当前位置: 仪器信息网 > 行业主题 > >

合金元素含量

仪器信息网合金元素含量专题为您整合合金元素含量相关的最新文章,在合金元素含量专题,您不仅可以免费浏览合金元素含量的资讯, 同时您还可以浏览合金元素含量的相关资料、解决方案,参与社区合金元素含量话题讨论。

合金元素含量相关的资讯

  • 解决方案|ARL easySpark 1160在铝合金Sc元素检测中的应用
    上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术的重要标志。随着科学技术的高速发展,新技术、新产品及新工艺对新材料的要求越来越强烈,也促进了当代材料科学技术的飞速发展。Al-Li合金是一种低密度、高性能的新型结构材料,它比常规铝合金的密度低10%,而弹性却提高了10%,比强度和比刚度高,低温性能好,还具有良好的耐腐蚀性能和非常好的超塑性。铝锂合金主要为飞机和航空航天设备的减重而研制的,因此也主要应用与航空航天领域,还应用于军械和核反应堆用材,坦克穿甲弹,鱼雷和其它兵器结构件方面,此外在汽车、机器人等领域也有充分运用。但是Al-Li合金韧性、塑性较常规铝合金低,热稳定性差等。为此,科学家在Al-Li合金成分优化及微量元素优化方面进行了大量工作。科学家发现铝台金中加入微量Sc元素后合添加Sc、Zr元素,能全面改善合金的组织和性能。Sc元素在铝合金凝固过程中形成Al-Sc粒子,Al-Sc粒子本身细小均匀,可以细化铸态组织,从而改善铝合金的焊接性能,提升铝合金强度。在过渡族元素中,对铝合金组织细化效果好的是 Sc,其次才是 Ti、Zr、V。图1 铝的晶粒大小与晶粒细化剂反应参数 Ω 的关系 图2是四种铝合金在添加不同含量Sc元素后,在光学显微镜下的铸态显微组织。由图a可见,不含Sc的S-00合金晶间分布着连续的黑色第二相和少量晶內第二相。有图b、c、d可以看到,添加Sc后,合金组织中的Al晶粒得到不同程度的细化。可以看出当加入Sc质量分数在0.15%时合金的晶粒细化效果最佳。目前传统的直读光谱仪还不能检测Sc元素,为了客户对新材料,新技术的检测需求,全新技术的ARL easySpark 1160 全谱直读光谱仪可选配钪(Sc)元素曲线,可以快速检测钢铁及合金中0.01 ~ 0.27%的钪(Sc)元素量,满足客户对新型铝合金材料检测。在检测钪(Sc)元素的同时,检测其他合金元素。一台设备,多种功能,满足客户需求,降低客户购买设备的成本,提高客户检测效率,可谓一机多用。全新的ARL easySpark 1160 使用定制镀膜CCD,提升透光率,总像素高达26000,而传统CCD只有2000~4000像素。除此之外,它还采用独特的半导体制冷,CCD的工作温度<10℃,相对于传统CCD工作温度30~40℃,极大的降低仪器的暗电流,提升仪器的检测下限。
  • 钢研纳克携多款元素分析设备亮相“2020中国铁合金与北部湾钢铁产业协同发展高峰论坛”暨“第28届全国铁合金学术研讨会”
    2020年9月16日,正值金九银十,“2020中国铁合金与北部湾钢铁产业协同发展高峰论坛”暨“第28届全国铁合金学术研讨会”在广西北海拉开帷幕,钢研纳克此次携Plasma 3000型ICP光谱仪和CS-2800型碳硫分析仪参展并做技术交流,获得广泛关注。钢研纳克此次参会,目的是希望通过这个平台为铁合金产业的发展提升贡献力量,为铁合金的质量控制与分析实验室提供完整解决方案。 随着国家产业政策调整、新旧动能转换、智能化时代到来、行业标准升级,在“绿色” 、“高质量”发展的大背景下,如何规范铁合金、不锈钢“从无序到有序”的行业发展:如何防范“企业低端重复建设”;如何推动“铁合金、不锈钢生产大型化、自动化,向大数据智能化迈进";如何使铁合金技术、产品适应不锈钢生产需求,用技术融合提升产品市场竞争力;如何破解“能源综合利用,延伸产业链”;如何打造“现代绿色智能化工厂”;如何发挥“科技先导核心引领作用”,成为各企业急待破解的热点、难点课题。钢研纳克就以上理念推出了一系列为适应铁合金行业的智能化元素分析设备,提出了全面的铁合金元素分析解决方案。 此次参展的产品有CS-2800型碳硫分析仪,采用高频加热,红外检测原理,结合最新的燃烧和全量程范围检测技术,可以同时快速分析多种铁合金产品中的碳和硫元素。操作简便,维护维修方便。 同时展出的Plasma 3000型ICP-OES也吸引众多铁合金的厂商和技术专家前来交流,Plasma 3000型双向观测全谱ICP-OES源于钢铁研究总院,35年电感耦合等离子体光谱仪方法开发经验,起草数十项ICP检测标准。Plasma 3000 可广泛适用于冶金、地质、材料、环境、食品、医药、石油、化工、生物、水质等各领域的元素分析。该设备可用于铁合金中主量、常量和微量元素分析,可拓展传统分析手段的分析元素种类和含量范围,提升产品质量控制能力。 为了应对现场分析的设备需求,钢研纳克推出了全新的手持荧光光谱分析仪,该设备拥有以下优点: 1、现场检测,快速无损,无需送抵实验室,大大提高效率。 2、分析速度快,最快1秒钟就可显示分析结果。 3、体积小,重量轻,携带方便。 4、结合当前的移动端通信及物联网技术,检测数据云储存,实时传输及共享; 5、通过手机4G、共享热点、WiFi与手机APP进行数据传输; 6、实时查看光谱图;(手机、仪器均可) 除此之外,钢研纳克还带来了一系列服务与铁合金行业的元素分析解决方案。 届时,钢研纳克仪器中心工程师文桦先生将在大会为行业各界同仁分享主题为“铁合金中元素分析解决方案解析”的报告,就铁合金中元素分析面临的问题和发展趋势提出解决方案,同时进行铁合金分析实验室经验进行分享和交流,欢迎关注。 此次展会将在17日和18日继续展出,欢迎各位同仁朋友莅临指导!
