当前位置: 仪器信息网 > 行业主题 > >

合成反应过程热量

仪器信息网合成反应过程热量专题为您整合合成反应过程热量相关的最新文章,在合成反应过程热量专题,您不仅可以免费浏览合成反应过程热量的资讯, 同时您还可以浏览合成反应过程热量的相关资料、解决方案,参与社区合成反应过程热量话题讨论。

合成反应过程热量相关的论坛

  • 【资料】-微波有机合成反应的新进展

    [b]微波有机合成反应的新进展[/b][i]王静,姜凤超[/i]摘 要:综述了近年来微波辐射技术在有机合成应用中的新进展。 着重介绍了微波有机合成反应技术及其在重要有机合成反应中的应用。关键词:微波化学,有机反应,微波辐射  微波最早被人们认识并应用在军事通讯领域,本世纪 40 年代后期逐渐应用于工业、农业、医疗、科学研究等各种领域。 在有机合成应用中的研究始于1986 年,当年加拿大化学家 Gedye 等发现微波辐射下的 4-氰基苯氧离子与氯苄的 SN2 亲核取代反应可以使反应速率提高 1 240 倍,并且产率也有不同程度的提高。 这一发现得到人们的高度重视并引起化学界的极大兴趣。 自此,在短短的十几年里,微波辐射促进有机化学反应的研究已成为有机化学领域中的一个热点,并逐步形成了一门引人注目的全新领域——MORE 化 学 (Microwave Induced Organic Reaction Enhancement Chemistry) 。 我国近年来关于MORE化学的研究也越来越多,发表的综述文章已有多篇,现仅就最近的进展作一综述。  1. 基本原理 微波(microwave, MW)即指波长从 1 mm~1 m,频率从 300 MHz~300 GHz 的超高频电磁波,广泛应用于雷达和电子通讯中。 为避免相互干扰,国际上规定工业、科学研究、医学及家用等民用微波频率一般为 900( ±15) MHz 和 2450( ±50) MHz。 微波加速有机反应的原理,传统的观点认为是对极性有机物的选择性加热,是微波的致热效应。 极性分子由于分子内电荷分布不平衡,在微波场中能迅速吸收电磁波的能量,通过分子偶极作用以每秒 4. 9 ×109 次的超高速振动,提高了分子的平均能量,使反应温度与速度急剧提高。 但其在非极性溶剂(如甲苯、正己烷、乙醚、四氯化碳等) 中吸收 MWI 能量后,通过分子碰撞而转移到非极性分子上,使加热速率大为降低,所以微波不能使这类反应的温度得以显著提高。实际上微波对化学反应的作用是复杂的,除了具有热效应以外,还具有因对反应分子间行为的作用而引起的所谓“非热效应”,已有文献报道此观点。2. 微波有机合成反应技术 与一般的有机反应不同,微波反应需要特定的反应技术并在微波炉中进行。 微波有机合成反应技术一般分为密闭合成反应技术和常压合成反应技术等。随着对微波反应的不断深入研究,微波连续合成反应新技术逐渐形成并得到发展。[color=red]最后有全文下载[/color]

