当前位置: 仪器信息网 > 行业主题 > >

合成途径

仪器信息网合成途径专题为您整合合成途径相关的最新文章,在合成途径专题,您不仅可以免费浏览合成途径的资讯, 同时您还可以浏览合成途径的相关资料、解决方案,参与社区合成途径话题讨论。

合成途径相关的资讯

  • 我国发现宏量合成多孔掺杂 碳纳米材料制备新途径
    p style="text-indent: 2em "记者从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。/pp style="text-indent: 2em "碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。/pp style="text-indent: 2em "有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。/pp style="text-indent: 2em "针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提高小分子的热稳定,还能催化其聚合优先形成相应的聚合物中间体,避免有机小分子在高温热解中挥发,从而最终形成碳纳米材料。研究表明,运用这种方法制备的碳材料具有三种微观结构:竹节状的多壁纳米管、微米尺度的片和无规则的颗粒。该研究为高效制备碳纳米材料提供了一种普适的合成路线。/p
  • 肿瘤细胞中不同的糖代谢途径|附相关会议
    人们早在20世纪初就观察到肿瘤细胞群体的一个有趣且独特的性质:大多数肿瘤细胞的能量代谢与正常细胞相比呈现出巨大的差异性。1924年Otto Warburg首先报道了这一现象,后来他由于发现呼吸酶(即细胞色素c氧化酶)而获得了诺贝尔奖。相关会议推荐点击可免费报名大多数不增殖的正常细胞通过获取氧分子,将葡萄糖通过葡萄糖转运蛋白(GLUT)运输入胞内,在胞质中有氧条件下能通过糖酵解途径将葡萄糖分解成丙酮酸。在糖酵解的最后一步,丙酮酸激酶的M1亚型的存在,可以确保产物丙酮酸被运送到线粒体,再在丙酮酸脱氢酶(PDH)的作用下进行氧化,生成乙酰辅酶A,进入三羧酸循环。通过这种方式,线粒体每分解一个葡萄糖分子就能产生36个ATP分子。而在肿瘤细胞中,即使在有充足氧供应的肿瘤细胞中,GLUT1将大量葡萄糖运输至胞质中进行糖酵解。它依赖丙酮酸激酶的M2亚型,将丙酮酸盐转化为乳酸脱氢酶(LDH-A)的底物,生成大量乳酸,分泌到胞外。由于只有极少量的葡萄糖被运输至线粒体进行分解,故每个葡萄糖分子只分解得到2个ATP分子。此外,糖酵解途径中的大量中间产物被用于其他生化合成途径中。被Warburg称为肿瘤细胞“有氧糖酵解”的这种代谢方式,由于其每分解一个葡萄糖分子只能得到两个ATP分子,在能量学上显得很不经济。因为在三羧酸循环中有氧分子参与的情况下,一个葡萄糖分子的有氧糖酵解途径能提供36个ATP分子。机体中的大多数正常细胞正是通过这种由血液系统带来氧分子、进而进行有氧糖酵解的途径获得高效供能的。而即使子提供充足氧气的情况下,肿瘤细胞也不使用常规糖酵解方式,这实在是一种非常与众不同的生物学行为。由于肿瘤细胞使用的是一种很不经济的糖代谢方式,因此它们需要大量的葡萄糖进入胞内进行分解。在多种肿瘤中,如上皮来源的癌和血液系统肿瘤,都能观察到这种行为。它们高表达葡萄糖转运蛋白,如GLUT1等,以便能跨膜转运大量葡萄糖。那么为什么80%的肿瘤细胞要采取这种糖酵解的方式,而不采用到线粒体中进行三羧酸循环的方式对葡萄糖进行分解呢,并且明显后者能提供更多的ATP以供肿瘤细胞的生长和增殖?有氧糖酵解是否是肿瘤细胞维持其表型必需的?又或它只是细胞转化后的一个无意义的副效应,对细胞转化和生长并没有因果作用。有关有氧糖酵解的一个解释是肿瘤块内部的肿瘤细胞通常都呈现缺氧的状态,这种缺氧状态导致细胞不能进行充分的糖酵解进而提供充足的ATP,就像正常细胞在缺氧状态时的反应一样。由于具备Warburg效应,肿瘤细胞很好地适应了这种缺氧环境,但这依然不能解释为什么在提供充足氧气的条件下,肿瘤细胞依然不加以利用以合成更多的ATP。关于有氧糖酵解另一个合理的解释是,除了产生ATP,糖酵解还有第二个作用:糖酵解途径的中间产物可以作为很多涉及细胞生长(如核酸和脂类的合成)的分子的前体。肿瘤细胞通过糖酵解途径的负反馈机制,阻断糖酵解途径的最后一步,使细胞内积累了大量早期中间代谢物。这些糖酵解途径的中间产物能参与许多重要的生化合成反应。较肿瘤细胞而言,正常细胞没有那么强的增殖活性,也不需要大规模的生化合成反应,葡萄糖主要用来产生ATP以维持其正常代谢。正是这种肿瘤细胞异常的葡萄糖代谢为其创造了生长和增殖的生理学环境。参考文献: 1. 《The biology of CANCER》second edition. Robert.A Weinberg 2. 《癌生物学》詹启敏 刘芝华 主译
  • Science发现两条不同的衰老途径,并找到新方法延长寿命
    加州大学圣地亚哥分校的分子生物学家和生物工程师揭示了衰老之谜背后的关键机制:他们分离了细胞在衰老过程中的两种不同途径,并设计了一种新的方式对这些过程进行基因编程以延长寿命。这一研究成果7月17日公布在Science杂志上。我们人类的寿命取决于单个细胞的衰老。为了了解不同的细胞是否以相同的速率和相同的原因衰老,研究人员分析了酿酒酵母中的衰老,这是研究衰老机制(包括皮肤和干细胞衰老路径)的易处理模型。科学家们发现,具有相同遗传物质,处于相同环境中的细胞可以以截然不同的方式衰老,它们的命运会通过不同的分子和细胞轨迹展开。为此研究团队使用微流控技术,计算机建模和其他技术,进行深入分析,他们发现大约一半的细胞通过核仁稳定性的逐渐下降而衰老,核仁是合成蛋白质生产“工厂”关键成分的核DNA区域。而另一半年龄则是由于其线粒体功能失调所致,线粒体是细胞的能量产生单位。细胞在生命的早期就走上了核仁或线粒体的两条不同衰老路径,并在衰老和死亡的整个生命过程中遵循着这种“衰老路径”。研究人员发现了指导这些衰老过程的主要电路。“为了了解细胞是如何做出这些决定的,我们确定了每个衰老途径及其之间联系的分子过程,揭示了控制细胞衰老的分子电路,这就像是控制家用电器的电路,” 文章作者,加州大学圣地亚哥分校生物科学系分子生物学部副教授Nano Hao说。Hao等人开发了一种新的衰老模式模型,发现他们可以操纵并最终优化衰老过程。计算机模拟帮助研究人员通过修改其分子DNA,对主分子电路进行重新编程,从而能够通过遗传方式创建一条新颖的衰老路线,该路线具有显著延长的使用寿命。Hao说:“我们的研究提出了合理设计基因或化学疗法来重新编程人类细胞如何衰老的可能性,目的是有效地延缓人类衰老并延长人类健康。”现在,研究人员将在更复杂的细胞和生物体中,以及最终在人体细胞中测试他们的新模型,寻找相似的衰老途径。他们还计划测试化学技术,评估治疗剂和药物“鸡尾酒”组合如何指导长寿途径。研究的共同作者之一,分子生物学生物学教授Lorraine Pillus说:“本文所介绍的许多工作得益于一支强大的跨学科团队。我们团队的一个重要优势是,我们不仅进行建模,还进行实验以确定模型是否正确。这些迭代过程对于我们正在进行的工作至关重要。”?
  • 大连化物所提出二氧化碳大规模资源化耦合利用新途径
    当今世界,绿色低碳发展是大势所趋,全世界都在向碳中和目标不断努力。实现“双碳”目标离不开二氧化碳(CO2)的减排,而CO2作为碳资源的规模化高附加值利用是极具挑战性的的重要战略方向。近日,中国科学院大连化学物理研究所刘中民院士团队提出了CO2与烷烃耦合制备芳烃大宗化学品的新途径。团队发现使用酸性分子筛作为催化剂,可催化CO2与轻质烷烃发生耦合反应,同时促进了芳烃的生成,产物中芳烃选择性高达80%。在特定条件下,约3/4的CO2转化为可用作化工原料的一氧化碳产物,进一步研究证实约1/4已转化的CO2的碳原子直接进入了芳烃产物。相关成果发表在中国催化专业刊物——《催化学报》上。大连化物所供图CO2是最稳定的化学分子,将CO2作为原料高效转化为大宗化学品一直是巨大挑战。芳烃是有机化工中重要的基础原料,可以广泛用于合成树脂、纤维、染料、医药、香料等,目前主要通过石脑油催化重整等石化路线进行生产,存在原料和目标产品之间碳氢不平衡的问题。引入CO2与富氢的烷烃耦合调控其反应的碳氢平衡,提高目标产物选择性,同时将CO2转化为有用的化工原料或产品,以实现CO2资源化利用,对传统芳烃生产技术具有变革性意义。此前很多研究人员尝试采用CO2与烷烃反应,将CO2转化为CO并减少氢气的生成,但均认为CO2的碳原子没有进入烃类产物中。以HZSM-5分子筛为催化剂,催化CO2与轻质烷烃发生耦合反应生成芳烃示意图本工作中,团队以HZSM-5分子筛为催化剂,对比研究了正丁烷、正戊烷和正己烷在氦气和CO2气氛中的转化反应,并详细研究了分子筛酸性,反应温度、压力、CO2加入量等条件对耦合反应的影响。结果表明,CO2的引入可大幅促进芳烃的生成,同时甲烷和乙烷等小分子烷烃的生成受到抑制。对反应后的催化剂进行分析,发现了大量甲基取代的内酯和甲基取代的环烯酮等含氧物种。通过同位素标记实验和一系列验证实验,证实这些含氧中间体由CO2与烃类耦合转化生成,提出并证明了耦合反应发生的途径,即CO2与碳正离子反应得到环内酯,环内酯进一步转化为甲基环烯酮,甲基环烯酮转化为芳烃产物。进一步采用密度泛函理论计算了耦合反应机理各步骤的能垒,验证了耦合反应机理的可行性。“这项成果最大的亮点是证实了CO2与烷烃耦合反应不仅可以将其转化为一氧化碳,更重要的是部分CO2的碳原子可以直接进入芳烃产物,促进芳烃的生成并提高产物中芳烃的选择性,为CO2大规模资源化利用提供了一条有效的途径,具有广阔的应用前景。”刘中民介绍。该研究成果发表在我国唯一被SCI收录的催化英文刊——《催化学报》上。将优秀的成果发表在国产期刊上,刘中民院士深有感悟。“将CO2作为碳资源进行高附加值利用,对实现双碳目标的技术路径设计具有重大意义。将我们的最新研究进展发表在国产期刊上,我是经过了慎重的考虑。我国加强科技创新,也需要与科技创新地位相适应的国际期刊。近些年,很多国产期刊对高水平研究工作都开辟了绿色通道,文章接收后会快速发表并推介宣传,在国内外显示度逐步提升。”刘中民告诉《中国科学报》,“以《催化学报》为代表的国产期刊近年来专业性和世界影响力都在快速提升,让中国的最新成果在中国的期刊上发表,这也体现了我们的科技自信在不断增强。同时,一流期刊的发展也离不开一流的科研成果,积极地向国产期刊投稿高水平科研成果,需要大家积极支持,首先是从自己做起,我们和国产期刊是‘双赢’。”
  • 节水的三种途径
    各行业的客户和企业正在推动可持续措施的实施,如何管理我们的水资源,是环境管理的核心。水资源不像能源,它没有任何可替代品。在世界上一些地区,虽然水资源丰富,但已被污染;而其它一些地区,水资源匮乏,这些地区正在为获得珍贵的水资源而斗争。工业领域的生产过程中需要大量水,水可以作为原料,也可以将水转化为蒸汽作为动力,还可以用于清洗使用。此外,能采取有效可持续性措施并致力于环境保护的公司品牌和产品越来越受消费者青睐。受新冠肺炎疫情影响及可替代产品的竞争,生产厂商将面临供应链中断的局面。因此,厂商必须提高内部效率以应对需求的不断变化并达到环境保护的目标。降低用水量或实现水资源的重复利用是重要的可持续发展目标。由于对水的需求量如此之大,我们需要在水和废水的使用和处理方面做出更智慧的选择。制造商可以通过以下三种主要途径在提高生产效率的同时降低用水量:改进清洗程序、降低废水负荷和实现水的就地循环利用。改进清洗程序食品饮料生产大部分是批次生产工艺。无论是从一个批次到下一个批次,还是从一种产品到下一种产品,设备都处于流水作业状态,因此清洗至关重要。正确的清洗方式是产品质量和消费者安全的保证。清洗过程通常分为强力清洗或简单地通过延长时间来进行清洗,其中包括冲洗和重复洗涤过程,这些都将消耗大量的水。清洗过程通常涉及多个阶段,包括酸洗、碱洗和冲洗阶段。清洗效果的检验大多通过目视或特定的污染物检测来完成,如过敏原测试,甚至是离线微生物检测。这些方法中有的没有效果,有的不能充分反映清洗状况——不但耗时长,而且理论上没有说服力,更无法全面了解和掌握清洗效果,在产品质量和安全方面存在风险。在这里,数据至关重要。当能够通过数据检查和确认清洁程度时,不仅为商品质量和安全提供了保障和依据,而且在水的使用方面也可以做出更智慧的选择。通过实时数据优化就地清洗循环,可以更智慧、更有效地使用水资源,减少清洗用水量。降低废水负荷食品饮料制造商往往不太重视废水管理这一问题。因为它只与工厂成本相关,而不与产品本身——即收益来源相关。由于采用批次生产工艺,废水负荷往往随批次情况和产品种类而变化,或者取决于生产需求。为了保证达到排放要求并免于受到处罚,废水排放量的变化给废水处理过程的管控带来困难。通常会采用平衡罐来应对废水负荷变化,或将多日的废水负荷送至第三方实验室进行分析和检测。这些程序在一定程度上有所帮助,但当废水负荷过大且对于无法提供有价值的水质数据,工厂会将这些废水转移,打乱处理程序,甚至将不达标的水排放到外界环境中。此外,如果废水负荷突然增大,这可能意味着工艺系统出现了问题或可能存在潜在的产品损失。这些问题可通过对生产过程的有效监控来解决,以避免出现泄漏、工艺紊乱或参数偏离。监测有助于了解废水负荷,从而使操作人员能够更智慧、更快地判断采取何种措施,包括将废水进行存储或是转移,或在合适的情况下进行排放。排放洁净的废水而不是将废水进行转移,可以大大节省资源和成本。实现水的就地循环利用生产设施中的水有很多用途,通过现场的水处理设施可以为水的再利用提供多种机会。对于某些用水,如作为食品饮料的配料,要求水质非常纯净。但对于其它用途,如洗涤或灌溉,则不需要高质量的水。水处理和再循环工艺技术为水的再利用提供了多种机会,包括凝结水回收和精制、膜处理浓水处理和冲洗水回收等等。再生水的用途包括锅炉给水、冷却塔补给水、就地清洗预冲洗,甚至是饮用水。如果设有污水处理设施,就应当优先考虑水的重复使用 - 只要没有被污染到认为是“废弃物”的程度,工厂应努力实现在其整个设施中的“水中和”。确定水质有助于水资源的正确处理和安全再利用。对整个生产和清洗过程中的用水情况进行优化,对于产品的安全性和一致性来说至关重要。实现水资源的就地重复利用、降低废水负荷和改进清洗程序是减少食品饮料制造业用水的三种途径。总有机碳TOC是判断水质是否受到有机物污染或者有机物缺乏的一种综合方法,TOC是一个可被用于衡量残余的污染物、验证设备的清洁度以及判断水质是否适合重复利用的参数。通过TOC数据进行有效的监控并提前采取工艺控制将有助于减少产品召回,降低产品废品率和缩短停工时间,并为水资源的就地处理和循环利用提供机会。水资源无任何可替代品,制造商和消费者都在努力通过节水、改进废水处理工艺、智慧用水(水质符合使用目的即可),更好地管理水资源。这些可持续性措施不仅能降低成本、提高效率、改善工艺,而且还可以作为营销手段,用来提升食品饮料品牌的形象和声誉。原文英文版刊登于www.newfoodmagazine.com,本文有所修改。 ◆ ◆ ◆联系我们,了解更多!