  • 司母戊鼎含有哪些金属元素及各类金属元素的含量比
    司母戊鼎是商后期(约公元前十四世纪至公元前十一世纪)铸品,原器1939年3月出土于河南安阳侯家庄武官村。此鼎形制雄伟,重达875公斤,高133厘米、口长110厘米、口宽79厘米,是迄今为止出土的最大最重的青铜器。司母戊鼎初为乡人私自挖掘,出土后因过大过重不易搬迁,私掘者又将其重新掩埋。司母戊鼎在1946年6月重新出土。新中国成立后,于1959年入藏中国历史博物馆。  鼎身呈长方形,口沿很厚,轮廓方直,显现出不可动摇的气势。司母戊鼎立耳、方腹、四足中空,除鼎身四面中央是无纹饰的长方形素面外,其余各处皆有纹饰。在细密的云雷纹之上,各部分主纹饰各具形态。鼎身四面在方形素面周围以饕餮作为主要纹饰,四面交接处,则饰以扉棱,扉棱之上为牛首,下为饕餮。鼎耳外廓有两只猛虎,虎口相对,中含人头。耳侧以鱼纹为饰。四只鼎足的纹饰也匠心独具,在三道弦纹之上各施以兽面。据考证,司母戊鼎应是商王室重器,其造型、纹饰、工艺均达到极高的水平。是商代青铜文化顶峰时期的代表作。  司母戊鼎的提手文饰同样精美。两只龙虎张开巨口,含着一个人头,后世演变成“二龙戏珠”的吉祥图案。一般认为,这种艺术表现的是大自然和神的威慑力。现在却有人推测,那个人是主持占卜的贞人,他主动将头伸入龙虎口中,目的是炫耀自己的胆量和法力,使民众臣服于自己的各种命令,完全是可能的:当时的贞人出场时都牵着两头猛兽,在青铜器和甲骨文经常可以看到这样的图案。  此鼎器形庞大浑厚,其腹部铸有“司母戊”3字,亦有人释作“后母戊”,是商王祖庚或祖甲为祭祀其母所铸。司母戊鼎的鼎身和鼎足为整体铸成,鼎耳是在鼎身铸好后再装范浇铸的。铸造这样高大的铜器,所需金属料当在1000千克以上,且必须有较大的熔炉。 为了了解司母戊鼎是由哪些金属元素锻造而成,莱雷科技工程师经中国历史博物馆同意后使用伊诺斯无损手持式合金分析仪DPO2000对司母戊鼎进行了检测分析,得出的数据如下:含铜84.77%、锡11.64%、铅2.79%,其他0.8%。与古文献记载制鼎的铜锡比例基本相符。司母戊鼎充分显示出商代青铜铸造业的生产规模和技术水平。
  • 赫施曼助力铌铁中钛含量的测定
    铌铁是冶金行业冶炼钢的重要原材料,铌作为合金元素加入钢中能显著改善钢的焊接性能。铌与钛,钒、锆等元素相似,能对钢的性能产生良好的影响。钛作为铌铁中有益元素,准确测定其含量对炼钢质量具有重要意义。根据GB/T 3654.8-2023,铌铁中钛含量的测定方法是:变色酸光度法和二安替比林甲烷光度法。其中变色酸光度法原理为:试料用氢氟酸和硝酸分解,冒硫酸烟,在草酸溶液中,变色酸与钛形成红色络合物,于波长475nm处测量其吸光度。方法如下: 1.将试料(见表1)置于100mL聚四氟乙烯烧杯或100mL铂皿中,用赫施曼HF型瓶口分配器加入5mL氢氟酸(ρ=1.15g/mL),滴加5mL硝酸(ρ=1.42g/mL),低温加热至试料完全溶解,用瓶口分配器加入15mL硫酸溶液(1+1),继续加热至冒硫酸烟并保持约4min。2.取下稍冷,将试液移入预先盛有50mL草酸溶液(50g/L)的250mL烧杯中,再以100mL草酸溶液(50g/L)分次洗涤聚四氟乙烯烧杯或铂皿,洗液合并于烧杯中,溶液加热保持不沸至澄清。3.取下稍冷,用Miragen电动移液器加入2mL过氧化氢(30%),加热微沸30s取下,冷却至室温。将试液全部移入200mL容量瓶中,以40mL草酸溶液(50g/L)分次洗涤烧杯,洗液合并于容量瓶中,用水稀释至刻度,混匀。4.按表1移取试液和随同试料空白各两份,分别置于50mL容量瓶中,以下分别按5和6进行。5.显色溶液:用瓶口分液器向一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器加lmL亚硫酸钠溶液(200g/L)混匀,放置2min,加入6mL变色酸溶液(50g/L),用水稀释至刻度,混匀。6.参比溶液:向另一份试液和随同试料的空白溶液中补加草酸溶液(50g/L)至30mL,用Miragen电动移液器1mL亚硫酸钠溶液(200g/L),以水稀释至刻度,混匀。7.将部分显色溶液移入适当的比色皿中,以各自的参比溶液为参比,于分光光度计波长475nm处测量其吸光度。用显色溶液的吸光度减去随同试料空白试验的吸光度后,从校准曲线上查出相应的钛量。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的液体移取。其中ceramus痕量分析瓶口分配器,采用极耐腐蚀的材质,以及可以阻断试剂挥发进主机的专利密封阀设计,使其适用于除氢氟酸以外的几乎所有溶剂的液体分配工作,包括浓硝酸、浓盐酸、硫酸和王水等强腐蚀性或挥发性的特殊试剂。赫施曼还有氢氟酸专用瓶口,用于氢氟酸的便捷分液。实验室移取几微升到几毫升的液体,一般采用移液器。Miragen电动移液器,接头和内腔为不锈钢,相对于常见的橡胶和塑料,更适合有机试剂。电枪的数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。
  • 火焰原子吸收法测定铜合金中的高含量铜分析方法的研究
    摘要 本文介绍采用一种样品分析方法,使用铜的249.2nm吸收线直接使用火焰原子吸收法测定铜合金中的Cu。根据324.8nm标准加入法和此法两种分析方法所测定含量值相同,得到测定铜合金中铜元素的简易测试方法,此方法提高了分析准确度,简化了分析测定过程。关键词: 铜合金,标准加入法,标准曲线法,249.2nm,Cu。引言:铜合金在工业领域应用广泛,特别对于现在高铁建设中大量使用铜合金材料,用于电路线路的建设。因此对于电路动力系统上铜合金的使用要求格外重要。对于铜合金材料的测试检验也尤为严格,然而对于现有的测试铜合金中铜的测定方法较为繁琐和复杂。因此考虑建立一种简易标准曲线法测试方法,又能避免铜基体影响,又能准确测定铜合金中铜含量的分析方法。 1 实验部分 1.1 仪器及设备 WYS2200原子吸收光谱仪(安徽皖仪科技)。 可调电热板。 WY802-II型超纯水机(安徽皖仪科技) 。 Cu空芯阴极灯(北京有色金属总院)。 试剂及溶液 ⑴硝酸,优级纯,68-70%,北京化工厂产品。 ⑵高纯去离子水。电阻率&ge 18 M&Omega .cm 。 ⑶铜标准溶液(浓度1000ug/ml)。 1.3 样品的处理及测试 1) 样品制备:准确称取0.1106g铜合金样品,放入100ml烧杯中。加入5ml浓硝酸,在电热板上低温加热,为防止样品反应剧烈加入少量去离子水。加热待硝酸烟冒尽后拿下在室温冷却。冷却完毕将其转入50ml容量瓶中,以备测试使用。2 ) 标准曲线:⑴ 标准曲线法曲线配制:取铜标准溶液1000ug/ml 准确量取200ul,400ul,800ul加入3个10ml容量瓶中,加入0.5ml浓硝酸后用去离子水定容,其溶液浓度分别是20,40,80 ug/ml。直接测定标准曲线,并测定样品溶液1. ⑵ 标准加入法配制: 分别从样品溶液2中移取1.0ml加入4个10ml容量瓶,管1直接去离子水定容,管2,3,4分别加入1000ug/ml铜标准溶液为25,50,75ul,其浓度取为0,0.5,1.0,1.5 ug/ml,采用标准加入法测定。 样品溶液1:将定容好的样品溶液稀释1000倍。 样品溶液2:将定容好的样品溶液稀释50倍。3) 仪器条件:⑴ 标准曲线法:灯电流:3mA ,高压:400v ,光谱带宽:249.2nm 。 乙炔流量:2.0L/min 。 ⑵ 标准加入法 灯电流:3mA ,高压:409v ,光谱带宽:324.9nm 。 乙炔流量:2.0L/min 。 4) 分析结果: Cu结果(%)标准加入法15.7821标准曲线法16.2692 2 讨论:通过测试对两种方法结果的比对,可以看出使用铜的次灵敏线249.2nm的波长时,直接采用标准曲线法测定,能够有效的避免由于基体干扰造成的测试结果偏差大的问题。通过降低测试的灵敏度来降低样品中对于铜的干扰因素。此方法方便快捷,易于操作,准确度高。 参考文献: 1 铜合金中高含量锌的火焰原子吸收快速测定法。《上海有色金属》2003年 第3期2 GB/T5121.1-2008 GB/T 5121.1-2008 铜及铜合金化学分析方法 第1部分:铜含量的测定。