  • 【原创大赛】合成反应的监测及合成产物的分离纯化一般步骤

    【原创大赛】合成反应的监测及合成产物的分离纯化一般步骤

    实验目的:研究化合物合成反应监测及分离纯化一般步骤。一、监测合成反应TLC-MS检测,确定是否有合成产物:1、将待测样品通过硅胶板爬板分开。http://ng1.17img.cn/bbsfiles/images/2015/08/201508212000_562106_2307604_3.png(其实板爬的不歪,只是照片上有点歪,截完图就成这样了。)2、利用TLC-MS仪器快速检测TLC板的两个点,确定目标物。http://ng1.17img.cn/bbsfiles/images/2015/08/201508212002_562107_2307604_3.png点1质谱检测图谱:http://ng1.17img.cn/bbsfiles/images/2015/08/201508212106_562110_2307604_3.png点2质谱检测图谱:http://ng1.17img.cn/bbsfiles/images/2015/08/201508212111_562115_2307604_3.png结论:经TLC-MS检测,合成反应有效,点2中含有分子量432的目标物,点1为原料。二:液相分析由于目标物极性较小,液相分析色谱柱选用C18色谱柱保留太强,因此选用保留稍弱的C8色谱柱。色谱条件如下:色谱柱: C8 5 μm 100 Å 4.6*250 mm流动相:A:水 B:乙醇流速:1.0 mL/min检测器:ELSD,65℃梯度:TimeB%0752510035100原样分析图谱:http://ng1.17img.cn/bbsfiles/images/2015/08/201508212115_562117_2307604_3.png27.448min峰为目标峰三、分离纯化:经测试:硅胶柱纯化条件不能把目标物前21-26 min杂质分离除去,C8柱纯化条件不能将26.1 min和27.9 min杂质分离除去。因此最终方案选用C18色谱柱,以甲醇和二氯甲烷为流动相,达到了很好的分离效果。纯化条件如下: 色谱柱:C18 10 μm 100 Å 30*250 mm 流动相:A:甲醇 B:二氯甲烷 流速:35 mL/min 紫外波长:210 nm(红色信号线) ELSD:65℃(浅蓝色信号线) 梯度:TimeB%053035 进样量:300 mg(10mL甲醇溶解) 分流: 流动相进紫外检测器与蒸发光散射检测器的分流比为34.5:0.5 制备图谱如下:http://ng1.17img.cn/bbsfiles/images/2015/08/201508212116_562118_2307604_3.png馏分收集:收集10.3-11.7 min和21.3-23.4 min馏分四、纯度检测(条件为液相分析条件):1、 10.3-11.7 min馏分:取200 uL馏分,氮吹干,加200 uL甲醇溶解,进样10 uL检测,检测结果如下:http://ng1.17img.cn/bbsfiles/images/2015/08/201508212117_562119_2307604_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508212118_562120_2307604_3.png2、 21.3-23.4 min馏分:取200 uL馏分,氮吹干,加100 uL甲醇溶解,进样10 uL检测,检测结果如下:http://ng1.17img.cn/bbsfiles/images/2015/08/201508212119_562121_2307604_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508212119_562122_2307604_3.png结论:1、合成反应可以利用TLC-MS设备快速监测合成反应成功与否。2、根据待分离样品的极性和硅胶板上的保留,选择合适的填料和流动相,摸索纯化条件。五、总结:1、合成反应可以利用TLC-MS设备快速监测合成反应成功与否。2、根据待分离样品的极性和硅胶板上的保留,选择合适的填料和流动相,摸索纯化条件。六、实验心得:1、利用TLC-MS检测仪,直接检测TLC板上的样品点,不需要将硅胶板上的点刮下来再处理后扫质谱。2、部分极性较小的样品可以用C18色谱柱,配二氯甲烷等弱极性试剂作为流动相进行分析或纯化。3、对于紫外吸收弱的样品,可并联蒸发光散射检测器,由于ELSD为分析型检测器,在大流速制备情况下,需要调节分流比,ELSD的分流速不能高于0.5 mL/min,以防检测器过载。4、制备条件下,由于并联检测器分流比差别大,且检测过程耗时不同,两个检测器在图谱中出现信号的时间就会有差异。这时需要提前判断两个信号的相对延迟时间,通常以流速大的紫外信号作为收集信号。5、紫外下吸收很弱的样品,放大到制备,加大上样量后,紫外下也会有吸收,也可作为制备收集的信号。6、当制备馏分溶剂为弱极性溶剂时,而检测条件的流动相为较强极性流动相,或存在溶剂不互溶问题,需要将制备馏分浓缩干,再用接近检测条件流动相极性的溶剂溶解,进行分析,避免溶剂效应。

  • 【资料】为大家推荐一本好书《药物合成反应》

    [color=#DC143C]今天为大家推荐一本好书,希望对大家能够有所帮助![/color]书中主要内容如下:第一章 硝化反应第二章 重氮化和重氮盐的转化反应第三章 卤化反应第四章 酰化反应第五章 烃化反应第六章 消除反应第七章 氧化反应第八章 还原反应第九章 重拍反应第十章 缩合反应第十一章 环合反应第十二章 不对称合成反应第十三章 保护基在有机合成中的应用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=171189]药物合成反应[/url][em09511]