  • 硫同位素为华南雾霾研究提供新途径
    p style="line-height: 1.5em " 记者从中国科大获悉,该校地球和空间科学学院沈延安教授团队与美国同行等合作,在研究华南雾霾的物质来源和形成机制上取得重要进展。相关研究成果日前在线发表在国际学术期刊《美国科学院院刊》上。/pp style="line-height: 1.5em "  雾霾主要由硫酸盐、硝酸盐、有机碳和黑碳等组成,因此对硫酸盐的稳定硫同位素进行高精度的测定并探索其非质量分馏信号成因,对正确认识雾霾的来源和形成机制具有指导意义。放射性硫同位素35S只在高层大气生成,半衰期为87天,因此可以有效地对雾霾的来源及物理传输途径进行示踪。/pp style="line-height: 1.5em "  研究人员通过系统地测定华南气溶胶的硫酸盐、大气中的二氧化硫以及代表性稳定硫同位素,发现气溶胶硫酸盐33S和36S的异常组成与大气中二氧化硫的同位素组成不同。放射性35S分析结果显示,33S的异常组成与气团高度的变化密切相关,这说明二次硫酸盐形成过程中硫循环经历了在平流层的光化学反应然后沉降到对流层和地表。/pp style="line-height: 1.5em "  另一个重要发现是,36S异常与33S异常不存在相关性,但36S异常与硫氧化率及多种生物质燃烧示踪物(左旋葡聚糖、甘露聚糖、钾离子)的丰度均呈现强相关性。研究结果表明,在东亚及北美地区广泛观测到的气溶胶硫酸盐36S异常,主要是由化石燃料或生物质燃烧直接生成的一次硫酸盐气溶胶造成的。/pp style="line-height: 1.5em "  该研究不仅证明了硫同位素是追踪不同成因雾霾硫酸盐来源和形成机制的有力手段,还为雾霾的物质来源、传输途径和形成机制提供了新的研究思路和有力证据,对制定雾霾治理政策和措施具有指导意义。同时,不同硫同位素异常的不同成因,对探讨早期生命演化和地球早期25亿年之前大气的组成也具有重要启示。/pp style="text-align: right line-height: 1.5em "(记者吴长锋)/p
  • 创伤弧菌的培养特性与生长环境及感染途径!
    创伤弧菌的培养特性与生长环境及感染途径! 创伤弧菌(vibrio vulnificus),或称为海洋弧菌,是一种栖息于海洋中的细菌。如果伤口暴露在含有这种细菌的海水中,创伤弧菌会在伤口上繁殖,可能引发溃烂,甚至导致组织坏死。若食用了遭污染的海鲜,也有罹患肠胃炎的可能。在2003年12月,中国台湾卫生研究院主导的基因体定序团队,完成了创伤弧菌的基因体定序与分析工作。 一、形态特性 创伤弧菌属革兰氏阴性弧菌。在液体培养基中菌体大小为0.7*2-3μm,稍弯曲。在固体培养基中呈多样性。有极端单鞭毛。 二、培养特性 营养要求一般,最适生长温度为30℃,兼性厌氧。在无NaCl及超过8%NaCl的培养基中不生长,可在0.5%NaCl及3%NaCl的蛋白胨水中生长,在含6%NaCl的蛋白胨水中生长良好。 三、流行病学 创伤弧菌广泛分布在海水中,可从牡蛎等海产品中分离得到。本菌主要通过伤口接触海水造成感染,也可经口感染。 经伤口感染时可导致蜂窝织炎及骨髓炎等多种炎症,经口感染时常迅速导致菌血症或败血症。 感染本菌后如不及时治疗,病死率很高。 四、临床表现 感染后的症状包括呕吐、发烧、腹泻、低血压、肿胀和疼痛等,需要尽快使用抗生素治疗。 若感染此弧菌,临床最常出现的两种表现为伤口感染以及原发性败血病。如果伤口接触到海水、贝壳或鱼类,便有可能感染到此弧菌。一般来说这样的感染多半很轻微,但在高风险的族群上,此类弧菌感染可以很快速的传播,并导致严重的肌炎和肌膜炎引发严重的坏疽。 五、感染途径 美国佛罗里达海滨爆发“吃人肉细菌”致死率超过30%,引起人们的极大关注。据悉,感染吃人肉细菌后,会发生呕吐、发烧、腹泻、低血压、肿胀和疼痛等症状,另外,吃没有煮熟的贝类(如牡蛎)也可能造成感染。 这种名为创伤弧菌(Vibriovulnificus)的细菌可通过人体表面伤口,或者是游泳者吞咽海水而进入人体内繁殖作乱。 虽然多数游泳者不会受上述细菌影响,可一旦感染,患者体表伤口附近的肌肉组织将被细菌“杀死和吃掉”。免疫系统功能低下的人(如肝肾功能不全者)最容易感染这种致命的细菌。另外,吃没有煮熟的贝类(如牡蛎)也可能造成感染。 其实海产品很易受副溶血型弧菌以及其他致病性弧菌的污染,根据2003年中国部分沿海地区零售海产品中副溶血性弧菌污染状况的主动监测,38.6%的海产品检出VP(副溶血性弧菌),浙江省试样的VP阳性率最高。甲壳类、贝类和鱼类试样VP阳性率分别为49.3%、37.9%和25.5%,生食海鲜尤其不推荐。 当被虾枪刺伤以后,伤口小而深,创口不容易暴露,也就不容易冲洗干净,在这个相对封闭的小环境里,海鲜上携带的创伤弧菌会趁虚而入,积累到一定数量,就会伺机入血,形成菌血症 。在免疫细胞的攻击下,细菌裂解释放出脂多糖LPS,LPS会引起免疫细胞释放细胞因子,如肿瘤坏死因子、白细胞介素6,甚至引起细胞因子风暴,导致败血症性休克。由此可能会引起重要脏器如脑干血液灌注不足,严重甚至可导致死亡。 六、生长环境 创伤弧菌和嗜水气单胞菌是海洋中最常见的弧菌科细菌,广泛分布于近岸海域的海水、海洋生物的体表和肠道中。其中,海洋弧菌是海水和许多海洋生物的正常或有益菌群成员,有许多海洋弧菌是养殖虾类和鱼类的重要病原菌。 创伤弧菌大多生长在热带及亚热带的海洋地区,且自然生存于河海交界处,需要一定盐分(0.7%~1.6%)和适宜的温度(20~40℃)才可生长。人感染创伤性海洋弧菌和海水污染无关。 所致感染多在夏秋两季,一方面夏秋季水温较高,适合海洋弧菌的生长和繁殖;另一方面,人们和海洋接触的机会增加,感染的风险增加。 北京百欧博伟生物技术有限公司的微生物菌种查询网提供微生物菌种保藏、测序、购买等服务,是中国微生物菌种保藏中心的服务平台,并且是集微生物菌种、菌种,ATCC菌种、细胞、培养基为一体的大型微生物查询类网站,自设设备及技术的微生物菌种保藏中心!欢迎广大客户来询!
  • 中国三例超级细菌病例仍未查出传播途径
    10月26日,中国疾病预防控制中心通报三起感染超级耐药致病细菌病例,但截至目前为止,超级细菌的传播途径仍无法定性。  据专家介绍,该种细菌的背后,与滥用抗生素有着直接的关系,直到目前,未找到传播途径,是空气传播还是接触性传播无法定性。唯一可以暂时定性的一点是该细菌是一种“医院内的相关性感染”。  中国疾病预防控制中心传染病预防控制所所长徐建国表示,目前看,该耐药性细菌的感染方式是医院相关性感染,国外报告的病例都是医院的病例,而中国目前发现的三例,也都是在医院。而超级细菌事实上只是表现出一种耐药性,还并不是一种真正意义上的细菌,不会传染,只是感染。也不会引起其他疾病。  徐建国称,有关资料显示,两名新生儿属于正常分娩,但体重比较低,低于正常新生儿的体重。低体重儿一般营养跟不上,也许家里经济条件并不是很好,刚生下来4天就出现拉肚子。  “两名新生儿是3月份患病,住院时间是10多天左右。当时还没关于超级细菌的报道。按此推断,当时医院肯定不是按超级细菌治疗的,应该是按腹泻、肠道感染治疗的。”徐建国介绍,专家们调查过一次,由于治疗档案没提取到,治疗方式无法预知。  据了解,两名新生儿是在一个县级医院治疗。按卫生政策有关要求,进入医院的患者都要留存档案。但有关专家表示,县级医院,可能管理比较松散。
  • 科学家借助病毒研究新的抗衰老途径
    科学家借助病毒研究新的抗衰老途径什么灵丹妙药能永葆颜面青春?最近科学家首次借助病毒的指点,筛选出了对抗皮肤细胞疲劳和损害的物质,并试图将它应用于护肤品。世界最大的护肤品原液生产商之一美丽加芬公司17日发布消息,将与日本最大的医学护肤品研究机构综医研株式会社合作研究这一新的抗衰老途径。科研人员实验了23种之前被认为有抗疲劳效果的物质,发现抗细胞疲劳效果最显着的物质是咪唑二肽(imidapeptide),研究认为,其机理是抑制氧化作用的后续反应。这项研究依托大坂市立大学医学部进行,论文发表在最近的《日本药理学与治疗》杂志。这项突破的基础,是通过检测一种皮肤和黏膜上常见的病毒,来定量化细胞的疲劳程度。这一灵感源于日本大阪市立大学十几年前一次实验,当时实验人员请一群大学生连骑4个小时自行车,再测试他们口唇黏膜上的病毒数量,发现数量激增。“这个实验很有意思,我们还注意到,人在劳累时口唇更容易生疱疹。”综医研社长小池真也告诉科技日报记者,研究人员倾向于认为,这些正常时候跟人体细胞和平共处的病毒,对其寄主的健康状况很敏感,“一种解释是,病毒在‘意识’到细胞即将死亡时,会迅速繁殖,造成炎症,以争取传播到下一个寄主”。尽管无法说明其中机理,但用病毒来指征细胞疲劳的科研成果,被转化到综医研病毒医科学研究所,用于各种抗疲劳成分的检测。此次验证其抗皮肤细胞衰老作用前,咪唑二肽已经被应用于日本的运动保健药品中,一些运动员会服用。美丽加芬公司总经理张文源说,这种物质一般从鸟的胸肌中提取,在金枪鱼的尾部和人的大脑中浓度也很高,有趣的是,这些器官都需要“持续做功”,维持长期氧化过程。“咖啡因只是让神经系统认为身体不疲劳,但咪唑二肽可以在细胞层面消除氧化过程带来的有害刺激。如果能够用于人类皮肤,将是激动人心的突破。”张文源说。此前,美丽加芬的研究人员利用脂质微粒包裹技术,第一次将“自由基捕手”α-硫辛酸复配成稳定的弱酸性细腻乳液,进入皮肤缓释,α-硫辛酸可消除皮肤中的自由基,并还原肌肤内的VC、VE、辅酶Q10的抗氧功能,但曾因性质极不稳定无法应用于护肤品。张文源说:“我们喜欢做一些比较新奇特的东西,以取得科学护肤的突破。”用病毒来指征细胞疲劳的方法,还用在常见的护肤成分“胎盘素”对皮肤细胞作用的机理研究中,目的是找到精准作用的成分。张文源说,改进后的胎盘素原液产品会在明年上市。
  • 神开股份有望开辟业绩增长新途径
    页岩气市场空间巨大,各家国企、民企、外企开始摩拳擦掌的同时,页岩气板块作为一个投资主题也被不少市场人士所重视。在数家相关上市公司之中,神开股份[0.00 0.00% 股吧 研报](002278.SZ)被认为将是受益者之一。  神开股份 (SZ:002278)最新价:0.00 - 0 0%行情走势 大单追踪 资金流向最新研报 公司新闻 最新公告个股股吧 优股预测 龙虎榜但本周以来,神开股份的股价跟随大盘接连下挫。截至周五,公司股价报收9.65元,全周跌幅15.34%。  早在今年6月底,国土部就进行了第一次页岩气勘探权的招标,仅有中石油、中石化、中海油等少数大型石化企业获准参与招标,可见在页岩气资源开发利用的早期,石化龙头的先发优势将十分明显。  金证顾问分析师刘力认为,神开股份是中石油的一级供应网络成员单位,也是中石化和中海油的网络采购供应商成员,有望“近水楼台先得月”。  公开资料显示,神开股份主要生产和销售井场测控设备、石油钻探井控设备、采油井口设备和石油产品规格分析仪器等四大类产品。经过十多年的发展,公司已经成为我国石油化工装备制造业的骨干企业之一,产品涉及石油勘探开发上游到石油产品加工下游,在我国石油化工装备业拥有较高知名度,在国内同行中处于领先地位。  公司目前的两大主力产品为综合录井仪和防喷器,其中录井仪的市场份额达到了50%以上,龙头地位无可动摇。这两项产品与钻井的数量呈正相关,基本达到了一口钻井配备一套录井仪和防喷器的地步。  根据美国的经验,页岩气开发对技术的要求很高,在勘探和开采过程中需要高精度的探测和分析仪器。而神开股份的录井仪,其搜集分析数据的速度仅为30秒,同时还可检测到样品气内百万分之五含量的物质,属于行业翘楚。  刘力认为,公司的产品将成为页岩气开发中的必备设备,页岩气资源的产业化将为公司开辟新的业绩增长途径。  公司三季报数据显示,1~9月份,公司实现营业收入4亿元,同比增长49.65% 归属于上市公司股东的净利润为0.51亿元,同比增长6.13%。  据了解,公司净利润增速较低的原因一方面在于受短期所得税率影响所致,公司高新技术企业资格进入复评期,本季按25%税率进行预缴,待公司通过复评后,将重新以15%税率进行计算并回补税款。另一方面,基于今年原材料价格上涨,而产品售价暂时维持原价所致,公司期间营业成本有所上升。此外,公司预计全年业绩增长0~30%。  事实上,公司已经通过不断调整产品结构来控制成本,安信证券分析师张仲杰预计,公司全年综合毛利率仅小幅下滑3%左右。  截至今年三季度末,公司的前十大流通股股东中共有三家基金,博时精选[1.15 0.88%]股票基金、诺安中小盘[0.94 0.32%]精选基金、易方达价值成长[1.12 0.54%]混合基金分别持有公司882.73万股、348.85万股、133万股,分别占公司的流通股本的比例为7.53%、2.97%和1.12%。  截至目前,共有95家机构对神开股份2011年度业绩作出预测,平均预测净利润为1.17亿元,比上年增长49.89%。