  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • 德国元素:成功助力科学攻坚,提升玉米蛋白含量
    如今,玉米已成为世界上最高产的农作物之一,全球年产12亿吨,中国年产2.7亿吨。其中,70%的玉米都是用作饲料,玉米产量高,有效能量多,是最常用且用量最大的一种饲料,故有“饲料之王”的美称。随着人们生活质量的提高,对肉蛋奶的需求不断增加,玉米的消费量也日益增加,致使近年来玉米进口量也不断提升。由于普通玉米籽粒蛋白含量较低,大部分杂交种籽粒蛋白含量不到8%,因此饲料中需要补充大豆蛋白,然而大豆严重依赖进口,这些成为了我国畜禽养殖业的“卡脖子”问题。如果普通玉米蛋白含量每提高一个百分点,相当于中国可以少进口近800万吨大豆!因此,提高玉米蛋白含量不仅是保障国家粮食安全的重大战略需求,也是保障我国畜禽养殖业和饲料加工业健康发展的重要途径之一。中国科学院分子植物科学卓越创新中心研究团队于2012年开始进行玉米高蛋白供体材料的寻找、蛋白含量测定、遗传分析以及群体构建。此外,研究团队在三亚南繁基地进行了大规模田间试验,将野生玉米高蛋白基因Thp9-T杂交导入我国推广面积最大的玉米生产栽培品种郑单958中,可以显著提高杂交种籽粒蛋白含量,表明该基因在培育高蛋白玉米中具有重要的应用潜能。同时,在减少氮肥施用条件下,可以有效保持玉米的生物量以及植株和籽粒中氮含量水平,这对于在低氮条件下促进玉米高产、稳产具有重要意义。德国元素elementar rapid N exceed 杜马斯定氮仪为巫永睿研究组的玉米蛋白研究提供了精准的蛋白质含量测定。“德国元素elementar的杜马斯定氮仪准确的测定了我们研究材料的蛋白表型,对于我们克隆野生玉米高蛋白基因至关重要。”——中国科学院分子植物科学卓越创新中心巫永睿课题组德国元素elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪。逐步推动了杜马斯定氮法在法规中的应用。如今,国际上(如美国、加拿大、德国等)已经将杜马斯定氮法应用在食品、饮料、宠物食品、饲料和肥料等领域。1964年,德国元素elementar第一台杜马斯氮/蛋白质分析仪德国元素elementar杜马斯定氮仪rapid N exceed 杜马斯定氮仪经济型氮/蛋白质测定解决方案rapid N exceed 快速氮/蛋白质分析仪,对重量高达1克的样品,仍能准确测定氮或蛋白质的含量。新型EAS REGAINER催化剂可确保在不消耗还原金属的情况下结合燃烧后过量的氧气。EAS REDUCTOR管(还原管)的寿命可处理高达2000个样品。rapid MAX N exceed 杜马斯定氮仪高通量、高灵活性氮/蛋白质测定解决方案rapid MAX N exceed 利用不锈钢坩埚进样,可容纳高达重量为5g或体积为5ml的样品,同时具备自动除灰功能。且可以选择氦气或氩气作为载气。直立的坩埚设计可确保任何液体样品的最佳燃烧,如:牛奶、啤酒、软饮、果汁、酱油等,与独特的二级燃烧技术相结合,可为您提供可靠的、无基质效应的测试结果。德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • iCAP 7400 ICP-OES测定阴极铜及铜制品中多种微量元素
    纯铜,是发电机、电缆、电路板等电工器材和热交换器等器材制造的原材料;而铜合金在制造轴承、齿轮、钟表零件、武器弹壳、精密阀门、船用螺旋桨精密弹簧和电接触元件被广泛使用,又是制造精密电工仪器、变阻器、精密电阻、热电偶等用的制造材料。由此可见,基于纯铜及铜合金等应用领域的区别限制,能够准确控制和精准测量各种铜制品中添加的合金元素和杂质元素含量,对于产品质量控制和使用安全具有重要的指导意义。 在以铜为基体的原子发射光谱分析中,尽管铜并非典型的富线光谱元素,但在180-800nm依然包含约300多条发射谱线,特别是180-350nm为铜谱线集中区域,绝大部分杂质控制元素最佳灵敏谱线又处于该光谱区,这对于杂质元素分析而言,将会受到严重基体效应所造成的邻近谱线干扰和跨级光谱干扰。 蓝色方框为所有铜元素发射谱线 准确测量,赛默飞有新招!iCAP 7000优异的光学系统设计,采用全固定式分光元件的二维色散系统,具有最大化的光栅常数和闪耀角,实现高光通量情况下的高分辨率保证,结合CID专利的非破坏式读取NDRO和防溢出Anti-Blooming技术,有利于多种杂质元素在共存基体的条件下获得最佳的信噪比指标,降低了基体效应对分析过程所产品的影响,样品无需要标准方法中共沉淀富集微量元素或电解除铜的基体分离方法,即可实现准确测量阴极铜及铜制品中多种微量元素含量。 样品前处理准确称取1g样品(精确至0.0001g)于聚四氟乙烯烧杯中,加入10mL混合酸于180度条件下加热溶解样品,至样品全部溶解溶液呈蓝色透明状,以超纯水稀释定容至50mL HDPE容量瓶中,摇匀,待测溶液,按同法制备试剂空白。阴极铜采用标准加入法测量,铜米、阳极板、铜线坯采用基体匹配标准曲线法。 仪器参数及配置点击查看大图 检出限测试依据JJG-768仪器检定规范要求,实验选择进行连续11次试剂空白测试,以连续11次空白的3倍标准偏差做为方法检出限,各元素检出限数据如下:点击查看大图 样本结果 iCAP 7000Series ICP-OES做为现代高端光谱仪器的市场需求典范,光学元件采用了全固式结构中阶梯光栅和棱镜二维交叉色散设计,光室部分采用38±0.1℃高精度恒温,所有等离子体气均采用质量流量控制器(控制精度0.01L/min)和291600像素单元构成的面阵式固态CID检测器。 这些设计无疑地代表着现行最高端的设计技术,基于这些种技术设计的使用,保证了iCAP 7000 ICP-OES具有无与伦比的稳定性指标、最佳的灵敏度和抗光谱干扰能力。对于能够有效检出的主量元素的多次测量精密度可以控制在0.1%以内,仪器具有优异的连续运行稳定性指标,能够最大程度上保证测量结果的可靠性和重复性。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • ICP-5000测定土壤中8种有效态元素的含量
    土壤质量关系到人们的生活健康和饮食健康,由于工业废水、废渣、废气的任意排放、农业生产过程中大量施肥、喷农药、污水灌溉等行为,以及人们生活中产生的垃圾等因素造成土壤的严重污染。目前土壤污染问题已经得到高度的重视,2016年5月31日,国务院正式印发《土壤污染防治行动计划》(“土十条”),其中提到土壤污染的重点监控无机污染物包括镉、汞、砷、铅、铬、铜、锌、镍等重金属,环保部发布的土壤中重金属的检测方法包括原子吸收、原子荧光、电感耦合等离子体发射光谱法和电感耦合等离子质谱法等方法,环保部于2016年6月24日发布并于8月1日实施环境新标准《HJ804-2016 土壤 8种有效态元素的测定二乙烯三胺五乙酸浸取-电感耦合等离子体发射光谱法》。由于该方法采用的提取液既含有有机物又含有较高的盐,基体比较复杂,因此,对检测仪器的要求也相应提高。 针对HJ 804-2016聚光科技提出了相应的解决方案。 样品前处理按国标HJ804-2016,称取10g(精确至0.0001g)土壤样品于50mL离心管中,加入20mL提取液(二乙烯三胺五乙酸-氯化钙-三乙醇胺),震荡2h,离心,取上层清液过滤,待测。 