性评价等关键技术;搭建极端工况拟实基础试验平台;研发密封件生产过程典型工艺绿色化技术及装备;研制航空作动器、起落架等液压系统高性能密封件。2.5 高速列车传动系统综合试验平台研究内容:突破高速列车轮轨关系模拟、牵引动力能量回馈、实车线路运行工况全参数模拟等技术,研发高速列车传动系统拟实综合试验平台;研究转向架用轴箱轴承、齿轮箱轴承、牵引电机轴承等高铁轴承综合试验方法及评价体系。突破高铁轴承试验大样本数据采集、分析与故障诊断、基于大数据的高铁轴承建模与优化设计等关键技术,模拟实车线路运行工况开展高铁轴承耐久性试验。2.6 高强极薄铜箔制造成套技术研究内容:研究高性能铜箔微纳组织结构与性能关联关系及其调控机理;突破极薄铜箔电沉积、高抗拉高挠曲纳米孪晶组织极薄生箔制备、铜箔超低轮廓高剥离微粗化、硅烷偶联化表面处理、镀液成分监控、铜箔性能检测评价等全流程精准控制关键技术,研制极薄铜箔制造装备,制备极薄高性能铜箔。2.7 大型薄壁铝合金整体构件精确成形技术研究内容:研究大型网格筋薄壁整体构件复合成形原理,突破多级网格筋成形几何连续性、成形精度控制、跨尺度组织性能均匀调控等关键技术,研制测量-规划-成形一体化制造技术与成套装备。2.8 超大规格H型钢高性能热轧成形技术研究内容:构建超大规格H型钢的异形坯连铸、冷却控制、轧制规程、孔型设计等全流程生产工艺模型;突破温度场-应力场-应变场耦合作用的形性一体化调控技术;研制超大规格H型钢的连铸、轧制及精整成套装备。2.9 大尺寸钛合金结构高强韧焊接技术研究内容:研究低熔蚀钛合金焊料原位合成机理,突破大尺寸钛合金结构焊接界面强韧化调控、界面温度自适应调控技术,研制大尺寸钛合金结构高可靠高效焊接装备。2.10 冷冻砂型绿色铸造技术研究内容:研究水基冷冻砂型复合成形机理及宏微尺度精准控制机制、水粘接剂低温喷射渗透和沉积固化多参数耦合机理;突破冷冻砂型浇冒口及浇道优化设计、冷冻砂型加工精度闭环控制及补偿、高温熔体和冷冻砂型界面瞬态热流传导、大温度梯度下凝固组织转变和多尺度协调控制等关键技术;研制数字化冷冻砂型绿色成形装备。2.11 Micro-LED用新型MOCVD技术研究内容:研究新型MOCVD设备的腔体设计、流场结构和外延生长机理,突破加热器温场均匀性提升以及实时调控、LED外延片表面低颗粒度的硬件结构设计等关键技术,开发新型基于模型的温度控制系统、片盒到片盒传输的自动化取放片系统,研制大尺寸衬底上Micro-LED量产的高可靠性MOCVD外延设备。3. 重大装备应用示范3.1 深远海船舶大推力全回转推进器设计制造关键技术与装备研究内容:研究深远海船舶大推力全回转推进器服役性能演变规律与设计方法;突破大推力全回转推进器高精度电液控制、变截面厚壁导流管多能场复合焊接控形控性、大型桨叶加工高表面完整性调控、伞齿轮高性能加工等关键技术;研发大推力全回转推进器高质高效大型导流管焊接、桨叶加工工艺与装备;自主研制大推力全回转推进器。3.2 深水海底钻井系统关键技术与装备研究内容:研究深水海底钻井系统集成设计与布局优化方法,开展深水海底钻井系统总体方案、永磁电动钻具结构创新设计;突破钻井系统海底模块快速安装、下放回收、精准定位、紧急脱离等关键技术;研发深水海底钻井系统集成控制软件,研制深水海底钻井系统装备。3.3 千米竖井硬岩全断面掘进机关键技术与装备研究内容:研究深部地层岩体原位精细化探测与岩性识别方法、大体积硬岩高效机械破碎机理;突破竖井岩石-泥浆 -压缩空气多相流垂直排渣、高效掘进与支护协同等关键技术;开发集中控制的撑靴与悬吊系统、新型破岩刀具与刀盘; 研制千米竖井硬岩全断面掘进机装备。3.4 第三代半导体高性能碳化硅单晶制备和外延工艺及成套装备研究内容:建立大尺寸反应室热力学和动力学模型,突破高温真空低漏率、耐高温耐腐蚀材料及老化特性、中频热场精确控制和扩径生长、膜厚及表面形貌的高精度实时监控等关键技术,研制反应室及加热、大尺寸高效能碳化硅单晶生长、碳化硅高性能外延生长等关键装备,实现6英寸碳化硅单晶生长和外延装备的国产化和批量应用,推动第三代半导体产业发展。
  • 冶金、有色金属等行业78项检测标准公布
    工业和信息化部批准《热镀锌(铝锌)钢板涂镀层 六价铬含量的测定 分光光度法》等438项行业标准(标准编号、名称、主要内容及起始实施日期见附件1),其中:汽车行业6项、轻工行业标准58项、化工行业标准133项、石化行业标准3项、黑色冶金行业标准49项、黄金行业标准2项、有色金属行业标准105项、稀土行业标准6项、建材行业标准68项、民爆行业标准8项 批准《金属锰(1)》等28项行业标准样品(标准样品目录见附件2),其中:黑色冶金行业标准样品26项(标准样品成分含量见附件3)、有色金属行业标准样品2项(标准样品成分含量见附件4) 批准《光学树脂眼镜片(QB 2506-2001)》等2项轻工行业标准修改单(见附件5) 以上28项行业标准样品及2项标准修改单,现工信部予以公布,自公布之日起实施。  以上汽车行业标准由中国计划出版社出版,轻工行业标准由中国轻工业出版社出版,化工行业标准由化工出版社出版,石化行业标准由中国石化出版社出版,黑色冶金行业由冶金工业出版社出版,黄金、有色金属及稀土行业标准由中国标准出版社出版,建材行业标准由建材工业出版社出版,民爆行业标准由中国兵器标准化所出版。  其中黑色冶金行业、有色金属、石化行业、稀土行业中有关原子光谱、分子光谱、气相色谱等检测方法的标准共有78项,现摘录如下。78项行业标准编号、名称、主要内容及起始实施日期序号标准编号标准名称标准主要内容代替标准采标情况实施日期 黑色冶金行业     1YB/T 4217.1-2010热镀锌(铝锌)钢板涂镀层 六价铬含量的测定 分光光度法标准中规定镀锌(铝锌)钢板涂镀层 测定六价铬含量的原理,试剂,试样,试验步骤,结果要求等。  2011-3-1 2YB/T 4217.2-2010热镀锌(铝锌)钢板涂镀层 汞含量的测定 冷汞蒸气原子吸光谱法标准中规定镀锌(铝锌)钢板涂镀层 测定汞含量的原理,试剂,试样,试验步骤,结果要求等。  2011-3-1 3 YB/T 4217.3-2010热镀锌(铝锌)钢板涂镀层 铅和镉含量的测定 电感耦合等离子体发射光谱法标准中规定镀锌(铝锌)钢板涂镀层 测定铅和镉含量的原理,试剂,试样,试验步骤,结果要求等。  2011-3-1 4 YB/T 4218-2010五氧化二钒 五氧化二钒含量的测定 过硫酸铵氧化--硫酸亚铁铵滴定法标准中规定了测定五氧化二钒的原理,试剂,试验步骤,结果要求等。  2011-3-1 5 YB/T 4219-2010五氧化二钒 磷含量的测定 铋磷钼蓝分光光度法标准中规定了测定磷的原理,试剂,试验步骤,结果要求等。  2011-3-1 6 YB/T 4220-2010五氧化二钒 氧化钾、氧化钠含量的测定 电感耦合等离子体原子发射光谱法标准中规定了测定钾钠的原理,试剂,试验步骤,结果要求等。  2011-3-1 7 YB/T 4231-2010硅钡铝、硅钙钡和硅钙钡铝合金 铝、钡、铁、钙、锰、铜、铬、镍和磷含量的测定 电感耦合等离子体发射光谱法本规定了用电感耦合等离子体发射光谱法测定硅钡铝、硅钙钡和硅钙钡铝合金中铝、钡、铁、钙、锰、铜、铬、镍和磷含量的测量方法。  2011-3-1 8 YB/T 5078-2010煤焦油 萘含量的测定 气相色谱法本标准规定了煤焦油萘含量的气相色谱测定原理、试剂和材料、仪器设备、试验条件、分析步骤和结果计算。YB/T 5078-2001 2011-3-1本标准适用于高温炼焦时所得的煤焦油中萘含量的测定。 有色金属行业     9 YS/T 738.1-2010填料用氢氧化铝分析方法 第1部分: pH值的测定 本标准规定了填料用氢氧化铝测pH值测量的原理、仪器要求、试验条件、试验步骤及测试报告等。  2011-3-1 10 YS/T 738.2-2010填料用氢氧化铝分析方法 第2部分: 可溶碱含量的测定 本标准规定了填料用氢氧化铝测可溶碱测量的原理、仪器要求、试验条件、试验步骤及测试报告等。  2011-3-1 11 YS/T 738.3-2010填料用氢氧化铝分析方法 第3部分: 硫化物含量的测定 本标准规定了填料用氢氧化铝测硫化物测量的原理、仪器要求、试验条件、试验步骤及测试报告等。  2011-3-1 12 YS/T 738.4-2010填料用氢氧化铝分析方法 第4部分: 粘度的测定 本标准规定了填料用氢氧化铝测粘度测定的原理、仪器要求、试验条件、试验步骤及测试报告等。  2011-3-1 13 YS/T 739-2010铝电解质分子比及主要成分的测定 X射线荧光光谱法本标准规定了铝电解生产过程中铝电解质的分子比及CaF2、MgF2、Al2O3主要成分含量的测定方法。  2011-3-1 本标准适用于铝电解质中分子比、CaF2、MgF2、Al2O3主要成分含量的测定。测定范围分子比:1.80~3.20、CaF2: 1.00%~10.00%、MgF2:0.05%~5.00%、Al2O3:1.00%~10.00%。14 YS/T 742-2010氧化镓化学分析方法 杂质元素的测定 电感耦合等离子体质谱法本标准规定了氧化镓中铜、铅、锌、铟、铁、锡、镍、镁、钴、铬、锰、钛、钼、铋含量的测定方法的原理、仪器要求、试验条件、试验步骤及实验报告等。  2011-3-1 本标准适用于氧化镓(99.9%≤ω≤99.999%)中铜、铅、锌、铟、铁、锡、镍、镁、钴、铬、锰、钛、钼、铋含量的测定。15 YS/T 743-2010电解铝净化系统中气氟的测定 碱滤纸氟离子选择性电极法本标准规定了电解铝净化系统中气态氟化物浓度测定方法的原理、试剂和材料、分析步骤、重复性、精密性等。  2011-3-1 本标准适用于电解铝净化系统中气态氟化物浓度的测定,测定范围:0.1 mg/m3~500 mg/m3。16 YS/T 74.1-2010镉化学分析方法 第1部分: 砷量的测定 氢化物发生-原子荧光光谱法本部分规定了镉中砷量的测定方法。YS/T 74.1-1994 2011-3-1 本部分适用于镉中砷量的测定。测定范围:0.00020%~0.0025%。17 YS/T 74.2-2010镉化学分析方法 第2部分: 锑量的测定 氢化物发生-原子荧光光谱法本部分规定了镉中锑量的测定方法。YS/T 74.2-1994 2011-3-1 本部分适用于镉中锑量的测定。测定范围:0.00010%~0.0025%。18 YS/T 74.3-2010镉化学分析方法 第3部分: 镍量的测定 电热原子吸收光谱法本部分规定了镉中镍量的测定方法。YS/T 74.3-1994 2011-3-1 本部分适用于镉中镍量的测定。测定范围:0.0004%~0.010%。19 YS/T 74.4-2010镉化学分析方法 第4部分: 铅量的测定 火焰原子吸收光谱法本部分规定了镉中铅量的测定方法。YS/T 74.4-1994 2011-3-1 本部分适用于镉中铅量的测定。测定范围:0.0005%~0.055%。20 YS/T 74.5-2010镉化学分析方法 第5部分: 铜量的测定 二乙基二硫代氨基甲酸铅分光光度法本部分规定了镉中铜量的测定方法。YS/T 74.5-1994 2011-3-1 本部分适用于镉中铜量的测定。测定范围:0.00005%~0.025%。21 YS/T 74.6-2010镉化学分析方法 第6部分: 锌量的测定 火焰原子吸收光谱法本部分规定了镉中锌量的测定方法。YS/T 74.6-1994 2011-3-1 本部分适用于镉中锌量的测定。测定范围:0.0002%~0.025%。22 YS/T 74.7-2010镉化学分析方法 第7部分: 铁量的测定 1,10-二氮杂菲分光光度法本部分规定了镉中铁量的测定方法。YS/T 74.7-1994 2011-3-1 本部分适用于镉中铁量的测定。测定的范围:0.0005%~0.010%。23 YS/T 74.8-2010镉化学分析方法 第8部分: 铊量的测定 结晶紫分光光度法本部分规定了镉中铊量的测定方法。YS/T 74.8-1994 2011-3-1 本部分适用于镉中铊量的测定。测定范围:0.0005%~0.025%。24 YS/T 74.9-2010镉化学分析方法 第9部分: 锡量的测定 氢化物发生-原子荧光光谱法本部分规定了镉中锡量的测定方法。YS/T 74.9-1994 2011-3-1 本部分适用于镉中锡量的测定。测定范围:0.00010%~0.0050%。25 YS/T 74.10-2010镉化学分析方法 第10部分: 银量的测定 火焰原子吸收光谱法本部分规定了镉中银量的测定方法。YS/T 74.10-1994 2011-3-1 本部分适用于镉中银量的测定。测定范围:0.00020%~0.0050%。26 YS/T 74.11-2010镉化学分析方法 第11部分: 砷、锑、镍、铅、铜、锌、铁、铊、锡和银量的测定 电感耦合等离子体原子发射光谱法本部分规定了镉中砷、锑、镍、铅、铜、锌、铁、铊、锡、银元素的电感耦合等离子体原子发射光谱的测定方法。  2011-3-1 本部分适用于镉中砷、锑、镍、铅、铜、锌、铁、铊、锡、银元素含量的多元素同时测定,也适用于其中一个元素的独立测定。测定范围见下表。27 YS/T 745.1-2010铜阳极泥化学分析方法 第1部分: 铜量的测定 碘量法本部分规定了铜阳极泥中铜含量的测定方法。  2011-3-1 本部分适用于铜阳极泥中铜含量的测定,测定范围:5.00%~27.00%。28 YS/T 745.2-2010铜阳极泥化学分析方法 第2部分: 金量和银量的测定 火试金重量法本部分规定了铜阳极泥中金、银含量的测定方法。YS/T 88-1995 2011-3-1 本部分适用于铜阳极泥中金、银含量的测定。测定范围:金0.100kg /t~20 .000kg/t;银:20 .00kg/t~300 .00kg/t。29 YS/T 745.3-2010铜阳极泥化学分析方法 第3部分: 铂量和钯量的测定 火试金富集-电感耦合等离子体发射光谱法本部分规定了铜阳极泥中铂和钯含量的测定方法。  2011-3-1 本部分适用于铜阳极泥中铂钯含量的测定。测定范围铂5.00 g/t~ 100.00 g/t;钯10.00g/t~ 150.00 g/t 30 YS/T 745.4-2010铜阳极泥化学分析方法 第4部分: 硒量的测定 碘量法本部分规定了铜阳极泥中硒含量的测定方法。  2011-3-1 本部分适用于铜阳极泥中硒含量的测定。测定范围:1.00%~15.00%31 YS/T 745.5-2010铜阳极泥化学分析方法 第5部分: 碲量的测定 重铬酸钾滴定法本部分规定了铜阳极泥中碲含量的测定方法。  2011-3-1 本部分适用于铜阳极泥中碲含量的测定。测定范围:0.50%~10.00%32 YS/T 745.6-2010铜阳极泥化学分析方法 第6部分: 铅量的测定 Na2EDTA滴定法本部分规定了铜阳极泥中铅含量的测定方法。  2011-3-1 本部分适用于铜阳极泥中铅含量的测定。测定范围: 10.00%~25.00%33 YS/T 745.7-2010铜阳极泥化学分析方法 第7部分: 铋量的测定 火焰原子吸收光谱法和Na2EDTA滴定法本部分规定了铜阳极泥中铋含量的测定方法。  2011-3-1 本方法适用于铜阳极泥中铋含量的测定,测定范围:1.00%~5.00%。34 YS/T 745.8-2010铜阳极泥化学分析方法 第8部分: 砷量的测定 氢化物发生-原子荧光光谱法本部分规定了铜阳极泥中砷含量的测定方法。  2011-3-1 本部分适用于铜阳极泥中砷含量的测定。测定范围:0.50%~5.00%。35 YS/T 746.1-2010无铅锡基焊料化学分析方法 第1部分: 锡含量的测定 焦性没食子酸解蔽—硝酸铅滴定法本部分规定了无铅锡基焊料中锡含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中锡含量的测定。测定范围:30.00%~99.50%。36 YS/T 746.2-2010无铅锡基焊料化学分析方法 第2部分: 银含量的测定 火焰原子吸收光谱法和硫氰酸钾电位滴定法本部分规定了无铅锡基焊料中银含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中银含量的测定。测定范围:0.0020%~0.500%。37 YS/T 746.3-2010无铅锡基焊料化学分析方法 第3部分: 铜含量的测定 火焰原子吸收光谱法和硫代硫酸钠滴定法本部分规定了无铅锡基焊料中铜含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中铜含量的测定。测定范围:0.010%~1.000%。38 YS/T 746.4-2010无铅锡基焊料化学分析方法 第4部分: 铅含量的测定 火焰原子吸收光谱法本部分规定了无铅锡基焊料中铅含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中铅含量的测定。测定范围:0.0050%~0.100%。39 YS/T 746.5-2010无铅锡基焊料化学分析方法 第5部分: 铋含量的测定 火焰原子吸收和Na2EDTA滴定法本部分规定了无铅锡基焊料中铋含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中铋含量的测定。测定范围:0.0050%¬ ~5.00% 。40 YS/T 746.6-2010无铅锡基焊料化学分析方法 第6部分: 锑含量的测定 火焰原子吸收光谱法本部分规定了无铅锡基焊料中锑含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中锑含量的测定。测定范围:0.0150%~5.50% 。41 YS/T 746.7-2010无铅锡基焊料化学分析方法 第7部分: 铁含量的测定 火焰原子吸收光谱法本部分规定了无铅锡基焊料中铁含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中铁含量的测定。测定范围:0.0010%~0.150% 。42 YS/T 746.8-2010无铅锡基焊料化学分析方法 第8部分: 砷含量的测定 砷锑钼蓝分光光度法本标准规定了无铅锡基焊料中砷含量的测定方法。  2011-3-1 本标准适用于无铅锡基焊料中砷含量的测定。测定范围:0.0050%~0.1000%。43 YS/T 746.9-2010无铅锡基焊料化学分析方法 第9部分: 锌含量的测定 火焰原子吸收光谱法和Na2EDTA滴定法本部分规定了无铅锡基焊料中锌含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中锌含量的测定。测定范围:0.0010%~0.100%。44 YS/T 746.10-2010无铅锡基焊料化学分析方法 第10部分: 铝含量的测定 电热原子吸收光谱法本部分规定了无铅锡基焊料中铝含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中铝含量的测定。测定范围:0.0005%~0.050%。45 YS/T 746.11-2010无铅锡基焊料化学分析方法 第11部分: 镉含量的测定 火焰原子吸收光谱法本部分规定了无铅锡基焊料中镉含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中镉含量的测定。测定范围:0.00050%~0.0100%。46 YS/T 746.12-2010无铅锡基焊料化学分析方法 第12部分: 铟含量的测定 Na2EDTA滴定法本部分规定了无铅锡基焊料中铟含量的测定方法。   2011-3-1 本部分适用于无铅锡基焊料中铟含量的测定。测定范围:20.00%~60.00%。