  • PM2.5应该怎么治? 最根本的途径是立法
    PM2.5到底要怎么治?来自全国各地的政协委员们各抒己见,献言献策:最根本的途径是立法 大力推进新能源汽车的运用 积极推进环境税费改革,充分发挥税收调控手段等。  两会聚焦  不同于前几天的雾霾天气,3月3日的人民大会堂前,天空蔚蓝,阳光明媚。  但“空气质量问题”、“PM2.5治理”等话题却并未因此被遗忘,在会议开幕当天仍是全国政协委员们热议的话题。会议秘书处提案组的工作人员此前也曾向媒体透露,在全国政协十二届一次会议目前已收到的提案中,环境保护是委员们关注的焦点。  治理离不开一个“法”  PM2.5到底要怎么治?来自全国各地的政协委员们各抒己见,献言献策。在全国政协委员王执礼看来,解决PM2.5等空气污染问题,最根本的途径是立法。王执礼曾在去年两会上提交 《千方百计降低PM2.5浓度》提案,本次两会,他再次递交了题为 《治理空气污染体现科学立法》的提案。  “治理空气问题,只靠一时热情不行,这是一个长期连续的工作。所以,我说要有立法,人们对法有敬畏之心。”王执礼在接受中国经济时报记者采访时这样表示。  他认为,应尽快修订《大气污染防治法》以及相关法律,完善配套法律法规。“这方面的工作已经刻不容缓,因为目前非常理想的、具有可操作性和强约束力的法律实际上还没有。但法律要想真正执行就必须要有细则,法律应明确环境损害责任承担主体、赔偿责任范围、责任承担方式等,这样的法才能真正起作用。”  对于接下来大气污染相关法律修订的进程,王执礼的看法比较乐观。“我觉得会比较快。习近平总书记在几天前的中央政治局会议上有个讲话非常好,说要科学立法、依法治国、依法执政、依法行政,总归都离不开一个法。”  “到时候,公众想对那些在大气污染防治方面有违法、失职行为的企业或单位提起诉讼也有依据,更能发挥大家的监督作用。”王执礼说。  政府部门必须先做表率  全国政协委员、华东理工大学分析测试中心主任蓝闵波在接受中国经济时报记者采访时表示,治理PM2.5应关注各个方面的问题,进行全方位的调整。他特别提到要大力推进新能源汽车的运用。“充电使用的新能源汽车有一定的局限性,汽车每跑二百公里到三百公里就得充电,再加上全国各地充电站的建设不足,所以,补充能源比较麻烦。但对于减少空气污染来说,新能源汽车可以发挥的作用很大。”  蓝闵波认为,应该首先在我们的公务部门普及新能源汽车。原因是,公务车中有一大部分日常都只是在城市里行驶,并不怎么跑长途。“另外,在新能源汽车的推广过程中,我想政府部门应该起一个表率作用。”蓝闵波说。  他同样对未来的空气治理表示出信心。“新政府的决心很大,我觉得空气问题的改善不会花太长的时间,不用18年那么久。”  全国政协委员、北京大学口腔医学院教授俞光岩则建议政府有关部门尽快实现燃油油品质量升级,加快国内炼油企业升级改造,确保在汽油、柴油标准升级实施时间内如期提供合格的油品。再者,要加强油品质量监督,加大超标用油处罚的力度。  同时他建议,环保部、卫生部、科技部共同设立空气污染与人口健康专项科研项目,研究城乡空气质量与相关疾病的关系,提高与空气污染相关疾病的防治水平。  经济手段不可不用  全国政协委员、河北省政协主席付志方则建议,充分发挥税收作为国家宏观调控的手段。  “目前,我国还没有真正意义的环境税,在税收体系中,只有部分税种涉及资源环境保护和管理性质。从其对环境保护的调节作用看,现有的资源税着眼于调节级差收入,税额高低主要取决于资源的开采条件,没有全面考虑对资源开发地区环境的植被恢复、环境保护成本。在消费税方面,税目和税率的设计没有全面考虑消费活动产生的环境外部成本,与环境保护相关的一些消费税率偏低,课税范围小,如未能将煤炭这一能源消费主体和主要大气污染源,以及给环境带来污染的日常消费品纳入征税范围。从增值税和企业所得税来看,与节能减排相关的税收优惠面较窄,规定不合理,对节能减排作用有限。”他在向大会提交的发言稿中这样表述。  他表示,要积极推进环境税费改革,逐步扩大资源税和与环境相关的消费税征收范围,提高征收标准并实行有利于资源节约的计税方法 另外,继续完善排污收费制度,合理提高各类排污费征收标准。再者,按照“谁征谁用”的原则,适时以地方税种的形式开征环境保护税,专门用于传统产业的升级改造,同时规范税收优惠政策,调动企业走新型工业化发展道路的积极性。
  • 聚焦环境检测行业发展 开辟产学研合作新途径
    为搭建环境检测产业发展交流平台,推动环境检测产业提质升级,在安徽省环境检测行业协会等全国13个省、市级环境监测(检测)协会的大力支持下,6月5日,2023首届中国(上海)生态环境检测产业发展高峰论坛在上海国际会展中心召开。  论坛围绕环境检测行业发展、环境检测市场新需求,搭建自主组织、深度参与的新平台,开辟产学研合作的新途径。  本次论坛分领导致辞和学术报告两个环节。中国(上海)生态环境检测产业发展高峰论坛组委会主任、安徽省环境检测行业协会常务副会长牛俊,中南大学教授、博士生导师,湖南省环境检测行业协会会长邓飞跃分别致辞,七位与会学者嘉宾带来《生态环境智慧监测科技创新发展形势与展望》《环保教育云》等主题的精彩报告。  论坛上,与会嘉宾介绍了环境检测发展现状及趋势,指明了环境检测未来的发展重点。各省市检测(监测)协会和特邀企业代表们结合自己的工作实践,提出了环境检测行业存在的共性问题,分享了各自在环境检测工作中的经验、体会和创新,并希望保持定期交流。  “通过本次论坛交流,各省市协会和企业对环境检测领域的发展有了更深的认识,也使政府主管部门对环境检测企业的情况、面临的困难和要求呼声有了更深入的了解,将进一步促进有关各方加强合作,优化资源配置,加快环境检测行业高质量发展步伐。”牛俊表示。
  • 癌细胞难逃“光测”法眼 或为癌症预防新途径
    科技日报讯 (通讯员吴军辉 记者冯国梧)记者5月26日从南开大学获悉,该校物理科学学院田建国、刘智波研究组利用全内反射下石墨烯对介质折射率异常敏感的光学现象,实现了超灵敏单细胞实时流动传感。这一成果可以使癌细胞在形成之初即被精确&ldquo 光测&rdquo 出来,将为癌症预防提供一条新途径。  石墨烯是一种呈蜂巢状排列的单层碳原子结构,是目前已知的最薄、最坚硬的纳米材料。在全内反射这种特殊的结构下,对于介质折射率异常灵敏是石墨烯材料的重要特性之一。田建国、刘智波领导的研究组发现,折射率的灵敏度与石墨烯的层数有极大关系,并且层数有一个最优值。他们通过与南开大学化学学院陈永胜课题组合作,不断控制石墨烯的层数,最终制出厚度为8个纳米的石墨烯材料,其折射率的灵敏度和分辨率达到目前国际上最高水平。   在此基础上,课题组结合微流体技术和病变细胞的折射率差异,将这一超高的折射率灵敏度成功应用于单细胞传感。记者在实验室看到,实验人员将制备出的8纳米厚石墨烯均匀铺于一块三棱镜的一面,紧贴石墨烯上方建有一条细胞通道。实验时,一束光从棱镜一面射入,穿透石墨烯照射在细胞通道上,反射光从棱镜另一面射出。实验人员通过光电转化,即可得到一份波形图。如果细胞通道中存在癌细胞,则波形图上将会呈现出明显的波峰。即使数千个正常细胞中有一个发生了病变,这种&ldquo 光测&rdquo 方法都可以将其准确识别出来。 该课题组论文已在国际纳米科学技术领域权威刊物《Nano Letters》上发表,美国著名的纳米技术与纳米科学网进行了同步报道。
  • 我国成为首个建立转基因植物核酸量值溯源框架途径的国家
    近年来,转基因农作物及其产品的安全性越来越受到全球的关注。为加强对转基因产品的安全监管与检测,各国都在积极进行转基因植物核酸精确测量技术与溯源途径研究,制定完善的转基因核酸测量标准,以期实现转基因检测结果的可靠和可比。   日前,由中国计量科学研究院牵头联合8家单位研制完成的“十一五”科技支撑计划重点课题《转基因植物核酸量值溯源传递关键技术研究》通过了专家鉴定验收。该课题通过自主研究,成功建立了转基因植物核酸测量的溯源途径,解决了国内长期以来无法实现转基因植物核酸准确测量和量值溯源的技术难题,使我国成为世界上首个建立转基因植物核酸量值溯源框架途径的国家。  课题组针对目前存在的转基因植物及其产品转基因成分含量测量结果不可比和量值溯源体系缺失等制约我国转基因产品发展和进出口贸易的关键技术问题展开研究,经过多年的技术积累和3年的联合实验攻关,建立了转基因植物核酸精确测量方法、计量标准和测量溯源途径,确定和实现溯源到国际基本单位。  该课题研究建立了核酸精确测量方法之超声波-同位素稀释质谱、电感耦合等离子体发射光谱和数字聚合酶链式反应等国际首创的新测量方法,从而实现了转基因核酸的高准确度定量测量,解决了目前国内外对转基因核酸定量测量可比性差和缺乏标准物质的关键难题。目前,课题成果已完成CCQM-K86国际计量关键比对,主导CCQM-k110/P113.2关键比对等生物组织中基因组DNA相对定量的国际比对,证明了所建立的核酸定量测量方法及计量标准达到国际领先。  课题还建立了转基因标准物质候选物纯度鉴定方法体系,解决了转基因植物基体标准物质候选物纯度无法准确鉴定的问题。共研制完成了转基因水稻、棉花14个基体标准物质,转基因水稻、棉花、番茄、玉米、大豆、油菜等8个质粒分子标准物质。这些转基因标准物质应用于我国的出入境检验、进出口贸易等多个领域,将产生巨大的经济效益和社会效益。此外,在转基因快速检测技术研究方面,课题组共建立了电化学传感、生物编码色谱、增强型PCR、核酸序列依赖性扩增技术等4套转基因检测新技术,为我国转基因植物核酸量值传递提供了重要的技术积累。  据了解,课题组研制的转基因标准物质已经推广至国家食品质量安全监督检验中心(北京海淀质检所)、农业部转基因生物食用安全监督检验测试中心(北京)、上海出入境检验检疫局、天津出入境检验检疫局、中山出入境检验检疫局技术中心、食品科学与技术国家重点实验室(南昌大学)等出入境检验检疫部门、国家重点实验室和国家转基因检测中心,有效解决了我国转基因植物出口贸易中存在的检测结果不一致、不可比问题,在为国家的进出口贸易节约大量资金的同时,将为国家转基因产业的发展提供强有力的计量技术和标准保障。
  • 对话曹健林:打破集成电路产业路径依赖,重新定义发展途径
    2023年10月26日,第七届国际先进光刻技术研讨会(IWAPS 2023)在浙江丽水成功召开。本次会议由中国集成电路创新联盟,中国光学学会主办;中国科学院微电子研究所和丽水经济技术开发区管理委员会承办;浙江富浙资本管理有限公司、广东省大湾区集成电路与系统应用研究院、南京诚芯集成电路技术研究院协办。会议期间,仪器信息网特采访了中国集成电路创新联盟理事长曹健林。以下为采访视频:本次IWAPS组委会选择在丽水召开,曹健林表示,丽水地处我国东南沿海长三角地区,但由于地处浙西南山区,长期以来交通不便,整个集成电路产业在全球也是一个高技术产业,在丽水这样的地方召开,说明了我国已经走到这样一个发展阶段,高技术产业已经在祖国大地到处都分不开了,而且也得到了祖国大地各地政府的重视。本次会议的召开得到了丽水的党委政府,包括经开区都给予了很多支持,虽然时间不长,但从 2019 年起丽水这里也集中了一批半导体产业企业,发展很快。在这里开会也是对本地半导体产业的一种支持。谈到当前全球半导体产业面临的问题时,曹健林认为,包括研究、产业发展、应用等在内的全球半导体产业事业当前遇到最大的问题是所谓逆全球化的问题。半导体产业发展到今天,事实上是一个全球化的发展,它的研发、研究、产业,甚至包括一些基础理论、应用都是面向全球市场。中国是最大的一个应用市场,那么迄今为止基础理论的研究,包括一些先发技术的研究,主要还在发展中国家,一些发达国家认为中国可能占便宜了,因此不愿意打破现有格局,打破这种格局的话,对中国的研究和发展的确产生了一定影响。曹健林强调,整个半导体产业或者半导体事业,包括它的研究,是一种应用牵引和需求牵引,需求牵引就是靠最多最大的市场需求,只有市场大了才能产生一些新的需求,只有市场大了,才能产生足够量的需求,然后不断发现所谓原理,在有些技术突破之后,不断的扩大生产,在解决扩大生产降低成本中碰到的问题。发达国家与中国脱钩,可能会使得中国这样的发展中国家,只能在原有的基础上继续补短板,比如一些相关装备、材料、关键技术等对我们采取封锁,这种封锁显然会对我们的发展有影响。但另一方面来讲,这种封锁又促成了中国人自力更生,自主创新,自立自强了,大大提升了全国人民在拥有完整产业链这一点上的共识。谈到突破卡脖子问题时,曹健林表示,“卡脖子”问题的背后表现为“路径依赖”,即中国走的路都是发达国家走过的路,路径依赖有一定的历史必然性,当你白手起家的时候,一定要去沿着人家的道路去走着看,这样至少不犯错误,因为有人做成了,至少证明这东西是可以做成的。曹健林强调,我们的强项是产品应用,弱项是关键元器件、关键材料、关键装备等,当把这些弱项都补上后,我们要开创一条中国自己的独特道路,打破这个路径依赖。换句话说,等到我们真把我们的材料,装备,关键工艺等短板都补上之后,我们应该重新定义的发展途径来定义这个领域。重新定义发展途径绝不是闭关自守,我们在原有的路径上还愿意和全世界交流。谈到光刻技术突破时,曹健林表示,世界前沿的光是用EUV短波长的光刻来做,还要和其他工艺密切配合,需要光学工程、精密机械、控制、材料等基础学科的支撑。这些基础中国都具备了,并非不可逾越的门槛,只是缺乏实践的机会。有了学科基础,要把装备做好,是需要时间的,在这方面是我们的弱项。而在光刻机的研制方面,曹健林认为主要的障碍是缺少工程经验。