  • 【资料】-微波有机合成及反应器研究新进展

    [u][i]精细化工中间体:2004,34(2):1-4[/i][/u][b]微波有机合成及反应器研究新进展[/b][i]刘福萍,陆明[/i]摘 要:综述了近年来微波辐射技术在有机合成应用中的新进展。针对微波有机合成反应技术及专用微波反应器作了重点介绍。关键词:微波化学;有机反应;微波反应器1  前言 微波是频率大约在 300 MHz~300 GHz,即波长在 1000~1 mm 范围内的电磁波,它位于电磁波谱的红外光波和无线电波之间。在 20 世纪 60 年代,N. H. Williams就曾经报道了用微波加速某些化学反应的研究结果,但在化学合成中应用微波技术则直到 20 世纪 80 年代初期才开始,当时人们并未预料到它对化学研究领域的重大作用。微波应用于有机合成的研究则始于 1986 年, Gedye 和 Smith等通过比较常规条件与微波辐射条件下进行酯化、水解、氧化等反应,发现在微波辐射下,反应得到了不同程度的加快,而且有的反应速度被加快了几百倍。至今,微波促进有机合成反应已经越来越被化学界人士所看好,而且形成了一门倍受关注的领域 —MORE化学(Microwave-Induced Organic Reaction Enhancement Chemistry) 。将微波用于有机合成的研究涉及酯化、Diels -Alder、重排、Knoevenagel、Perkin、 Witting、 Reformatsky、 Dveckman、羧醛缩合、开环、烷基化、水解、烯烃加成、消除、取代、自由基、立体选择性、成环、环反转、酯交换、酯胺化、催化氢化、脱羧等反应及糖类化合物、有机金属、放射性药剂等的合成反应。2  微波促进有机反应机理 微波广泛应用于雷达和电讯传输产品中,为了防止微波功率对无线电通讯、广播、电视和雷达造成干扰,国际上规定工业、科学研究、医学及家用微波炉等民用微波频率为 915 ±15 MHz 和 2450 ±50MHz。微波技术应用于有机合成反应,反应速度较常规方法相比有的能加快数倍、数十倍,有些反应能加速数百倍甚至数千倍。为什么微波有如此大的效果呢 ? 目前关于微波加速有机反应的机理,化学界存在着两种观点。一种观点认为,虽然微波是一种内加热,具有加热速度快、加热均匀无温度梯度、无滞后效应等特点,但微波应用化学反应仅仅是一种加热方式,与传统加热反应并无区别。他们认为微波应用于化学反应的频率 2450 MHz 属于非电离辐射,在与分子的化学键共振时不可能引起化学键断裂,也不能使分子激发到更高的转动或振动能级。微波对化学反应的加速主要归结为对极性有机物的选择加热,既微波的致热效应。1990 年,Edwin G. E.Jahngen 等研究了三磷酸腺甙 (ATP) 在微波作用下的水解反应,发现微波作用下反应速度是常规加热方式下的25 倍,但在两种加热方式下,反应动力学并没有明显的改变。1992 年, Kevin D. Raner 等通过研究微波对 2,4,6-三甲基苯甲酸与 2-丙醇的酯化反应速度的影响,也得出结果表明最终酯化产率仅与温度因素有关,而与加热方式无关。

  • 高等有机化学 A卷(结构与机理)、 B卷(反应与合成)

    [em09] 高等有机化学 A卷 结构与机理[em09] 高等有机化学 B卷 反应与合成 本书译自美国F.A.凯里和R.J.森德伯格所著《高等有机化学》一书。全书分A卷结构与机理及B卷反应与合成两部分。 A卷共有十二章,前三章讨论有机分子结构的三个基本方面,即成键作用、立体化学和构象。第四章综述了研究有机反应机理所使用的各种方法。其余各章分别讨论机理的基本类型。 B卷共有十一章,前九章讨论了目前有机合成中最重要的反应,并附有与反应有关的机理。第十章讨论一般性合成的技巧。第十一章阐述了高分子合成的某些特征。