47 YS/T 746.13-2010无铅锡基焊料化学分析方法 第13部分: 镍含量的测定 火焰原子吸收光谱法本部分规定了无铅锡基焊料中镍含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中镍含量的测定。测定范围:0.0025%~1.000%。48 YS/T 746.14-2010无铅锡基焊料化学分析方法 第14部分: 磷含量的测定 结晶紫-磷钒钼杂多酸分光光度法本部分规定了无铅锡基焊料中磷含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中磷含量的测定。测定范围:0.0010%~0.100%。49 YS/T 746.15-2010无铅锡基焊料化学分析方法 第15部分: 锗含量的测定 水杨基荧光酮分光光度法本部分规定了无铅锡基焊料中锗含量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中锗含量的测定。测定范围:0.0010%~0.050%。50 YS/T 746.16-2010无铅锡基焊料化学分析方法 第16部分: 稀土含量的测定 偶氮胂Ⅲ分光光度法本部分规定了无铅锡基焊料中稀土总量的测定方法。  2011-3-1 本部分适用于无铅锡基焊料中稀土总量的测定。测定范围:0.0050%~0.200%。51 YS/T 239.1-2010三硫化二锑化学分析方法 第1部分: 锑量的测定 硫酸铈滴定法本部分规定了三硫化二锑中锑量的测定方法。YS/T 239.1-1994 2011-3-1 本部分适用于三硫化二锑中锑量的测定。测定范围:锑的质量分数68.00%~73.00%。52 YS/T 239.2-2010三硫化二锑化学分析方法 第2部分: 化合硫量的测定 燃烧中和滴定法本部分规定了三硫化二锑中化合硫量的测定方法。YS/T 239.2-1994 2011-3-1 本部分适用于三硫化二锑中化合硫量的测定。测定范围:化合硫的质量分数24.50%~28.50%。53 YS/T 239.3-2010三硫化二锑化学分析方法 第3部分: 游离硫量的测定 燃烧中和滴定法本部分规定了三硫化二锑中游离硫量的测定方法。YS/T 239.3-1994 2011-3-1 本部分适用于三硫化二锑中游离硫量的测定。测定范围:游离硫的质量分数0.0050%~0.20%。54 YS/T 239.4-2010三硫化二锑化学分析方法 第4部分: 王水不溶物的测定 重量法本部分规定了三硫化二锑中王水不溶物的测定方法。YS/T 239.4-1994 2011-3-1 本部分适用于三硫化二锑中王水不溶物的测定。测定范围:王水不溶物的质量分数0.050%~0.60%。55 YS/T 239.5-2010三硫化二锑化学分析方法 第5部分: 砷量的测定 砷钼蓝分光光度法本部分规定了三硫化二锑中砷量的测定方法。  2011-3-1 本部分适用于三硫化二锑中砷量的测定。测定范围:砷的质量分数0.010%~0.25%。56 YS/T 239.6-2010三硫化二锑化学分析方法 第6部分: 铁量的测定 邻二氮杂菲分光光度法本部分规定了三硫化二锑中铁量的测定方法。  2011-3-1 本部分适用于三硫化二锑中铁量的测定。测定范围:铁的质量分数0.030%~0.40%。57 YS/T 239.7-2010三硫化二锑化学分析方法 第7部分: 铅量的测定 火焰原子吸收光谱法本部分规定了三硫化二锑中铅量的测定方法。  2011-3-1 本部分适用于三硫化二锑中铅量的测定。测定范围:铅的质量分数0.0020%~0.050%。58 YS/T 53.1-2010铜、铅、锌原矿和尾矿化学分析方法 第1部分: 金量的测定 火试金富集-火焰原子吸收光谱法本部分规定了铜、铅、锌原矿和尾矿中金量的测定方法。YS/T 53.1-1992 2011-3-1 本部分适用于铜、铅、锌原矿和尾矿中金量的测定。测定范围:0.05g/t~3.00 g/t。59 YS/T 53.2-2010铜、铅、锌原矿和尾矿化学分析方法 第2部分: 金量的测定 流动注射-8531纤维微型柱分离富集-火焰原子吸收光谱法本标准规定了铜、铅、锌原矿和尾矿中金含量的测定方法。YS/T 53.2-1992 2011-3-1 本标准适用于铜、铅、锌原矿和尾矿中金含量的测定。测定范围:0.01g/t~1.0g/t。60 YS/T 53.3-2010铜、铅、锌原矿和尾矿化学分析方法 第3部分: 银量的测定 火焰原子吸收光谱法本部分规定了铜、铅、锌原矿和尾矿中银含量的测定方法。YS/T 53.3-1992 2011-3-1 本部分适用于铜、铅、锌原矿和尾矿中银含量的测定。本部分测定范围:0.50 g/t~200g/t。61 YS/T 227.1-2010碲化学分析方法 第1部分: 铋量的测定 氢化物发生-原子荧光光谱法本部分规定了碲中铋含量的测定方法。YS/T 227.1-1994 2011-3-1 本部分适用于碲中铋含量的测定。测定范围:0.0001%~0.0025%。62 YS/T 227.2-2010碲化学分析方法 第2部分: 铝量的测定 铬天青S-溴代十四烷基吡啶胶束增溶分光光度法本部分规定了碲中铝含量的测定方法。YS/T 227.2-1994 2011-3-1 本部分适用于碲中铝含量的测定。测定范围:0.0005%~0.0040%。63 YS/T 227.3-2010碲化学分析方法 第3部分: 铅量的测定 火焰原子吸收光谱法 本部分规定了碲中铅量的测定方法。YS/T 227.3-1994 2011-3-1 本部分适用于碲中铅量的测定。测定范围:0.0005%~0.0060%。64 YS/T 227.4-2010碲化学分析方法 第4部分: 铁量的测定 邻菲啰啉分光光度法本部分规定了碲中铁含量的测定方法。YS/T 227.4-1994 2011-3-1 本部分适用于碲中铁含量的测定。测定范围:0.0005%~0.006%。65 YS/T 227.5-2010碲化学分析方法 第5部分: 硒量的测定 2,3-二氨基萘分光光度法本部分规定了碲中硒含量的测定方法。YS/T 227.5-1994 2011-3-1 本部分适用于碲中硒含量的测定。测定范围:0.0015%~0.030%。66 YS/T 227.6-2010碲化学分析方法 第6部分: 铜量的测定 固液分离-火焰原子吸收光谱法 本部分规定了碲中铜含量的测定方法。YS/T 227.6-1994 2011-3-1 本部分适用于碲中铜含量的测定。测定范围:0.0004%~0.0060%。67 YS/T 227.7-2010碲化学分析方法 第7部分: 硫量的测定 电感耦合等离子体原子发射光谱法 本部分规定了碲中硫含量的测定方法。YS/T 227.7-1994 2011-3-1 本部分适用于碲中硫含量的测定。测定范围:0.0007%~0.01%。68 YS/T 227.8-2010碲化学分析方法 第8部分: 镁、钠量的测定 火焰原子吸收光谱法 本部分规定了碲中镁量和钠量的测定方法。YS/T 227.8-1994 2011-3-1 本部分适用于碲中镁量和钠量的测定。测定范围:Mg:0.0005%~0.0030%;Na:0.0020%~0.0070%。69 YS/T 227.9-2010碲化学分析方法 第9部分: 碲量的测定 重铬酸钾-硫酸亚铁铵容量法本部分规定了碲中碲含量的测定方法。YS/T 227.9-1994 2011-3-1 本部分适用于碲中碲含量的测定。测定范围:95%~99.5%。70 YS/T 227.10-2010碲化学分析方法 第10部分: 砷量的测定 氢化物发生-原子荧光光谱法本部分规定了碲中砷含量的测定方法。YS/T 227.10-1994 2011-3-1 本部分适用于碲中砷含量的测定。测定范围:0.0002%~0.0010%。71 YS/T 227.11-2010碲化学分析方法 第11部分: 硅量的测定 正丁醇萃取硅钼蓝分光光度法本部分规定了碲中硅含量的测定方法。YS/T 227.11-1994 2011-3-1 本部分适用于碲中硅含量的测定。测定范围:0.0005%~0.0030%。72 YS/T 349.2-2010硫化钴精矿化学分析方法 第2部分: 铜量的测定 火焰原子吸收光谱法本部分规定了硫化钴精矿中铜量的测定方法。YS/T 349-1994 2011-3-1 本部分适用于硫化钴精矿中铜量的测定。测定范围:0.1%~2%。 73 YS/T 349.3-2010硫化钴精矿化学分析方法 第3部分: 锰量的测定 火焰原子吸收光谱法本部分规定了硫化钴精矿中锰含量的测定方法。YS/T 349-1994 2011-3-1 本部分适用于硫化钴精矿中锰含量的测定。测定范围:0.1%~1%。 74 YS/T 349.4-2010硫化钴精矿化学分析方法 第4部分: 二氧化硅量的测定 氟硅酸钾容量法本部分规定了硫化钴精矿中二氧化硅量的测定方法。YS/T 349-1994 2011-3-1 本部分适用于硫化钴精矿中二氧化硅量的测定。测定范围:1 %~25%。 石化行业     75 SH/T 1770-2010塑料 聚乙烯水分含量的测定本标准规定了用卡尔• 费休库仑法测定聚乙烯(PE)中水分含量的方法,该方法测定的水分含量与按照ISO 62[1]测定的吸水性(动态和平衡态)不同。 ISO 15512:2008方法B,MOD 2011-3-1 本标准适用于测定聚乙烯颗粒中的水分含量,也适用于聚乙烯制品中水分含量的测定。本方法适用于测定的水分含量水平可达0.01%或更低。76 SH/T 1771-2010生橡胶 玻璃化转变温度的测定 差示扫描量热法(DSC) 本标准规定了用差示扫描量热仪测定生橡胶玻璃化转变温度的方法。  ISO 22768:2006(E),IDT2011-3-1  稀土行业     77 XB/T 613.1-2010铈铽氧化物化学分析方法 第1部分: 氧化铈和氧化铽量的测定 电感耦合等离子体发射光谱法本部分规定了铈铽氧化物中铈、铽含量的测定方法。  2011-3-1 本部分适用于铈铽氧化物中氧化铈和氧化铽含量的测定。测定范围:氧化铈 58.00%~70.00%;氧化铽 30.00%~42.00%。78 XB/T 613.2-2010铈铽氧化物化学分析方法 第2部分: 氧化镧、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化镝、氧化钬、氧化铒、氧化铥、氧化镱、氧化镥和氧化钇量的测定 电感耦合等离子体发射光谱法本部分规定了铈铽氧化物中氧化镧、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化镝、氧化钬、氧化铒、氧化铥、氧化镱、氧化镥和氧化钇含量的测定方法。  2011-3-1 本部分适用于铈铽氧化物中氧化镧、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化镝、氧化钬、氧化铒、氧化铥、氧化镱、氧化镥和氧化钇量的测定。  其他标准见附件438项行业标准编号、名称、主要内容及起始实施日期.doc(五个附件包含在一个下载文件中):  一、438项行业标准编号、名称、主要内容及起始实施日期  二、28项黑色冶金、有色金属行业标准样品目录  三、26项冶金行业标准样品成分含量表  四、2项有色金属行业标准样品成分含量表  五、2项轻工行业标准修改通知单
  • 岛津EPMA微量元素分析在无铅焊锡材料中的应用
    EPMA无铅焊锡材料 随着微型电子电器的发展以及根据国家信息产业部《电子信息产品生产污染防治管理办法》的规定,无铅焊锡(lead-free solder)已逐渐成为电子电器行业中的主流焊料。相较普通焊锡,无铅焊锡具有以下三大优势: 1. 溶化后出渣量比普通焊锡少,且具有优良的抗氧化性能;2. 溶化后粘度低,流动性好,可焊性高,适用于波峰焊接工艺;3. 由于氧化夹杂极少,可以更大限度地减少拉尖、桥联现象,焊接质量可靠,焊点光亮饱满。 无铅焊锡中杂质元素含量及分布的控制决定了焊料的质量及最终的上锡效果,因此工厂需要借助电子探针(EPMA)的元素含量和图像分析功能对无铅焊锡中的杂质含量和微观分布进行检测。图1. 岛津场发射电子探针EPMA-8050G 岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现: 1 优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。 (加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA) 2 大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。 岛津研发部门使用EPMA-8050G仪器在低加速电压(7kV)条件下对电子元件和印刷电路板连接处的焊料层进行了背散射(BSE)和元素面分布分析,图2 展示了微米尺度(刻度尺5μm)上杂质元素以点状Ag颗粒沉积为主,少量Cu颗粒沉积,确定了杂质元素的种类。 图2. 焊料层背散射和元素面分布图像分析(刻度尺5μm) 扩大放大倍数(刻度尺500nm)对富集Ag颗粒区域进行背散射和元素面分布分析,图3展示清晰区分Ag颗粒所需的横向空间分辨率大致为100nm甚至更小。 图3. 焊料层背散射和元素面分布图像分析(刻度尺500nm) 使用高加速电压(25kV)条件对相同视域进行分析,图4 展示Ag颗粒在高加速电压条件下具有更广的分布范围(C、D点区域均有Ag颗粒分布),结合岛津的电子传播路径显示程序(Electron penetration display program)分析,图5 展示高加速电压条件下X射线出射深度更大,根据以上信息可模拟推断出Ag杂质颗粒在焊料层纵向上的分布(图6)。 图4. 不同加速电压(7kV和25kV)条件下背散射和Ag元素分布图像 图5. 不同加速电压条件下电子束作用范围(红色)和X射线出射深度(绿色) 图6. 推断的Ag颗粒在焊料层内的纵向分布 更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。 本文内容非商业广告,仅供专业人士参考。
  • 挪威就18项RoHS豁免产品征询公众评议
    近日,挪威气候和污染管理署就18项RoHS豁免产品征询公众建议,具体产品如下:  1. 用于监控设备中的电子触点和额定电流为5A及以上的热融熔体中的镉及镉混合物  3. X射线图像增强器的磷涂料的镉  4. 供患者使用的CT和CMR立体定向、伽马照射及颗粒治疗设备的定位的醋酸铅标记  5. 放射治疗设备、患者使用的外科设备及其辅助设备的轴承磨损表面的起润滑功能的铅  6. 使X射线图像增强器的铝和钢材料成真空间隙所使用的铅  7. 零下20℃使用的非磁性针连接器的铅  8. 零下20℃使用的电线中的铅  9. 由非磁性成份及电路组成的磁场及与高磁场相关的设备的焊料及软焊涂料  10.数字陈列探测器中用于装配碲化镉和碲化锌材料的电路板焊料中的铅  12.监控设备的光玻璃中的铅和镉  13.产生超导磁电路的金属键中的铅和镉  14.依靠超导电性驱动的超导体及热导体设备中的铅  15.监控设备青铜轴承和青铜轴衬的铅不超过20%  16.焊料成分中铅不超过80%的微处理器针及焊料成分中铅小于85%的监控设备  17.电子元件、荧光灯管\监控设备中的电子陶瓷部分(包括绝缘陶瓷电容器)  18.监控设备针连接器中的铅  19.用于EN50107-1(2002)定义的固定及移动设施的标志\装饰灯\工艺灯的工艺品发光放电管  20.用于监控设备特殊用途的冷阴极荧光灯CCFL和外部电极荧光灯EEFL的汞不超过5mmg/灯
  • RoHS豁免清单再获修订
    2010年9月,欧盟发布了委员会决定2010/571/EU,修订RoHS指令(2002/95/EC)。本次的修订主要涉及其豁免清单。新发布的豁免清单如下表所示: 豁免豁免时间1紧凑型荧光灯中的汞含量不超过: 1(a)普通照明用30 W:5 mg至2011年12月31日;小于3.5 mg可再延至2012年12月31日,2.5 mg在2012年12月31日后仍可使用1(b)普通照明用≥30 W且50 W:5 mg至2011年12月31日;小于3.5 mg在2011年12月31日后仍可使用1(c)普通照明用≥50 W且150 W:5 mg 1(d)普通照明用≥150 W:15 mg 1(e)普通照明用,且为环状或方形,管直径17 mm直至2011年12月31日前无限制;7 mg可能能在2011年12月31日后使用1(f)特殊用途:5 mg 2(a)普通照明用的双端线性荧光灯中的汞含量不超过: 2(a)(1)普通寿命的三基色荧光灯9 mm (如T2): 5 mg直至2011年12月31日;4 mg可能在2011年12月31日2(a)(2)普通寿命的三基色荧光灯≥ 9 mm 和 17 mm (e.g. T5): 5 mg直至2011年12月31日;3 mg可能在2011年12月31日2(a)(3)普通寿命的三基色荧光灯≥ 17 mm 和≤28 mm (e.g. T8) : 5 mg直至2011年12月31日;3.5 mg可能在2011年12月31日2(a)(4)普通寿命的三基色荧光灯28 mm(如T12) : 5 mg直至2011年12月31日;3.5 mg可能在2012年12月31日2(a)(5)长寿命(≥25000 h)的三基色荧光灯:8 mg直至2011年12月31日;5 mg可能在2011年12月31日2(b)其他荧光灯中的汞不超过(每灯管): 2(b)(1)线形磷酸盐灯28 mm(如T10和T12) : 10 mg直至2012年4月13日2(b)(2)非线形磷酸盐灯(所有尺寸):15 mg直至2016年4月13日2(b)(3)非线形三基色灯,管直径17 mm(如T9)2011年12月31日前不受限制,15 mg可能在2011年12月31日后仍可使用2(b)(4)其他普通照明用灯及特殊用灯(如感应灯)2011年12月31日前不受限制,15 mg可能在2011年12月31日后使用3特殊用途的冷阴极荧光灯和外部电极荧光灯(CCFL和EEFL)中的汞不超过: 3(a)短(≥500 mm)2011年12月31日前不受限制,3.5 mg可能在2011年12月31日后仍可使用3(b)中等长度(500 mm且1500 mm)2011年12月31日前不受限制,5 mg可能在2011年12月31日后使用3(c)长(1500 mm)2011年12月31日前不受限制,13 mg可能在2011年12月31日后仍可使用4(a)其他低压放电灯的汞2011年12月31日前不受限制,15 mg可能在2011年12月31日后仍可使用4(b)普通照明用高压钠(蒸汽)灯(改进的显色指数Ra60)的汞 4(b)-IP155 W2011年12月31日前不受限制,30 mg可能在2011年12月31日后仍可使用4(b)-II155 W2011年12月31日前不受限制,40 mg可能在2011年12月31日后仍可使用4(b)-IIIP405 W2011年12月31日前不受限制,40 mg可能在2011年12月31日后仍可使用4(c)其他普通照明用高压钠(蒸汽)灯的汞 4(c)-IP155 W2011年12月31日前不受限制,25 mg可能在2011年12月31日后仍可使用4(c)-II155 W2011年12月31日前不受限制,30 mg可能在2011年12月31日后使用4(c)-IIIP405 W2011年12月31日前不受限制,40 mg可能在2011年12月31日后仍可使用4(d)高压汞(蒸汽)灯(HPMV)的汞直至2015年4月13日4(e)金属卤化灯(MH)的汞 4(f)本附件未提及的特殊用途的放电灯中的汞 5(a)阴极射线管玻璃中的铅 5(b)荧光管玻璃的铅含量不得超过其重量的0.2% 6(a)加工用的钢中合金元素中的铅及镀锌钢材中的铅含量不应该超过0.35% 6(b)铝合金中铅含量不应该超过0.4% 6(c)铜合金中的铅含量不应该超过4% 7(a)高温融化的焊料中的铅(即:锡铅焊料合金中铅含量超过85%的) 7(b)通讯领域的交换、信令、传输以及网络管理的服务器、存储器、存储器阵列系统、网络基础设施用的焊料中的铅 7(c)-I含有铅的玻璃或陶瓷的电气和电子元件,介质陶瓷电容器除外。