标准溶液配制采用提取液将浓度为1000μg/mL的标准溶液稀释至如表1所示浓度梯度,用于建立标准曲线,测得线性相关系数大于0.999。表1 各元素的标准溶度配制梯度检出限将试剂空白连续11次测定,将3倍标准偏差作为该元素的检出限,各元素检出限见表2;表2 被测元素的检出限 测量结果及加标回收率表3 仲钨酸铵中杂质元素含量测量结果及加标回收率采用ICP-5000测定6个平行样品,考察方法精密度,并在前处理前加入一定浓度液体标样进行加标回收实验,以考察方法的准确度。结果如表3所示,6个平行样测量结果的相对标准偏差均小于3%,加标回收率为90%-110%。 结论按照环境标准HJ 804-2016提取土壤中Cd、Co、Cu、Fe、Mn、Ni、Pb、Zn等8种元素的有效态,并用ICP-5000测定8种有效态元素的含量,方法检出限低,精密度小于3%,加标回收率介于90%~110%之间,满足 HJ 804-2016的检测要求。ICP-5000 电感耦合等离子体发射光谱仪ICP-5000是集中阶梯光栅的二维分光系统、自激式全固态射频电源、科研级高速CCD为一体的全谱直读电感耦合等离子体发射光谱仪,最多可以同时分析72个元素,覆盖元素周期表绝大多数金属元素和非金属元素;检出能力达到ppb级别。小型、智能化ICP-5000告别了过去的单道扫描时代,带您体验快速、全谱分析技术!
  • 《不锈钢 多元素微量与高含量的测定 火花放电原子发射光谱法》两项CSTM团标立项评估会召开
    中国材料与试验团体标准委员会综合标准领域委员会(FC99)标准立项评估会于4月26日在京召开,会议对《不锈钢 多元素微量与高含量的测定 火花放电原子发射光谱法》和《铌铁 锰含量的测定 高碘酸盐光度法》两项团体标准进行了立项评估。会议由CSTM标准化专家王丽敏教授主持,来自中关村材料试验技术联盟、宝武集团马钢技术中心、钢研纳克检测技术股份有限公司、太原重工轨道交通设备有限公司5位专家出席了会议,标准起草单位太钢不锈钢股份有限公司和钢研纳克检测技术股份有限公司代表以及CSTM标准委员会秘书处等10余人参加了此次立项评估。此次会议采取线上线下的方式进行。会上,专家组听取了标准申报单位对申报标准的情况介绍,汇报人在标准制定的必要性和可行性、现行有关国内外标准情况、项目涉及专利情况、项目的应用前景、项目工作组构成以及标准草案等方面进行了详细汇报。与会专家对标准的具体内容进行了质询,并提出了意见和建议。最后,两项标准一致通过了立项评估。《不锈钢 多元素微量与高含量的测定 火花放电原子发射光谱法》拓展了碳、硅、锰、磷、硫、镍、铜、铝、钼、钒、钛、硼、铌、钴、钨、砷、锡、铅18个元素的高低含量范围,新增锑、铋、钙、锌、钽、氮6个元素的测定。本标准的制定,填补不锈钢光谱分析标准中元素覆盖范围窄、微量和高含量元素分析没有标准可依的空白,为不锈钢产品开发和检测技术进步奠定重要基础,可促进不锈钢冶炼技术创新,增强产品在国内外市场竞争力,为推动产业结构调整与产业优化升级创造条件,加快我国特殊品种不锈钢快速发展具有积极的促进作用。随着冶金工艺水平的提升,尤其是高温合金产品在冶炼原料的选取上会更加精确,对杂质元素的控制要求日益提升。《铌铁 锰含量的测定 高碘酸盐光度法》首次建立高碘酸盐光度法测定铌铁中锰含量的分析方法,是电感耦合等离子体发射光谱法的有效补充,健全了铌铁中锰含量测定的方法体系,能够指导工厂精准控制原料质量,为后续产品的质量控制提供保障。会议现场
  • CSTM 标准《吸湿厌氧类有机物中碳、氢、氮元素含量测定元素分析仪法》(征求意见稿)发布
    中关村材料试验技术联盟发布CSTM 标准《吸湿厌氧类有机物中碳、氢、氮元素含量测定元素分析仪法》(征求意见稿)。本标准参照 GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》,GB/T 20001.4《标准编写规则第4部分:试验方法标准》给出的规则起草。本标准由中国材料与试验团体标准委员会科学试验领域委员会(CSTMEC98)提出,由中国材料与试验团体标准委员会科学试验领域委员会(CSTMIFC98)或技术委员会(CSTM/FC98/TC03)归日。本标准规定了采用元素分析仪对吸湿厌氧类有机物中碳(C)、氢(H)和氮(N)元素含量进行定量分析的试验方法,适用于碳(C)、氢(H)和氮(N)元素的质量分数均不小于 0.50x10-2的吸湿厌氧类有机物。详细内容见附件。附件:《吸湿厌氧有机物中碳、氢、氮元素含量测定 元素分析仪法》征求意见稿.pdf
  • 岛津应用:ICPMS-2030测定土壤中多种金属元素的含量
    来自农药、废水、污泥和大气沉降等方式沉积的重金属元素铅、镉、铬、砷、锌、铜、镍、锰、钼、锑、钒、钴等,是土壤无机物污染的重要组成部分。这些元素在土壤中过量富集,会导致土壤盐渍化,影响植物根和叶的发育,并通过食物链传递破坏人体神经系统、免疫系统和骨骼系统等。因此,准确测定土壤中的金属元素含量,对土壤质量的监控及土壤环境的再修复有着重要的实际意义。国家卫生部和环境保护部不断发布新标准持续完善和规范土壤中重金属的检测方法。ICP-MS 用于痕量金属元素分析,具有灵敏度高、线性范围宽、测试速度快、可同时测定多元素等优点。 本文参考 2016 年 8 月 1 日实施的环境标准 HJ 803-2016《土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法》采用岛津新品电感耦合等离子体质谱仪 ICPMS-2030测定土壤成分分析标准物质GBW07404(GSS-4)中的Cd、Ni、Mn和Mo等12种金属元素含量,通过与证书值比对及加标回收率实验对方法进行了验证。实验结果表明,该方法操作简单,定量准确,线性范围宽,样品无需稀释即可同时准确测定,可满足土壤样品中12种金属元素高低含量的同时分析。 了解详情,敬请点击《ICPMS-2030测定土壤中多种金属元素的含量》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 德国元素 | 钼粉及其合金中的碳硫分析解决方案
    钼是一种相当稀有的金属,主要作为钢中的掺杂材料。然而,对于非常具有极端温度挑战性的应用,相关部件的生产会使用钼及其合金,例如在航空航天工业或冶金行业。此外,钼可在石油工业中用作催化剂,主要负责去除油中的硫。因此,分析钼催化剂中的硫可以快速提供有关油的纯度以及其它信息。对于上述由钼制成的材料,碳和硫含量的测量至关重要,因为这两个元素含量会影响各种应用。这里采用了德国元素elementar的inductar CS cube红外碳硫仪对于钼粉末进行分析。实验部分实验样品:钼粉末实验方案:500毫克纯钼粉或130毫克钼合金与EXACC一起称量到ELCUP CS陶瓷坩埚中,加入WS钨/锡助熔剂(2勺/2克)和EXACC FE铁助熔剂(1勺/0.5克)。使用inductar CS cube进行碳分析和硫分析。每种材料测定三次。实验结果:inductar CS cube高频红外碳硫分析仪不仅简化了操作流程,还实现了高精度结果,完全满足钼的碳硫检测要求。实验仪器:inductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:创新性坩埚设计,无需动力气清洁型燃烧(低灰尘和尘屑),无需外接吸尘器加热的除尘过滤器,配备了高效的风冷水冷装置可自由程序变化输出功率的感应炉 可自由程序变化的注氧流速燃烧过程可由光学摄像系统观察专利球夹设计,实现免工具维护 以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 岛津EPMA在形状记忆合金中的应用