  • 【求助】电化学反应放热

    求教:电化学反应方热量的基本规则,我用化学焓变计算得出的结论是错误的,现在不知道该用什么方法计算了!!!!我所计算的电化学反应的理论合成电压未知,反应机理亦未知,生成物质比例在一定的范围内不规则波动,电解体系的温度为高温,

  • 煤炭热量的标准检测过程

    请教各位老师,煤炭热量怎么检测?我们这现在有量热仪、马弗炉和烘箱,但是测出的热量总是和别家差距很大,市场上以低位计价,我们测得只是弹筒热量,仪器厂家说还需要测定硫的和测定氢的仪器,但是好多检测煤炭的并不需要,说是有经验数据,我看标准也晕乎了,啥国标啊,说的一点都不清楚,直接说市场上怎么测不就可以了,说了那么多,最后也没弄明白。

  • 【求助】平行化学合成反应仪怎么样?

    我公司是个贸易公司,有个厂家推销平行化学合成反应仪,我看了看,发现确实不错,能缩短不少时间。但是考虑到国内一般都是用人低廉,不知道合成单位会不会用这个产品。小弟有些迷茫,还希望这方面的大虾给个建议。有没有市场需求。

  • 6位个性化学合成反应仪技术参数

    6位个性化学合成反应技术参数:1、每个单元独立控制温度 2、每个单元具有独立的磁力搅拌功能;3、反应瓶6个,每个容量30ml 4、控温范围:-10℃—+160℃5、控温精度:±1℃

  • 化学反应原理

    已知:2H2(g)+O2(g)=2H2O(g) 反应热为-484KJ | MOL 2H2(g)+O2(g)=2H2O(l)反应热为--572KJ | MOL 在25c 101kpa时,一定量的氢气。氧气的混合气体点燃爆炸后再恢复至原来状态时,气体体积比原来减少了3.36L(折合成标准状况下的体积),则反应时放出的热量是? 再问一下原来状态什么状态

  • 【原创】要购买微波合成反应仪哪种型号适合大专院校用

    要购买常压普及型微波合成反应仪,哪个公司哪个型号比较好?是大专院校用的。MAS-3型微波合成反应仪是上海新仪的,好吗?价格多少?技术参数(包括使用功能、性质用途、安装要求、售后服务内容、保修期限)等标书上要表明的内容,谁能告诉我

  • 化药合成时,方法开发过程中如何选择样品最佳波长?

    化药合成时,方法开发过程中如何选择样品最佳波长?

    如题,在开发方法过程中,如何选择最佳吸收波长。问题1、使用全波长扫描(我们使用的是PDA)后,发现其吸收的最高波长很低,在190nm处吸收最高,最近遇到好几个这种情况, 那么此种情况下如何选择最佳的波长呢?附图,图中色谱图为210nm处的一个吸收,左边为光谱图和各吸收波长下的一个峰轮廓图。此图不算典型,至少在210nm 吸收也还客观,但也大概能说明问题。之前遇到的是在210nm处吸收只有190的一半甚至1/3,那么如此情况下,我们如何选择波长,难道选择190nm吗?[img=,690,345]https://ng1.17img.cn/bbsfiles/images/2019/04/201904181623375228_9656_3116636_3.png!w690x345.jpg[/img]问题2、当我们确定了产品的一个吸收波长后,可能会发现合成该产品的原料的吸收波长不一定在此波长下有较大吸收,可能在其他波长下吸收较大。 那么此种情况下,投料反应时,我们依然查看的是产品的吸收波长,而原料在此波长下的吸收并不明显, 导致无法判断原料是否有进行反应,也无法用此方法来进行中控, 有时候我们在这个波长下发现原料的吸收已降低到无法识别,产品纯度已达到了99% 但事实上在原料的波长下,原料可能还有20%未反应,因为尽管纯度达到了99%,但事实上含量却只有80%左右。 如此一来,很影响实验员在中控过程的一个判断,那么我们在此时又如何去选择最佳波长呢?(这只是刚开始的反应就有这个问题了,那么之后可能会出现不同的步骤,产生不同的中间体,如果每个中间体的吸收波长都有差异,如何进行判断呢?) 以上问题,望指教!