  • 葛利云教授团队:用餐/饮水是人类摄入大气沉积微塑料的途径之一
    微塑料(MPs)带来的人类健康风险已经引起了广泛关注,但对人类接触途径和强度知之甚少。此前,人们发现这些塑料微颗粒只会积聚在废水、河流和海洋中。2020年6月12日美国犹他州立大学的首席研究员、环境科学家贾尼斯布拉尼(Janice Brahney)发表在美国《科学》杂志上的一篇研究报道中表明,这些塑料污染物遍布美国西部11个国家公园和野生保护地区,其中包括著名的科罗拉多大峡谷和落基山国家公园,而尤以落基山国家公园的数量最多,预计这种塑料微颗粒会在世界各地发现。这样表明塑料已经无处不在,它能进入大气循环、伴随降雨,遍布人迹罕至之地。大气中无处不在的微塑料以及随后在遥远的陆地和水生环境中的沉积,应当引起广泛的生态和社会关注。由Journal of Hazardous Materials最近发表的来自温州医科大学葛利云教授团队的研究发现,在用餐/饮水活动中会摄入大气沉积的MPs,并且饮食中大气沉积的MPs的摄取量大于直接来自食物来源的MPs。“有几项研究试图量化全球塑性循环,但没有意识到大气层的边缘。我们的数据显示,塑料循环最先发现在全球水循环,但也有着大气、海洋和陆地的生命周期。”葛利云说。该项研究主要成果为:吸入大气中的MPs(微塑料)是人类主要的MPs接触途径,而另一重要暴露途径是日常饮食的沉积物中吸入MPs 餐饮场所中MPs多达105种,其中90%小于100µm的碎片是非晶态碎片的大气沉积MPs 典型的工作生活场所每年约有1.9 ×105至1.3 ×106个微塑料,通过大气沉积在饮食上被摄入,沉积在饮食中的大气层MPs的接触强度在室内高于室外 饮食中摄入大气MPs比从食物来源摄入高2-3个数量级 覆盖和清洗餐具可减少饮食中大气沉积MPs的暴露。葛利云教授团队一直从事新型污染物在自然界中的迁移转化及环境污染治理技术研发。在国际权威期刊Journal of Hazardous Materials、Photochemical & Photobiological Sciences、Journal of Chemical Technolog and Biotechnolog等发表多项成果,为新污染物的降解处理技术、环境分布特征及迁移转化行为方面提供了理论依据。“微塑料是尺寸为5~100 mm的塑料颗粒,其体积较小、毒性大,随着食物链的传递,影响生物体营养膳食、生长发育、繁殖生存。为了保护和修复水体环境,对水体中微塑料进行收集、检测和去除尤为重要。从水体样品中收集微塑料和准确鉴别种类,是分析和去除微塑料的基础。”葛利云说。2022 年8月,葛利云团队授权一项实用新型专利:一种海洋微塑料检测取样装置(ZL2022 2 2262030.2)。该专利涉及环境监测技术领域,解决了微塑料样品测试结果准确性不足的问题,海洋微塑料检测取样装置包括外壳体和控制室,外壳体设有进水道,控制室内设有发电装置、锂电池、电机和控制器,控制器与发电装置、电机和锂电池电性连接。这种海洋微塑料检测取样装置可以获取多组样品,提高样品的准确性,还可以利用水流作用进行充电,提高在待测水域的使用时间,满足不同条件下的海水取样工作。吃进去的微塑料对健康有害吗?面对处处存在的微塑料污染,很多人会困惑,吃进去的微塑料对健康有多少危害。作为温州市第十一届、十二届政协委员,葛利云教授在今年温州市两会中汇报道,“微塑料是否会产生危害,主要考虑两点,一是微塑料本身没有毒性,但它会携带环境毒素 二是微塑料的环境累积不可逆,它可能在某些局部产生超高浓度,并经由食物链富集,对人体产生(潜在的)危害。”同时也建议大家:“从风险规避的角度出发,建少吃大型食肉类海鱼,用岩盐替代海盐,不要重复使用纯度较低的塑料瓶(如饮料瓶)装油性食物,少吃塑料盒装的地沟油概率高的外卖。
  • 江苏大学陈全胜团队: 通过HS-SPME-GC/MS结合代谢组学分析鉴定超声波辅助康普茶发酵过程中的挥发性物质及其代谢途径
    Introduction茶菌等传统微生物发酵饮料使用富含蔗糖的茶水作为原料,经酵母和细菌共发酵而成。红茶作为茶菌发酵的主要原料,也被称为康普茶,具有促进胃肠道消化、抑制肠道有害微生物生长、抗氧化特性、促进血管舒缩、辅助预防心脑血管疾病的功能。发酵是康普茶香气产生的关键工序,可以产生大量的醛、酸、酮和其他化合物。目前,红外、微波、超声波等物理加工技术已成功应用于食品发酵,与传统加工技术相比更能促进风味的形成。其中,超声波处理的茶叶非常稳定,通过物理作用增强参与香气合成基因的表达,使得茶叶形成不同香气化合物。近年来,顶空固相微萃取(HS-SPME)样品前处理方法因其对样品需求量小、不需要有机溶剂、操作简单、灵敏度高、重现性好等特点,已成功应用于各种茶叶香气物质的提取。超声提取技术具有速度快、成本低、操作简单、环保、效率高等优点,是增强茶叶香气释放的一种特殊方式。因此,HS-SPME结合超声波技术可能适用于茶叶发酵过程的分析。代谢组学可以同时实现所有代谢物的全面定性和定量分析。现阶段,基于HS-SPME结合气相色谱-质谱(GC/MS)技术的组学方法已广泛应用于挥发性化合物的代谢组学分析。然而,结合HS-SPME-GC/MS与代谢组学方法,用于康普茶代谢产物变化与代谢途径之间的关系的研究鲜有报道。本文改进了康普茶的发酵工艺,并通过单因素和响应面分析进行优化。采用HS-SPME-GC/MS技术对康普茶发酵过程进行代谢组学分析,探究其代谢产物变化,并进一步分析代谢途径及其对挥发性化合物性质的影响(图1)。图1. 基于HS-SPME-GC/MS的代谢组学结合多元分析研究康普茶发酵过程中的特征挥发性物质和代谢途径。Results and Discussion发酵条件的确定不同超声频率下发酵液中总糖和茶多酚的消耗率如图2A和2B所示。结果表明,超声处理和非超声处理的样品其总糖和茶多酚的消耗率存在显著差异。优选发酵时间为3 d。根据采样时间记录发酵周期为S0~S7,其中发酵初期阶段记录为S0。此外,优选23 kHz的超声波频率为后续实验的最佳频率(图2C),优选pH 3.2为后续发酵的最佳条件(图2D),优选30 °C为最佳温度(图2E)。以发酵后总糖和酚的消耗率为响应值,进行Box-Behnken分析,建立高度拟合的茶提取物发酵条件的三元回归模型。图2. 探究超声处理对(A)茶多酚消耗率、(B)糖消耗率的影响,(C)五种超声频率对茶多酚和糖消耗率的影响,(D)五种pH值对茶多酚和糖消耗率的影响,(E)五种温度对茶多酚和糖消耗率的影响。采用扫描电子显微镜(SEM)表征23 kHz处理组和对照组茶菌的形态。结果表明,对照组表面光滑圆润,而超声后的细胞表面存在凹痕和皱纹(图3)。这可能与20~40 kHz频率下的急性气穴现象有关。超声波处理可以提高微生物中相关酶的活性,从而提高发酵效率。图3. SEM表征超声对茶菌形态的影响,(A和B)超声处理组,(C和D)对照组。代谢组组成分析GC-MS-TQ8040具有高通量和智能操作特性,配备高亮度离子源和高效碰撞池,可用于超灵敏分析。保留时间、已鉴定化合物列表、缩写、CAS号和分子式如表1所示。 表1. 基于HS-SPME-GC/MS鉴定康普茶发酵过程中的代谢物。132种气味活性化合物被分为10组(32种醇类、13种酮类、16种烯烃、18种酯类、14种烷烃、11种芳烃、9种酸类、7种醚类、4种氮挥发性化合物和1种硫化物)。康普茶发酵过程中挥发物的代谢谱表明,鉴定的化合物分离良好。采用单因素方差分析和Tukey图基事后检验法验证上述132种挥发性化合物在发酵过程中具有显著性。132种高贡献挥发物的方差分析统计如表2所示。表2. 康普茶发酵过程中挥发性成分的相对峰面积变化及其与发酵时间的相关性。标志性挥发性物质的分析采用主成分分析(PCA)将发酵样品分为不同类群,结果表明,发酵和未发酵的茶叶具有不同的挥发性物质成分(图4A)。发酵过程中茶叶的挥发性物质经历周期性的变化。进一步采用PCA的载荷图解释S0~S7代谢物变化差异的具体成分,结果如图4B所示。2-甲基丁酸、D-柠檬烯和苯乙醇等香气化合物有助于康普茶的整体花香、酸甜和柠檬味,并且远离零点,对PC1和PC2有显著贡献,从而影响发酵液的气味特征。PLS-DA得分图显示出更好的模型拟合(组间差异更显著),PC1和PC2分别占比59.1%和7.6%(图4C)。如图4D所示,选择了25种挥发性化合物。苯乙醇增强了“花香”风味,改善了整体的感官香气质量,并增强了康普茶的“甜”香气特征。其难闻气味可能是由2-甲基丁酸引起。挥发性成分的鉴别结果表明,发酵工艺对康普茶挥发性成分具有显著影响。此外,这些挥发性化合物被认为是康普茶发酵过程中的主要特征香气成分。图4. (A)康普茶样品的多元统计分析和质谱数据集的PCA得分图,基于PCA模型的(B)康普茶样品中变量的载荷图、(C)PLS-DA得分图、(D)PLS-DA评选的前25种挥发性化合物。特征代谢物的鉴定结合载荷图和VIP得分进一步筛选特征代谢物。结果如图5所示,部分差异代谢物与康普茶发酵过程呈线性相关。叶醇、二十烷、水杨酸异辛酯、2-甲基丁酸、邻伞花烃、甲基三十烷基醚、苯乙醇和棕榈酸异丙酯的含量与红茶发酵时间呈正相关。其余化合物(甲氧基苯肟、芳樟醇、雪松醇、二氯乙酸、癸酯)与储存时间呈负相关。图5. 12种代谢物的箱形图表明发酵中存在显著差异。代谢途径分析本文介绍了特征挥发物的产生途径、形成机制以及它们之间的转化关系。康普茶发酵过程中发现的特征代谢物的代谢途径如图6所示。图6. 康普茶发酵过程中发现的特征代谢物的代谢途径。Conclusion本文采用单因素优化实验和响应面分析确定康普茶的最佳发酵条件为30 °C、pH 3.2、23 kHz。通过代谢组学技术监测超声辅助处理过程中挥发性物质的综合变化。总而言之,鉴定了由132种成分组成的综合代谢组学图谱,并成功进行多元统计分析,筛选VIP>1的25种特征代谢物作为生物标志物。此外,详细研究了代谢途径以及各种挥发性物质的转化。结果表明,发酵后期存在挥发性物质转化的代谢途径。综上所述,在康普茶发酵过程中可以通过优化工艺加快和改进反应过程。本文为红茶菌发酵代谢产物的变化及影响机制的研究提供了重要的理论价值。
  • FDA鼓励仿制药开发,发布新仿制药审查途径
    p style="text-align: justify "  美国食品药品管理局(FDA)在15日时公布了新的仿制药审查途径以加速相关产品的审核,该计划是 FDA 在增加药品竞争与降低价格努力的一部份。FDA局长 Scott Gottlieb 表示,FDA正在努力降低仿制药开发的障碍并降低他们进入市场的困难与成本,以提供患者更多不同的选择。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d3d61354-04c2-4fa2-9aed-1cdd1c90086a.jpg" title="企业微信截图_20190221110041.png" alt="企业微信截图_20190221110041.png" width="521" height="292" style="width: 521px height: 292px "//pp style="text-align: justify "  在15日的声明中,Scott Gottlieb 表示,FDA一直致力于降低药价压力,也因此他们希望可以透过开放仿制药增加药品之间的竞争。市场上有许多的药品缺乏仿制药竞争,这可能导致这些药品的价格一直居高不下,最终伤害美国的消费者与病患。他也表示,FDA很清楚有些原厂药对于仿制药厂来说可能太过复杂,或缺乏吸引力。/pp style="text-align: justify "  在接下来的一年,FDA将会进一步推动促进仿制药竞争的政策,新计划称为竞争性仿制药治疗(Competitive Generic Therapies, CGT)。CGT途径将刺激仿制药的有效开发、审查,以及使之能够及时进入市场。此通道将向那些愿意申请市场上缺乏或无竞争者原厂药的仿制药开发厂商开放。符合CGT标准,并获得新药申请核准(ANDA)的药物将会获得180天的市场独占期。/pp style="text-align: justify "  CGT并非FDA在推动仿制药发展的唯一计划。去年(2018)10月,FDA宣布了药物竞争行动计划(Drug Competition Action Plan),其中包括一项全球仿制药标准化(standardize generic drugs globally)的提案。根据该提案,Gottlieb 表示,仿制药制造商应该要能实施单一全球药物开发计划,并利用共通要素以在不同市场申请药物批准。/pp style="text-align: justify "  12月时,FDA 也取消了一项2013年的提案,该提案可能导致仿制药商面临潜在的药物副作用诉讼。该提案允许仿制药商独立更新与发布药物安全信息卷标,过去只有原厂药厂有权力这么做。/pp style="text-align: justify "  此外,Gottlieb 也表示,FDA 正在努力使仿制药的开发变得更有效率以及更具有可预测性,FDA 将会降低审核所需的时间以及增加仿制药申请过程的效率。他也提到 FDA 正在努力增加机构透明度,以提供更确切的仿制药审核通过时间。/p