如:高压设备,或玻璃或陶瓷基复合材料 7(c)-II额定电压为125 V AC或250 V DC及更高的介质陶瓷电容器中的铅 7(c)-III额定电压小于125 V AC或250 V DC的介质陶瓷电容器中的铅豁免至2013年1月1日,在该日期之后可能单独作为电子电气产品(在2013年1月1前投放市场)的部件8(a)热镕断体中的镉及镉化合物豁免至2012年1月1日,在该日期之后可能单独作为电子电气产品(在2012年1月1前投放市场)的部件8(b)电气连接的触点中的镉及化合物 9在吸收式电冰箱中作为碳钢冷却系统防腐剂的六价铬,其在冷却液中超过了0.75%(重量百分比) 9(b)用于加热、通风、空调和制冷(HVACR)的冰箱零部件的轴承外壳及其轴衬中铅的使用 11(a)C-顺应针连接器系统中使用的铅可能单独作为电子电气产品(在2010年9月24日前投放市场)的部件11(b)除C-顺应针连接器系统外使用的铅豁免至2013年1月1日,在该日期之后可能单独作为电子电气产品(在2013年1月1前投放市场)的部件12用于C-环型导热模块的表面涂层中的铅可能单独作为电子电气产品(在2010年9月24日前投放市场)的部件13(a)光学仪器中使用的白玻璃中的铅 13(b)在光学玻璃和滤光玻璃中的铅或镉 14用于微处理器的封装体与插针之间连接的铅含量占80%~85%的、含两种以上元素的焊料中的铅豁免至2011年1月1日,在该日期之后可能单独作为电子电气产品(在2011年1月1前投放市场)的部件15用于集成电路Flip Chip包之内连接半导体模块和载波器的焊料中的铅 16线形白炽灯硅酸盐灯管中的铅至2013年9月1日17用于专业复印设备的高强度放电灯(HID)中用作辐射剂的卤化铅 18(a)当放电灯被用作重氮复印、平板印刷、捕虫器、光化学和食物加工过程的特种灯,含有磷时,比如SMS((Sr,Ba)2MgSi2O7:Pb),作为放电灯中的荧光粉(铅含量占其重量的1%或以下)触媒剂的铅至2011年1月1日18(b)当放电灯被用作含磷的仿日晒灯(sun tanning lamps),比如含有BSP(BaSi2O5:Pb),作为放电灯中的荧光粉(铅含量占其重量的1%或以下)触媒剂的铅 19作为主要汞合金的特定成分中的含PbBiSn-Hg和PbInSg-Hg的铅以及紧凑型节能灯(ESL)中作为辅助汞合金的含PbSn-Hg的铅至2011年6月1日20液晶显示器(LCDs)的平面荧光灯前后基片连接用的玻璃中的氧化铅至2011年6月1日21用于硼硅酸盐玻璃瓷漆的印墨所含的铅及镉 23小螺距零部件表面抛光中的铅,螺距不超过0.65mm可能单独作为电子电气产品(在2011年9月24前投放市场)的部件24通孔盘状及平面阵列陶瓷多层电容器焊料所含的铅 25表面传导式电子发射显示器(SED)的构件,特别是熔接密封和环状玻璃,所用的氧化铅 26蓝黑灯管(BLB)玻璃外罩所含的氧化铅至2011年6月1日27在大功率扬声器中作为转换器焊料的铅合金至2010年9月24日29理事会指令69/493/EEC附录I(第1、2、3和4类)中定义的水晶玻璃中的铅 30直接位于声压级大于等于100 dB (A)的高功率扬声器的传感器音圈的导电体的镉合金电器/机械焊点 31无汞平面荧光灯(例如用于液晶显示器、设计或工业照明)的焊接材料的铅 32用于为氩气和氪激光管制造窗口组件的密封熔块的氧化铅 33电力变压器中直径100微米及以下细铜线所用焊料中的铅 34金属陶瓷质的微调电位计中的铅 36直流等离子显示器中阴极溅射抑制剂中的汞,其含量不得超过30毫克/显示器至2010年7月1日止37以硼酸锌玻璃体为基础的高压二极管的电镀层的铅 38用氧化铍连接铝制成的厚膜浆料中镉和氧化镉 39用于固态照明或显示系统中的彩色转换II-VI族LEDs内所含的镉(每平方毫米发光区域的镉小于10微克)至2014年7月1日
  • 中国化学会第27届学术年会:大会报告
    仪器信息网讯 2010年6月20日--23日,由中国化学会主办、厦门大学承办、中国科学院福建物质结构研究所协办的“中国化学会第27届学术年会”在厦门大学隆重开。  在大会开幕式、闭幕式之后进行了大会报告,报告内容就分析化学的一些宏观问题以及一些技术方面的新成就、新进展进行了交流。大会报告如下:  President-elect Royal Society of Chemistry,Department of Chemistry Imperial College David Phillips博士:Towards Targeted Photodynamic Therapy  光动力疗法(Photodynamic Therapy,PDT)是利用光动力效应进行疾病诊断和治疗的一种新技术。其作用基础是光动力效应。这是一种有氧分子参与的伴随生物效应的光敏化反应。其过程是,特定波长的激光照射使组织吸收的光敏剂受到激发,而激发态的光敏剂又把能量传递给周围的氧,生成活性很强的单态氧,单态氧和相邻的生物大分子发生氧化反应,产生细胞毒性作用,进而导致细胞受损乃至死亡。David Phillips博士报告中介绍了其课题组近年来在光动力疗法研究方面所取得成果。  中科院大连化学物理研究所、催化基础国家重点实验室 包信和院士:纳米约束体系的催化特性  催化作为关键的核心技术,长期以来在国民经济的诸多方面,如石油炼制、合成化肥、合成纤维和汽车尾气处理等发挥了巨大的作用。随着纳米技术的发展和对纳米体系理论认识的不断深入,人们发现,在不添加其他组分和不改变表面结构的条件下,通过改变体系的尺度(如纳米尺度)也能有效地调控体系的价电子分布和能量,据此可以调控催化剂与反应分子间的电子传递,从而调变体系的催化反应性能。  包信和院士报告结合近年来在金属纳米粒子(零维)、金属和氧化物填充的复合纳米碳管(一维)和表面纳米薄膜(二维)的结构、电子特性,以及对表面吸附和催化反应的影响等方面的研究的最新结果,对金属纳米粒子的“量子尺寸效应”、表面纳米薄膜的“量子阱态”和界面的“限域效应”和复合纳米碳管的“协同束缚效应”,以及在对催化剂性能影响等进行讨论,并结合 CO 的选择氧化反应(PROX)、合成气制液体燃料(F-T 过程)和合成气直接制备低碳烯烃和低碳醇等催化过程中金属和金属氧化物催化剂显示的明显的纳米效应进行系统讨论。  香港科技大学化学系 唐本忠院士:聚集诱导发光:现象、机理和应用  传统观念认为生色团的聚集将导致荧光猝灭,与之截然相反,聚集诱导发光(AIE)是指一类在溶液中不发光的分子在聚集态发光的现象。  唐本忠院士报告讲述了其课题组发现AIE现象,并提出分子内旋转受限是导致AIE 现象的机理假设的研究过程。并介绍,在基于机理理解的基础上,发展多种涵盖整个可见光范围的发光效率高达100%的荧光和磷光AIE分子,以及将这些小分子转化成具有 AIE 特性的高分子的研究过程。最后,唐本忠院士举例介绍了AIE 小分子及聚合物的特殊功能和应用前景。  中国科学院化学研究所、分子科学中心江雷院士:Bio-Inspired、Smart、Multiscale Interfacial Materials  仿生智能材料应是一个与自然生物一样拥有各种功能的、“活”的材料,他们必须具备三个基本要素:sense、drive and control。  江雷研究员在世界上首次提出的“纳米界面材料的二元协同效应”新思想揭示了生物体表面超疏水性的机理,指导相关仿生材料的可控制备,在超双亲/超双疏功能材料的制备和性质研究等方面取得了系统的创新成果。  中国石化北京化工研究院 乔金樑教授:橡胶增韧塑料体系中微观结构的调控  橡胶增韧塑料会引起塑料耐热性能的下降,影响塑料在很多领域的应用。例如,橡胶增韧的环氧树脂和酚醛树脂均会使耐热温度下降,不能达到使用无铅焊料的耐热要求。  乔金樑教授及其课题组发明并工业化了一种具有特殊微观结构的复合材料,既纳米空心球包覆橡胶粒子改性塑料材料,使塑料韧性大幅度提高的同时,耐热性也得到大幅度提高。最后,乔金樑教授报告中对期课题组的相关研究成果进行了介绍。  厦门大学化学化工学院化学系、固体表面物理化学国家重点实验室 孙世刚教授:微观结构和分子水平电催化  在表面原子排列结构层次揭示电催化剂性能与结构的内在联系规律,从分子水平认识电催化反应机理,是在在微观结构层次设计和研制高性能催化剂、推进电化学能源转换(燃料电池)和新物质制备(电合成)等重大应用的基础。  孙世刚教授及其课题组的研究涉及电化学、表面科学、纳米材料等多学科交叉和原位谱学、表面和结构分析等先进的实验方法。报告中重点综述了课题组近年来在Pt单晶模型催化剂、Pt纳米催化剂表面结构控制电化学合成,以及发展先进的电化学原位红外反射光谱方法探明直接有机分子燃料电池的阳极过程机理等研究的最新进展。
  • X射线检查的新标杆!多功能X射线检查设备
    前言当前产品的功能愈加丰富,对精度要求也逐步提高,所以出货检查和故障失效分析的要求也越来越多样化。从外观到内部,这些检查对于保证产品的安全性和可靠性十分重要。 对从外观无法检测到的内部结构检测,X射线检查设备十分有效。使用X射线辐照检查对象,并将结果进行可视化处理,形成图像,能够非破坏地进行检测。 与传统设备相比,岛津最新的Xslicer SMX-1010 系列微焦点X射线检查设备的图像质量和可操作性实现了显著提升。 图1Xslicer SMX-1010外观图 优势• 新的HDR过滤器特性使观察不同厚度和材料的对象更容易• 利用新的图像处理和高分辨率探测器在宽视野内清晰的透视图像• 快速和简单的三维分析与新的改进的CT操作 Xslicer SMX-1010特点 Xslicer SMX-1010主要规格 表1. 主要规格 1、能够获取高画质图像的设备• 搭载150万像素新型X射线检出器,可获得高分辨率图像。• 标配HDR功能。即使工件的厚度与材质不同,一次拍摄即可获得对比度清晰的图像,从而提高气泡等缺陷的可视性。 2、大幅缩短检查时间• 操作性能大幅度提升,简化从工件更换到观察的流程。• 可通过提升检出器的读取速度与载物台的移动速度,大幅削减生产节拍中的检查时间。 3、集3D分析的多样化功能为一体• 使用选配的CT功能,不仅可进行透视检查,还可进行三维分析。较准作业实现自动化,任何人都可轻松完成CT拍摄。• 全景拍摄功能,最大可获取3200万像素X射线透视图像,一张图片即可完成基板等整件大工件的检查。 Xslicer SMX-1010系列机拍摄的透视图 1、HDR高对比度透视片式电阻的透视图像如图2所示。经过HDR功能处理后,图像中焊料内部的空洞很明显。通过HDR功能处理,可以在同一张图片中以高对比度同时观察到透明度好和差的部分。 图2 实装板上片式电阻透视图左图:无HDR效果 右图:HDR效果 此外,使用铝线的功率IC的透视图如图3所示。周围的密封树脂和铝线由于比重接近,对比度低,原本使用X射线不易观察,但通过HDR处理,清晰可见。 图3 功率IC透视图像——铝线左图:整体图 右图:局部放大图 2、探测器倾斜的透视观察将探测器倾斜,进行透视观察。图4为BGA的斜透视图像,图5为通孔的斜透视图像。在BGA的斜透视图像中,可以看到一个结构异常的焊球。 图4 BGA的倾斜透视图像 图5 通孔倾斜透视图像 3、高分辨率探测器在高配机型中使用300万像素的高分辨率探测器,可以晰度地观察产品的内部结构。 图6为铝压铸件透视图,图7为GFRP透视图。压铸件可以清晰地观察到内部砂眼。此外,GFRP可以精细地观察纤维的趋向。 图6 小型铝压铸件透视图像 图7 GFRP透视图像 自动运行功能自动连续透视拍摄功能(教学功能和步进功能)减轻了作业员的负担,缩短了检查时间。下图是教学功能示意。图8为教学功能检查结果画面和透视图像。教学功能是自动拍摄预先登记的检查点的功能。作业员可以通过选择每个检查位置的OK(●),NG(●)和保留(●),将有缺陷的点位反馈到制造部门。 图8-A 教学功能检查结果画面8-B 2号检查点 8-C 3号检查点8-D 5号检查点 8-E 7号检查点 选购项:CT3维分析功能CT功能可用于观察复杂的内部结构并解析内部缺陷,而透视图像无法满足3维分析的要求。 XslicerSMX-1010可通过加装CT单元,进行三维分析。 图9为QFP封装IC的三维显示图像(左图)和放大的断面图像(右)*1。图9 QFP封装IC左图:无HDR效果 右图:HDR效果 图10为USB插头的三维效果图像(左图)和端子的角度测量结果(右图)*1。测量端子弯曲角度,可以将其与设计值进行比较。 图10 USB插头左图:无HDR效果 右图:HDR效果 图11为树脂插头的断面图像(左图)和缺陷分析结果(右图)*1。如果空洞作为缺陷,红色代表大尺寸,蓝色代表小尺寸。 图11 树脂插头左图:无HDR效果 右图:HDR效果 总结岛津最新的Xslicer SMX-1010系列微焦点X射线检查设备,使用高分辨率探测器和HDR处理可获取高品质图像。简单易用的UI和人性化设计使每位操作员都在轻松操作的同时,降低了检查作业量。 利用CT的三维观察,可以无损地分析被检查物体内部的复杂结构。 现在的产品,功能逐渐加强,结构精度要求越来越高,X射线检查成为安全性和可靠性必不可少的检测手段。 岛津Xslicer SMX-1010可以用于与产品质量相关的生产环节! 本文内容非商业广告,仅供专业人士参考。
  • 中科院高能所研发X射线三维检测设备 可为功率半导体做“CT”
    记者27日从中国科学院高能物理研究所(中科院高能所)获悉,由该所济南研究部(济南中科核技术研究院)自主研发、可为功率半导体做“CT”(计算机断层扫描)的功率半导体封测新添“利器”——“全自动绝缘栅双极晶体管(IGBT)缺陷X射线三维检测设备”,近日在湖南株洲举行的功率半导体行业联盟第八届国际学术论坛上亮相推出,备受业界关注。中科院高能所副研究员、锐影检测科技(济南)有限公司(锐影检测)总经理刘宝东博士接受媒体采访介绍说,IGBT是一种功率半导体器件,被誉为电力电子装置的“心脏”,在高铁、新能源汽车、轨道交通、智能电网、航空航天等领域应用广泛。IGBT模块在运行过程中会产生大量的热,需要及时散掉,它通常存在两个焊料层,焊料层气孔会严重影响散热效率,可能导致重大安全事故,因此需要对气孔率严格控制。目前,常用的检测手段是超声检测,但非常容易受散热柱的干扰,导致检测偏差。同时,超声检测要将模块浸入到水中,需要隔离水的工装,还需要人工操作,检测过程复杂,难以实现在线检测,效率较低。此外,普通的二维X光成像会将IGBT模块两个焊料层混在一起,无法区分,并且有些大功率模块带有散热柱,会严重影响气孔检测的准确率。针对这些问题,中科院高能所研发团队基于10余年在大尺寸板状物三维层析成像领域的技术积累,在成功研发专用于板状古生物化石的X射线三维层析成像仪器(1.0版)基础上,面向国家重大需求的工业CT,针对集成电路先进封装的检测需求,突破一系列关键技术,研发出分辨率更高、更成熟的2.0版“全自动IGBT缺陷X射线三维检测设备”。刘宝东称,该2.0版设备依托X射线计算机层析成像技术和先进的缺陷智能检测软件算法,并将人工智能算法引入检测系统,可对不合格产品进行自动识别及分拣,为IGBT模块封测提供全自动在线无损检测解决方案,从而大大提高检测效率,保障IGBT模块的产品品质。他表示,在功率半导体封测设备研发过程中,研发团队也积累了丰富的工程化经验。而作为中科院高能所与地方合作孵化的科技成果转化企业,锐影检测为团队经验技术转化为成熟产品提供了良好平台,从而打通从技术研发到产品应用的“最后一公里”。(完)
  • 重大突破!功率半导体封测再添“利器”
    记者27日从中国科学院高能物理研究所(中科院高能所)获悉,由该所济南研究部(济南中科核技术研究院)自主研发、可为功率半导体做“CT”(计算机断层扫描)的功率半导体封测新添“利器”——“全自动绝缘栅双极晶体管(IGBT)缺陷X射线三维检测设备”,近日在湖南株洲举行的功率半导体行业联盟第八届国际学术论坛上亮相推出,备受业界关注。中科院高能所副研究员、锐影检测科技(济南)有限公司(锐影检测)总经理刘宝东博士接受媒体采访介绍说,IGBT是一种功率半导体器件,被誉为电力电子装置的“心脏”,在高铁、新能源汽车、轨道交通、智能电网、航空航天等领域应用广泛。IGBT模块在运行过程中会产生大量的热,需要及时散掉,它通常存在两个焊料层,焊料层气孔会严重影响散热效率,可能导致重大安全事故,因此需要对气孔率严格控制。目前,常用的检测手段是超声检测,但非常容易受散热柱的干扰,导致检测偏差。同时,超声检测要将模块浸入到水中,需要隔离水的工装,还需要人工操作,检测过程复杂,难以实现在线检测,效率较低。此外,普通的二维X光成像会将IGBT模块两个焊料层混在一起,无法区分,并且有些大功率模块带有散热柱,会严重影响气孔检测的准确率。针对这些问题,中科院高能所研发团队基于10余年在大尺寸板状物三维层析成像领域的技术积累,在成功研发专用于板状古生物化石的X射线三维层析成像仪器(1.0版)基础上,面向国家重大需求的工业CT,针对集成电路先进封装的检测需求,突破一系列关键技术,研发出分辨率更高、更成熟的2.0版“全自动IGBT缺陷X射线三维检测设备”。刘宝东称,该2.0版设备依托X射线计算机层析成像技术和先进的缺陷智能检测软件算法,并将人工智能算法引入检测系统,可对不合格产品进行自动识别及分拣,为IGBT模块封测提供全自动在线无损检测解决方案,从而大大提高检测效率,保障IGBT模块的产品品质。他表示,在功率半导体封测设备研发过程中,研发团队也积累了丰富的工程化经验。而作为中科院高能所与地方合作孵化的科技成果转化企业,锐影检测为团队经验技术转化为成熟产品提供了良好平台,从而打通从技术研发到产品应用的“最后一公里”。
  • 多项光谱法将成为钢铁有色金属行业国家标准