  • 【分享】耐驰公司近期将举办绝热量热仪(ARC)新品发布会

    绝热量热仪是一种小型而高度灵活的化学反应器,在工业安全领域有着很重要的作用。它们可以测量放热化学反应的热量与压力性质,得到的信息可以帮助工程师与科学家鉴别潜在的危险并获取过程安全设计的关键因素,如紧急卸压系统,排放处理,过程优化,热稳定性等等。这类仪器广泛应用于化学、药物、能源等各种行业,使用绝热反应量热仪,可以研究化学动力学、储存与运输、工艺中断、化工设计等。绝热反应量热仪也常被用来作事故研究,或研发气囊、充电电池、航天飞机与火箭推动等。 德国耐驰仪器公司近期宣布收购了美国 TIAX LLC 公司的加速量热仪(ARC)和自动压力跟踪绝热量热仪(APTAC™ )业务,将这些产品整合到了耐驰公司原有的热分析产品线之中。为了宣传与推广这一系列新产品,帮助广大中国用户了解绝热量热仪的原理与应用,耐驰公司将于 2009 年 4 月上旬于绵阳、重庆两地举办绝热量热仪新品发布会,提供一个技术交流与合作的平台。 会议安排:时间:2009 年 4 月 10 日(星期五) 地点:重庆市大同路 49 号银河大酒店二楼会议厅 日程安排: 08:30 --- 09:00 来宾签到 09:00 --- 10:00 ARC 新产品发布 10:00 --- 12:00 ARC 应用专题 如果您愿意参加本次研讨会,请下载相应会场的邀请函,填好回执后回发,回发地址详见相应邀请函。邀请函下载(重庆会场):重庆会场邀请函我们诚挚地期待您的参与!耐驰科学仪器商贸(上海)有限公司重庆分公司联系人:许全斌 Email :wanlihe_xqb@yahoo.cn 电 话:023-65302816﹑13983782993 传 真:023-65305985[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=142678]耐驰重庆会议邀请函[/url]

  • 【网络研讨会】Webinar: InsightMR NMR在线监控化学反应过程的解决方案 8月23日和24日下午3点

    InsightMR: NMR在线监控化学反应过程的解决方案A Free Nuclear Magnetic Resonance Educational WebinarAugust 23-24, 2016→ 点击注册第一期 8月23日 - 北京时间下午3点→ 点击注册第二期 8月24日 - 北京时间下午3点Seminar OverviewNMR以其特有的定性和定量优势正成为一个日益重要的化学反应监测工具,工业和学术科研人员可以通过NMR谱图所提供的信息增加对反应机制的理解并提出优化反应过程的解决方案。InsightMR软件将Topspin、IconNMR和Dynamics Center三个强大且完善的软件程序整合到一个平台,兼顾其各自的功能并结合相应的硬件,可实现在线NMR化学反应过程分析。该产品特性如下: 自动采样控制、交互式处理和分析的单一界面,可完成实时动力学轮廓。支持对一系列采用不同核和隔行扫描的1D NMR谱图进行采样和实时分析。提供默认的动力学参数设置,能够容易地设置实验来观测在氘代溶剂和非氘代溶剂中的反应过程。运用平行采样和分析功能在同一时间对多个采样进行同步监控。基于实时数据处理和动力学轮廓计算,可以进行即时采样调整。与Bruker谱仪的无缝整合实现即时数据分析。→ What you will discoverWho should attend工业和学术科研领域参与合成有机化学和过程开发的管理者、科学家和技术人员包括: 过程化学家分析化学家合成有机化学家化学工程师化学和制药学科学生监管部门PresentersDr. Lu Shan (Biography), Application Specialist, Bruker BioSpinDr. Juan Lv (Biography) Application Specialist Bruker Biospin