  • 几种常见的中文期刊官方投稿途径查询方法
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/dc52cfae-3257-4971-821b-66c64e2f8870.jpg" style="" title="1.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/116a8131-6df5-4bff-8f3e-2c58ef52fb0f.jpg" style="" title="2.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/b02ef30a-da96-42ef-9fbb-952a2e6cfc04.jpg" style="" title="3.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/bce2422d-ef07-4287-9f63-9a7bf0a6968a.jpg" style="" title="4.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201709/insimg/99c103c6-9bfe-4ec3-8148-3c370fa527af.jpg" style="width: 600px height: 848px " title="5.jpg" width="600" vspace="0" hspace="0" height="848" border="0"//pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201709/ueattachment/82f9c959-84f0-42ab-ada1-36c3170f9aea.doc"几种常用的中文期刊官方投稿途径查询方法.doc/a/p
  • Nature:流感疫苗竟对新冠重病有奇效!或成为研究新冠疫苗新途径
    2022年5月16日,Nature发文表示流感疫苗可以降低新冠感染风险,特别是在新冠重症防护方面,具有90%的效力。如果我们提前知道流感或者其他疾病的疫苗可以提供针对新冠病毒的防护,那么即使只是在很短的时间内提前知道,也可以降低未来新冠大流行造成的死伤,挽救数百万人的生命,为开发新冠疫苗留出时间。2022年5月9日,多哈威尔康奈尔医学中心研究团队在预印本平台medRxiv发表题为“Effectiveness of influenza vaccination against SARS-CoV-2 infection among healthcare workers in Qatar”的研究成果。研究发现与最近未接种流感疫苗的人相比,接种流感疫苗的人在接下来的几个月内患新冠重症的可能性降低了近90%。此项研究由传染病流行病学家Laith Jamal Abu-Raddad领导,并分析了2020年9月17日至2020年12月31日之间(新冠疫苗接种之前,流感疫苗接种之后的时期),卡塔尔30774名医务人员的健康记录。数据样本的中位年龄为36岁,对照组中位年龄为35岁,流感疫苗接种和PCR(Polymerase Chain Reaction)检测之间的中位持续时间为43天。调查流感疫苗对SARS-CoV-2感染有效性的人群选择路径通过对数据结果分析,得到以下结论:1、接种流感疫苗14天后对新冠病毒的防护有效性为29.7%;2、流感疫苗对任何严重、危急或致命新冠症状的有效性为88.9%;3、流感疫苗接种与SARS-CoV-2感染风险和COVID-19严重程度的显著降低有关;4、流感疫苗对新冠的防护效力时间约为六周。瑞士巴塞尔大学的流行病学家Günther Fink表示:“我们之前在巴西的研究结果表明,流感疫苗接种与COVID-19住院患者的死亡风险降低有关。卡塔尔的此项分析降低了其他发现相同联系的研究只是侥幸的可能性。”荷兰奈梅亨拉德堡德大学医学中心的传染病专家Mihai Netea说:“这是一个重要的证据,流感疫苗不仅与减少SARS-CoV-2感染有关,而且与疾病严重程度有关,这一观察强烈表明这种保护是真实存在的。但是,我不认为流感疫苗对新冠的防护效力会持续很长时间,可能也就持续六个月到两年。目前尚不完全清楚为什么由灭活流感病毒组成的流感疫苗也能预防新冠肺炎。疫苗训练免疫系统以识别特定病原体,但它们也增强了广泛作用的抗病毒防御能力,Laith Jamal Abu-Raddad在流感疫苗接种者身上发现了这种反应的迹象。”流感病毒与新冠病毒有何异同?病毒是一种在活细胞内寄生并以复制方式增殖的非细胞型生物。不同病毒侵入细胞的方式不同,但大都需要通过结合细胞表面特定的受体蛋白或脂质结构来实现细胞内化,从而启动入侵程序和感染宿主细胞。因此揭示病毒结合和内化侵入细胞的具体过程及机制有助于从源头上开发靶向药物或疫苗。流感病毒按照核蛋白的抗原性,可分为甲(A)、乙(B)、丙(C)、丁(D)四型。人流感主要是A型和B型流感病毒引起的,C型流感病毒只引起人类不明显的或轻微的上呼吸道感染,D型流感病毒的宿主主要是牛。流感病毒属于正粘病毒科,是一种包膜病毒,膜上镶嵌着3类膜蛋白:血凝素(Hemagglutinin,HA)、神经氨酸酶(Neuraminidase,NA)和膜蛋白M2(Membrane protein 2,M2)。HA以同源三聚体的形式存在。HA水解后形成轻链和重链两部分,其中重链负责病毒与细胞的结合,而轻链则协助病毒膜与内吞体膜的半融合。NA是蘑菇状的四聚体糖蛋白,具有水解唾液酸的活性,能帮助病毒从宿主细胞中释放。膜蛋白M2具有离子通道和调节膜内pH的作用。此外,基质蛋白M1构成病毒的外壳骨架,与病毒最外层的包膜紧密结合,起到保护病毒核心和维持病毒空间结构的作用。病毒的遗传物质是单股负链RNA与核蛋白折叠在一起形成的病毒核糖核蛋白复合物。流感病毒结构与形状冠状病毒是自然界广泛存在的一大类病毒,仅感染脊椎动物,最早是从鸡身上分离出来的。冠状病毒粒子直径约为60-220 nm,表面有3种糖蛋白:刺突糖蛋白,小包膜糖蛋白,膜糖蛋白,少数还含有血凝素糖蛋白。冠状病毒的核酸为线性单股正链RNA,5’端具有甲基化帽状结构,3’端具有polyA尾,类似于真核mRNA,自身就可以发挥翻译模版作用,基因组全长27-32 kb,是目前已知RNA病毒中基因组最大的病毒。国际病毒分类委员会将其分为4个属,即α、β、γ及新假定的δ冠状病毒属。新冠病毒是一种β属冠状病毒,有很强的传染能力。目前已经检测出新冠病毒的全基因组序列及病毒与细胞结合的蛋白等,但对于它通过何种路径侵入并感染细胞的机制尚不清楚。新冠病毒结构与透射电子显微图像流感病毒与SARS-CoV-2都是通过配体受体相结合的方式吸附至细胞表面,经细胞内蛋白水解酶的作用将HA和S蛋白活化形成两个亚基,分别负责病毒与宿主细胞的结合及介导膜融合过程。流感病毒结合至细胞受体后需要多种细胞因子的参与才能实现内吞,而有研究表明新冠病毒同样可能利用细胞内的某些促吸附因子,例如与细胞糖蛋白的结合,来增强其感染性。流感病毒与新冠病毒在对细胞作用的机理上存在一些相似之处,因此利用流感病毒的研究方法开展对新冠病毒与细胞作用的研究是一条潜在的途径,流感疫苗对新冠的防护也就不难理解。
  • 李胜利 | 中国奶业可持续发展的产业与技术途径
    中国奶业近年来发展迅速,全国各地的大型奶牛场在奶牛的集约化养殖、后备牛培育与牛奶产量与质量把控方面都有了大幅度提高,乳制品加工企业对于奶源的支持与建设也做出了巨大贡献,我国牛奶消费量在2019-2020年有了进一步提升。然而2021-2022年期间,由于疫情的影响与政策的调整,我国牛奶消费市场出现了巨大的波动,奶业上游养殖端出现了奶源过剩的情况。伴随着疫情的结束与中国经济的高韧性发展,这种情况必将会结束。在2022年末举办的第三届国际后备牛大会中,国家奶牛产业技术体系首席科学家、中国农业大学李胜利教授就中国奶业可持续发展的产业与技术途径方面进行了详尽的讲解。一、十四五期间我国奶业规模化率预计提升至80%,奶源自给率亟待提升截止到2021年为止,我国奶牛规模化养殖的比例已经达到了70%。而到2025年(十四五末),预计该比例会提升到80%左右。奶牛单产方面,截止到2021年,我国荷斯坦奶牛的平均单产已经达到了8.6吨,而规模化牧场的奶牛单产可达到9.6吨,照此计算,预计到十四五末,我国规模化牧场奶牛平均单产可突破10吨。这意味着到2025年我国奶牛单产将达到世界先进水平。而到十四五末,根据保守估计,我国规模化养殖奶牛存栏量也将达到707万头,牛奶产量也将达到4000万吨。然而,我国奶源自给率却逐年降低,不容乐观,2020年相关数据显示,我国奶源自给率仅有65.4%,低于70%的期望值。从2008年到2021年,我国乳制品进口增长量占主要出口国牛奶产量的42%。采用经验数据,设定新西兰、欧盟、美国未来牛奶年复合增长率分别为0.5%、1.0%和1.5%,2025年、2030年,3个国家/地区的牛奶产量增量可达1300、3000万吨。2021年我国牛奶产量和乳制品净进口总计约5740万吨液态奶当量,人均占有量为40.7kg。未来消费需求按温和、中速和快速增长计算,2025年我国牛奶需求分别达到6666、7194和7752万吨;2030年达到7360、8752和10374万吨。因此到2025年,主产国牛奶增量1300万吨情况下,在不同消费增速下,设定其40%、45%、50%可用于我国进口,在不同消费增速下国内产量分别要达到4089、4552和5045万吨,牛奶自给率61%-65%,需要国内规模场存栏705、785和870万头。二、迎接挑战,推进种养结合,提高规模化牧场优质粗饲料自给能力粗饲料方面,以玉米青贮为例,按温和、中速消费增速情境下,2025年我国奶牛养殖分别需要玉米青贮4230和4710万吨;2030年需要4284和5118万吨,2030年种植青贮需要耕地最多为1706万亩,占2020年我国玉米播种面积6亿亩的2.9%。而对于精饲料而言,2021年我国反刍动物饲料产量1480万吨,仅占工业饲料总产量2.9亿吨的5%,因此,我国奶牛精饲料资源约束并不大,更多的是受其他家畜产能变化和国际政策带来的价格波动的影响。种养脱节是我国奶牛养殖可持续发展的关键制约因素。世界各国根据奶牛粪尿氮磷的排放量规定了不同的耕地标准,发达国家普遍实现每头成母牛配套5亩以上的种植土地。我国种养结合比例偏低,且推进十分缓慢。2020年我国种养结合的牛场占比51%,比2016年43.6%有一定的提高,十四五末估计提高到60%左右。我国种养结合的牛场,平均每头成母牛配套3.7亩 ,低于发达国家的5亩。此外,针对我国优质粗饲料本土化,李胜利教授提出如下建议:1、 2030年,预计我国18亿亩耕地资源的1.8%左右将用于满足奶牛优质粗饲料需求,这个比例并不高,宏观约束并不大;2、 在大食物安全观角度下,合理配置“粮-经-饲”三元种植业结构,规划玉米青贮、苜蓿和燕麦草的种植面积;3、 按照1头成母牛2亩青贮地的标准,为规模化牧场就地就近解决粗饲料供应问题,同时消纳牧场的粪肥;4、 在牛场土地流转、租赁方面出台扶持补贴政策,撬动社会资金,降低土地流转成本;5、 挑战在于种养分离的现状,如何解决养殖场通过较低的成本实现土地流转、租赁,最终实现种养结合;6、 美国可供出口的苜蓿干草大约在450万吨左右,中国2021年进口已占美国苜蓿干草出口量的39%;因此要在奶业主产区大力发展苜蓿青贮,降低苜蓿进口依存度。三、我国奶牛种业振兴亟需科技创新,提高核心种源自给率是重中之重长期以来,我国奶牛育种基础工作相对薄弱,核心种源自主培育能力不强,进口冻精占国内市场70%。