    形状记忆合金是通过热弹性与马氏体相变及其逆变而具有形状记忆效应的由两种以上金属元素所构成的材料。迄今为止,人们发现具有形状记忆效应的合金有50多种,在航空航天、机械电子、生物医疗等领域具有广泛的应用。下文将举例介绍电子探针(EPMA)在镍-钛形状记忆合金中的应用。图1. 岛津场发射电子探针EPMA-8050G岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现:01优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。(加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA)02大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。按原子比由Ti和Ni各占50%的合金称为镍-钛合金(Nitinol),具有良好的形状记忆性能和超弹性性能。形状记忆合金具有一个显著的特点,即变形到任意形状后,加热到相变温度(相变点)或更高时,能恢复变形前的原始形状,而超弹性合金则是在载荷作用下变形,在载荷消除后恢复原始形状。相变温度大致可以在0℃-100℃之间变化,主要通过改变Ti和Ni的合金原子比值或者加入1%或更少的第三相元素(比如Cr、Co、Cu等)。正畸金属丝是一种典型的镍-钛合金,具备形状记忆和超弹性性能,主要的选材差异在于根据患者的牙周状况和对疼痛的敏感程度来选择具有不同相变温度的矫正材料。图2. 展示了正畸金属丝中主要的合金元素面扫描图像及相分析结果,清晰可见材料基体的元素组成以及其中离散分布的微米级别的混合相结构。图2. 正畸金属丝中各合金元素面扫描图像及相分析结果选择三种具有不同相变温度的正畸材料分别进行定量分析,结果如表1所示,总含量低于1%的Cr元素存在较为明显的含量差异。表1. Af27、Af35、Af40型号正畸金属丝元素定量测试结果结合图3. 展示的三种不同型号的元素面扫描结果,可以更清楚地看到Cr元素含量的差异,同时离散分布的点状微结构中Ni元素被替代的情况也存在差别。图3. 各型正畸金属丝中的元素面扫描图像(a)Af27,(b)Af35,(c)Af40图4. 展示了放大条件下Af27材料中微结构的元素面扫描及相分析结果,表明多化合物混合相的存在。图4. Af27正畸金属丝中化合物相分析更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。本文内容非商业广告,仅供专业人士参考。
  • 应对新国标——ICP-MS 助力生活饮用水多元素含量测定
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。GB 5749-2022《生活饮用水卫生标准》已于2023年4月1日正式实施,GB/T 5750-2023《生活饮用水标准检验方法》作为GB 5749配套的检验方法,也于2023年10月1日正式实施。新标准将原标准中的“非常规指标”调整为“扩展指标”,以反映地区生活饮用水水质特征及在一定时间内或特殊情况的水质特征。指标数量由原标准的106项调整为97项,包括常规指标43项和扩展指标54项。与原标准相比,新标准的变化主要有以下几个方面:①更加关注感官指标;②更加关注消毒副产物;③更加关注风险变化;④提高部分指标限值。在标准检验方法中也大幅增加了高通量的分析方法和质谱技术的应用范畴。仪器信息网特别建立“《生活饮用水标准检验方法》——质谱篇”话题,聚焦质谱技术在生活饮用水检测工作相关的最新应用解决方案,以增强业界质谱专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供饮用水检测领域更丰富的质谱产品、技术解决方案。本文邀请到赛默飞分享生活饮用水检测中ICP-MS相关的技术及解决方案。表1总结了GB 5749-2022中涉及到的元素和限量以及GB/T 5750-2023的检测方法,可以看出,主要包含的仪器方法有分光光度计、AFS、AAS、ICPOES、ICPMS、LC-ICPMS法等,而ICP-MS作为无机元素检测分析的主要方法之一,因其灵敏度高、动态线性范围宽、检出限低而越来越多的被使用,同时,GB/T 5750-2023还新增了砷、硒、汞、铬四种元素形态分析检验方法,均涉及到LC-ICP-MS联用。表1 GB/T 5750-2023中无机元素推荐检测方法案例分析——ICPMS对地表水和饮用水进行可靠性分析01 仪器参数氩气稀释功能(AGD):AGD 所使用的氩气由仪器直接供应,并使用质量流量计进行精确调节。采用低、中、高三档预设的智能化在线氩气稀释模式,确保仪器性能的可靠性,实现卓越的长期稳定性分析。iSC-65 自动进样器:通过 LED 面板实现仪器状态可视化,具备独特的“Step ahead”功能,使两个相邻样品的分析时间重叠,最终缩短每个样品的周转时间。单位样品分析时间(对共 46个元素进行3次重复分析,包括提升和清洗时间 )为2分38秒。ICPMS参数:自动进样器参数:样品和有证标准物质:与水样分析相关的一个主要挑战是高度可变的基质负荷。尽管饮用水中主要分析物(如碱性和碱土元素)的浓度可能大有不同,但河水、湖水或井水等地表水也可能含有大量的过渡金属,特别是铁。此外,溶解有机物和微生物可能影响分析,导致基质效应增加,进而导致信号抑制和漂移。为了覆盖广泛的潜在样品基质,共采集并分析了七份水样(包括一份有证标准物质CRM)。标准溶液及其浓度:根据不同水质样品中元素的预期浓度,对这些元素进行分组,分析范围很广(从 0.001 mg L -1到500 mg L-1),只需一次分析即可获得有毒元素和营养元素含量。(浓度单位为mgL-1)02实验结果检出限:通过测量试剂空白溶液(与样品并行制备),确定溶液检出限 (DL)。对于所有元素,达到的检出限显著低于法规通常要求的限值。准确度和稳定性:分析有证标准物质(CRM) 样品SLRS-5(天然河水),CRM的结果与参考值非常一致。每天在 12 小时内连续采集 300 份饮用水和地表水样品,并在10个工作日内重复该操作,共分析约 3000份样品,10个工作日内的质量控制(QC)标准品重复140 次的平均回收率在90%-120%的范围内,证明系统具有稳健且可靠的分析性能。03元素形态分析不同元素形态分析的流动相和分析柱都会有所不同,所以分析流程耗时耗力。赛默飞可以提供采用同一个流动相条件,相同色谱柱在10min之内同时分析溴、碘、铬、砷不同形态,提高了分析效率。色谱条件:采用高效能AG19和AS19阴离子色谱柱、梯度洗脱的方式ICPMS仪器参数:iCAP RQplus ICPMS时间扫描tQuant模式具有多元素采集功能,采用氦气碰撞模式解决砷、铬、溴、碘元素多原子离子干扰问题砷、铬、溴、碘4种元素11种形态分离图:5种市售瓶装饮用水及当地自来水检测的加标回收率在85.6%到121.6%之间,完全满足分析需求。饮用水元素分析特点1. 测试高低含量的元素---要求仪器线性范围宽、准确度高2. 多样品多元素分析---要求仪器稳定性好、效率高3. 元素形态分析---要求仪器联机方便、色谱柱性能强使用 iCAP RQplus ICP-MS 结合 iSC-65 自动进样器就可轻而易举地对水质元素进行快速、准确且稳定的常规监测,也可以与LC/IC联用进行多元素形态的分析。更多关于GB/T 5750-2023《生活饮用水标准检验方法》的质谱检测技术与解决方案请点击》》》
  • 《钢铁及合金 硅含量的测定 重量法》等353项国家标准即将实施!