  • 有机合成新技术--流动合成仪

    前段时间实验室试用了一家仪器公司代理的进口流动合成仪,效果蛮好的。就是类似于微管道反应器,反应液边流动边反应。之前做了两个实验,都是平时很迟钝的那种,一天一夜或者两天两夜那种,后来使用流动合成仪,增加了系统压力从而可以大大升高反应温度,实验进行了一个小时就达到甚至比之前的反应效果还好。正好我们实验室有一个才从国外回来的博后,他以前就用过流动合成,效率提高很多,也完成了一些平时烧瓶条件不好进行的反应,尤其是在新药研发和条件优化时具有很大的优势。大家有没有知道这款仪器的呢?想多交流交流。加上最近听到的关于流动化学的讲座,我觉得这样的仪器在国内市场上会有很大前景的哦,不过需要一个过程,不知道大家怎么看。

  • 【分享】双层玻璃反应釜的使用说明及安装

    玻璃反应釜现分为双层玻璃反应釜和单层玻璃反应釜,双层玻璃反应釜夹层可以提供做高温反应(最高温度可以达到300℃);双层玻璃反应釜也可以做低温反应(最低温度可以达到-80℃);双层玻璃反应釜可以抽真空,做负压反应。而且它的独到的设计使试验更加的安全,更加的方便。 一、双层玻璃反应釜的工作原理   通过双层反应釜夹层,注入恒温的(高温或低温)热溶媒体或冷却媒体,对反应釜内的物料进行恒温加热或制冷,并且可以提供搅拌。物料在反应釜内进行反应,并能控制反应溶液的蒸发与回流,反应完毕,物料可从釜底的出料口放出,操作极为方便。是现代化学小样,中样实验、生物制药及新材料合成的理想设备,推荐使用开封市宏兴科教仪器厂生产产品。二、双层反应釜的主要特点:   1.变频调速、交流感应电机。转速恒定,无电刷、无火花,安全稳定,可连续工作。   2.全套玻璃仪器采用GG17高硼硅玻璃生产,有良好的化学、物理性能。   3.玻璃夹层接口通上热油经过循环,可做加热反应,通上冷冻液可进行低温反应。  4.可在常温下反应,通上自来水即能快速将反映热量带走。   5.下放料口具法兰口和聚四氟阀门,容器内无死角,可拆卸便于固体物料出料。  6.四口反应器盖,特大口设计便于清洁,标准口插口可选择组装回流,蒸馏合成装置。