近年来,我国进口冻精规模大幅度增长,2016-2021年,我国冻精进口金额增长2.3倍,2022年我国进口冻精货值0.89亿美元,同比增长18%,其中美国占91%,其他国家占9%;2022年进口牛冻精1234万剂,主要来自美国1007.7万剂,欧盟167.3万剂,英国、阿根廷和挪威等58.8万剂。此外,我国进口活牛数量从2019年以来大幅增加,2021年进口活牛36.1万头,2022年进口活牛35.0万头,但到2023年,其数量将会出现下降。截至2020年,全国共有36个种公牛站,其中乳用种公牛站26个,存栏采精种公牛435头,生产荷斯坦牛冻精412万剂,奶牛核心育种场17个(其中2022年新增7个),包括荷斯坦奶牛核心育种场 16个,新疆褐牛核心育种场1个,核心群母牛共1.5万头。因此,做好我国牛种业科技创新需要结合国内科技基础与创新方向,具体包括四个方面:1、建立我国核心育种场,提高核心种源自给率达(50%以上);2、关注奶牛新性状,开展乳脂肪酸、繁殖、长寿性、饲料转化率、甲烷排放等新性状的遗传研究;3、开展基因组选择育种技术,构建参考群体、研发基因组评估模型与算法,挖掘具有育种价值的功能基因;4、研发配子与胚胎技术(性控冻精、胚胎生产、繁殖调控等)。四、我国奶牛养殖机械化率将在十四五末基本实现100%,智能化水平不断提升根据奶牛体系专家测算2015年奶牛养殖场的机械化水平为80%,2020年奶牛养殖场的机械化水平为92%,到“十四五”末我国奶牛集约化养殖的机械化水平预计基本实现100%。尽管随着规模化比例不断提高、存栏量持续增长,机械化、智能化水平不断提升,但在全面推进机械化、智能化的过程中,仍然面临着智能化设备参差不齐、高技术产品自主开发不足、行业标准规范缺失等挑战。在饲草精准种植技术方面,我国将深入推广优质饲草生产技术应用,建立精准种养结合、循环发展模式。以玉米种植和苜蓿种植为主,应用“测土施肥”技术,卫星遥感技术、无人机、近红外快速分析技术等科技手段,动态监测饲草养分及其环境养分的变化规律,提升饲草料品质,再应用“测奶配方”技术,高效利用饲草料。在犊牛养殖方面,将添加犊牛岛集群综合信息监控与预警装备,通过本地/远程终端系统设置参数报警阈值,并结合单一设备节点,通过定时自动采集和不定时手动采集两种模式获取犊牛岛内的环境温、湿度和犊牛体温等信息,并在本地终端和移动端远程实时报警。在碳排放方面,我国将进一步发展反刍动物碳排放监测装备,以牛、羊等反刍动物为测量对象,研制甲烷、二氧化碳等碳排放气体精准测量智能装备研究反刍动物瘤胃碳排放精准监测与低碳饲料筛选技术。五、奶牛养殖业积极开展减排固碳工作,日粮调控是主要技术突破之一胃肠发酵是反刍动物主要碳排放源,其中肉牛占总量的69%,奶牛占47%,肉羊占38%。而在所有畜禽中,粪便管理环节是主要的碳排放源,且其在食粮型畜禽中尤为突出,奶牛约占总量的16%。我国养殖业减排固碳主要有反刍动物肠道甲烷减排技术、畜禽粪便管理温室气体减排技术与牧草生产固碳技术三条可行路径选择。主要举措包括:引入精准营养技术,优化日粮配方;推广高品质低蛋白日粮,减少氮排放;提高饲料消化率,从源头进行碳减排;培育优质畜禽品种提高生产性能;采纳智能养殖技术,推动精准畜牧业发展;提高秸秆等农副产品利用率;粪污资源化利用大数据技术;促进草地生态系统增汇等,其中日粮调控技术是碳减排的主要技术突破之一。六、总结奶业的发展在于消费市场的培育,随着相关政策的改变与调整,中国奶业发展未来可期,发展期间要着重于解决本土优质粗饲料自给、种养结合、核心种源自给、后备牛依赖进口等问题。数智化牧场是中国奶牛养殖未来发展的大方向,国家已在规划未来的布局和重点支持方向。此外,奶源基地建设的集约化养殖占比大,应重点关注大型牧场碳足迹,建立标准方法,获取中国奶业第一手碳排放量数据。与发达国家相比,我国奶业生产效率仍有提升空间,随着生产效率的提高,单位奶的排放量可进一步下降,应进一步开发调节瘤胃发酵功能,降低碳排放的添加剂并推广创新型粪污处理方法(厌氧发酵、沼气工程)。
  • 水母荧光蛋白发出新激光 为量子物理和光学计算开辟新途径
    绿色荧光蛋白极化激元激光原理示意图:将活细胞产生的绿色荧光蛋白填充在微光腔中制成一层薄膜,光和电子能量混合产生准粒子。  一个由英德科学家组成的研究团队在最近出版的《科学进展》杂志上发表论文称,他们首次将水母体内的荧光蛋白基因插入大肠杆菌基因组,利用转基因大肠杆菌产出了增强型绿色荧光蛋白(eGFP)并用来产生激光。研究人员指出,这一突破代表着极化激元激光领域的重大进步,其效率和光密度都比普通激光高得多,有望为研究量子物理学和光学计算开辟新途径。  据美国趣味科学网日前报道,传统的极化激元激光器用无机半导体做增益介质,必须致冷到极低温度 而有机发光二极管(OLED)显示器中的有机电子材料能在室温下工作,但需要有皮秒(万亿分之一秒)光脉冲来供能。研究团队开发的新激光器也能在室温下工作,但只需纳秒(10亿分之一秒)脉冲。  极化激元激光来自一种量子凝聚现象:激光增益介质中的原子或分子反复吸收发出光子,产生一种叫做极化激元的准粒子,在一定条件下变成一种联合量子态,从而发出激光。理论上极化激元激光需要的能量更少。  研究人员把转基因大肠杆菌产生的eGFP填充在许多光微腔里,作为一种“光泵”,能以纳秒速度发出闪光,使整个系统达到产生激光所需的能量。“光泵”能在达到激发阈值后,给设备注入更多能量以产生传统激光。该激光发明人之一、苏格兰圣安德鲁大学物理与天文学院教授马尔特盖瑟说,皮秒脉冲的能量更合适,但制造起来要比纳秒脉冲难1000倍,他们的做法简化了很多制造工序。  盖瑟还指出,新方法的一个关键优点是,蛋白质分子的发光部分被一种纳米大小的圆柱形外壳保护着,让它们彼此间不会互相干扰,分子结构很适合在高亮度下工作,更容易发出激光。但目前的激发阈值还太高,今后经过改进,最终可让极化激元激光器的激发阈值比传统激光器低得多,这样效率会更高,发光更致密。
  • 跨越式突破 中国首次在实验室实现人工合成淀粉
    粮食不需要土地种植,可以在生产车间中制造出来。如今,这个看似天方夜谭的想象正在成为可能。日前,中国科学院天津工业生物技术研究所(以下简称“天津工业生物所”)在淀粉人工合成方面取得重大突破性进展,在国际上首次在实验室实现了二氧化碳到淀粉的从头合成。该成果于北京时间9月24日在线发表在国际学术期刊《科学》。“这也意味着,我们所需要的淀粉,今后可以将二氧化碳作为原料,通过类似酿造啤酒的过程,在生产车间中制造出来。”天津工业生物所所长马延和说。将二氧化碳还原生成甲醇,再转化为淀粉淀粉是人类粮食的最主要成分,同时也是重要的工业原料。目前淀粉主要由农作物通过光合作用,将太阳光能、二氧化碳和水转化而成。长期以来,科研人员一直在努力改进光合作用这一生命过程,希望提高二氧化碳和光能的利用效率,最终提升淀粉的生产效率。这次,天津工业生物所的科研人员就成功创制了一条利用二氧化碳和电解产生的氢气合成淀粉的人工路线。这条路线涉及11步核心生化反应,淀粉合成速率是玉米淀粉合成速率的8.5倍。从能量角度看,光合作用的本质是将太阳光能转化为淀粉中储存的化学能。因此,将光能高效地转变为化学能并储存下来成为关键。“我们想到了光能—电能—化学能的能量转变方式。”天津工业生物所副所长王钦宏说:“首先,光伏发电将光能转变为电能,通过光伏电水解产生氢气;然后,通过催化剂利用氢气将二氧化碳还原生成甲醇,将电能转化为甲醇中储存的化学能。这个过程的能量转化效率超过10%,远超光合作用的能量利用效率。”自然界中并不存在甲醇合成淀粉的生命过程。王钦宏说:“要想人工实现这个过程,关键是要制造出自然界中原本不存在的酶催化剂。”科研人员挖掘和改造了来自动物、植物、微生物等31个不同物种的62个生物酶催化剂,最终优中选优,使用10个酶逐步将甲醇转化为淀粉。这种路径不仅能合成易消化的支链淀粉,还能合成消化慢、升糖慢的直链淀粉。“也许在不久的将来,不需要种地,也能够满足我们对碳水化合物的需要。”王钦宏说。在人工合成途径构建上实现跨越式突破不依赖植物光合作用、人工合成碳水化合物,一直是世界各国科学家的梦想。此前,华人科学家杨培东曾带领团队利用聚糖反应成功将二氧化碳转化为多种单糖混合物。“但是,他们还尚未实现复杂碳水化合物的人工定向合成。”天津工业生物所副研究员蔡韬说:“也就是说,他们的路线方法合成的是多种简单糖类化合物的混合物,还很难定向到其中的一种。”专家介绍,淀粉高效人工合成的挑战主要来自低密度太阳能到高密度电能和氢能,低浓度二氧化碳到高浓度二氧化碳,以及复杂合成途径到简单合成途径3个方面。此前,在众多科研人员的努力下,前两个问题已基本得到了解决。“这次,我们主要在人工合成途径构建方面实现了跨越式突破。”马延和说。他介绍,一是跨越了人工途径进化的鸿沟。克服了不同来源、不同遗传背景的生物酶之间热力学与动力学不匹配等瓶颈,二氧化碳到淀粉的碳转化速率和效率显著提升;二是跨越了从虚拟到现实的鸿沟。团队用计算机可以设计出很多条合成途径,通过各种模块的组装和适配,最终筛选出了符合条件的路径,实现了人工淀粉合成。“经过分析鉴定,我们合成的淀粉样品无论成分还是理化性质,都和自然生产的淀粉一模一样。”蔡韬说。据科研团队介绍,在充足能量供给的条件下,按照目前的技术参数推算,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩土地玉米种植的平均年产量。马延和说:“这一成果使淀粉生产的传统农业种植模式向工业车间生产模式转变成为可能,并为二氧化碳原料合成复杂分子开辟了新的技术路线。”创新科研组织模式,让不同专长的团队协同攻关专家预计,如果未来该系统过程成本能够降低到可与农业种植相比的经济可行性,将可能会节约90%以上的耕地和淡水资源,避免农药、化肥等对环境的负面影响,提高人类粮食安全水平,促进碳中和的生物经济发展。重大原创性突破的背后,除了科研团队多年的努力和坚持之外,科研组织模式的创新功不可没。天津工业生物所自2015年起,聚焦人工合成淀粉与二氧化碳生物转化利用,开展需求导向的科技攻关,集聚所内外创新资源,加强“学科—任务—平台”整合,实现各方科研力量的有机融合和高效协同。研究所根据项目研究需求进行人才布局,组建了当初平均年龄30周岁的优秀青年科学家团队。传统科研模式一般以课题组为单元进行,优势是能够集中在一个领域方向,但不是所有的研究项目都适合这样的模式。马延和说:“比如,我们这个项目是一个多领域多方向交叉的工作,这就需要将具备不同专长的人和团队组织起来,协同合作才能够完成,传统科研模式显然不太适合。”根据项目特点,研究所创立了新的科研组织模式,即三维管理模式。“三维管理模式,具体来说就是所里统一拨付经费,设立总体研究部、研究组和平台实验室。”蔡韬说:“总体研究部负责项目矩阵管理;研究组是根据领域方向和学科布局设置的特色学科组,实现专业分工;平台实验室则负责为项目提供装备方法支撑。”“在这种新模式下,要实现哪一步目标、需要哪些人来做哪些任务,我们在整个项目层面都会事先进行具体分析。”蔡韬说,“比如,途径设计就是由所里生物设计中心科技组来负责,总体研究部通过任务分解,将相关研究任务定向委托给他们。简单来说,这个模式更容易实现专业的人做专业的事,全预算的方式也能够保证团队一直稳定地做这一件事。”项目实施过程中,也会对承担分任务的科研团队进行严格考核。通不过考核的团队,则由新的团队替换来重新完成任务。“整个项目过程中,共有十多个小团队参与。”蔡韬说,“不同团队聚在一起,为一件事、一个目标、一个任务共同努力,协同攻关,最终实现了原创性重大突破。”
  • 地沟油问题到底能不能解决?生物能源化或是其最佳途径