    关于批准发布《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单的公告国家市场监督管理总局(国家标准化管理委员会)批准《钢铁及合金 硅含量的测定 重量法》等353项国家标准和4项国家标准修改单,现予以公告。国家市场监督管理总局 国家标准化管理委员会2024-04-25序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 223.60—2024钢铁及合金 硅含量的测定 重量法GB/T 223.60—19972024-11-012GB/T 754—2024发电用汽轮机参数系列GB/T 754—20072024-11-013GB/T 1361—2024铁矿石分析方法总则及一般规定GB/T 1361—20082024-11-014GB/T 1503—2024铸钢轧辊GB/T 1503—20082024-11-015GB/T 3428—2024架空导线用镀锌钢线GB/T 3428—20122024-11-016GB/T 3594—2024渔船用电子设备电源技术要求GB/T 3594—20072024-11-017GB/T 3648—2024钨铁GB/T 3648—20132024-11-018GB/T 3880.2—2024一般工业用铝及铝合金板、带材 第2部分:力学性能GB/T 3880.2—20122024-11-019GB/T 3880.3—2024一般工业用铝及铝合金板、带材 第3部分:尺寸偏差GB/T 3880.3—20122024-11-0110GB/T 4074.1—2024绕组线试验方法 第1部分:一般规定GB/T 4074.1—20082024-11-0111GB/T 4074.2—2024绕组线试验方法 第2部分:尺寸测量GB/T 4074.2—20082024-11-0112GB/T 4074.3—2024绕组线试验方法 第3部分:机械性能GB/T 4074.3—20082024-11-0113GB/T 4074.4—2024绕组线试验方法 第4部分:化学性能GB/T 4074.4—20082024-11-0114GB/T 4074.5—2024绕组线试验方法 第5部分:电性能GB/T 4074.5—20082024-11-0115GB/T 4074.6—2024绕组线试验方法 第6部分:热性能GB/T 4074.6—20082024-11-0116GB/T 4103.18—2024铅及铅合金化学分析方法 第18部分:银、铜、铋、砷、锑、锡、锌、铁、镉、镍、镁、铝、钙、硒和碲含量的测定 电感耦合等离子体质谱法2024-11-0117GB/T 4137—2024稀土硅铁合金GB/T 4137—20152024-11-0118GB/T 4138—2024稀土镁硅铁合金GB/T 4138—20152024-11-0119GB/T 4330—2024农用挂车GB/T 4330—20032024-11-0120GB/T 4331—2024农用挂车 试验方法GB/T 4331—20032024-11-0121GB/T 4701.12—2024钛铁 钛含量的测定 二安替吡啉甲烷分光光度法2024-11-0122GB/T 4701.13—2024钛铁 硅、锰、磷、铬、铝、镁、铜、钒、镍含量的测定 电感耦合等离子体原子发射光谱法2024-11-0123GB/T 4797.3—2024环境条件分类 自然环境条件 第3部分:生物GB/T 4797.3—20142024-11-0124GB/T 5121.8—2024铜及铜合金化学分析方法 第8部分:氧、氮、氢含量的测定GB/T 5121.8—20082024-11-0125GB/T 5324—2024棉与涤纶混纺本色纱线GB/T 5324—20092024-11-0126GB/T 5484—2024石膏化学分析方法GB/T 5484—20122024-11-0127GB/T 5683—2024铬铁GB/T 5683—20082024-11-0128GB/T 5762—2024建材用石灰石、生石灰和熟石灰化学分析方法GB/T 5762—20122024-11-0129GB/T 6730.73—2024铁矿石 全铁含量的测定 EDTA光度滴定法GB/T 6730.73—20162024-11-0130GB/T 8122—2024内径指示表GB/T 8122—20042024-11-0131GB/T 8177—2024两点内径千分尺GB/T 8177—20042024-11-0132GB/T 8492—2024一般用途耐热钢及合金铸件GB/T 8492—20142024-04-2533GB/T 9058—2024奇数沟千分尺GB/T 9058—20042024-11-0134GB/T 9442—2024铸造用硅砂GB/T 9442—20102024-04-2535GB/T 10395.28—2024农业机械 安全 第28部分:移动式谷物螺旋输送机2024-11-0136GB/T 10932—2024螺纹千分尺GB/T 10932—20042024-11-0137GB/T 11066.12—2024金化学分析方法 第12 部分: 银、铜、铁、铅、铋、锑、镁、镍、锰、钯、铬、铂、铑、钛、锌、砷、锡、硅、钴、钙、钾、锂、钠、碲、钒、锆、镉、钼、铼、铝含量的测定 电感耦合等离子体原子发射光谱法2024-11-0138GB/T 11091—2024电缆用铜带箔材GB/T 11091—20142024-11-0139GB/T 11420—2024搪瓷制品和瓷釉 光泽度测试方法GB/T 11420—19892024-11-0140GB/T 12690.12—2024稀土金属及其氧化物中非稀土杂质 化学分析方法 第12部分:钍、铀量的测定 电感耦合等离子体质谱法GB/T 12690.12—20032024-11-0141GB/T 12705.2—2024纺织品 防钻绒性试验方法 第2部分:转箱法GB/T 12705.2—20092024-11-0142GB/T 12916—2024船用金属螺旋桨技术条件GB/T 12916—20102024-08-0143GB/T 12959—2024水泥水化热测定方法GB/T 12959—20082024-11-0144GB/T 13077—2024铝合金无缝气瓶定期检验与评定GB/T 13077—20042024-11-0145GB/T 13210—2024柑橘罐头质量通则GB/T 13210—20142024-11-0146GB/T 13539.6—2024低压熔断器 第6部分:太阳能光伏系统保护用熔断体的补充要求GB/T 13539.6—20132024-11-0147GB/T 13539.7—2024低压熔断器 第7部分:电池和电池系统保护用熔断体的补充要求2024-11-0148GB/T 13748.20—2024镁及镁合金化学分析方法 第20部分:元素含量的测定 电感耦合等离子体原子发射光谱法GB/T 13748.20—2009GB/T 13748.5—20052024-11-0149GB/T 13818—2024压铸锌合金GB/T 13818—20092024-04-2550GB/T 13929—2024水环真空泵和水环压缩机 试验方法GB/T 13929—20102024-08-0151GB/T 13930—2024水环真空泵和水环压缩机 气量测定方法GB/T 13930—20102024-08-0152GB/T 14048.11—2024低压开关设备和控制设备 第6-1部分:多功能电器 转换开关电器GB/T 14048.11—20162024-11-0153GB/T 14207—2024夹层结构或芯子吸水性试验方法GB/T 14207—20082024-11-0154GB/T 14264—2024半导体材料术语GB/T 14264—20092024-11-0155GB/T 14408—2024一般工程与结构用低合金钢铸件GB/T 14408—20142024-04-2556GB/T 