    仪器信息网讯 2013年7月18日,国家标准委下达了2013年第一批国家标准制修订计划的通知。其中有关钢铁、有色金属检测方法制修订标准有35项,涉及的检测仪器包括火焰原子吸收光谱仪、ICP、ICP-MS、高频红外碳硫、分光光度计、试验机等。其中采用原子吸收光谱法的标准有8项,ICP法的有3项,XRF法1项,分光光度法4项。  在众多检测方法中,《海绵钛、钛及钛合金化学分析方法铜量的测定火焰原子吸收光谱法》修改了检测方法,引入原子吸收光谱法进行检测 《海绵钛、钛及钛合金化学分析方法铌量的测定5-Br-PADAP分光光度法及电感耦合等离子体发射光谱法》修改了检测方法,引入了ICP检测法。《含镍生铁 镍、钴、铬、铜、磷含量的测定 电感耦合等离子体原子发射光谱法》为初次制定,采用了ICP法 《纯铂化学分析方法钯、铑、铱、钌、金、银、铝、铋、铬铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体质谱法》为初次制定,采用了ICP-MS法,《硅铁 硅、锰、铝、钙、磷、钛、铬、铜、镍和铁含量的测定波长色散X-射线荧光光谱法(熔铸玻璃片法)》为初次制定,采用了波散XRF法。《2013年第一批国家标准制修订计划的通知》中钢铁、有色金属行业检测标准项目名称标准性质制修订代替标准号采用国际标准完成时间主管部门归口单位起草单位铁矿石 铜含量的测定 火焰原子吸收光谱法推荐修订GB/T 6730.36-1986ISO 5418-2:20062014中国钢铁工业协会全国铁矿石与直接还原铁标准化技术委员会上海出入境检验检疫局、冶金工业信息标准研究院海绵钛、钛及钛合金化学分析方法铜量的测定火焰原子吸收光谱法推荐修订GB/T 4698.1-1996 2015中国有色金属工业协会全国有色金属标准化技术委员会西北有色金属研究院锡精矿化学分析方法 第7部分:铋量的测定 火焰原子吸收光谱法推荐修订GB/T 1819.7-2004 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡精矿化学分析方法 第8部分:锌量的测定 火焰原子吸收光谱法推荐修订GB/T 1819.8-2004 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡铅焊料化学分析方法 第10部分:镉量的测定 火焰原子吸收光谱法和EDTA滴定法推荐修订GB/T 10574.10-2003 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡铅焊料化学分析方法 第7部分: 银量的测定 火焰原子吸收光谱法和硫氰酸钾电位滴定法推荐修订GB/T 10574.7-2003 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡铅焊料化学分析方法 第8部分:锌量的测定 火焰原子吸收光谱法推荐修订GB/T 10574.8-2003 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡铅焊料化学分析方法 第9部分:铝量的测定电热原子吸收光谱法推荐修订GB/T 10574.9-2003 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司含镍生铁 镍、钴、铬、铜、磷含量的测定 电感耦合等离子体原子发射光谱法推荐制定  2014中国钢铁工业协会全国生铁及铁合金标准化技术委员会中钢集团吉林铁合金股份有限公司海绵钛、钛及钛合金化学分析方法铌量的测定5-Br-PADAP分光光度法及电感耦合等离子体发射光谱法推荐修订GB/T 4698.22-1996 2015中国有色金属工业协会全国有色金属标准化技术委员会西北有色金属研究院锡铅焊料化学分析方法 第13锑、铋、铁、砷、铜、银、锌、铝、镉、磷、金量的测定 电感耦合等离子体原子发射光谱法推荐修订GB/T 10574.13-2003 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司纯铂化学分析方法 钯、铑、铱、钌、金、银、铝、铋、铬铜、铁、镍、铅、镁、锰、锡、锌、硅量的测定 电感耦合等离子体质谱法推荐制定  2015中国有色金属工业协会全国有色金属标准化技术委员会贵研铂业股份有限公司硅铁 硅、锰、铝、钙、磷、钛、铬、铜、镍和铁含量的测定 波长色散X-射线荧光光谱法(熔铸玻璃片法)推荐制定  2014中国钢铁工业协会全国生铁及铁合金标准化技术委员会邯钢金属铬 磷含量的测定 铋磷钼蓝分光光度法推荐修订GB/T 4702.3-1984 2014中国钢铁工业协会全国生铁及铁合金标准化技术委员会中信锦州金属股份有限公司等海绵钛、钛及钛合金化学分析方法 硅量的测定 钼蓝分光光度法推荐修订GB/T 4698.3-1996 2015中国有色金属工业协会全国有色金属标准化技术委员会西部金属材料股份有限公司锡精矿化学分析方法第11部分:三氧化二铝量的测定 铬天青S分光光度法推荐修订GB/T 1819.11-2004 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡铅焊料化学分析方法 第11部分:磷量的测定结晶紫-磷钒钼杂多酸分光光度法推荐修订GB/T 10574.11-2003 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡精矿化学分析方法 第10部分:硫量的测定 高频红外吸收法和碘酸钾滴定法推荐修订GB/T 1819.10-2004 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司锡铅焊料化学分析方法 第12部分:硫量的测定 高频红外吸收光谱法推荐修订GB/T 10574.12-2003 2015中国有色金属工业协会全国有色金属标准化技术委员会云南锡业股份有限公司钽铌化学分析方法 氮量的测定 惰气熔融热导法推荐修订GB/T 15076.13-1994 2015中国有色金属工业协会全国有色金属标准化技术委员会宁夏东方钽业股份有限公司钢的硫印检验方法推荐修订GB/T 4236-1984ISO 4968:19792014中国钢铁工业协会全国钢标准化技术委员会武汉钢铁(集团)公司、冶金工业信息标准研究院钢管壁厚超声波检测方法推荐制定 EN10246-13:20072014中国钢铁工业协会全国钢标准化技术委员会钢铁研究总院、冶金工业信息标准研究院金属材料 高应变速率拉伸试验 第2部分:液压伺服与其他试验系统推荐制定 ISO 26203-2:20112014中国钢铁工业协会全国钢标准化技术委员会宝山钢铁股份有限公司金属材料 韦氏硬度试验 第1部分:试验方法推荐制定  2014中国钢铁工业协会全国钢标准化技术委员会北京有色金属研究总院金属材料 延性试验 泡沫金属的压缩试验方法推荐制定 ISO 13314:20112015中国钢铁工业协会全国钢标准化技术委员会湖北出入境检验检疫局、武汉钢铁(集团)公司等金属和合金的腐蚀 低铬铁素体不锈钢晶间腐蚀试验方法推荐制定  2015中国钢铁工业协会全国钢标准化技术委员会宝钢不锈钢有限公司、冶金工业信息标准研究院无缝和焊接铁磁性钢管(埋弧焊除外)自动全周向磁漏检测推荐修订GB/T 12606-1999ISO 10893-3:20112014中国钢铁工业协会全国钢标准化技术委员会天津钢管集团股份有限公司、冶金工业信息标准研究院等铬铁 氮含量的测定 中和滴定法推荐修订GB/T 5687.4-1985 2014中国钢铁工业协会全国生铁及铁合金标准化技术委员会中钢集团吉林铁合金股份有限公司金属铬 铬含量的测定 硫酸亚铁铵滴定法推荐修订GB/T 4702.1-1997 2014中国钢铁工业协会全国生铁及铁合金标准化技术委员会中信锦州金属股份有限公司等铁矿石 全铁含量的测定 EDTA光度滴定法推荐制定  2014中国钢铁工业协会全国铁矿石与直接还原铁标准化技术委员会广东出入境检验检疫局、冶金工业信息标准研究院、宝山钢铁股份有限公司、中山大学可渗透性烧结金属材料 透气度的测定推荐制定  2014中国有色金属工业协会全国有色金属标准化技术委员会西安宝德粉末冶金有限责任公司铝箔试验方法方法 第1部分:铝箔厚度的测定 称量法推荐修订GB/T 22638.1-2008 2015中国有色金属工业协会全国有色金属标准化技术委员会云南浩鑫铝箔有限公司、厦门厦顺铝箔有限公司、华北铝业有限公司铝箔试验方法方法 第2部分:针孔的检测推荐修订GB/T 22638.2-2008 2015中国有色金属工业协会全国有色金属标准化技术委员会云南浩鑫铝箔有限公司、厦门厦顺铝箔有限公司、华北铝业有限公司铝箔试验方法方法 第3部分 铝箔的粘附性测定方法推荐修订GB/T 22638.3-2008 2015中国有色金属工业协会全国有色金属标准化技术委员会云南浩鑫铝箔有限公司、西南铝业(集团)有限责任公司、华北铝业有限公司钛及钛合金化学成分分析取制样方法推荐制定  2014中国有色金属工业协会全国有色金属标准化技术委员会宝钛集团有限公司、宝鸡钛业股份有限公司
  • 日立发布印刷电路板爆板问题解决方案
    电路板是当代电子元件业中最活跃的产业,又可称为印刷线路板(Printed Circuit Board)简称PCB。由于产业政策的扶持、下游产业的持续快速增长和劳动力资源、市场、投资及税收政策方面优惠措施的影响,印刷电路板作为基础的电子元件,市场的配套需求增长强劲,行业前景十分看好。汽车、电子、电器等各类行业中,均会用到印刷电路板,而目前用于各类电子设备和系统的电子器材仍然以PCB、FPC等印刷电路板为主要装配方式。   由于欧盟RoHs 法令的实施,电子组装工艺发生了巨大变化—进入无铅化时代。锡-银-铜和锡-铜-镍等无铅焊料已逐步取代了以往的锡铅焊料,熔点由原先的183℃升至217℃以上,前后温度相差34 ℃,熔点的升高务必会使得焊接热量递增,故电路板等的耐热性(Td热裂解温度)必须要满足更高的要求。而爆板(Delamination )是电路板在焊接过程中最常见的问题,在高温焊接条件下,板材的Z轴膨胀过大,就会引起爆板。另外,若板材的玻璃化温度(Tg)不合适,随着焊接热量的剧增,会对PCB 板造成损伤。为应对无铅化对PCB 板的耐热性能的挑战,IPC-4101B/99 针对“无铅FR-4”增加了四项新要求,分别是:Tg≥150℃(玻璃化转变温度)、Td≥325℃(热裂解温度)、Z-CTE≤3.5%(50—260℃)和T288≥5min。 那么,针对以上线路板的爆板问题,在板材设计时,如何有效地评估这些参数呢?  日立仪器的热机械分析仪(TMA7000)具有高灵敏度、宽范围的特性,是一款全膨胀的TMA,可测定小至薄膜、大至块体的样品,评价玻璃化温度、线膨胀系数以及软化点等参数,得到结合面的尺寸稳定性及匹配性以及线路板的爆板时间。 解决方案请见:http://www.instrument.com.cn/netshow/SH100718/s550605.htm
  • 专家约稿|功率器件可靠性研究和失效分析的全面解析
    功率器件可靠性研究和失效分析的基本介绍邓二平(合肥工业大学 电气与自动化工程学院 230009)摘要:功率器件可靠性是器件厂商和应用方除性能参数外最为关注的,也是特性参数测试无法评估的,失效分析则是分析器件封装缺陷、提升器件封装水平和应用可靠性的基础。可靠性测试项目的规范性、严谨性和可追溯性,对于功率器件可靠性评估和失效分析至关重要,也是保障分析结果全面性、准确性和有效性的基础。本文结合团队多年的可靠性和失效分析研究的相关经验,对研究步骤等进行了基本介绍,旨在为行业的发展提供可能的参考。1、引言功率器件近年来在国内得到了大力发展,尤其是第三代半导体器件SiC MOSFET与新能源汽车应用的结合,迎来了功率器件国产化的重大发展机遇,包括芯片、封装、测试和设备等。而可靠性研究和失效分析则是器件封装后评估器件长期稳定运行的基础,对器件封装改进、可靠性评估等具有重要意义。本文结合团队多年的可靠性研究经验,主要介绍了进行功率器件可靠性研究和失效分析的一些基本步骤、原理和需要注意的事项等,具体测试电路请参考相应的测试标准(如IEC、MIL、JESD和AGQ等测试标准)。功率器件主要包括:Si IGBT/diode, Si MOSFET/diode, SiC MOSFET/diode, GaN器件,目前市场上比较成熟的产品还是以硅基为代表的IGBT器件,电压等级最高可到6500V,电流目前最大到3600A。随着使用开关频率的提升、能耗要求和基础材料的发展,SiC基的功率器件己逐渐成熟,典型的代表是SiC MOSFET,新能源汽车的800V平台正大量使用1200V的SiC MOSFET。进一步地,GaN工艺的不断成熟以及在射频领域的发展经验,目前600V左右的高频开关领域GaN器件非常有优势,尤其是车载充电机(OBC)。不同类型的功率器件具有不同的特性,因此在测试方法和细节上要有所区分,如SiC器件由于栅极的不稳定性以及GaN动态的快速性需要重点关注。2、测试项目分类功率器件的测试一般分为基本特性测试来表征器件性能优良、极限能力测试来评估器件的鲁棒性、可靠性测试来评估器件长期运行稳定性以及失效分析助力器件改进和优化升级,具体如下。2.1 基本特性测试主要包括:静态特性测试(以IGBT为例一般指饱和压降Vces,阈值电压Vgeth,集-射极漏电流Ices,栅-射极漏电流Iges,稳态热阻Rth等静态参数)和动态特性测试(一般指双脉冲测试,包括开通延时时间td(on),下降时间tf等动态参数),其中动态特性测试还可包括安全工作区SOA的测试,有RBSOA和SCSOA。静态特性主要表征模块的一些基本性能参数,是表征模块优良的重要指标,如饱和压降Vces表征器件的导通能力,Vces越小,模块工作过程中的导通损耗越小,相同条件下温升越小。器件加速老化可靠性实验前必须进行模块的基本特性测试,尤其是静态特性测试,一方面确保被测器件功能的完整性,另一方面可用于老化后的对比分析,助力器件失效模式的分析。但一般在可靠性老化测试中不进行器件的动态特性测试,即使是进行栅极老化的高温栅偏实验,一方面是动态特性测试时间很短,封装的老化并不会影响器件的动态特性,另一方面器件的部分动态特性可通过Iges和Vgeth表征,甚至可进行栅极电容的测试来表征。2.2极限能力测试主要包括:短路能力测试、浪涌能力测试和极限关断能力测试,考核的是器件在极端工况下的能力,尤其是关断能力。如短路能力测试主要考核器件在短路(一般有3类短路情况)条件下器件的极限关断能力,一般为10µs能关断电流的数值,主要考核芯片的能力。浪涌能力则是考核反并联二极管抗浪涌能力,一般是10ms正弦半波的冲击,尤其是SiC MOSFET的体二极管非常重要,可能还会影响栅极的可靠性,由于时间较长,主要考核封装的水平。极限关断能力则是考核器件饱和状态下在毫秒级的关断能力,如电网用的直流断路器需要在3ms关断6倍的额定电流。从物理和传热学理论来看,短路测试虽然会有大量的能量产生,最终也是由于能量超过芯片极限而损坏,但由于测试时间非常短,反复的短路测试不会引起封装的老化,而浪涌能力和极限能力测试则将进一步影响封装的老化,是加速老化测试未来应该重点关注的测试。进一步地,极限能力是特种电源等极端应用时需要重要关注的测试。2.3可靠性测试主要包括:功率循环、温度循环、温度冲击、机械冲击、机械振动、高温栅偏、高温反偏、高温高湿反偏和高低温存储等,额外的还包括盐雾等测试。按照应力的来源区分其实可分为电应力加速老化和环境应力加速老化,从器件研发到量产以及应用过程中,需要经过大于10项可靠性测试,机械冲击、机械振动、温度存储等主要考核的是器件在运输或者存储过程中的可靠性,而最重要的测试主要有高温栅偏、高温反偏、高温高湿反偏、温度循环和功率循环。这些实验也是工业界和学术界研究最多,最复杂的测试,尤其是功率循环测试。通过上述加速老化实验,提前暴露器件在芯片设计、封装工艺、样品制备、运输存储、实际应用过程中可能存在的问题,一方面可为器件厂商提供改进建议,优化器件的性能并提高器件可靠性,另一方面可为器件的应用方提供技术指导以及实际产品设计和可靠性验证提供数据支撑。2.4失效分析主要包括:SAM超声波扫描分析、X-ray材料损伤检测分析、SEM电子显微镜分析、光学显微镜分析和有限元仿真分析。SAM超声波扫描分析主要是通过超声波对器件内部各层材料进行探伤,尤其是材料的界面处,当存在一个空洞时,返回的超声波能量和相序发生了变化,即可进行定位。X-ray则更多是用于材料本体探伤研究,多用于材料级的失效分析,SEM电子显微镜和光学显微镜也是一样,但光学显微镜需要打开模块才能对相应的位置进行深入探究。有限元仿真分析是一个除实验外最好的检测、分析和研究手段,通过实验测量数据的对比和修正,完全重现实验过程中器件内部的细节和薄弱点,也是失效分析最难和最为重要的环节。3、可靠性研究步骤可靠性研究的基本步骤如下图1所示,一般需要在可靠性测试前进行一些基本特性测试确保器件的性能以及方便与老化后的进行对比分析,然后进行加速老化等可靠性测试,再进行基本特性测试和失效分析,探究器件的失效模式和失效机理。为了进一步深入探究器件内部各层材料在可靠性测试过程中的应力分布情况,可采用SAM超声波扫描以及有限元分析方法配合进行相应的失效分析。上述可靠性测试中高温栅偏100%与芯片有关、高温反偏约80%情况与芯片有关,也有因为封装老化导致的退化、高温高湿反偏测试也是类似的情况,其他所有可靠性测试均与封装有关,尤其是热特性和机械特性有关。图1所示的基本步骤也只是通用的研究过程,对于具体的问题还需要进行特定的对待和分析。比如大部分情况在可靠性研究中是不会进行极限能力测试的,但如果要研究器件老化对极限能力的影响,则需要进一步考虑,包括多应力的耦合测试。图1 功率器件可靠性测试基本流程这里以Si基IGBT器件的功率循环为例简单介绍一下可靠性加速老化的基本流程和各项参数测试的必要性,如下图2所示。以Infineon公司1200V, 25A Easypack封装的IGBT器件为例进行功率循环的老化测试、寿命评估和失效机理研究等。第I步:确定研究对象,也就是FS25R12W1T4,此封装内有6个开关组成的三相全桥,如下图3所示。上桥臂的IGBT开关共用一个上铜层,下桥臂的IGBT开关均是独立的,这里以U相的下桥臂开关S2为例,减小热耦合影响。S2的上铜层面积与芯片面积相当,热扩散角小,导致散热条件相对较弱,热量会更集中于芯片焊料层。第II步:器件基本特性测试,包括常温下饱和压降Vces (@VGE=15V,Ic=25A,Tvj=25ºC),阈值电压Vgeth (@VGE= VCE,Ic=0.8mA,Tvj=25ºC),集-射极漏电流 Ices (@ VGE=0V,VCE=1200V, Tvj=25ºC),栅-射极漏电流 Iges (@VCE=0V,VGE=20V,Tvj=25ºC),具体条件来源于器件的数据表datasheet。需要说明的是,这里只测试了器件常温下的基本特性,一方面是用于判断器件的性能与好坏,另一方面用于老化后进行对比,常温下的数据即可满足要求。若测试过程中发现某个器件的某个参数超过datasheet里的规定值,则说明此器件是不良品,需要更换新的器件进行测试。进一步地,还可通过此数据来评估各器件间的一致性。第III步:SAM超声波扫描,通过专有设备如SAM301进行器件封装内部各层材料连接状态的检测和参照,将模块倒置于装有去离子水的设备中,超声波从器件的基板开始向下探测,可得到器件各层材料的二维平面图,如下图4所示。此模块没有系统焊接层,因此只展示了器件最薄弱的,也是可靠性测试最为关注和重要的芯片焊料层和芯片表面键合线连接状态,对于新器件而言,各层的连接状态良好。做完SAM后还有一个非常重要的一步,尤其是对于硅胶封装的模块,将模块拿出后必须倒置放置24小时以上,以充分晾干模块内的水分 。进一步地,还需要通过加热板或者恒温箱将器件放置在85ºC环境中至少半小时以上,更加充分的挥发模块内的残余水分以不影响模块的性能。对于TO封装的器件来说,尤其有环氧树脂的充分保护以及环氧树脂吸水性差等特点,加上放置时间很短以及没有高温作用等,可不进行此步骤,但做电学特性实验前必须保证器件表面己无明显水分。在进行热阻等测试前,还需要进行连线,最好通过焊锡连接,以确保连接的可靠性。图2 Si基IGBT器件功率循环测试基本流程 (a) 内部结构 (b) 等效电路图3 FS25R12W1T4模块的内部结构(a) 芯片焊料层 (b) 芯片表面键合线图4 FS25R12W1T4模块SAM超声波扫描结果第IV步:温度关系校准,对于功率器件而言,器件的结温是评估模块电学特性和热学特性最重要的参数,结温不仅可反映模块的散热能力,还可影响器件的电学特性,甚至是可靠性。现在方法中,只有电学参数法测量结温适用并广泛应用于器件可靠性测试中,如热阻测试、功率循环、高温反偏等测试。一般来说,对于低压器件,测量电流选择合适的话,温度校准曲线将呈现完美的线性关系,如下图5所示。可以看到4个器件的曲线均呈现很好地线性关系,虽然在截距上存在一定的差异,但斜率几乎一样,说明芯片的一致性好,此微小差异一般来源于热电源的位置或者加热源的差异,但这种小差异可忽略。