  • 热量计````````````````

    热量计的功用是测量在热力网中用户所取用的热量。热量的测量方法是测量送、回水管路中的水量及温差,并将这些 量相乘和进行积分。 热量可根据下列方程式计算:http://images.admin5.com/forum/201305/06/102247umw0nr2rtw7wrtwv.jpg 式中 q——热量,大卡; c——水的比热,大卡/公斤·度; G——流量,公斤/时; tl——送水管路中的水温,度; t2——回水管路中的水温,度; T——时间,小时。 热量针是个复杂的仪表,它包括水量测定仪,温差测定仪以及积分装置。 图16-23所示是一种T9B-14型热量计,它由:a)测量水量的装置;6)测量进、出口温差的装置;b)水量与温差乘积装置;i)测量和积算装置等四部分元件组成。http://images.admin5.com/forum/201305/06/102319upjyr0p9jr0y0jn9.jpg 1-放大器;2-可逆电机;3-流量表;4-凸输;5-发送器;6、10-滑线电阻;7-测量电桥;8、9-出入口电阻温度计; 11-可逆电机;12-放大器;13-热量表。 水量的测量是采用节流元件(例如孔板)和按差动变压器系统工作的薄膜盖压计。当水量改变时,差动变压器中产生的不平衡电压送到电子放大器1的输入端,放大器的输出端连接着可逆电动机2,它带动凸输4和可变电阻6。凸输旋转时,移动二次仪表线圈5的铁心,使系统恢复平衡。与此同时,电动机还转动流量表的刻度盘。 送、回水的温差是由两个电阻温度种8和9进行测量。这两个电阻构成测量电桥7的两个桥臂,测量电桥的电压是12伏,由电子放大器12的变压器线圈取得,井且在共供电回路中接入变压器6。 在测量电桥对角线上接入变阻器10,变阻器10上如以变压器专用线圈供应的0.3伏的电压。电桥的不平衡电压与变阻器10上所取得的合成电压送到电子放大器l2的输入端。在放大器的输出端连接着可逆电动机11,它带动变阻器10的滑键和热量计13的刻度盘。 当水量改变时,可逆电动机11一方面移动流量表的刻度盘3,同时移变交阻器6的滑键,改变测量电桥7的供电电压,从而改变了测量电桥的不平衡电压。当水温差改变时,由于电阻温度计8和9的数值的改变,也会改变测量电桥不平衡电压。 测量电桥不平衡电压改变时,可逆电动机11便转动,它一方面带动热量计的刻度盘13,同时带动变阻器10的滑键,改变所取出的补偿电压的数值,使系统恢复平衡。 测量电桥的不平衡电压是与电桥桥臂的比值及与电压的相乘积成正比,故热量计电子放大器输入的信号是与水量和温童的乘积,即与耗热率(大卡/秒)成正比。 如果热量表上带有类似流量表上的那种职算装置,那么积算装置的积算就是消耗的热量,大卡。 热量表具有两个旋转刻度盘,一个量水量0—500立方米/时,另一个是耗热率0-20兆卡/秒。仪表的误差不超过±1%。

  • 电池的热量

    请问电池在放电过程中产生的热量由哪几部分组成?其主、次关系如何?不胜感激!

  • 多肽固相合成

    多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向 N端(氨基端)合成。固相合成法,大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。固相合成方法有两种,即Fmoc和tBoc。由于Fmoc比tBoc存在很多优势,现在大多采用Fmoc法合成。【详情请咨询合肥国肽生物】(1)具体合成由下列几个循环组成:1. 去保护:Fmoc保护的柱子和单体必须用一种碱性溶剂(piperidine)去 除氨基的保护基团。2. 激活和交联:下一个氨基酸的羧基被一种活化剂所活化。活化的单体与游离的氨基反应交联,形成肽键。在此步骤使用大量的超浓度试剂驱使反应完成。循环:这两步反应反复循环直到合成完成。3. 洗脱和脱保护:多肽从柱上洗脱下来,其保护基团被一种脱保护剂(TFA) 洗脱和脱保护。(2)树脂的选择及氨基酸的固定将固相合成与其他技术分开来的最主要的特征是固相载体,能用于多肽合成的固相载体必须满足如下要求:必须包含反应位点(或反应基团),以使肽链连在这些位点上,并在以后除去;必须对合成过程中的物理和化学条件稳定;载体必须允许在不断增长的肽链和试剂之间快速的、不受阻碍的接触;另外,载体必须允许提供足够的连接点,以使每单位体积的载体给出有用产量的肽,并且必须尽量减少被载体束缚的肽链之间的相互作用。用于固相法合成多肽的高分子载体主要有三类:聚苯乙烯-苯二乙烯交联树脂、聚丙烯酰胺、聚乙烯-乙二醇类树脂及衍生物,这些树脂只有导入反应基团,才能直接连上(第一个)氨基酸。根据所导入反应基团的不同,又把这些树脂及树脂衍生物分为氯甲基树脂、羧基树脂、氨基树脂或酰肼型树脂。BOC合成法通常选择氯甲基树脂,如Merrifield树脂;FMOC合成法通常选择羧基树脂如王氏树脂。氨基酸的固定主要是通过保护氨基酸的羧基同树脂的反应基团之间形成的共价键来实现的,形成共价键的方法有多种:氯甲基树脂,通常先制得保护氨基酸的四甲铵盐或钠盐、钾盐、铯盐,然后在适当温度下,直接同树脂反应或在合适的有机溶剂如二氧六环、DMF或DMSO中反应;羧基树脂,则通常加入适当的缩合剂如DCC或羧基二咪唑,使被保护氨基酸与树脂形成共酯以完成氨基酸的固定;氨基树脂或酰肼型树脂,却是加入适当的缩合剂如DCC后,通过保护氨基酸与树脂之间形成的酰胺键来完成氨基酸的固定。(3)氨基、羧基、侧链的保护及脱除要成功合成具有特定的氨基酸顺序的多肽,需要对暂不参与形成酰胺键的氨基和羧基加以保护,同时对氨基酸侧链上的活性基因也要保护,反应完成后再将保护基因除去。同液相合成一样,固相合成中多采用烷氧羰基类型作为α氨基的保护基,因为这样不易发生消旋。最早是用苄氧羰基,由于它需要较强的酸解条件才能脱除,所以后来改为叔丁氧羰基(BOC)保护,用TFA(三氟乙酸)脱保护,但不适用含有色氨酸等对酸不稳定的肽类的合成。chang Meienlofer和Atherton等人采用Carpino报道的Fmoc(9-芴甲氧羰基)作为α氨基保护基,Fmoc基对酸很稳定,但能用哌啶-CH2CL2或哌啶-DMF脱去,近年来,Fmoc合成法得到了广泛的应用。羧基通常用形成酯基的方法进行保护。甲酯和乙酯是逐步合成中保护羧基的常用方法,可通过皂化除去或转变为肼以便用于片断组合;叔丁酯在酸性条件下除去;苄酯常用催化氢化除去。对于合成含有半胱氨酸、组氨酸、精氨酸等带侧链功能基的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。保护基的选择既要保证侧链基团不参与形成酰胺的反应,又要保证在肽合成过程中不受破坏,同时又要保证在最后肽链裂解时能被除去。如用三苯甲基保护半胱氨酸的S-,用酸或银盐、汞盐除去;组氨酸的咪唑环用2,2,2-三氟-1-苄氧羰基和2,2,2-三氟-1-叔丁氧羰基乙基保护,可通过催化氢化或冷的三氟乙酸脱去。精氨酸用金刚烷氧羰基(Adoc)保护,用冷的三氟乙酸脱去。我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。合肥国肽生物官网:http://www.bankpeptide.com欢迎咨询服务热线:0551-62626599