    p  /pp  地沟油收运企业整合是地沟油从业企业向规模化、制度化、正规化,技术型、全监管的全新的、坚实的努力。/pp  2017年10月30日,由餐厨废弃油脂制成的生物柴油从实验室走向市场,地沟油制生物柴油正式向社会投放。两个月之后,中石化在上海开展销售的试点加油站从最初的2座已增加到9座,根据中石化的市场调研,用户对B5生物柴油的动力性能、续航里程基本满意,其5%的价格优惠受到大量耗油的物流行业欢迎。/pp  strong为促进京津冀地区生物柴油产业发展,促进生物能源产业及其上下游行业的规范、可持续发展,近日,中关村企业信用促进会联合生物能源产业企业,共同发起成立了生物能源专业委员会(以下简称专委会)。/strong/pp  “地沟油从业企业素以‘小、散、乱、污’著称,收运企业整合是地沟油从业企业向规模化、制度化、正规化,技术型、全监管的全新的、坚实的努力。”北京绿鲸环境科技有限公司董事长宋建国在专委会成立大会上表示。/pp  strong“地沟油”的前世今生,变废为宝有途径/strong/pp  “我国每年会有300万吨的地沟油流回餐桌,占食用油脂的10%。”中石化石油化工科学研究院教授蔺建民在发言中指出,“我们每个人每餐都有十分之一的机会吃到地沟油”。/pp  对此,北京市昌平区科委原书记李万佰回忆了自己经历的事情,“由于在市场上采购的油太便宜,一个开餐馆的朋友不在自己经营的饭店吃饭,请客都在自家后厨开小灶。”/pp  谈到餐厨废弃油脂的现状,北京海粮鸿信生物能源科技有限公司董事长黎东东表示,由于行业从业人员素质低、技术水平含量低、服务规范水平低,加上长期以来行业监管力度偏弱,使得地沟油成为污染环境、威胁食品安全的代名词。/pp  “地沟油如果不经过妥善处理,危害非常大。”北京市环境卫生设计科学研究所高级工程师邢汝明介绍说:“地沟油进入水体会造成水质富氧化,进入污水处理系统会使过滤膜设施崩溃,挥发性脂肪酸还会散发臭气,最大的影响是回流餐桌造成食品安全问题”。/pp  如何资源化利用地沟油?北京工商大学教授任连海指出,最能实现规模化的是地沟油和甲醇制备生物柴油,此外,还可以利用地沟油中的硬脂酸和油酸生产日用品,用其中的动物脂肪成分做润滑油,混凝土脱模剂乳化液、化工原料多元醇、生物塑料等都是地沟油利用产业链中的产物。/pp  据了解,生物能源中的生物柴油作为清洁能源,具有润滑性能好,储存、运输、使用安全,抗爆性好,燃烧充分等优良性能,是优质的石化柴油代用品,同时由于其可显著减少燃烧污染排放,且生物降解率高达98%,已经成为欧盟碳交易的一种途径,对环境保护具有重要意义。/ppstrong  给北京的地沟油寻找安全出口/strong/pp  在我国,由于“不与人争粮,不与粮争地”的限制,地沟油是生产生物柴油的主要原料来源。但由于早期对“地沟油”的监管缺失形成了一条潜在的灰色利益链,使得地沟油能被用于生产生物柴油的量大打折扣,国内绝大部分生物柴油厂因为地沟油供应不足,基本都处于“饿肚子”的状态。/pp  专委会成立大会上,北京绿鲸环境科技有限公司(以下简称绿鲸环境)也同时宣布正式成立。“绿鲸环境”是由北京市拥有餐厨废弃油脂收运行政许可的6家正规“地沟油”收运企业共同发起组成,是北京市乃至全国“地沟油”行业企业的第一次整合。/pp  生物柴油国家强制标准《B5柴油》已于今年9月份出台,遗憾的是,北京市尚没有生物柴油生产企业。宋建国介绍,为了给北京的地沟油寻找安全的出口,在京津冀协同发展的大环境下,通过多方考察,绿鲸环境选择了河北隆海生物能源股份有限公司合作,以期上下游产业良性组合,形成将北京市“地沟油”在全监管的模式下运往河北,再从河北返销北京成品油市场参与大气治理的新模式。/pp  会上,北京绿鲸环境科技有限公司、河北隆海生物能源股份有限公司签署了旨在将北京地沟油在物联网全监管状态下运往河北的意向性协议,河北隆海生物能源股份有限公司和北京绿色能量生物能源科技有限公司签署了将使用北京的“地沟油”生产的畅销国际市场的优质“低冻点”生物柴油返销北京市场的意向性协议。/pp  “三家公司签订合作意向,目的在于探索既能解决生物柴油企业原料匮乏问题,又能保障食品安全还能参与治理大气污染‘一举三得’的共赢模式。”宋建国说。现场专家评价,通过“绿鲸环境”对这种新模式的探索和实践,这种模式有望成为在解决食品安全的同时,助力京津冀协同发展的新模式,全国有效整治“地沟油”的样板。/ppstrong  政府主导、行业协会推动、企业自律发展——地沟油彻底“变形”/strong/pp  “让行业协会走上前台,政府立规矩,管理靠协会,这实际也是深化体制改革的措施之一。”北京市城市管理委员会副总工程师王维平说。《固体废物污染环境防治法》等多项法规明确表示,固体废物要减量化、无害化、资源化,“但是专家多是在末端处理技术上各显其能,地沟油更多的不是技术问题,而是管理问题。”/pp  王维平表示,地沟油循环利用的两大系统——收集系统与加工系统,都要以市场经济为主导,按照市场规则办事,同时政府也要对行业适当引导补贴。/pp  “专委会的成立是生物能源行业企业信用化、规范化、科技化、体系化的新征程,全面提升行业整体水平和可持续发展,对促进生物能源行业企业制度建设,对推进绿色发展、循环发展、低碳发展有积极意义。”黎东东说。/pp  在政府政策引导,行业协会的大力推动支持,企业担起社会责任,净化自身行业发展环境下,本着共同守护“青山绿水”的愿望,通过有效科学的监管手段,在既有社会效益,又有经济效益的双赢模式下,地沟油一定会彻底“变形”!/p
  • 巴黎非饮用水系统检测出新冠病毒 新冠病毒传播途径会增加吗?
    p  在我国克服万难渡过新冠肺炎疫情的最艰难时期之际,全球新冠肺炎疫情进入爆发期,据了解,截至目前,全球除中国以外新冠肺炎累积确诊病例已经超过230万人,形势严峻!对于我国及全球来说,对新冠肺炎的防范仍不可松懈。/pp  需要警惕的是,当地时间4月19日下午,法国巴黎市政府向媒体表示,过去24小时内巴黎水务部门的实验室在27个非饮用自来水采样点中,检测到4个有新冠病毒存在。/pp  面对这一检测结果,巴黎环境局官员强调,饮用水和非饮用水是两套各自独立的管网。这些非饮用水都是从塞纳河和一条运河中汲取的,用于清洁街道和浇灌公园绿地,并为一些喷泉提供水源。尽管这些水源大部分是用作市政清洁,但巴黎市政府还是暂时关闭了这些水源,以做进一步的调查研究。同时水务部门表示,饮用水源目前尚没有受到污染,可以放心饮用。/pp  消息一出,不少网友发声质疑水传播或成新冠肺炎新的感染途径。/pp  我们知道,经呼吸道飞沫和密切接触传播是新冠肺炎主要的传播途径,为防范疫情,我国采取了居家隔离和戴口罩等防护措施。随着我国研究的深入,“粪口传播”、“气溶胶传播”也慢慢被重视起来,我国也是安排了一系列措施来阻断疫情传播途径。如今,我们每日离不开的水中竟也藏有新冠病毒,也难怪有网友感叹“防不胜防”。/pp  新冠病毒在公用水体中发现尚属首次,但来源目前并不清楚,水传播或成新冠肺炎新的感染途径也并没有定论,有专家认为公众不必惊慌,但我们切记现在仍需要做好各方面风险防护,少聚集、戴口罩、勤洗手同时做好饮用水安全等多方面工作才能降低感染风险。/p
  • 官方猴痘治疗指南发布,明确传染源与传播途径
    6月14日,国家卫生健康委、国家中医药管理局共同发布《猴痘诊疗指南(2022年版)》(以下简称《诊疗指南》),这也是我国首次发布有关猴痘的诊疗指南,提前做好猴痘医疗应对工作准备,提升临床早期识别和规范诊疗能力。目前已有多家检测公司做出应对,发布了多种猴痘病毒核酸检测试剂盒产品(点击查看)。《诊疗指南》指出猴痘为自限性疾病,大部分预后良好,另外人群普遍易感,主要通过密切接触传播,也可通过飞沫传播,接触被病毒污染的物品也有可能感染,还可通过胎盘垂直传播。全文如下:猴痘诊疗指南(2022年版)猴痘是一种由猴痘病毒(Monkeypox virus,MPXV)感染所致的人兽共患病毒性疾病,临床上主要表现为发热、皮疹、淋巴结肿大。该病主要流行于中非和西非。2022年5月以来,一些非流行国家也报道了猴痘病例,并存在社区传播。为提高临床医师对猴痘的早期识别及规范诊疗能力,特制定本诊疗指南。一、病原学猴痘病毒(MPXV)归类于痘病毒科正痘病毒属,是对人类致病的4种正痘病毒属之一,另外3种是天花病毒、痘苗病毒和牛痘病毒。电镜下猴痘病毒颗粒呈砖形或椭圆形,大小为200nm×250nm,有包膜,病毒颗粒中有结构蛋白和DNA依赖的RNA多聚酶,基因组为双链DNA,长度约197kb。猴痘病毒分为西非分支和刚果盆地分支两个分支。本次非流行国家部分病例病毒测序结果为西非分支。猴痘病毒的主要宿主为非洲啮齿类动物(包括非洲松鼠、树松鼠、冈比亚袋鼠、睡鼠等)。猴痘病毒耐干燥和低温,在土壤、痂皮和衣被上可生存数月。对热敏感,加热至56℃30分钟或60℃10分钟可灭活。紫外线和一般消毒剂均可使之灭活,对次氯酸钠、氯二甲酚、戊二醛、甲醛和多聚甲醛等敏感。二、流行病学(一)传染源主要传染源为感染猴痘病毒的啮齿类动物。灵长类动物(包括猴、黑猩猩、人等)感染后也可成为传染源。(二)传播途径病毒经黏膜和破损的皮肤侵入人体。人主要通过接触感染动物病变渗出物、血液、其它体液,或被感染动物咬伤、抓伤而感染。人与人之间主要通过密切接触传播,也可通过飞沫传播,接触被病毒污染的物品也有可能感染,还可通过胎盘垂直传播。尚不能排除性传播。(三)易感人群人群普遍易感。既往接种过天花疫苗者对猴痘病毒存在一定程度的交叉保护力。三、临床表现潜伏期5-21天,多为6-13天。发病早期出现寒战、发热,体温多在38.5℃以上,可伴头痛、嗜睡、乏力、背部疼痛和肌痛等症状。多数患者出现颈部、腋窝、腹股沟等部位淋巴结肿大。发病后1-3天出现皮疹。皮疹首先出现在面部,逐渐蔓延至四肢及其他部位,皮疹多呈离心性分布,面部和四肢皮疹较躯干更为多见,手心和脚掌均可出现皮疹,皮疹数量从数个到数千个不等;也可累及口腔黏膜、消化道、生殖器、结膜和角膜等。皮疹经历从斑疹、丘疹、疱疹、脓疱疹到结痂几个阶段的变化,疱疹和脓疱疹多为球形,直径约0.5-1厘米,质地较硬,可伴明显痒感和疼痛。从发病至结痂脱落约2-4周。结痂脱落后可遗留红斑或色素沉着,甚至瘢痕,瘢痕持续时间可长达数年。部分患者可出现并发症,包括皮损部位继发细菌感染、支气管肺炎、脑炎、角膜感染、脓毒症等。猴痘为自限性疾病,大部分预后良好。严重病例常见于年幼儿童、免疫功能低下人群,预后与感染的病毒分支、病毒暴露程度、既往健康状况和并发症严重程度等有关。西非分支病死率约3%,刚果盆地分支病死率约10%。四、实验室检查(一)一般检查外周血白细胞正常或升高,血小板正常或减少。部分患者可出现转氨酶水平升高、血尿素氮水平降低、低蛋白血症等。(二)病原学检查1.核酸检测:采用核酸扩增检测方法在皮疹、疱液、痂皮、口咽或鼻咽分泌物等标本中可检测出猴痘病毒核酸。2.病毒培养:采集上述标本进行病毒培养可分离到猴痘病毒。病毒培养应当在三级及以上生物安全实验室开展。五、诊断和鉴别诊断(一)诊断标准1.疑似病例出现上述临床表现者,同时具备以下流行病史中的任一项:(1)发病前21天内有境外猴痘病例报告地区旅居史;(2)发病前21天内与猴痘病例有密切接触;(3)发病前21天内接触过猴痘病毒感染动物的血液、体液或分泌物。2.确诊病例疑似病例且猴痘病毒核酸检测阳性或培养分离出猴痘病毒。对符合疑似病例或确诊病例标准的病例,应按相关要求进行传染病报告。(二)鉴别诊断主要和水痘、带状疱疹、单纯疱疹、麻疹、登革热等其它发热出疹性疾病鉴别,还要和皮肤细菌感染、疥疮、梅毒和过敏反应等鉴别。六、治疗目前国内尚无特异性抗猴痘病毒药物,主要是对症支持和并发症的治疗。(一)对症支持治疗。卧床休息,注意补充营养及水分,维持水、电解质平衡。体温高者,物理降温为主,超过38.5℃,予解热镇痛药退热,但要注意防止大量出汗引发虚脱。保持皮肤、口腔、眼及鼻等部位清洁及湿润,避免搔抓皮疹部位皮肤,以免继发感染。皮疹部位疼痛严重时可予镇痛药物。(二)并发症治疗。继发皮肤细菌感染时给予有效抗菌药物治疗,根据病原菌培养分离鉴定和药敏结果加以调整。不建议预防性应用抗菌药物。出现角膜病变时,可应用滴眼液,辅以维生素A等治疗。出现脑炎时给予镇静、脱水降颅压、保护气道等治疗。(三)心理支持治疗。患者常存在紧张、焦虑、抑郁等心理问题,应加强心理支持、疏导和相关解释工作,根据病情及时请心理专科医师会诊并参与疾病诊治,必要时给予相应药物辅助治疗。(四)中医治疗。根据中医“审因论治”、“三因制宜”原则辨证施治。临床症见发热者推荐使用升麻葛根汤、升降散、紫雪散等;临床症见高热、痘疹密布、咽痛、多发淋巴结肿痛者推荐使用清营汤、升麻鳖甲汤、宣白承气汤等。七、出院标准符合以下标准可以出院:体温正常,临床症状明显好转,结痂脱落。八、医疗机构内感染预防与控制疑似病例和确诊病例应安置在隔离病房。疑似病例单间隔离。医务人员执行标准预防,采取接触预防、飞沫预防措施,佩戴一次性乳胶手套、医用防护口罩、防护面屏或护目镜、一次性隔离衣等,同时做好手卫生。对患者的分泌物、粪便及血液污染物按照《医疗机构消毒技术规范》进行严格消毒处理。
  • 新疆理化所潘世烈团队利用高分辨率太赫兹光谱方法为氟化学晶体结构研究提供新途径
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。在本研究中,我们展示了太赫兹(THz)光谱为应对这一挑战提供的强大工具。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。水溶液中硼酸的氟化路径示意图该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径,而这一过程以前由于结构不明确而受到阻碍。在太赫兹光谱学的启发下,这项工作标志着我们在深入了解氧化物/氢氧化物氟化过程中的精确结构和反应机制方面又向前迈进了一步。。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • Nat Metab|上交大童雪梅团队揭示非氧化磷酸戊糖途径调控Treg细胞功能及其分子机制