图5 FS25R12W1T4的温度校准曲线@IM=100mA第V步:瞬态热阻抗Zth测试,在进行功率循环测试之前,一般为了获得模块内部芯片PN结到散热器甚至环境的热路径情况,以及用于与老化后的状态进行对比,以定位模块失效位置,需要进行瞬态热阻抗Zth测试。通过两次不同散热条件下Zth的测试,也称为瞬态双界面法,可直接获得模块结到壳的热阻值Rthjc,以评估模块的整体性能。将被测器件按功率循环测试的要求安装到测试设备的水冷散热器上,放置好热电偶以以测量相应位置的温度,如壳表面,散热器或环境温度。瞬态热阻抗测试其实相当于一次功率循环,通过给被测器件通过相应的测试电流以加热器件至热平衡状态,降温过程测量器件的结温变化。这里需要注意的是,测试电流越大,测量电路的信噪比越大,测试结果越好,但要保证器件的最大结温不能超过器件允许的最大结温。此器件测量得到的Zthjs如下图6所示,测试条件为升温时间ton=5s, 降温/测量时间toff=40s, 测试电流IL=25A, 水冷温度Tinlet=58ºC, 测量延时tMD=200µs。图6 FS25R12W1T4的瞬态热阻抗曲线,#40器件在功率循环前的结果第VI步:功率循环加速老化测试,做完Zth测试和所有准备工作后,即可进行功率循环的测试,本实验室的测试设备有3条测试支路,每条支路可串联4个器件,共计12个通道,实验过程可以用2条支路或者3条支路。本次测试的器件为4个,每条支路串联2个被测器件,先通过调节测试电流,使得所有器件的结温差在目标温度范围左右,然后再通过控制各个器件的栅极电压来达到精细化和逐点调节。进一步地,通过控制外部水冷的入口温度调整所有器件的最大结温在目标温度范围左右,然后再通过安装条件的修正来达到各个器件的精细化和逐点调节。最终得到的测试条件为升温时间ton=2s, 降温时间toff=2s, 测试电流IL=29.7A, 水冷温度Tinlet=58ºC, 最大结温Tjmax≈150ºC,结温差ΔTj≈90K,测量延时tMD=200µs。功率循环条件设置完成后,只需要在程序中设定相应的保护即可实现完全无人值守运行,保护变量一般应该包括电压Vce保护,电流IL保护,热阻Rth保护,结温Tj保护,水温Tc保护,电源输出保护等。设置完成后的程序运行界面如下图7所示,可看到4个器件的测试条件相应比较接近。值得注意的是,上述测试过程中设置了测量延时,这是由于在半导体器件电流关断时,载流子复合需要时间,尤其是双极性器件。在这个延时时间里,芯片的结温其实是持续下降的,这就导致我们在延时时间tMD后测量的结温并不是器件真正的最大结温,而存在一定的误差,需要通过一些方法进行修正,如根号t方法,具体这方面的内容需要参考相关论文。而此结温的误差将会导致器件的寿命数据存在一定的差异,需要通过现有的模型进行相应的修正。进一步地,我们也看到不可能使得所有器件的数据完全一致,达到我们的想要的测试条件,最终在进行寿命对比时,需将所有器件的条件均归一到同样的条件以保对比的公平性和数据的正确性,如下图8所示。图7 功率循环运行界面示意图图8 功率循环寿命数据第VII步:瞬态热阻抗Zth测试,当模块老化到一定程度或者达到失效判定条件后,需要停止功率循环测试,对其进行瞬态热阻抗测试,进一步准确定位老化位置。测试条件与功率循环前一致,下图8列举了#40器件在不同功率循环次数条件下的测试结果,可以看到,随着老化程度的增加,器件的热阻增加。进一步地,可以看到在模块功率循环前没有经过老化(No.68)时,整个曲线均较小,当老化到一定程度后(No.76888),热阻增加不是非常明显,可以理解为裂纹的形成过程。当功率循环加速老化持续进行(No.91522),这个过程为焊料裂纹生长过程,热阻增加非常明显。图9 #40器件功率循环前后Zthjs结果对比第VIII步:SAM超声波扫描,将功率循环测试后的器件,利用原有的参数设置进行SAM超声波扫描,通过对比可得到器件芯片焊料层和键合线的老化状态,利于器件的失效模式和失效机理研究。下图10展示的是#40功率循环老化后IGBT芯片焊料层和芯片表面键合线的连接状态,可以看到芯片焊料层出现了白点,有严重老化的迹象,这也与图9的结果相吻合。而键合线的状态由于焊料的老化,改变了超声波的路径,使得键合线的状态很难识别,从实验结果来看并没有发生严重的老化。(a) 芯片焊料层 (b) 芯片表面键合线图10 #40器件功率循环老化后的SAM结果值得说明的是,图中的S3和S6也出现了老化是因为之前做过不同ton的实验,但也可以看到S2和S6的老化程度和现象比较一致,更集中于中心区域,而S3则比较均匀,这是由于S3具有更大的散热面积,使得S3焊料的温度分布更均匀。这里想给大家展示的是如何通过SAM图来获得相应的老化信息,要有全局观念,要知道整个实验的计划、过程、细节和数据等,才能给出更为准确的结论。第IX步:器件特性参数测试,完成器件的SAM测试后,仍然要将器件放置干燥处理后才能进行相应的电气特性测试,采用相同的实验条件对上述参数进行测量。一般情况下,上述参数在功率循环老化后不会发生变化,SiC MOSFET由于栅极可靠性问题可能会存在一定程度的阈值电压偏移。同时,Si IGBT一般也会存在轻微的阈值电压偏移,而且是负偏移,但一般在5%以内,这也侧面说明利用阈值电压作为温敏参数可能存在的误差。一般器件的温敏关系约为-2mV/ºC,假定器件的初始阈值电压为5V,则电压偏移25mV,最终导致约12 ºC的误差。第X步:有限元仿真分析,没有仿真解释和验证的实验数据是不可信的,因为实验数据很大程度依据于测试人员、经验、测试方法、测试条件等各方面因素;而没有实验验证的仿真分析也是不可信的,能否解释实际现象很关键。因此,有限元仿真分析其实与实验是相辅相成的,仿真的第一步必然是建立仿真模型,并修正和验证仿真模型的有效性。对于功率循环来说,考核的主要是器件封装在往复周期性温度变化过程中的热应力,因此,模块的热流路径至关重要,可通过瞬态热阻抗来修正模型。下图11为仿真和实验获得的模块S2瞬态热阻抗曲线,仿真与实验结果有非常高的吻合度,最后的些许差异来源于不同的安装条件,从两个实验结果也可看到。图11 S2的瞬态热阻抗曲线对比实验验证后的有限元仿真模型就具备与真实器件相同的热流路径了,可以用来进行功率循环仿真分析。这里值得一提的是,对于功率循环的功率循环仿真分析,必须使用电-热耦合仿真,一方面是纯热仿真没有芯片的电热耦合作用,另一方面是纯热仿真没有键合线的自发热现象,这会导致仿真结果的偏差。这里以S2和S3的有限元仿真来进行说明,下图12为功率循环仿真的结温变化曲线,芯片的结温提取的是芯片表面平均温度,这是与VCE(T)方法获得的值最接近的表征。仿真所用的条件均来源于实验测量结果,仿真过程与实验测试过程一样,通过调整芯片的电导率来获得不同的功率最终达到相同的结温差,调整环境温度来达到相应最大结温。(a) S2在不同ton条件下仿真的结温曲线 (b) S3在不同Tjmax条件下仿真的结温曲线图12 仿真得到的结温曲线获得与实验相同的结温后就可以进行器件内部更为细致和全面的分析,下图13为S2和S3在相同的功率循环条件下芯片表面的温度分布,由于铜散热面积的差异,导致温度分布有所差异,最终导致失效位置发生了变化,如图10所示。因此,通过电气参数的测试可以知道器件的整体变化情况,但无法定位到具体位置,而通过SAM超声波扫描则可获得基本位置信息,但无法准确分析其原因以及产生的机理。最终通过有限元仿真可以得到器件内部更为细节的信息,实现对器件的失效机理研究和封装结构优化。但最为根本的是要把握器件的所有信息,结果能进行相互验证,缺一不可。(a) S2, ton=2s, ΔTj=89.5K和Tjmax=147.7˚C (b) S3, ton=2s, ΔTj=90.9K和Tjmax=152.1˚C图13 芯片表面温度分布4、总结上述以功率循环为例详细描述了需要进行的哪些实验、步骤和原理,严格按照上上述实验步骤再加上一些经验基本上就具备了全面分析功率器件老化失效的能力。但要达到更高水平,尤其是能在做实验过程中主动解决所有遇到的问题,还需要更为细致和深入的学习,其中最最最为核心的就是要把握每个测试的基本原理。只有把握了这些参数、测试的基本测试原理,逻辑思路和功率器件的基本物理过程,才能更深刻的理解一些问题,并解决实际中遇到的问题。主要参考文献[1] MIL-STD-883G, United States Department of Defense Test Method Standard: Microcircuits, Method 1012.1 Thermal Characteristics, 1980.[2] Electronic Industries Association, Integrated Circuit Thermal Measurement Method – Electrical Test Method, EIA/JEDEC Standard, JESD51-1, 1995 (www.jedec.org ).[3] ECPE/AQG 324, Qualification of Power Modules for Use in Power Electronics Converter Units (PCUs) in Motor Vehicles [S], 2018. [4] U. Scheuermann and R. Schmidt, “Investigations on the Vce(T)-Method to determine the junction temperature by using the chip itself as sensor,” in Proc. PCIM Europe, 2009, pp. 802–807. [5] E. Deng and J. Lutz, "Measurement Error Caused by the Square Root t Method Applied to IGBT Devices during Power Cycling Test," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 2020, pp. 545-548, [6] 邓二平,严雨行,陈杰,谢露红,王延浩,赵雨山,黄永章.功率器件功率循环测试技术的挑战与分析[J/OL].中国电机工程学报:1-20[7] 赵雨山,邓二平,马丛淦,谢露红,王延浩,黄永章.考虑器件结构布局的功率循环失效模式分离机制[J].中国电机工程学报,2022,42(07):2663-2672.[8] 陈杰,邓二平,张一鸣,赵子轩,黄永章.功率循环试验中开通时间对高压大功率IGBT模块失效模式的影响及机理分析[J].中国电机工程学报,2020,40(23):7710-7721.[9] 邓二平,赵雨山,孟鹤立,陈杰,赵志斌,黄永章.电动汽车用功率模块功率循环测试装置的研制[J].半导体技术,2020,45(10):809-815.[10] 邓二平,陈杰,赵雨山,赵志斌,黄永章.90 kW/3000 A高压大功率IGBT器件功率循环测试装备研制[J].半导体技术,2019,44(03):223-231.作者简介邓二平(1989),男,教授,博士,“黄山学者”优秀青年,中国能源学会专家委员,2013年哈尔滨工业大学获得学士学位,2018年华北电力大学获得博士学位,2018年6月留校任教(2018年~2022年华北电力大学),2018年10月,德国开姆尼茨工业大2年学博士后,2022年5月,合肥工业大学教授。第二完成人获2021年电工技术学会技术发明二等奖1项,主持、参与多项国家项目和企业项目(30余项),发表高水平论文70余篇,其中SCI检索论文30余篇,申请专利30余项。研究方向为功率器件(IGBT、SiC MOSFET和GaN器件)封装、可靠性和失效机理研究,如可靠性测试方法、测试技术、失效分析以及寿命状态监测等。
  • 半导体封装材料的性能评估和热失效分析
    前言芯片封装的主要目的是为了保护芯片,使芯片免受苛刻环境和机械的影响,并让芯片电极和外界电路实现连通,如此才能实现其预先设计的功能。常用的一种封装技术是包封或密封,通常采用低温的聚合物来实现。例如,导电环氧银胶用于芯片和基板的粘接,环氧塑封料用于芯片的模塑封,以及底部填充胶用于倒装焊芯片与基板间的填充等。主要的封装材料、工艺方法及特性如图1所示。包封必须满足一定的机械、热以及化学特性要求,不然直接影响封装效果以及整个器件的可靠性。流动和粘附性是任何包封材料都必须优化实现的两个主要物理特性。在特定温度范围内的热膨胀系数(CTE)、超出可靠性测试范围(-65℃至150℃)的玻璃化转变温度(Tg)对封装的牢固性至关重要。对于包封,以下要求都是必须的:包封材料的CTE和焊料的CTE比较接近以确保两者之间的低应力;在可靠性测试中,玻璃转化温度(Tg)能保证尺寸的稳定性;在热循环中,弹性模量不会导致大的应力;断裂伸长率大于1%;封装材料必须有低的吸湿性。但是,这些特性在某种类型的环氧树脂里并不同时具备。因此,包封用的环氧树脂是多种环氧的混合物。表1列出了倒装焊底部填充胶的一些重要的特性。随着对半导体器件的性能要求越来越高,对封装材料的要求同步提高,尤其是在湿气的环境下,性能评估和热失效分析更是至关重要,而这些都可以通过热分析技术给予准确测量,并可进一步用于工艺的CAE模拟仿真,帮助准确评估封装质量的优劣与否。表1 倒装焊中底部填充胶的性能要求[1]图1. 主要封装材料、工艺方法及特性[2]热性能检测梅特勒托利多全套热分析技术为半导体封装材料的性能评估和热失效分析提供全面、创新的解决方案。差示扫描量热仪DSC可以精准评估封装材料的Tg、固化度、熔点和Cp,并且结合行业内具有优势的动力学模块(非模型动力学MFK)可以高精准评估环氧胶的固化反应速率,从而为Moldex 3D模拟环氧塑封料、底部填充胶的流动特性提供可靠的数据。如图2所示,在非模型动力学的应用下,环氧胶在180℃下所预测的固化速率与实际测试曲线所表现出的固化行为具有非常高的一致性。热重TGA或同步热分析仪TGA/DSC可以准确测量封装材料的热分解温度,如失重1%时的温度,以及应用热分解动力学可以评估焊料在一定温度下的焊接时间。热机械分析仪TMA可以精准测量封装材料的热膨胀、固化时的热收缩、以及CTE和Tg,动态机械分析仪DMA提供封装材料准确的弹性模量、剪切模量、泊松比、断裂伸长率等力学数据,进一步可为Moldex 3D模拟芯片封装材料的翘曲和收缩提供可靠数据来源。图2. DSC结合非模型动力学评估环氧胶的固化反应速率检测难点1、 凝胶时间凝胶时间是Moldex 3D模拟环氧塑封料、底部填充胶流动特性的非常重要的数据来源之一。目前,行业内有多种测试凝胶时间的方法和设备。比如利用拉丝原理的凝胶时间测试仪,另有国家标准GB 12007.7-89环氧树脂凝胶时间测定方法[3],即利用标准柱塞在环氧树脂固化体系中往复运动受阻达到一个值而指示凝胶时间。但是,其对柱塞的形状和浮力要求较高,测试样品量也很大,仅适用于在试验温度下凝胶时间不小于5 min的环氧树脂固化体系,并且不适用于低于室温的树脂、高粘度树脂和有填料的体系。由此可见,现有测试方法都存在测试误差、硬件缺陷和测试范围有限等问题。梅特勒托利多创新性TMA/SDTA2+的DLTMA(动态载荷TMA)模式结合独家的负力技术可以准确测定凝胶时间。在常规TMA测试中,探针上施加的是恒定力,而在DLTMA模式中,探针上施加的是周期性力。如图3右上角插图所示,探针上施加的力随时间的变化关系,力在0.05N与-0.05N之间周期性变化,这里尤为关键的一点是,测试凝胶时间必须要使用负力,即不仅需要探针往下压,还需要探针能够自动向上抬起。图3所示案例为测试导电环氧银胶的凝胶时间,样品置于40μl铝坩埚内并事先固定在TMA石英支架平台上,采用直径为1.1 mm的平探针在恒定160℃条件下施加正负力交替变换测试。在未发生凝胶固化之前,探针不会被样品粘住,负力技术可使探针自由下压和抬起,测试的位移曲线表现出较大的位移变化。当发生交联固化,所施加的负力不足以将探针从样品中抬起,位移振幅突然减小为0,曲线成为一条直线。通过分析位移突变过程中的外推起始点即可得到凝胶时间。此外,固化后的环氧银胶片,可通过常规的TMA测试获得Tg以及玻璃化转变前后的CTE,如图3下方曲线所示。图3. 上图:TMA/SDTA2+的DLTMA模式结合负力技术准确测定凝胶时间. 下图:固化导电环氧银胶片的CTE和Tg测试.2、 弯曲弹性模量在热循环过程中,弹性模量不会导致过大的应力。封装材料在不同温度下的弹性模量可通过DMA直接测得。日本工业标准JIS C6481 5.17.2里要求使用弯曲模式对厚度小于0.5mm、跨距小于4mm、宽度为10mm的封装基板进行弯曲弹性模量测试。从DMA测试技巧角度来讲,如此小尺寸的样品应首选拉伸模式测试。弯曲模式在DMA中一共有三种,即三点弯曲、单悬臂和双悬臂,从样品的刚度及夹具的刚度和尺寸考虑,三点弯曲和双悬臂并不适合此类样品的测试。因此,单悬臂成为唯一的可能性,但考虑到单悬臂夹具尺寸和跨距小于4mm的要求,市面上大部分DMA难以满足此类测试。梅特勒托利多创新性DMA1另标配了单悬臂扩展夹具,可方便夹持小尺寸样品并能实现最小跨距为1mm的测试。图4为对厚度为40μm的基板分别进行x轴和y轴方向上的单悬臂测试,在跨距3.5mm、20Hz的频率下以10K/min的升温速率从25℃加热至350℃。从tan delta的出峰情况可以判断基板的Tg在241℃左右,以及在室温下的弯曲弹性模量高达12-13GPa。图4. DMA1单悬臂扩展夹具测试封装基板的弯曲弹性模量.3、 湿气对封装材料的影响湿气腐蚀是IC封装失效的主要原因,其降低了器件的性能和可靠性。保存在干燥环境下的封装环氧胶,完全固化后在高温和高湿气环境下也会吸湿发生水解,降低封装体的机械性能,无法有效保护内部的芯片。此外,焊球和底部填充环氧胶之间的粘附强度在湿气环境中放置一段时间后也会遭受破坏。水汽的吸收导致环氧胶的膨胀,并引起湿应力,这是引线连接失效的主要因素。通过湿热试验可以对封装材料的抗湿热老化性能进行系统的评估,进而对其进行改善,提升整体性能。通常是采用湿热老化箱进行处理,然后实施各项性能的评估。因此,亟需提供一种能够提高封装材料湿热老化测试效率的方法。梅特勒托利多TMA/SDTA2+和湿度发生器的联用方案,以及DMA1和湿度发生器的联用方案可以实现双85(85℃、85%RH)和60℃、90%RH的技术参数,这也是行业内此类湿度联用很难达到的技术指标。因此,可以原位在线环测封装材料在湿热条件下的尺寸稳定性和力学性能。图5. TMA/SDTA2+-湿度联用方案测试高填充环氧的尺寸变化.图5显示了TMA-湿度联用方案在不同湿热程序下高填充环氧的尺寸变化。湿热程序分别为20℃、60%RH、约350min,23℃、50%RH、约350min,30℃、30%RH、约350min,40℃、20%RH、约350min,60℃、10%RH、约350min,80℃、5%RH、约350min。可以看出,在60%的高湿环境下高填充环氧在350min内膨胀约0.016%,后续再降低湿度并升高温度,样品主要在温度的作用下发生较大的热膨胀。图6为DMA-湿度联用方案在双85的条件下评估PCB的机械性能的稳定性,测试时间为7天。可以看出,PCB在高湿热的环境下弹性模量有近似6%的变化,这与PCB的树脂材料发生吸湿后膨胀并引起湿应力是密不可分的,并且存在导致器件失效的风险。图6. DMA1-湿度联用方案测试PCB的弹性模量.4、 化学品质量对于封装结果的影响封装过程中会使用到各类的湿电子化学品,尤其是晶圆级封装等先进封装的工艺流程,对于清洗液、蚀刻液等材料的质量管控可以类比晶圆制造过程中的要求,同时针对不同工艺段的化学品浓度等配比都有所不同,因此如何控制使用的电子化学品质量对于封装工艺的效能有着重要的意义。下表展示了部分涉及到的化学品浓度检测的滴定检测方案,常规的酸碱滴定、氧化还原滴定可以基本满足对于单一品类化学品浓度的检测需求。指标电极滴定剂样品量85%H3PO4酸碱玻璃电极1mol/L NaOH0.5~1g96%H2SO4酸碱玻璃电极1mol/L NaOH0.5~1g70%HNO3酸碱玻璃电极1mol/L NaOH0.5~1g36%HCl酸碱玻璃电极1mol/L NaOH0.5~1g49%HF特殊耐HF酸碱电极1mol/L NaOH0.3~0.4gDHF(100:1)特殊耐HF酸碱电极1mol/L NaOH20-30g29%氨水酸碱玻璃电极1mol/L NaOH0.9~1.2gECP(acidity)酸碱玻璃电极1mol/L NaOH≈8g29%NH4OH酸碱玻璃电极1mol/L HCl0.5~1gCTS-100清洗液酸碱玻璃电极1mol/L NaOH≈1g表1. 部分化学品检测方法列表另一方面,对于刻蚀液等品类,常常会用到混酸等多种物质混配而成的化学品,以起到综合的反应效果,如何对于此类复杂的体系浓度进行检测,成为实际生产过程中比较大的挑战。梅特勒托利多自动电位滴定仪,针对不同的混合液制订不同的检测方案,如铝刻蚀液的硝酸/磷酸/醋酸混合液,在乙醇和丙二醇混合溶剂的作用下,采用非水酸碱电极针对不同酸液pKa的不同进行检测,得到以下图谱,一次滴定即可测定三种组分的含量。图7. 一种铝刻蚀液滴定曲线结论梅特勒托利多一直致力于帮助用户提高研发效率和质量控制,我们为半导体封装整个产业链提供完整专业的产品、应用解决方案和可靠服务。梅特勒托利多在半导体封装行业积累了大量经验和数据,希望我们的解决方案给半导体封装材料性能评估的工作者带来帮助。参考文献[1] Rao R. Tummala. 微系统封装基础. 15. 密封与包封基础 page 544-545.[2] Rao R. Tummala. 微系统封装基础. 18. 封装材料与工艺基础 page 641.[3] GB12007.7-89:环氧树脂凝胶时间测定方法.(梅特勒-托利多 供稿)