14949.7—2024锰矿石 钠和钾含量的测定 火焰原子吸收光谱法GB/T 14949.7—19942024-11-0157GB/T 15115—2024压铸铝合金GB/T 15115—20092024-04-2558GB/T 15148—2024电力负荷管理系统技术规范GB/T 15148—20082024-11-0159GB/T 15579.1—2024弧焊设备 第1部分:焊接电源GB/T 15579.1—20132024-11-0160GB/T 16477.1—2024稀土硅铁合金及镁硅铁合金化学分析方法 第1部分:稀土总量、十五个稀土元素含量的测定GB/T 16477.1—20102024-04-2561GB/T 16659—2024煤中汞的测定方法GB/T 16659—20082024-11-0162GB/T 17215.301—2024电测量设备(交流) 特殊要求 第1部分:多功能电能表GB/T 17215.301—20072024-11-0163GB/T 17215.302—2024电测量设备(交流) 特殊要求 第2部分:静止式谐波有功电能表GB/T 17215.302—20132024-11-0164GB/T 17241.1—2024铸铁管法兰 第1部分:PN系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0165GB/T 17241.2—2024铸铁管法兰 第2部分:Class系列GB/T 17241.1—1998[部]GB/T 17241.2—1998[部]GB/T 17241.3—1998[部]GB/T 17241.4—1998[部]GB/T 17241.5—1998[部]GB/T 17241.6—2008[部]GB/T 17241.7—1998[部]GB/T 17241.1—1998[代完]GB/T 17241.2—1998[代完]GB/T 17241.3—1998[代完]GB/T 17241.4—1998[代完]GB/T 17241.5—1998[代完]GB/T 17241.6—2008[代完]GB/T 17241.7—1998[代完]2024-11-0166GB/T 17259—2024机动车用液化石油气钢瓶GB/T 17259—20092024-11-0167GB/T 17737.10—2024同轴通信电缆 第10部分:含氟聚合物绝缘半硬电缆分规范GB/T 17737.2—20002024-11-0168GB/T 17737.11—2024同轴通信电缆 第11部分:聚乙烯绝缘半硬电缆分规范2024-11-0169GB/T 17737.119—2024同轴通信电缆 第1-119部分:电气试验方法 同轴电缆及电缆组件的射频功率2024-11-0170GB/T 17737.9—2024同轴通信电缆 第9部分:柔软射频同轴电缆分规范2024-11-0171GB/T 17937—2024电工用铝包钢线GB/T 17937—20092024-11-0172GB/T 18153—2024机械安全 用于确定可接触热表面温度限值的安全数据GB/T 18153—20002024-04-2573GB/T 18222.2—2024小艇 用操纵速度确定最大推进额定功率 第2部分:艇体长度在8m~24m之间的艇2025-05-0174GB/T 18336.1—2024网络安全技术 信息技术安全评估准则 第1部分:简介和一般模型GB/T 18336.1—20152024-11-0175GB/T 18336.2—2024网络安全技术 信息技术安全评估准则 第2部分:安全功能组件GB/T 18336.2—20152024-11-0176GB/T 18336.3—2024网络安全技术 信息技术安全评估准则 第3部分:安全保障组件GB/T 18336.3—2015[部]2024-11-0177GB/T 18336.4—2024网络安全技术 信息技术安全评估准则 第4部分:评估方法和活动的规范框架GB/T 18336.3—2015[部]2024-11-0178GB/T 18336.5—2024网络安全技术 信息技术安全评估准则 第5部分:预定义的安全要求包GB/T 18336.3—2015[部]GB/T 18336.3—2015[代完]2024-11-0179GB/T 18891—2024三相交流系统相位差的钟时序数标识GB/T 18891—20092024-11-0180GB/T 18910.11—2024液晶显示器件 第1-1部分:总规范GB/T 18910.1—20122024-08-0181GB/T 18910.12—2024液晶显示器件 第1-2部分:术语和符号GB/T 18910.11—20122024-08-0182GB/T 18910.21—2024液晶显示器件 第2-1部分:无源矩阵单色液晶显示模块 空白详细规范GB/T 18910.21—20072024-04-2583GB/T 18910.2—2024液晶显示器件 第2部分:液晶显示模块 分规范GB/T 18910.2—20032024-04-2584GB/T 18910.22—2024液晶显示器件 第2-2部分:彩色矩阵液晶显示模块 空白详细规范GB/T 18910.22—20082024-04-2585GB/T 18910.3—2024液晶显示器件 第3部分:液晶显示屏 分规范GB/T 18910.3—20082024-08-0186GB/T 18910.63—2024液晶显示器件 第6-3部分:液晶显示模块测试方法 有源矩阵液晶显示模块运动伪像2024-08-0187GB/T 19318—2024小艇 远程液压操舵系统GB/T 19318—20032025-05-0188GB/T 19533—2024汽车用压缩天然气钢瓶定期检验与评定GB/T 19533—20042024-11-0189GB/T 19544—2024脊柱矫形器的分类及通用技术条件GB/T 19544—20042024-08-0190GB/T 19960—2024风能发电系统 风力发电机组通用技术条件和试验方法GB/T 19960.1—2005,GB/T 19960.2—20052024-11-0191GB/T 20183.1—2024植物保护机械 喷雾设备 第1部分:喷雾机喷头试验方法GB/T 20183.1—20062024-11-0192GB/T 20183.2—2024植物保护机械 喷雾设备 第2部分:评价液力喷雾机水平横向分布的试验方法GB/T 20183.2—20062024-11-0193GB/T 20183.3—2024植物保护机械 喷雾设备 第3部分:评价单位面积施药液量调节系统性能的试验方法GB/T 20183.3—20062024-11-0194GB/T 20340.1—2024农用挂车和被牵引设备 牵引杆千斤顶 第1部分:设计安全、试验方法和验收条件GB/T 20340—2006[部]2024-11-0195GB/T 20340.2—2024农用挂车和被牵引设备 牵引杆千斤顶 第2部分:应用安全、试验方法和验收条件GB/T 20340—2006[部]GB/T 20340—2006[代完]2024-11-0196GB/T 20790—2024半喂入联合收割机 技术条件GB/T 20790—20062024-11-0197GB/T 20871.12—2024有机发光二极管显示器件 第1-2部分:术语与文字符号GB/T 20871.2—20072024-08-0198GB/T 20871.61—2024有机发光二极管显示器件 第6-1部分:光学和光电参数测试方法GB/T 20871.61—20132024-08-0199GB/T 21832.3—2024奥氏体-铁素体型双相不锈钢焊接钢管 第3部分:油气输送用管2024-11-01100GB/T 