  • 原子化过程中的化学反应

    原子化过程中的化学反应 试液在火焰原子化过程中,伴随着一系列反应,在这些反应中较为重要的是离解、电离、化合和还原等反应,它们不仅决定了火焰中试样的原子化效率,而且决定了火焰原子化过程中化学干扰的程度。 1﹑原子化过程中的化学反应 ⑴离解反应 火焰中存在的金属化合物,通常以双原子分子或三原子分子存在,多原子或有机金属化合物通常在火焰中不稳定的,在雾珠脱剂过程中即被分解成简单分子化合物,在火焰中,当火焰温度达到化合物的离解能时,大多数双原子或三原子分子也不稳定,它们反生离解,形成自由原子。 MX←→M+X 此时,火焰中自由原子浓度取决于该金属化合物在火焰中的离解度α。 α=[M]/([M]+[MX]) 式中[M]表示火焰中已离解成金属原子的浓度;[MX]表示还未离解的分子浓度。 在稳定的火焰温度下,金属原子与MX分子间达到平衡,根据质量作用定律,可得: α=1/[1+[X]/Kd] 式中[X]是火焰中非金属原子的浓度,Kd是离解平衡常数。由此可见,Kd越大,[X]越小,则离解度*越大,火焰中存在的自由金属原子浓度就越高。若[X]< Kd则α≈1,即被测元素几乎全部离解为基态原子;若[X]>Kd,则*≈0,化合物几乎不离解,一般情况*介于这两种极限情况之间,即0<α<1。 对于给定[X]和火焰温度,Kd的值主要取决于化合物MV的离解能,一般情况下;当离解能小于3.5evMX,火焰中不稳定,易发生离解,而离解能大于5?ev时,在火焰中较稳定,难以离解。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制