  • UP势力“电子新材料”成为NEPCON上海展独特风景线
    虽不属于高能耗产业,但我国迅猛发展的电子信息制造业,依然在环保和节能指标上与发达国家相去甚远。怎样早日摆脱&ldquo 穹顶之下&rdquo 的能耗压力,调整产业结构,促进电子制造从材料到制作工艺全面升级,将于2015年4月21日-23日在上海世博展览馆隆重开幕的第二十五届中国国际电子生产设备暨微电子工业展(NEPCON China 2015),首次推出全新电子新材料论坛,对我国电子材料行业现状及发展前景开始全面解读。  高端行业峰会,专业解读电子新材料发展之道  据了解,本次论坛是NEPCON China 2015的精选活动之一,也是关注电子材料行业发展专业人士的一次高端聚会。SMTA 、SPCA、中国电子材料行业协会电子锡焊料材料分会、ITRI-IPC中国焊料技术理事会等业界知名协会都对本次论坛举办提供了有力的专业支撑。届时,将有来自终端用户群体的研发与设计、项目主管、技术支持、采购/市场/销售等材料行业的权威专家,以及行业媒体等共约150人参加论坛,涵盖了消费电子及家电、电子制造、通信、汽车电子、控制/安全/测试服务等诸多领域。除了集中展示半导体材料、元器件材料,平面显示材料、印刷电路板材料、电池材料、电子锡焊料材料、胶黏剂等新产品和新技术外,与会人士还会就电子材料升级转型等热门话题直面交流分享经验。  放眼当前,伴随公众审美和环保意识的不断提高,电子产品正朝着绿色无害、小型节能的方向发展,渗透在电子产品制造工艺中的电子材料,也必须顺应历史潮流,更加注重自身的高效安全、灵活、和环境友好特性,这样才能适应市场多元化需求。可以预计的是,在未来几年推崇产业升级换代的电子产业中,电子新材料必将化身高新技术产业发展的先导,成为电子制造工业领域最具活力和发展潜力的UP新势力。  品牌引领潮流,电子新材料展品缤纷登场  即使只是一次行业峰会,但本次电子新材料论坛在沟通了上下游产业链、助力企业多元发展上的作用不容置疑。在NEPCON China 2015展会上,以AIM、ALPHA、Henkel、ITW、Zestron、化研为代表知名公司,均与论坛同步推出多款与绿色环保主题相关的焊锡材料、清洗设备,新材料闪亮登场,说明环保节能理念已经深入人心。  一直致力于为半导体封装、印刷电路板组装提供优质材料和高级焊接解决方案的汉高(Henkel)公司(展位号:B-1G35),在本次展会推出了全新耐温变锡膏- LOCTITE GC 10。该锡膏适合常温下超长时间保存,且制作工艺比传统焊锡膏有了显著升级。相对于普通材料的平均1至4小时暴露时间,汉高LOCTITE GC 10无卤素、无铅、恒温型配方,最长可暴露24小时。稳定一致的印刷转移效率,宽大的回流窗口,让LOCTITE GC 10具有更高的活性,能够大大提高生产线上焊接系统的稳定性。  知名焊材公司华加美(展位号:A-1G74)本次带来了M8完全新一代的免洗锡膏,基于无铅T4及更细锡粉开发设计,工艺更精致、使用更持久,适用工艺窗口更广泛。它可为超微粒子和umBGA装置提供稳定的印刷性,为最具挑战性的电子应用减少DPMO。更为关键的是,M8免洗锡膏制作时加入了清洁化学剂,保证残留物被轻而易举一扫而空,为产品设计打上了深深的环保印记。  首次进入国内市场的ALPHA公司(展位号:A-1D55),携旗下多款竞品入驻NEPCON,焊膏、焊料合金、助焊剂、卷带式低温SnBiAg预成型焊锡,各种型材应有尽有,为电子制造提供最全面的焊接工艺方案。其中ALPHA SnCX Plus&trade 07是一种无铅无银的助焊合金,专为简单至标准复杂的双面组装而设,其中包含的锡、铜以及各种独有添加品,让焊接过程更简单,效果更明显。  专注于研发、生产和销售电子清洗剂的依工特种材料有限公司(ITW,展位号:A-1D50),旗下包罗各种CBA工艺中清洗助焊剂,钢网板清洗剂,用于PCB保护的三防漆,各类ESD清洗或防护剂、锡编带、助焊笔、涂层笔等便利产品,一展打尽全部电子清洗材料,是工业电子、电路板组装等制造商的最佳选择。  引领全球的ZESTRON(展位号:B-1C35)水基清洗产品凭借独创的MPC微相清洗技术开发,能够高效去除电子元器件表面的助焊剂残留,保证卓越的清洗效果并提供良好的材料兼容性。ZESTRON 水基清洗产品可过滤循环使用,因此拥有超出寻常的清洗寿命,减少成本。该产品安全环保,累计帮助全球2000多家知名客户提升了工艺表现。  对精密电路板和半导体电子元件的清洗,一直以来是清洗剂行业的难题。化研科技株式会社(展位号:B-1J01)采用了超微净清洗系统,一键清洗所有精密电子元件。它不仅实现无污染清洗,同时推进了循环再生利用,是环保性能极高的精密清洗系统。  通过业界人士合作交流来探讨行业话题,这在NEPCON历史上不是唯一,但本次论坛却首次把关注焦点投向了电子新材料领域。作为电子制造业的重要参与者,电子材料的环保指数和安全系数,直接决定着整个行业的走向,更为紧迫的是从生产工艺和材料应用等关键环节上采用更为先进的技术,这样才能打造中国电子产品的高品质印象。  来源:NEPCON  2015 NEPCON China观众预登记途径:  · 发送短信&ldquo CNH+姓名+公司名&rdquo 至106900297333即可登记参观NEPCON China 2015并收到展会资讯  · 参观热线:国内观众&mdash 4006505611或86-10-5763 1818 国际观众&mdash 86-21-2231-7011  · 关注官方微博:NEPCONChina电子展 官方微信服务号:NEPCON_CHINA  · NEPCON China 2015详情请访问:www.nepconchina.com  · NEPCON South China 2015详情请访问:www.nepconsouthchina.com  关于励展博览集团大中华区&mdash &mdash 中国领先的展览会主办机构  励展博览集团大中华区是世界领先的展览及会议活动主办机构&mdash &mdash 励展博览集团的下属公司。励展博览集团在世界各地拥有3,700名员工,在43个国家举办500多个展会项目,其展览及会议组合为跨美洲、欧洲、中东、亚太和非洲地区43个行业部门提供服务。2014年,励展博览集团举办的展会吸引了来自世界各地的700余万名参与者,为客户达成了数十亿美元的业务交易。励展博览集团是励德爱思唯尔集团的成员之一,后者是全球领先的专业信息解决方案提供商,亦是一家FTSE-100上市公司。  励展博览集团大中华区历经30多年的快速发展,如今已成为中国领先的展览会主办机构,在华拥有八家出色的成员公司:励展博览集团中国公司、国药励展展览有限责任公司、励展华博展览(深圳)有限公司、北京励展华群展览有限公司、上海励欣展览有限公司、北京励展光合展览有限公司、励展华百展览(北京)有限公司和河南励展宏达展览有限公司。  目前,励展博览集团大中华区在中国拥有500多名员工,服务于国内11个专业领域:电子制造与装配 机床、金属加工与工业材料 包装 生命科学与医药、保健、美容与化妆品,休闲运动 礼品与家居 汽车后市场 生活方式 博彩 出版 地产与旅游 海洋、能源,石油与天然气。  2014年,励展博览集团大中华区主办的50余场展会吸引了100万余名观众以及近4万余名参会代表出席 在我们的展会上,共有3万多家供应商参与展示,其展位面积总计超过160万平方米。
  • 烟台现"特种黄金"万足金 专家称含量无法检测
    水母网12月20日讯 黄金含量99%的,称为足金 含量达到99.9%的,称为千足金 市场上还有一种万足金,黄金含量达到99.99%。临近年底,黄金珠宝首饰迎来一年中最火  爆的销售旺季。记者昨天走访黄金首饰市场时发现,很多首饰卖场推出“万足金”黄金首饰吸引顾客,业内人士表示,国家尚无此项产品标准。  金饰年终大促销  消费者“懂行”的不多  昨天上午,在市区南大街沿线,不少珠宝推出了强势年终促销,有的播放高音喇叭,有的打出了买赠广告,吸引了不少周末逛街的市民。一位售货员告诉记者:“年底到过年是一年中最大的旺季,大家都铆足了劲想在这几个月大赚一笔。”而另一家珠宝店的负责人则实在地说:“促销力度越大,说明生意越不好做,这几个月大家干的确实不太好。”  五花八门的珠宝首饰中,一种标着万足金的黄金首饰吸引了不少消费者,相对于目前千足金306.5元每克的价格,这种黄金的定价要高出近两成左右,售价每克369元。在一家首饰店的柜台,靠最前一排的黄金戒指,挂的小牌子都是“万足金”,但仔细看,首饰上刻的却是99.9%的含量。一位正在选购戒指的女士告诉记者,感觉万足金肯定是最纯含量的,也最保值,所以挑这个最贵的买。而她并不知道99.9%其实是千足金的含量标志,黄金首饰的投资价值也并不大。  国家无此标准  万足金含量无法检测  一位不愿意透露姓名的业内人士黄先生表示,按照国家对贵金属命名的规定,千足金又称999金,金含量不低于99.9%,这也是国家标准中黄金首饰成色标准的最高纯度。而所谓的“万足金”,国家标准中没有相关规定。  “主要的问题在于黄金首饰的焊接点。”黄先生表示,黄金首饰在焊接时,焊料熔接技术中,加入非金金属降低了黄金含量,所以工艺越是复杂的首饰,黄金含量越低。而目前只有极少数高端企业掌握无焊料熔接技术,且不适合大批量生产。9999金目前多数是金砖、金条这样的成品,因为黄金纯度越高,质地越软,并不适合做成首饰。  黄先生透露,烟台尚没有可以检查999金以上纯度的设备,检验机构根本无法检验商家宣称的金饰成色≥99.99%的万足金是否具有“9999”纯度。也就是说,部分商家出售的万足金产品至少在目前得不到权威机构的认证,无法出具官方检测报告。但相关主管单位表示,随着黄金提纯和焊接工艺的进步,不排除推出这一标准的可能。  买黄金要看挂牌  “万足金”只是行业术语  记者采访时得知,正规金店或是企业生产的黄金饰品的含量有两个标志,其一,商家销售的每件黄金饰品挂牌必须打有厂家代号、材料和纯度及镶嵌首饰主钻石(0.10克拉以上)的质量 其二,首饰身上都打有“999”这样的纯度标志,国家标准里有很明确规定,两个标志必须相符。  我们平时所说的“万足金”、“纯金”、“18K金”这些术语并没有列入国家标准规范内,所以在购买黄金首饰时,发票上必须按行业标准语言书写,不然消费者一旦发现问题,很难维权。
  • 工信部发布2010年第二批行业标准制修订计划
    工业和信息化部办公厅关于印发2010年第二批行业标准制修订计划的通知有关单位:  根据我部《2010年标准化工作要点》和行业标准制修订工作的总体安排,现将2010年第二批工业和通信业行业标准制修订计划印发给你们,请按照标准化工作程序认真组织落实,具体要求如下:  一、标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调。  二、标准化技术归口单位、技术组织等要做好标准意见征求和技术审查等工作,把好技术审查关。  三、部内相关司局应做好所辖领域行业标准制修订过程的管理工作,确保标准质量。  四、在计划的执行过程中,如需对标准项目进行调整,按有关规定办理。  附件:2010年第二批行业标准制修订计划   二〇一〇年十一月二十六日  简 要 说 明  为做好2010年标准化工作,我们组织编制了2010年第二批行业标准制修订计划。  一、编制原则  (一)产业发展需求的原则。根据当前工业和通信业发展面临的形势和产业发展需求,制定对促进产业结构调整和优化升级具有重大影响的新技术、新产品、新材料标准 修订低水平标准,提升标准技术水平,适应产业发展需要。  (二)市场需要原则。围绕行业管理,产品设计、生产、检验、使用,市场营销等活动及行业和社会关注的热点问题,积极制定行业标准,保证产品质量,规范市场秩序,保护消费者利益。  (三)协调配套原则。标准之间结构合理、层次分明、相互协调,互为补充。  二、编制重点  (一)优先编制有利于实施产业政策、产业调整与振兴规划,推动行业技术进步,引导产业结构调整和优化,市场准入、规范市场经济秩序的标准项目。  (二)突出做好高新技术推广应用和科研成果产业化,推动产业升级、自主创新、促进新型工业化的标准项目。  (三)产业发展规划中确定的重点领域、重点产品、重大装备及先进设计、工艺等标准项目。  (四)经复审急需修订的标准项目。  三、2010年第二批行业标准制修订计划共安排701项。其中制定405项,修订296项 产品类标准700项,节能与综合利用标准1项。2010年第二批行业标准项目计划汇总表行业合计性质制修订标准类别采用国际和国外先进标准数强制推荐指导制定修订节能与综合利用工程建设安全生产产品类标准样品合计70106983405296100700031机械行业2102101920002103轻工行业3960396023016610039500电子行业1730171262111000173028通信行业11101101941700011100  附录:本次计划中与仪器及分析测试相关的项目:2010年第二批产品类标准项目计划表机械行业402010-2685T-QB家具表面软质材料剥离强度的测定推荐修订QB/T 3655-19992011全国家具标准化中心南京林业大学412010-2686T-QB家具表面硬质材料剥离强度的测定推荐修订QB/T 3656-19992011全国家具标准化中心南京林业大学432010-2688T-QB家具实木胶接合耐水性的测定推荐修订QB/T 1094-19912011全国家具标准化中心南京林业大学442010-2689T-QB家具实木胶接合顺纹压缩剪切强度的测定推荐修订QB/T 1093-19912011全国家具标准化中心南京林业大学472010-2692T-QB家具五金 杯状暗铰链 安装要求和检验推荐修订QB/T 2189-19952011全国家具标准化中心国家家具产品质量监督检验中心(广东)482010-2693T-QB家用的童床和折叠小床 第2部分:试验方法推荐修订QB/T 2453.2-19992011全国家具标准化中心国家办公用品设备质量监督检验中心492010-2694T-QB金属家具 质量检验及质量评定推荐修订QB/T 1951.2-19942011全国家具标准化中心上海市质量监督检验技术研究院502010-2695T-QB家具表面漆膜耐盐浴测定法推荐修订QB/T 1950-19942011全国家具标准化中心浙江省家具与五金研究所1852010-2830T-QB日用陶瓷原料筛余量的测定推荐修订QB/T 2435-992011全国日用陶瓷标准化技术委员会国家陶瓷产品质量监督检验中心(江西)1872010-2832T-QB陶瓷器抗冲击试验方法推荐修订QB/T 1993-942011全国日用陶瓷标准化技术委员会国家陶瓷产品质量监督检验中心(江西)2152010-2860T-QB发酵酒中尿素含量测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2162010-2861T-QB黄酒中微量无机元素的测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2172010-2862T-QB黄酒中主要挥发性醇类物质的测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2182010-2863T-QB黄酒中主要挥发性酯类物质的测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2192010-2864T-QB纳豆推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院、中国发酵工业协会等2202010-2865T-QB葡萄酒中氨基酸的测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2212010-2866T-QB葡萄酒中微量无机元素的测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2222010-2867T-QB葡萄酒中主要挥发性醇类物质的测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2232010-2868T-QB葡萄酒中主要挥发性酯类物质的测定方法推荐制定 2011全国食品发酵标准化中心中国食品发酵工业研究院等2462010-2891T-QB贵金属镶嵌首饰零配件技术条件推荐制定 2011全国首饰标准化技术委员会福建省莆田市华昌首饰有限公司、国家首饰质量监督检验中心、福建省宝玉石协会、福建省贵金属和珠宝玉石产品质量监督检验中心2472010-2892T-QB贵金属艺雕复镶首饰推荐制定 2011全国首饰标准化技术委员会福建省莆田市华昌首饰有限公司、国家首饰质量监督检验中心、福建省宝玉石协会、福建省贵金属和珠宝玉石产品质量监督检验中心2482010-2893T-QB首饰 金覆盖层厚度的测定 化学法推荐修订QB/T 1133-19932011全国首饰标准化技术委员会国家首饰质量监督检验中心2492010-2894T-QB首饰 银覆盖层厚度的测定 化学法推荐修订QB/T 1134-19932011全国首饰标准化技术委员会国家首饰质量监督检验中心2502010-2895T-QB钨合金饰品推荐制定 2011全国首饰标准化技术委员会厦门真男人饰品有限公司、浙江新光饰品有限公司2512010-2896T-QB高抗冲聚苯乙烯挤出板材推荐修订QB/T 1869-19932011全国塑料制品标准化技术委员会青岛宏达塑胶总公司2522010-2897T-QB合成革用聚氨酯表面处理剂推荐制定 2011全国塑料制品标准化技术委员会江苏宝泽高分子材料股份有限公司2532010-2898T-QB合成革用抗菌剂推荐制定 