    点评 | 朱锦芳(NIH)2022年5月23日,上海交通大学基础医学院生化与分子细胞生物学系童雪梅教授课题组及其合作团队,上海市免疫学研究所李斌研究员课题组和复旦大学附属华山医院/脑科学转化研究院杨辉研究员,在Nature Metabolism杂志在线发表题为 Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics 的研究论文,揭示非氧化磷酸戊糖途径(非氧化PPP)对调节性T(Treg)细胞代谢模式及细胞功能的调控机制。Nature Metabolism同期发表伦敦帝国理工学院Margarita Dominguez-Villar博士为该研究撰写的News & Views特评,认为该文章发现非氧化PPP在Treg细胞活化和功能调控中的中心地位(a central regulator)。表达特征转录因子Foxp3的Treg细胞是一类具有免疫抑制功能的CD4+ T细胞亚群,维持机体免疫系统稳态,防止免疫过激诱发自身免疫病。已知葡萄糖酵解、脂肪酸氧化和氨基酸分解代谢等都参与 Treg 细胞功能调控。PPP是一条不产生ATP的葡萄糖分解代谢途径,由生成NADPH的氧化PPP和产生5-磷酸核糖的非氧化PPP组成。非氧化PPP包括4个代谢酶催化的5步可逆反应,可以通过改变代谢物流向来满足细胞的功能需求。非氧化PPP是否参与免疫细胞如Treg细胞的代谢与功能调控尚不清楚。转酮醇酶TKT是非氧化PPP中催化两步可逆反应的代谢酶。童雪梅团队已发现TKT在肝脏、脂肪和肠道中调控糖脂代谢平衡的重要作用(Li M et al, Cancer Research, 2019 Tian N et al, Diabetes, 2020 Tian N et al, Cell Death & Disease, 2021)。在本研究中,研究人员通过构建Treg细胞特异性敲除TKT的小鼠模型,深入探究非氧化PPP是否和如何调控Treg细胞代谢及功能。他们研究发现,Treg细胞特异性敲除TKT的小鼠出生3周后发生严重自身免疫性疾病,并且在断奶之后相继死亡,其表型与缺失Foxp3基因的小鼠相似。进一步研究发现,敲除TKT在不影响Treg数目和转录因子Foxp3 水平的情况下,阻断Treg细胞的免疫抑制功能。为了排除炎症反应的影响,研究者根据Foxp3基因位于X染色体和雌鼠X染色体选择性失活的特点,构建了在同一只鼠中既有TKT缺失又有TKT正常表达的Treg细胞嵌合小鼠模型。该小鼠Treg细胞的转录组和表观遗传组分析表明,TKT缺失导致Treg细胞中87.9%的差异表达基因被下调,染色质可及性降低。这些被下调的基因几乎全部为效应性Treg特征性基因,表明非氧化PPP对调控Treg细胞免疫抑制功能是必需的。研究者进一步发现,TKT缺失导致Treg 细胞NADPH 减少和氧化应激增加,葡萄糖进入线粒体氧化减少,脂肪酸氧化增加,氨基酸分解代谢显著增强,分解代谢重构使线粒体功能受损。同时,被氧化应激和线粒体损伤诱发的还原性TCA循环使α-酮戊二酸/琥珀酸及α-酮戊二酸/富马酸比率降低,DNA甲基化增加,抑制Treg细胞特征性功能基因表达,导致其免疫抑制性功能丧失。文章也发现非氧化PPP中的另外一个代谢酶——转醛醇酶(TAL),对维持效应性Treg特征性功能基因表达也不可或缺。此外,在自身免疫性病人外周血 Treg细胞中,TKT水平显著降低。综上所述,此研究首次揭示非氧化PPP对于调控Treg细胞中糖、脂和蛋白质分解代谢稳态、维持代谢物依赖的表观遗传修饰和功能基因表达有关键作用,即非氧化PPP可以通过整合三大营养物质代谢和表观遗传修饰控制Treg细胞功能。这项研究将为通过调控Treg功能防治自身免疫性疾病和其它免疫相关疾病提供新策略新手段。非氧化 PPP 通过整合代谢组和表观遗传组调控Treg细胞功能上海交通大学医学院博士生刘琪、阿拉巴马大学伯明翰分校博士生朱方明和上海市免疫学研究所博士生刘鑫男是该研究论文的共同第一作者。此项研究得到复旦大学生物医学研究院叶丹研究员、海军军医大学附属长征医院风湿免疫科徐沪济主任、上海交通大学附属仁济医院沈南主任、上海交通大学基础医学院徐天乐教授、清华大学药学院胡泽平研究员、阿拉巴马大学伯明翰分校胡晖教授等合作实验室的大力协助。通讯作者为童雪梅教授、李斌研究员和杨辉研究员。专家点评朱锦芳Jeff Zhu (Chief, Molecular and Cellular Immunoregulation Section, NIH)调节性T细胞(Tregs)在维持免疫耐受和免疫稳态中发挥关键作用,并且参与调节感染和癌症中的各种免疫反应。一方面,Treg功能的丧失通常与自身免疫和过度炎症有关;另一方面,肿瘤微环境中激活的Treg往往会抑制肿瘤免疫。因此,了解Treg的产生、激活及其获得抑制性功能的机制不仅将拓展基础免疫学认知,而且将为各种免疫相关疾病提供新颖有效的临床疗法。不同的代谢途径在控制Treg和效应性辅助型CD4+ T(Th)细胞的发育和分化中作用不同。经典观点认为,Tregs更倾向于脂肪酸氧化,而效应Th细胞主要利用葡萄糖作为能量来源。在本项工作中,童雪梅团队及其合作实验室共同发现,非氧化磷酸戊糖途径(非氧化PPP)在控制Treg细胞激活和抑制功能中起着关键作用。非氧化PPP是葡萄糖分解代谢的一个分支,它在Treg和效应性Th细胞中的功能尚不清楚。令人惊奇的是,在Treg中敲除非氧化性PPP中的重要酶—转酮醇酶(TKT),小鼠会产生致死性自身免疫病。Treg细胞特异性 TKT 缺失导致其失去免疫抑制功能,却不影响其发育和Foxp3蛋白表达。机制上,童雪梅及其合作团队发现TKT缺失诱导线粒体氧化应激和还原性TCA循环,导致α-酮戊二酸(α-KG)水平降低。α-KG作为重要的表观遗传辅助因子,能调控组蛋白和DNA去甲基化酶的功能。TKT缺失时,Treg中众多基因的DNA甲基化增加,染色质可及性下降。并且,α-KG补充能够改善由Treg特异性TKT 缺失引起的自身免疫反应。此外,在临床自身免疫性疾病患者外周血Treg中,TKT水平被下调。Treg获得抑制功能需要被激活,TKT缺失诱发的自身免疫反应是由活化Treg特征性基因表达减少所导致的。由于Treg细胞群体的异质性,单细胞分析可以为TKT如何调节Treg激活和表观修饰提供一个更清晰的解释。然而,该研究发现在大约1000个激活态Treg特征基因中,只有124个受到TKT缺失的影响,却诱发了显著的小鼠自身免疫病表型,表明这个小的基因群体包含对Treg功能至关重要的效应分子,例如IL-10和TIGIT等。因此,本项研究发现令人印象非常深刻。本项工作不仅促进我们全面认识Treg细胞激活和功能的机理,而且在未来治疗人类疾病方面具有潜在重要转化价值。原文和特评链接:https://www.nature.com/articles/s42255-022-00575-z,https://www.nature.com/articles/s42255-022-00574-0
  • 安捷伦科技与SomaLogic公司就扩大其尖端蛋白质组学技术的获取途径达成协议
    安捷伦科技与SomaLogic公司就扩大其尖端蛋白质组学技术的获取途径达成协议基于微阵列的 SOMAscan 检测技术将引入指定的学术和合同研发中心 2013 年 8 月 12 日,北京 &mdash 安捷伦科技公司(纽约证交所: A)和 SomaLogic 股份有限公司(一家私人的生物科技公司)今日共同宣布,双方已就扩大 SomaLogic 的无偏蛋白生物标记物发现平台的获取途径达成协议。 两家公司初期会在指定的学术和合同研究中心引入 SomaLogic 公司的 SOMAscan 蛋白质组学检测技术,该技术已在工作流中采用定制的安捷伦微阵列。 尽管研究人员可以直接从 SomaLogic 公司获取 SOMAscan 检测技术,但该计划旨在满足迅速增长的对 SomaLogic 多重复合、经济适用的蛋白质组学分析的需求。 安捷伦基因组学解决方案部副总裁兼总经理 Jacob Thaysen 说道:&ldquo 本协议能将我们的微阵列产品扩展到增长迅速的蛋白质组学市场,显著提高我们目前微阵列产品的销售量。 SomaLogic 拥有世界一流的蛋白质组学技术,因此我们首选与他们进行合作以期在这个增长迅猛的市场中提高市场份额。&rdquo SomaLogic 董事长兼首席执行官 Larry Gold 博士谈道:&ldquo 安捷伦定制的微阵列在过去几年里一直是 SOMAscan 检测技术发展的重要因素。 可以预见,我们的合作将使世界各地的研究人员更容易获得这项技术,这是大家都喜闻乐见的。&rdquo 协议的具体条款尚未披露。关于SomaLogic SomaLogic 股份有限公司是位于科罗拉多州波尔得的一家生物标记物发现和临床诊断的私人企业。公司目标是利用蛋白质组学专利技术,为生命科学领域开发各种增强型蛋白质分析工具和试剂;促进用于诊断和治疗的生物标记物的发现和确定;开发并商业化临床诊断产品,这些产品能为医师及其患者提供及时和准确的诊断信息从而改善治疗效果。 如欲了解关于 SomaLogic 的详细信息,请访问 www.somalogic.com。关于SOMAscan/SOMAmers SOMAscan 蛋白质组学检测技术使用 SomaLogic 专利的慢速率修饰的适体 (SOMAmer) 亲和试剂,只需 50 µ L 生物样品就能在宽动态范围内经济有效的检测和测量 1129 种蛋白质分析物,一周可检测近一千个样品,并可在短时间内得到数百万个数据。 关于此突破性的蛋白质组技术的应用信息,请访问 www.somalogic.com/technology。关于安捷伦科技公司 安捷伦科技(NYSE 代码: A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。 公司拥有 20500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。 在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 编者注: 有关更多的技术、企业社会责任和行政新闻,请访问安捷伦新闻站点 www.agilent.com.cn/go/news。
  • 我国科学家突破“抗癌明星药”紫杉醇生物合成难题
    素有“植物大熊猫”之称的红豆杉是我国一级珍稀濒危保护植物,其生长速度极慢,一般成树需要几十年甚至上百年,人工种植也非常不易。但这一树种却是全球知名抗癌药物紫杉醇的提取来源。中国农业科学院深圳农业基因组研究所闫建斌团队近日牵头发现紫杉醇生物合成途径中关键的未知酶,设计并重构了紫杉醇生物合成新路线,为开发我国自主的紫杉醇提取生产技术提供重要抓手,从而为中国的紫杉醇绿色制造产业化铺平道路。相关研究成果于北京时间1月26日在国际期刊《科学》上发表。中国科学院院士赵国屏对此评价:该研究成功解析了紫杉醇合成途径中尚未被发现的若干关键催化酶,并利用植物底盘实现了合成路线的人工重构,结束了阐明紫杉醇生物合成途径的漫长研究历史,也生动代表着我国一批中青年科学家,在合成生物学领域探索奋斗近二十年所达到的里程碑式新高度。闫建斌研究员介绍,紫杉醇是一种结构异常复杂且独特的四环二萜类天然产物,由红豆杉中提取,在世界上被广泛应用于多种癌症的临床治疗。在我国,紫杉醇原料药主要依靠从人工种植的红豆杉中提取紫杉醇前体分子——巴卡亭Ⅲ,再通过简单的化学合成修饰,实现大规模生产。但这高度依赖于珍稀而有限的红豆杉资源,使得紫杉醇药物生产成本高昂,还可能引发生态破坏和耕地占用等问题。因此,如何提高紫杉醇的生物合成效率、开发绿色可持续的新型生产策略,以替代天然提取,成为亟待解决的焦点、难点问题。长期以来,世界各国都在积极推动紫杉醇相关研究与产业发展。特别是美国,自20世纪60年代开始至今,一直主导着紫杉醇的科技前沿。当前,最先进的紫杉醇前体巴卡亭Ⅲ等的提取技术、核心的红豆杉细胞生产技术和基因工程技术等,依然掌控在欧美制药公司手中。中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)组织国内外多家单位,开展了多年攻关。研究人员从58个关键候选基因中,发现了一个关键的蛋白酶。这种酶的发现与反应机制的阐明,重塑了科学界对于紫杉醇内部独特结构的分子反应机制的理解。随后,研究团队证明了巴卡亭Ⅲ分子可由9个核心基因合成,绘制出了巴卡亭Ⅲ的完整生物合成过程。以上发现突破了合成生物学技术实现紫杉醇绿色可持续生物制造的关键瓶颈,将为紫杉醇合成生物学制造提供关键基因。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制