2011全国塑料制品标准化技术委员会江苏宝泽高分子材料股份有限公司2542010-2899T-QB挤出聚丙烯发泡片材(XPP)推荐制定 2011全国塑料制品标准化技术委员会轻工业塑料加工应用研究所2552010-2900T-QB家居用聚氨酯合成革推荐制定 2011全国塑料制品标准化技术委员会义乌鑫挺人造革有限公司2562010-2902T-QB聚全氟乙丙烯薄膜推荐制定 2011全国塑料制品标准化技术委员会上海市塑料研究所2572010-2903T-QB未增塑聚氯乙烯(PVC-U)型材专用彩色共挤料技术条件推荐制定 2011全国塑料制品标准化技术委员会中国塑料加工工业协会异型材及门窗制品专业委员会2582010-2904T-QB未增塑聚氯乙烯(PVC-U)型材专用加工助剂技术条件推荐制定 2011全国塑料制品标准化技术委员会中国塑料加工工业协会异型材及门窗制品专业委员会2592010-2905T-QB未增塑聚氯乙烯(PVC-U)型材专用氯化聚乙烯技术条件推荐制定 2011全国塑料制品标准化技术委员会中国塑料加工工业协会异型材及门窗制品专业委员会2632010-2909T-QB人造革合成革试验方法耐黄变的测定推荐制定 2011全国塑料制品标准化技术委员会晋江翔大工贸有限公司2642010-2910T-QB人造革合成革试验方法耐水解的测定推荐制定 2011全国塑料制品标准化技术委员会晋江翔大工贸有限公司3742010-3020T-QB鞋类 帮面试验方法 低温耐折性能推荐修订QB/T 2224-19962011全国制鞋标准化技术委员会中国皮革和制鞋工业研究院、广东省鞋类产品质量监督检验站3752010-3021T-QB鞋类 化学试验方法 皮鞋油中重金属含量的测定推荐制定 2011全国制鞋标准化技术委员会中国皮革和制鞋工业研究院3762010-3022T-QB鞋类 化学试验方法 烷基酚聚氧乙烯醚的测定推荐制定 2011全国制鞋标准化技术委员会中国皮革和制鞋工业研究院3772010-3023T-QB鞋类 化学试验方法 鞋垫中重金属含量的测定推荐制定 2011全国制鞋标准化技术委员会中国皮革和制鞋工业研究院3782010-3024T-QB鞋类 化学试验方法 重金属含量的测定推荐制定 2011全国制鞋标准化技术委员会中国皮革和制鞋工业研究院722010-3113T-SJ喷雾式涂布设备通用规范推荐制定 2011全国半导体设备和材料标准化技术委员会沈阳芯源微电子设备有限公司742010-3115T-SJ用等离子体感应发射分光光度测定法测定氢氟酸中钴(Co)、铬(Cr)、铜(Cu)、钙(Ca)、铁(Fe)、镍(Ni)和锌(Zn)的含量推荐制定 2012全国半导体设备和材料标准化技术委员会中国电子科技集团公司第四十六研究所752010-3116T-SJ用电感耦合等离子体质谱法测定硝酸中铝(Al)、钴(Co)、铜(Cu)、钠(Na)、镍(Ni)和锌(Zn)的含量推荐制定 2012全国半导体设备和材料标准化技术委员会中国电子科技集团公司第四十六研究所762010-3117T-SJ用原子吸收光谱测定法测定硝酸溶剂中银、金、钙、铜、铁、钾和钠的含量推荐制定 2012全国半导体设备和材料标准化技术委员会中国电子科技集团公司第四十六研究所1352010-3176T-SJ电子器件用纯银钎焊料中杂质含量铅、铋、锌、镉、铁、镁、铝、锡、锑、磷的ICP-AES测定方法推荐修订SJ/T 11020~11027-19962011全国印制电路标准化技术委员会信息产业部专用材料质量监督检验中心1372010-3178T-SJ电子器件用金、银及其合金焊料清洁性和溅散性测试方法推荐修订SJ/T 10754-1996 SJ/T 10755-19962011全国印制电路标准化技术委员会信息产业部专用材料质量监督检验中心1382010-3179T-SJ电子器件用金镍钎焊料的分析方法 EDTA容量法测定镍推荐修订SJ/T 11029-19962011全国印制电路标准化技术委员会信息产业部专用材料质量监督检验中心1392010-3180T-SJ电子器件用金铜、金镍钎焊料中铅、锌、磷含量的ICP-AES测定方法推荐修订SJ/T 11030-1996 SJ/T 11031-1996 SJ/T 11032-19962011全国印制电路标准化技术委员会信息产业部专用材料质量监督检验中心1402010-3181T-SJ电子器件用金铜钎焊料的分析方法 EDTA容量法测定铜推荐修订SJ/T 11028-19962011全国印制电路标准化技术委员会信息产业部专用材料质量监督检验中心
  • “100家实验室”专题:访北京矿冶研究总院测试研究所
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,将用一年半的时间对不同行业有代表性的“100个实验室”进行走访参观。 2008年7月25日,仪器信息网工作人员参观访问了本次活动的第六站:北京矿冶研究总院测试研究所暨国家重有色金属质量监督检验中心。仪器信息网参观人员与测试研究所领导合影  北京矿冶研究总院测试研究所所长、国家重有色金属质检中心常务副主任李华昌研究员热情接待了仪器信息网来访人员并对北京矿冶研究总院测试研究所作了详细介绍。北京矿冶研究总院测试研究所1956年成立,历史较久、技术力量雄厚。研究所现有职工35名,70%以上为长期从事检测工作的专业技术人员。2001年4月,该所通过中国实验室国家认可委员会审查认可(证书编号为CNAS No. L 0547),具备高水平的无机、有机、环境等样品的分析测试能力及研究开发能力,建立有完善的与国际接轨的质量管理体系,其检验数据在国际上得到认可。其研究与服务领域主要为矿石、精矿、有色金属、选冶药剂、以及有色金属选矿和冶金中间产品和最终产品。  该研究所同时为国家重有色金属质量监督检验中心、国家进出口商品检验有色金属认可实验室、中国有色金属工业重金属质检中心、科技成果检测鉴定国家级检测机构,在国内有色金属分析领域具有权威地位,在国际上享有一定声誉。  在实验室参观过程中,李所长向大家介绍了测试研究所的仪器设备资源概况。研究所拥有70多台/套先进的大中型仪器设备,其中包括VG ICP质谱仪,VG Iris ICP光谱仪,Perkin-Elmer ICP光谱仪, Perkin-Elmer 石墨炉原子吸收光谱仪/火焰原子吸收光谱仪,UV/VIS 分光光度计,LECO 碳/硫分析仪,LECO 碳/氢/氮分析仪,Waters 高效液相色谱仪 Finigan 气相色谱-质谱仪,Bruker 红外与拉曼光谱仪,日立扫描电镜与能谱,透射电镜等。Thermo电感耦合等离子体质谱仪SARTORIUS 百万分之一微量电子天平配有EDAX能谱的FEI扫描电子显微镜日本电子透射电镜德国布鲁克公司红外与拉曼光谱仪日立公司S-3500N扫描电镜Thermo ICP光谱仪Finigan Trace 2000 GC-MS  目前,研究所拥有办公和试验场地1560m2,其中办公场地220m2,试验场地1340m2。新的研究所实验中心已在规划中,而一旦新的实验中心完成,届时将更换大量的新型设备。  做中国的SGS是该研究所的远景目标。研究所不仅本着“方法科学、行为公正、数据准确、服务及时,坚持质量第一”的质量方针为客户提供权威的服务,而且在人才、技术、学术等方面在激烈的国际市场竞争中具有自己的优势,实验室不仅是我国有色金属矿石及金属国家和行业标准的主要制修订单位,而且还参加国际标准的制修订工作。近年来,研究所业务快速增长,工作量与收入递增30~40%。很多客户,包括国外客户慕名而来。  在激烈的国际竞争中,国内实验室也有自身的弱点,与国外知名实验室相比,体制、机制、资本运作等方面显得不足。如何形成自己的客户服务网络体系、更加方便快捷的服务客户,扩展实验室的国际知名度,提高仪器设备更新速度,也是国家重有色金属质量监督检验中心发展面临的主要问题。李所长同时呼吁,国家在注重对于一些未转制的事业型研究单位加大设备和资金投入的同时,对于重点转制院所中的国家级质检中心也应加大投入力度。承检能力范围样品类别样 品矿石铜铅锌矿石、钨矿石、钼矿石、冶金用金块矿、铝土矿石、铁矿石、萤石、铜精矿、铅精矿、锌精矿、金精矿、银精矿、钨精矿、锡精矿、钼精矿、镍精矿、锑精矿、铋精矿、硫铁精矿、铁矿石、锰矿石、钴硫精矿、镍硫精矿等金属阴极铜、电工用铜线、铅、锌、锡、锑、铋、镉、钴、镍、硒、碲、铟、铊、金、银、海绵铂、海绵钯、粗铜、粗铅、高纯铝、重熔用铝锭、铝及铝合金、重熔用镁锭、电解铜粉、电解镍粉、锌粉、镁粉、铝镁合金粉、铝粉等金属氧化物氧化锌(直接法)、氧化锌(间接法)、三氧化二锑、氧化钴、氧化铝、稀土氧化物等合金铅基合金、铸造轴承合金、铸造锌合金、热镀锌合金、铸造黄铜、铸造青铜、铸造锡铅焊料、钼铁、钨铁、钒铁、硅铁等环境样品土壤、固体废弃物、水质等矿山药剂25号黑药、乙基钠黄药、丁基钠黄药(合成品 )、乙硫氮、丁铵黑药、丁钠黑药、仲辛基黄药、甘苄油、苯乙脂油等其他地质样品、各种阳极泥及贵金属物料、医疗样品(含透析用水、发样、血样等)、食品、草酸钴、钴酸锂、锰酸锂、三硫化二锑、硫酸镍、立德粉、金红石(人造)、石墨、工业硅、分银渣、羰基镍铁粉、高镍锍等
  • rohs检测仪助力欧盟对有害物质豁免清单加以修改
    自欧盟对RoHS指令有害物质豁免清单加以修改后,扬声器焊料的铅合金被即刻淘汰,这对相关产品的出口造成冲击。大榭检验检疫局以开展“质量和安全年”活动和“检企同心 共促发展”帮扶行动为契机,积极帮助企业完善生产工艺流程和质量管理制度,确保音箱产品顺利出口。图为该局工作人员正在对出口音箱进行检验。 多年来,为了能够严控有害物质流入市场,监控人员一直在坚持使用rohs检测仪来分析相关产品。当产品中有害元素含量过高时,rohs检测仪总是能够准确的检测出来。
  • 使用标准积分球和全积分球测试透镜
    1. 前言  使用紫外分光光度计测定固体样品时,会用到积分球。积分球的种类繁多,有不同的尺寸、形状、涂层材质。日立紫外可见近红外分光光度计UH4150具有多种积分球检测器,可以满足不同样品的测量需求。图1 日立UH4150及其丰富附件这里以透镜测定为例,介绍标准积分球和全积分球。 2. 积分球结构标准积分球的内壁涂层为BaSO4,副白板的材质为Al2O3。它不但可以测定透过率,还可以测定全反射率和漫反射率。全积分球的副白板位置处无开孔,其内层材质同样为BaSO4。因此,全积分球不能测定全反射率和漫反射率。图2 标准积分球和全积分球的结构 3. 透镜的测定实例当测定如透镜类的样品时,其透射光束会在积分球内发生较大变化,若使用标准积分球时,透射光会从积分球背面的副白板溢出,并由副白板和积分球内壁反射。如图3所示,由于Al2O3和积分球内层BaSO4的反射率不同,因此基线校正(仅通过副白板反射校正)和样品测定时的光学条件不同,无法得到正确的测光值。图3 Al2O3和BaSO4的反射光谱详细信息请点击:https://www.instrument.com.cn/netshow/SH102446/s930350.htm 4. 总结 日立提供多种积分球,包括全积分球和标准积分球,以及开口倾角不同的标准积分球等,满足多种样品的精确测定。拨打400-830-5821,联系我们。
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 小“微球”大本领
    制剂的一池春水正悄然被“微球”这种技术吹皱。即便是多种多样的领域,小小的“微球”都会帮助研究者获得更好的效果——那些需要缓慢释放或是维持活性的成分,可以通过制备成微球的方式来达到预期目标——例如医学上已有药物的剂型创新,又或是农药与化肥的用法改革。相比单纯地开发新药或新化合物,创新制剂的优势非常明显。目前全球发行新分子实体越来越难,而制剂创新具有研发周期短、投入少、风险低的特点,且有效性和安全性又有保障,成为不少高校科研或大型企业的开发方向。那么,如此神奇的“微球”到底是一种什么样的制剂方式呢?微球(microsphere)是指活性成分分散或被吸附在高分子、聚合物基质中而形成的微粒分散体系。微球粒径范围一般为1~500um,极值为几纳米至800um,其中粒径大于500nm的称为微米微球,小于500nm的通常称为纳米球或纳米粒,属于胶体范畴。制备微球的载体材料很多,主要分为天然高分子微球(如淀粉微球,白蛋白微球,明胶微球,壳聚糖等)和合成聚合物微球(如聚乳酸微球)。微球制剂既能通过调节和控制药物的释放速度实现长效的目的,又能保护药物不受体内酶的影响而降解,掩盖药物的不良口味,减少给药次数和药物刺激,降低毒性和不良反应,提高疗效。 此外,微球还与某些细胞组织有特殊亲和性, 能被器官组织的网状内皮系统所内吞或被细胞融合, 集中于靶区逐步扩散释出药物或被溶酶体中的酶降解而释出药物, 从而起到靶向治疗的作用。因此药物微球的有三大生物学特点:缓释性、靶向性、栓塞性。 而在农药或化肥的用法上,则是针对农作物的植物学特性,侧重利用微球的缓释性和靶向性。以天然高分子为载体的农药缓释微球的制备方法包括挤出-外源凝胶法、乳化-凝胶法(乳化-外源凝胶法和乳化-内源凝胶法)、乳化-溶剂挥发法(单乳液法、双乳液法)等,不同制备方式对微球结构、粒径、包埋率、缓释等性能都有不同影响。在制备过程中,研发阶段亟需考虑到转化为中试或生产时的连贯性。德国艾卡著名的“一比一等比例放大”为科研的实业化提供完美的解决方案。小试阶段,T25数显型分散机(均质乳化机)可实现高效的乳化,在化学交联完成后进一步完成完美乳化。在100~200 ml的制剂中,通过优化转速、时间和分散机缓慢移动,即可迅速获得理想粒径。诸多研发实验室已从T25数显型分散机上受益——无论是所得微球的粒径分布还是活性或效果,都成为制剂创新中的重要一环。 T25数显型分散机曾获得红点大奖 关于红点大奖"红点奖"为举世公认的针对卓越设计的最具分量的奖项之一从1955年,德国著名设计协会给国际上出色的产品设计颁以其出色的红点标记。该奖涵盖时尚以及消费电子界的设计,乃至汽车、家居用品以及家具。目前,生产厂家以及工业产品设计师可以在红点的31个类别中投放作品。
  • 无兄弟,不篮球!——海能篮球争霸赛
    无兄弟,不篮球!2016年10月21日,海能篮球争霸赛火热开打!word小伙伴们,想就上,不要撩!本次篮球赛共4支代表队参赛,由来自不同部门的海能兄弟组成。比赛分为小组赛和决赛两个阶段。尽管比赛过程曲折,但各分队都打出了气势,赛出了风格。紧张而激烈的争夺,伙伴们越战越勇!沸腾吧,热血!冲进决赛,收关之战更加艰难,是对体力和毅力的双重考验。两队势均力敌、旗鼓相当,角逐精彩异常!综合代表队则凭借有序攻防、默契配合,最终摘得桂冠。顽强拼搏、敢打敢拼,这是海能兄弟们的热血风采!欢呼吧,少年!抱好奖品,开森的笑吧!海能兄弟,我们下次再战!
  • 半导体封装行业的热分析应用
    半导体业务中的典型供应链, 显示了需要材料表征、材料选择、质量控制、工艺优化和失效分析的不同工艺步骤热分析在半导体封装行业中有不同的应用。使用的封装材料通常是环氧基化合物(环氧树脂模塑化合物、底部填充环氧树脂、银芯片粘接环氧树脂、圆顶封装环氧树脂等)。具有优异的热稳定性、尺寸稳定性以及良好户外性能的环氧树脂非常适合此类应用。固化和流变特性对于确保所生产组件工艺和质量保持一致具有重要意义。通常,工程师将面临以下问题:特定化合物的工艺窗口是什么?如何控制这个过程?优化的固化条件是什么?如何缩短循环时间?珀金埃尔默热分析仪的广泛应用可以提供工程师正在寻找的答案。差示扫描量热法(DSC)此项技术最适合分析环氧树脂的热性能,如图1所示。测量提供了关于玻璃化转变温度(Tg)、固化反应的起始温度、固化热量和工艺最终温度的信息。图 1. DSC曲线显示环氧化合物的固化特征DSC可用于显示玻璃化转变温度,因为它在给定温度下随固化时间(图2)的变化而变化。图 2. DSC 曲线显示玻璃化转变温度随着固化时间的延长而逐渐增加玻璃化转变温度(Tg)是衡量环氧化合物交联密度的良好指标。事实上,过程工程师可以通过绘制玻璃化转变温度与不同固化温度下固化时间的关系图来确定最适合特定环氧化合物的工艺窗口(图3)。图 3. 玻璃化转变温度与不同固化温度下的固化时间的关系如果工艺工程师没有测试这些数据,则生产过程通常会导致产品质量低下,如图4所示。图 4. 玻璃化转变温度与不同固化温度下的固化时间的关系在本例中,制造银芯片粘接环氧树脂使用的固化条件处于玻璃化转变温度与时间的关系曲线的上升部分(初始固化过程)。在上述条件下,只要固化时间或固化温度略有改变,就有可能导致结果发生巨大变化。结果就是组件在引脚框架和半导体芯片之间容易发生分层故障。通过使用功率补偿DSC(例如珀金埃尔默的双炉DSC),生成上述玻璃化转变温度与温度 / 时间关系曲线,可确定最佳工艺条件。使用此法,即使是高度填充银芯片粘接环氧树脂的玻璃化转变也可以被检测出。这些数据为优化制造工艺提供了极有帮助的信息。使用DSC技术,可以将固化温度和时间转换至160° C和2.5小时,以此达到优化该环氧树脂固化条件的目的。这一变化使过程稳定并获得一致的玻璃化转变温度值。在珀金埃尔默,DSC不仅被用于优化工艺,而且还通过监测固化产物的玻璃化转变温度值,发挥质量控制工具的作用。DSC 8000 差示扫描量热仪DSC 还可以用于确定焊料合金的熔点。用DSC分析含有3%(重量比)铜(Cu)、银(Ag)或铋(Bi)的锡合金。图5中显示的结果表明,不同成分的合金具有非常不同的熔点。含银合金在相同浓度(3%(重量比))下熔点最低。图 5. DSC:不同焊接合金在不同湿度环境下的熔点分析热重分析(TGA)珀金埃尔默热分析仪有助于设计工程师加深对材料选择的理解。例如,珀金埃尔默TGA 8000(图6)可以检测出非常小的重量变化,并可用于测量重要的材料参数,如脱气性能和热稳定性。这将间接影响组件的可焊性。图7显示了在230°C 和260° C下具有不同脱气性能的两种环氧树脂封装材料。重量损失(脱气)程度越高,表明与引脚框架接触的环氧树脂密封剂的环氧—引脚框架分离概率越高。图 6. 珀金埃尔默TGA 8000图 7. TGA结果显示两种材料具有不同的脱气性能热机械分析(TMA)当材料经受温度变化时,TMA可精确测量材料的尺寸变化。对于固化环氧树脂体系,TMA可以输出热膨胀系数(CTE)和玻璃化转变温度。环氧树脂的热膨胀系数是非常重要的参数,因为细金线嵌入环氧化合物中,并且当电子元件经受反复的温度循环时,高热膨胀系数可能导致电线过早断裂。不同热膨胀系数之间的拐点可以定义为玻璃化转变温度(图8)。TMA还可以用于确定塑料部件的软化点和焊料的熔点。图 8. 显 TMA 4000 测试的典型的 TMA 图动态力学分析(DMA)选择材料时,内部封装应力也是关键信息。将DMA与 TMA技术结合,可以获得关于散装材料内应力的定量信息。DMA测量材料的粘弹性,并提供不同温度下材料的模量,具体如图9所示。当材料经历热转变时,模量发生变化,使分析人员能够轻松指出热转变,如玻璃化转变温度、结晶或熔化。图 9. DMA 8000 测试的典型的 DMA 图热分析仪用于ASTM 和IPC材料标准试验、质量控制和材料开发。图10显示了一个涉及热分析仪的IPC试验。珀金埃尔默DMA目前已在半导体行业得到广泛应用。图 10. DMA:显示透明模塑化合物的内应力热分析仪是半导体封装行业的重要工具。它们不仅在设计和开发阶段发挥了重要作用,而且还可用于进行故障分析和质量控制。许多标准方法都对热分析的使用进行了描述(图11)。使用珀金埃尔默热分析仪,用户可以优化加工条件并选择合适的材料以满足性能要求,从而确保半导体企业能够生产出高品质的产品。考虑到此类分析可以节省大量成本,热分析仪无疑是一项“必备”试验设备!图 11. 用于标准方法的热分析仪
  • 迎“篮”而上,精益“球”精——第三届“科晶杯”篮球争霸赛完美收官!
    2024年1月13日上午,沈阳科晶第三届“科晶杯”篮球争霸赛在ET篮球公园燃情开赛,公司领导及各部门篮球爱好者来到现场观赛。 新年伊始,大家齐聚赛场,以球会友、喜气洋洋。伴随裁判清脆的哨声,比赛拉开帷幕,双方球员进入状态迅速,精准的投篮,快速的突破,敏捷的抢断,队员们火力全开、各显绝技,全力以赴突破自我,点燃了冬日球场上的澎湃激情,赢得了场下观众的阵阵喝彩。他们用精彩的表现展现了顽强拼搏、追求卓越的企业精神和协同合作、攻坚克难的团队精神。 终场哨声响起,“七星队”最终以57:56险胜对手“锋凡队”,荣获本届篮球俱乐部冠军;至此,“七星队”成功拿下三连冠的好成绩!沈阳科晶自动化设备有限公司总经理、副总经理出席并为获奖代表队颁奖。 本次篮球赛丰富了职工的业余生活,提高了职工的身体素质,增强了团队战斗力和凝聚力,冠军不是终点,荣光更是奋进未来的动力,脱下球衣,换上工装,“科晶人”将继续锐意进取、奋勇争先,把赛场上永不放弃的精神融入到平凡岗位中,勇担使命、拼搏奉献,为助力科研领域发展贡献青春力量。 生命在于运动,公司积极营造运动健康的氛围,篮球俱乐部、乒乓球俱乐部、足球俱乐部等运动队伍蓬勃发展,丰富了大家的业余生活。运动增进友谊,凝聚动力,预祝公司球队再接再厉,赛出风采~
  • 织物起毛起球测试实验分析
    标准集团专业提供织物起毛起球测试仪以及相关检测仪器,标准集团是一家专业研发生产销售耐磨测试仪的企业,拥有国际认证,是世界500强合作伙伴,买织物起毛起球测试仪首先标准集团,性价比高,售后服务好。1 织物起毛起球研究的发展过程1. 1 起毛起球过程织物在服用过程中, 不断受到多种外力的摩擦作用, 在明显损坏前, 产生起毛起球现象。织物的起毛起球过程可分为 3个阶段: 起毛、纠缠成球、毛球脱落。有些资料认为分 4 个阶段: 毛茸的形成, 毛茸的纠缠, 毛球形成以及由于摩擦、洗涤等作用使毛球脱落。1. 2 起毛起球机理织物表面的纤维受外部的摩擦作用, 首先被拉出形成圈环和绒毛, 即起毛阶段。对短纤维而言, 当外部摩擦力大于纤维在纱内的抱合力时, 绒毛被拉出, 绒毛达到一定长度后, 相互纠缠成球, 随着绒毛的进一步缠结, 球体逐渐变紧, 当球体所受的摩擦负荷大于绒毛受到的来自纱线中的摩擦阻力时, 绒毛从纱线中抽拔出来, 球体脱落。1. 3 起毛起球的影响因素1. 3. 1 纤维性能与纱线结构主要包括纤维的卷曲性、纤维细度、纤维长度、纱线捻度、纱线表面光洁度、纱线强力、抗弯性及耐磨性等对织成织物起球性能的影响, 目前以上因素对织物起球的影响已有大量的报道, 研究已经比较充分。1. 3. 2 织物的组织结构到目前为止, 主要是研究织物的紧密性、表面平整性以及其他因素对织物起球的影响。织物组织不同对织物的起毛起球影响很大, 比如平纹织物的交织点较多, 因此较斜纹织物不易起毛起球, 缎纹的抗起毛起球性最差, 针织物比机织物易起球。1. 3. 3后整理提高织物抗起毛起球性的后整理措施主要表现在以下几方面。( 1)染整工艺: 纱线或织物经染色及整理以后, 抗起毛起球性将产生较大的变化, 这与染料、助剂、染整工艺条件有关。( 2)用有机胺或无机强碱对涤纶进行腐蚀, 降低纤维强力, 此法虽有效但不易控制。( 3)强化烧毛工艺和热定形工艺, 其缺点是容易使织物失去丰满特性, 从而引起手感板硬粗糙。( 4) 采用生物酶整理。用纤维素酶改善棉织物表面, 以达到持久的抗起毛起球性, 并增加织物的光洁度和柔软度。生物抛光只适用于纤维素纤维。( 5)采用树脂整理。利用树脂较强的黏合力将纤维进行点粘结, 以限制其移动而达到减少起毛起球的目的。树脂整理适用于各种纤维与织物,尤其是涤纶织物。( 6)氧化剂整理。氧化剂的作用是将二硫键氧化, 使含高硫蛋白的鳞片变软, 易于变形, 摩擦因数增大, 不易形成绒毛, 也可以完全脱掉鳞片, 防止纤维纠缠形成毛球, 同时降低强力, 加速毛球脱落。该种方法的缺点是若控制不当, 纤维强力损失过多, 因此主要应用于羊毛纤维。( 7)丝蛋白整理, 此法主要用于羊毛。丝蛋白处理羊毛织物时, 主要分布在不平或间隙处, 填补了羊毛纤维表面由于鳞片而造成的凹凸不平, 降低了羊毛纤维表面的顺逆摩擦数之间差异, 且丝蛋白膜可以使纤维之间产生交联或者使纤维表面交织点发生黏接,减少了纤维间的滑移。纤维纠缠后, 由于顺逆摩擦因数差异减弱, 纤维也易解缠, 因此改变了羊毛织物的抗起毛起球性。( 8)抗起球剂 ATP整理。ATP具有优良的成膜性和渗透性, 能在织物表面成膜的同时渗入到纤维内部,使纤维与毛绒交联黏结形成网状膜结构, 从而起到良好的抗起毛起球效果。( 9)低温等离子体处理。等离子体只触及纤维表面, 对纤维损伤小, 处理机理是: 通过活化成等离子态的激发气体分子的氧化反应, 以及被加速的气体粒子的溅射作用, 使羊毛表面的杂质甚至鳞片层破坏, 反应生成 H2O、CO、CO2 等离子气体而从纤维表面除去, 从而改善防缩性和抗起球性。此法适于羊毛针织物。( 10)氯化法又称为氯氧化法, 它的理论基础是A llow ed 反应。而 A llow ed现象实质上是氯化与氧化反应共同作用的结果, 其中氧化反应起关键作用。氯化法是对羊毛纤维进行重度氯化处理, 以剥蚀羊毛纤维表面的鳞片。氯化处理后的羊毛纤维表面形状发生了一定的变化, 大多数羊毛鳞片的边缘变钝, 使羊毛纤维的摩擦因数降低, 从而降低羊毛纤维的起球性。此法适于羊毛针织物。( 11)纳米级溶胶 - 凝胶法, 是一种新型的抗起球整理技术。使用溶胶 - 凝胶法将蛋白质制膜, 涂层在山羊绒针织物表面, 起到抗起球效果。这种方法有利于生态环保, 会越来越受到人们的重视。此法适于羊毛针织物。( 12)其他。可以通过摩擦、熨烫、洗涤等方法研究织物的起毛起球情况。但目前主要是通过摩擦来研究织物的起球性能, 而在熨烫、洗涤方面的研究甚少。2 织物起球机理的动力学模型织物起球机理的动力学模型可描述为: 织物上存在一端自由的纤维和两端都受到握持作用的线圈, 在摩擦的过程中, 两端都受到握持作用的线圈比较松的一端从纱线中滑移出来成为一端握持的纤维。一端自由的纤维和两端都受到握持作用的线圈中一部分直接参与成球, 另一部分或继续保留在织物上或者被磨断成为脱落的绒毛。形成的球粒在摩擦的过程中由于固定纤维被磨断, 或者变小, 或者脱落, 球中的绒毛有的继续被卷入球体中参与成球, 有的成为脱落绒毛。织物的起球过程可以被描述为类似于化学反应动力学过程, 纤维可以看作是起球过程中的连续步骤的反应物。目前有两种基本的模型, 一个是 B rand和 Bohm falkt' 01 关于起球的数学模型, 另一个是 Conti和Tassinaril的简化的动力学模型。3 毛球的测试和评价方法3. 1 测试方法基本上所有的评价起球性能的测试方法都是在一定的时间里对织物表面进行摩擦, 然后评价起球程度。以下为几种测量起毛起球性能的方法: 随机翻滚毛球测试法 箱式起毛起球法 弹性衬垫法 马丁代尔起毛起球及耐磨法 毛刷海绵型耐磨试验法 加速型耐磨试验法 充气模式耐磨试验法 外观保持性试验法 往复式试验法 HATRA起球测试法。目前国内的实验室及工厂主要用随机翻滚毛球测试仪、箱式起毛起球仪、马丁代尔起毛起球和圆轨迹起球仪法。3. 1. 1 随机翻滚起球仪法织物试样在装有搅拌棒的圆筒内翻滚, 与另一试样或与圆筒壁摩擦, 产生起毛起球现象。织物的运动方式是随机、无规则的, 织物表面受到的外来压力很大。由于织物试样有时会被卡在搅拌棒后面, 这种起球测试可重复性较差。3. 1. 2 箱式起毛起球法将织物试样套在橡胶试样管上, 放进衬有橡胶软木的方形木箱内, 在转动的木箱内翻滚, 使试样起球。织物的运动是随机的, 所受到的压力很小, 这种起球测试的可重复性较好, 但影响起球测试的因素较多, 如橡胶软木和橡胶管的表面情况等。这种测试方法适用于毛织物和其他易起球织物。3. 1. 3 马丁代尔起毛起球法织物试样装在夹头上, 在规定的压力下与装在磨台上的同种织物进行摩擦起毛起球。试样能绕轴心转动, 夹头与磨台的相对运动轨迹是预先设定的李沙茹( L issa jous)图形。后来又有改进的马丁代尔起磨仪。这种测试方法适用于毛织物及其他易起球织物, 特别是机织物。3. 1. 4 圆轨迹起球仪法在一定压力下以圆周运动的轨迹使织物试样先与尼龙毛刷起毛, 再与标准织物作相对摩擦起球, 或将织物在织物磨料上直接起球。这种测试方法适用于化纤长丝织物和化纤短纤织物, 只用织物作磨料时, 可用于毛织物和其他易起球织物。3. 2 对织物起球的主要评价方法3. 2. 1 与标准样照对照评级即在标准光照条件下, 由评估者将起球试样与标准等级样照加以比较后进行等级评定。这是目前应用最为广泛的主观评定方法, 虽然快速, 但是需要比较有经验的试验人员, 受主观影响较大。另外由于织物种类不同, 起球方法不同, 各个机构制定的标准等级样照不同也会引起评定结果的差异。且标准中要求摩擦一定时间后再来评级, 这与消费者的要求相矛盾。3. 2. 2 文字描述起球特征用文字描述是一个相对模糊的概念, 不同的人对于织物起球的描述可能会有很大的差别, 无法定量分析。此外, 文字描述一般只考虑到起球形成过程的顶峰, 而没有考虑到在越过起球顶峰后毛球的脱落过程。不同的织物起球落球的速度和时间是不同的, 它对织物的抗起球性有较大的影响。3. 2. 3 计算单位面积上的毛球数量和毛球质量N aik和 Lopez- Am 认为将毛球数和毛球质量结合起来考虑, 将起球试样表面的毛球剪下, 数毛球个数并称重, 以它们的乘积来衡量织物的起球程度, 这样既考虑了毛球的数量又考虑了毛球大小。3. 2. 4 起球曲线为了了解整个起毛 - 起球 - 毛球脱落的全过程,可以用起球曲线来评定织物的起球程度。起球曲线反映了试样所承受的摩擦作用时间 (一般以摩擦次数表示 )和试样单位面积上起球的关系。这种方法可以克服上述评价方法的某些不足, 在科研工作中有一定的价值, 但是花费的时间比较多。3. 2. 5 激光测试评价方法H . S. K im 等人提出使用激光与 X - Y 坐标来测量光束到织物表面的距离, 进而生成表面的高度图像。这种方法的优点是不取决于光照, 能测试织物真正的表面特征。缺点是速度较慢并且比现今采用的视觉系统昂贵。3. 2. 6 利用织物表面光照的反射性不同的方法[ 8]物体表面越粗糙光泽度越小, 在微米和数十微米范围内呈负相关关系。这种方法的局限性在于织物的组织结构不同, 其反射情况也不同, 而且粗糙度大时,粗糙度与光泽度的负线形关系会改变, 给测试带来误差, 且外界环境如光照条件的改变也会影响测试结果的精确性。3. 2. 7 利用人工神经网络采用神经网络技术建立和训练反映纱线、织物结构参数与织物起毛起球性之间关系的三层神经网络模型, 对比预测值和实验值, 表明用神经网络方法预测织物起毛起球性有相当的准确性。神经网络预测模型在直接用于织物的起毛起球性时还不完善, 输入和隐含结点数对网络训练速度和预测精度产生一定的影响,但能较准确地预测出织物的起毛起球性。3. 2. 8 图像处理方法图像处理方法评价织物起毛起球的方法有两类,一类是基于起球织物灰度图像的织物起球等级的计算机视觉评估, 另一类是基于起球织物表面形态高低起伏信息的织物起球等级的计算视觉评估。4 起毛起球研究现状分析与展望从上世纪 50年代起到现在, 对织物起毛起球的研究主要集中在起毛起球的影响因素和后处理方面, 通过比较分析找出减少起球性能的最佳设计与生产方案来指导生产。且都是在干摩状态下评判织物的起毛起球性能, 而这与消费者的实际穿着过程不符, 在现代化的生活中, 随着人们生活节奏的加快, 衣物脱换频繁,且由于人们健康及卫生意识的提高, 洗涤次数也在增加, 因此日常的磨损、洗涤及熨烫造成了生产厂家与消费者对织物起球评级不一致。目前我国的起毛起球评价标准中尚未涉及到水洗、熨烫等对织物起毛起球的测试方法, 因而需要找到一种与消费者的实际穿着过程一致的评判织物起毛起球的方法, 即在洗涤后评价织物的起毛起球性能。目前国内几乎没有这种评判方法, 国外虽有一些, 也只是关于洗涤对织物起球的影响程度, 并没有在洗涤后来判断织物起球性能的方法。更多关于 起毛起球测试资料,请访问标准集团(香港)有限公司
  • 起毛起球测试仪的选择方法?
    国内标准针对起毛起球测试分类过细, 容易产生混淆 。如 GB/T 4802 . 3 —1997 适用于大多数织物, 仅注明毛针织最适宜 而 GB/ T 4802 . 2 —1997 和 GB/T4802 . 1 —1997 又适用各类纺织物 , 以致于企业在测试时无从选择哪个标准。  测试原理及条件可以得知 , 翻箱式测试( 包括Orbitor 仪器) 可以在无压力条件下测试 ,而另外两种方法实际在轻微压力下测试, 显然结果是有差异的。  对于纺织出口企业 , 面临贸易国的标准不同 , 对纺织品起毛起球问题测试实际困难更大 。从多数纺织品进口国的测试方法来看, 一般限于翻箱法和马丁代尔法 ,对于起毛起球性能要求高的纺织品采用后者测试为主,因为此法更接近于人们服用过程。  国内的纺织品起毛起球测试仪器主要分为: 起球箱起球仪 、马丁代尔起球仪 、圆轨迹起球仪、乱翻式起毛球测试仪、圆轨迹法起毛起球仪、ICI钉锤式勾丝性测试仪6种。现以上海千实的几种起球仪作为参考:    1.起球箱起球仪  符合标准:BS 5811/8479,IWSTM 152,NEXT 19,M&S P18/P18A/P18B/P21A,GB/T 4802.3,BS EN ISO 12945.1  适用范围:用于正常磨损而产生的起球或勾丝现象,配有独特的控制器,可选标准及其它多种测试转速进行测试,同时配有可编程的30rpm反转系统。  技术参数:  1.可配有4个起球箱;  2.具有正反转功能;  3.转速:20, 30, 40, 45, 50, 60, 65, 70 rpm可任意选择;  4.液晶屏显示所有测试参数;  5.配有实验结束报警功能;  6.密封性好;  7.马达保护功能:如有外力阻挡,能自动停机,并报警。    2.马丁代尔起球仪  符合标准:ASTM D4970,ISO 12945.2,GB/T 4802.2/13775/21196.1/21196.2,ASTM D4966,ISO 12947,FZ/T 20020,BS 3424-24/5690,ISO 12947.1/12947.2,M&S P17/P19/P19C,NEXT 18/18a/18b,ISO 5470-2,IWTO 40,JIS L1096 8.17.5 Method E,Woolmark TM 112/196,BS EN 388/530/13770,ISO 20344  适用范围:  可检测各种植物的耐磨性及起球性能。在一定的压力下,试样和指定的磨料进行持续换向摩擦,和标准参数对比进行磨损和起球程度评价。触摸屏控制,配备功能全面的编程器,可预编程批次及总计数,单独设置每个测试头的计数 可选择包括标准速度在内的4个速度。  技术参数:  1.工位数:9工位   2.计数范围:0~999999次  3.最大动程:横向 60.5±0.5mm,纵向24±0.5mm  4.加压物质量:  a.夹持器:200±1g  b.衣料试样重锤:395±2g  c.家具装饰品试样重锤:594±2g  d.不锈钢蝶片:260±1g  5.磨块有效摩擦直径:  A型 200g(1.96N)摩擦头(9kPa)¢28.8 -0.084mm  B型 155g(1.52N)摩擦头(12kPa)¢90 -0.10mm  6.夹持器与磨台相对运动速度:20-70r/min(可调)  7.装样压锤质量:2385±10g    3.圆轨迹起球仪  符合标准:GB/T 4802.1 JIG 040  适用标准:本仪器用于测试毛织物、化纤纯棉、混纺、针织、机织物的起毛气球状况,以鉴别产品质量和工艺效果。测试时织物与尼龙刷及磨料摩擦,或者仅在调湿状态下和磨料摩擦。  技术特点:  1.磨头与磨台平面接触间隙 ≤0.2mm  2.磨头与磨台平行度 ≤0.3mm  3.磨头与磨台相对运动轨迹 40±1mm  4.尼龙刷面平齐,其高度差0.5mm  5.磨台往复速度 60±1次/min  6.磨头重量 490cN±1%  7.大重锤重量 290cN±1%  8.小重锤重量 100cN±1%  9.次数选择 1~9999  10.满足标准测试要求    4、乱翻式起毛球测试仪:  符合标准:  ASTM D3512,GB/T 4802.4,ISO 12945.3,JIS L1076-D  适用范围:  用于检测织物的起毛起球性能。将105mm×105mm的样品分别放入测试箱中,在叶轮的旋转作用下,置物盒软木衬壁持续随机摩擦,将定时器设置到规定时间,到达设定时间后声响报警,提示试验结束。测试时测试室内会注入压缩空气,以增强翻转,气压可调。  技术参数:  1.样品测试室:4个   2.每个测试室配有旋转的不锈钢叶片   3.配备测试室要求密封性好   4.配备数字式电子计数器   5.配有实验终了报警装置   6.配有压力表及记时器。  7.滚筒规格:146×152mm  8.软木衬规格:452×146×1.5mm(L×W×H)  9.搅棒规格:L=121mm  10.转速:1200r/min  11.压缩空气:0.014-0.021MPa    5、圆轨迹法起毛起球仪  符合标准:  GB/T 4802.1 JIG 040  适用标准:  本仪器用于测试毛织物、化纤纯棉、混纺、针织、机织物的起毛气球状况,以鉴别产品质量和工艺效果。测试时织物与尼龙刷及磨料摩擦,或者仅在调湿状态下和磨料摩擦。  技术特点:  1.磨头与磨台平面接触间隙 ≤0.2mm  2.磨头与磨台平行度 ≤0.3mm  3.磨头与磨台相对运动轨迹 40±1mm  4.尼龙刷面平齐,其高度差0.5mm  5.磨台往复速度 60±1次/min  6.磨头重量 490cN±1%  7.大重锤重量 290cN±1%  8.小重锤重量 100cN±1%  9.次数选择 1~9999  10.满足标准测试要求    6、ICI钉锤式勾丝性测试仪  符合标准:  ASTM D3939,GB/T 11047,JIS L1058  适用范围:  ICI钉锤式勾丝性测试仪适用于检测外衣类针织物和机织物及其它易勾丝的织物,特别适用于化纤长丝及其变形纱织物的勾丝性能。可快速检测织物在正常穿着条件下产生勾丝现象的难易程度(即将纱线从织物中钩出)。  产品详细:  本仪器配有观测箱及不同织物结构的对比图样卡。配有4个测试辊(套上待测织物),钉锤球为碳化钨头,并由预定的电子计数器控制。  技术参数:  1. 试验片尺寸:220mm×330mm   2. 转筒直径:82mm   3. 转筒长度:210mm   4. 钉锤球:碳化钨头   5. 钉锤直径:31.8 mm   6. 钉锤重量:135g   7. 钉锤突出长度:9.5 mm   8. 钉锤植针数:11根钨针   9. 钉针外露:10mm   10. 尖端半径:R0.13mm   11. 导杆工作宽度:125mm   12. 钉锤与导杆间距离:45mm   13. 测试工位:4工位   14. 测试速度:60rpm   15. 外形尺寸:1007×508×405mm(40×20×16英寸)(L×W×H)   16. 重量:约90kg   17. 电源:1∮,AC220V,50Hz,3A。 更多关于 起毛起球测试仪:http://www.qmqqy.com/productlist/list-5-1.html
  • 邀请函:KRÜSS诚邀您参加Analytica China慕尼黑上海分析生化展
    展会信息慕尼黑上海分析生化展(analytica China)是亚洲较大的分析和生化技术领域的国际性博览会,是业内优秀企业全面展示新技术、产品和解决方案的平台。KRÜ SS将在此次展览中将全面展示我们最新的力学法表面张力测量仪Tensíío、全自动液滴形状分析仪DSA100、动态泡沫分析仪DFA100、旋转滴界面张力仪SDT、便携式液滴形状分析仪MSA等产品。现场,我们专业的技术团队将与您分享我们最新的功能模块和解决方案。我们欢迎您莅临展台,交流参观,探讨更多应用场景与解决方案的可能性。KRÜ SS诚邀您参加Analytica China暨第十一届中国国际分析生化展会议时间:2023.7.11 - 13展位号:2.2E516会议地址:国家会展中心(上海)2.2H由东入口(涞港路)登记进入解决方案液滴形状分析可用于对固体表面的均一性和表面处理效果进行高效评估座滴法测量基材表面的液滴接触角和表面能通过振荡滴法来评价液体界面流变性能采用动态接触角评估表面的抗冰和防涂鸦特性悬滴法测量液体的表面或界面张力表面张力测量通过环法或板法测量表张力和界面张力实时粘附力和接触角的同步测量和观测测量临界胶束浓度CMCWashburn法可测量粉末颗粒的接触角还可测量液体和固体密度、评估悬浮体系的沉降稳定性等泡沫分析采用鼓气或搅拌方式精确发泡精确测量液体泡沫中气泡的尺寸分布大小、含液量、半衰期等高清图像可清晰展现微小泡沫的发泡和衰变过程通过电导率表征泡沫的含水量变化过程容易使用,便于清洁高温高压测量最高1750Bar和2200℃条件下测量接触角及表界面张力可模拟储层的复杂气液环境进行精确测量评估炉渣、金属合金、焊料和玻璃等材料的表面张力和接触角高压泡沫分析仪可实现同时分析高压液体泡沫高度和结构可根据用户具体要求进行定制
  • 解决镁合金样品制备的浮凸问题,用这种金相抛光布很有效!
    镁及其合金材料,由于其基体硬度较低,延展性强,而沉淀相相对硬度又较高,因此,在金相样品制备过程中,样品是很难制备的。主要表现在浮凸现象较为突出。解决这个问题,一般的方法是适当减少抛光时间,或者抛光时用金刚石抛光膏替代抛光液。我们实验室,除了采用以上两种方法外,同时使用美国进口ChemoCloth金相抛光布配合抛光剂进行精细抛光,这种方法很有效。可脉检测工程师的建议我们,在镁及其合金样品的制备时,精细抛光步骤使用美国QMAXIS的ChemoCloth 抛光布,浮凸问题轻松可以解决。来自美国QMAXIS的这款ChemoCloth金相抛光布,使用耐化学腐蚀合成织物制成,无绒的表面,适用于配合1µm及以下的Al2O3、SiO2 抛光液,对钛、镁及其合金、不锈钢、铅 / 锡焊料、电子封装、软的有色金属和塑料等类材料的精细抛光。这款金相抛光布,对于我们制备镁合金样品非常适用。其多孔的纤维结构能更好地Hold住研磨介质颗粒,良好的耐化学腐蚀性,以及软硬适度的特性。这些特性使磨料可深入到织物内部,虽然抛光时去除率小了一些,但能有效避免浮凸现象产生,进而达到样品制备的技术要求。 除此之外,ChemoCloth 金相抛光布,非常耐腐蚀,一点也不会出现掉毛,掉色,和卷边的现象。使用了很久,除了表面自然磨耗外,没有给所制备的样品表面带来污染和二次损伤的现象,它比普通金相抛光布要耐用很多,使用寿命长的特点也很突出。解决镁合金样品制备的浮凸问题,用这种金相抛光布的确很有效!了解更多详情,随时联系可脉检测的金相工程师,会获得更专业的帮助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制