21833.3—2024奥氏体-铁素体型双相不锈钢无缝钢管 第3部分:油气输送用管2024-11-01101GB/T 21836—2024四氧化三锰GB/T 21836—20082024-11-01102GB/T 21956.1—2024农林拖拉机 窄轮距轮式拖拉机翻滚防护装置 第1部分:前置式GB/T 21956.1—2015GB/T 21956.2—20152024-11-01103GB/T 21956.2—2024农林拖拉机 窄轮距轮式拖拉机翻滚防护装置 第2部分:后置式GB/T 21956.3—2015,GB/T 21956.4—20092024-11-01104GB/T 23561.11—2024煤和岩石物理力学性质测定方法 第11部分:煤和岩石抗剪强度测定方法GB/T 23561.11—20102024-08-01105GB/T 23561.1—2024煤和岩石物理力学性质测定方法 第1部分:采样一般规定GB/T 23561.1—20092024-08-01106GB/T 24675.1—2024保护性耕作机械 第1部分:浅松机GB/T 24675.1—20092024-11-01107GB/T 24675.2—2024保护性耕作机械 第2部分:深松机GB/T 24675.2—20092024-11-01108GB/T 25049—2024镍铁GB/T 25049—20102024-11-01109GB/T 25390—2024风能发电系统 风力发电机组球墨铸铁件GB/T 25390—20102024-11-01110GB/T 25392—2024农业工程 电气和电子设备 耐环境试验GB/T 25392—20102024-11-01111GB/T 25632—2024增材制造机床软件数据接口格式GB/T 25632—20102024-11-01112GB/T 26027—2024高损伤容限铝合金型材GB/T 26027—20102024-11-01113GB/T 26080—2024塔机用冷弯矩形管GB/T 26080—20102024-11-01114GB/T 26114—2024液体过滤用过滤器 通用技术规范GB/T 26114—20102024-11-01115GB/T 26527—2024有机硅消泡剂GB/T 26527—20112024-11-01116GB/T 26600—2024显微镜 光学显微术用浸液GB/T 26600—20112024-11-01117GB/T 27692—2024高炉用铁球团矿GB/T 27692—20112024-11-01118GB/T 2820.9—2024往复式内燃机驱动的交流发电机组 第9部分:机械振动的测量和评价GB/T 2820.9—20022024-11-01119GB/T 28629—2024水泥熟料中游离二氧化硅化学分析方法GB/T 28629—20122024-11-01120GB/T 28780—2024机械安全 机器用整体照明系统GB/T 28780—20122024-11-01121GB/T 28884—2024大容积气瓶用无缝钢管GB/T 28884—20122024-11-01122GB/T 2900.17—2024电工术语 量度继电器和保护设备GB/T 2900.17—20092024-04-25123GB/T 2910.11—2024纺织品 定量化学分析 第11部分:某些纤维素纤维与某些其他纤维的混合物(硫酸法)GB/T 2910.11—20092026-05-01124GB/T 29284—2024聚乳酸GB/T 29284—20122024-11-01125GB/T 29324—2024架空导线用碳纤维增强复合材料芯GB/T 29324—20122024-11-01126GB/T 29335—2024食品容器用爪式旋开盖质量通则GB/T 29335—20122024-11-01127GB/T 29603—2024食品容器用镀锡或镀铬薄钢板全开式易开盖质量通则GB/T 29603—20132024-11-01128GB/T 30117.1—2024非相干光产品的光生物安全 第1部分:通用要求2024-11-01129GB/T 30177.2—2024过滤机性能测试方法 第2部分:真空过滤机2024-11-01130GB/T 30270—2024网络安全技术 信息技术安全评估方法GB/T 30270—20132024-11-01131GB/T 31211.1—2024无损检测 超声导波检测 第1部分:总则GB/T 31211—20142024-04-25132GB/T 31211.2—2024无损检测 超声导波检测 第2部分:磁致伸缩法GB/T 28704—20122024-04-25133GB/T 31268—2024限制商品过度包装 通则GB/T 31268—20142024-11-01134GB/T 32270—2024压力管道规范 动力管道GB/T 32270—20152024-04-25135GB/T 32285—2024热轧H型钢桩GB/T 32285—20152024-11-01136GB/T 32590.1—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第1部分:系统原理和基本概念GB/T 32590.1—20162024-11-01137GB/T 32590.2—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第2部分:功能需求规范2024-11-01138GB/T 32590.3—2024轨道交通 市域铁路和城轨交通运输管理和指令/控制系统 第3部分:系统需求规范2024-11-01139GB/T 33352—2024电子电气产品中限用物质筛选应用通则 X射线荧光光谱法GB/T 33352—20162024-08-01140GB/T 33423—2024沿海及海上风电机组腐蚀控制技术规范GB/T 33423—20162024-11-01141GB/T 33488.5—2024化工用塑料焊接制承压设备检验方法 第5部分:衍射时差法超声检测2024-11-01142GB/T 33563—2024网络安全技术 无线局域网客户端安全技术要求GB/T 33563—20172024-11-01143GB/T 33565—2024网络安全技术 无线局域网接入系统安全技术要求GB/T 33565—20172024-11-01144GB/T 34549—2024卫生洁具 智能坐便器GB/T 34549—20172024-11-01145GB/T 34924—2024低压电气设备安全风险评估和风险降低指南GB/T 34924—20172024-11-01146GB/T 36450.3—2024信息技术 存储管理 第3部分:通用轮廓2024-11-01147GB/T 37820.1—2024船舶与海上技术 船舶安全标志、防火控制图标志、安全提示和安全标记的设计、位置和使用 第1部分:设计原则GB/T 37820.—20192024-08-01148GB/T 38001.51—2024柔性显示器件 第5-1部分:光学性能测试方法2024-08-01149GB/T 38001.52—2024柔性显示器件 第5-2部分:非便携式曲面显示器件光学性能测试方法2024-08-01150GB/T 38001.53—2024柔性显示器件 第5-3部分:目视评价方法2024-08-01151GB/T 38216.5—2024钢渣 氧化锰含量的测定 火焰原子吸收光谱法2024-11-01152GB/T 40096.6—2024就地化继电保护装置技术规范 第6部分:母线保护2024-11-01153GB/T 40096.7—2024就地化继电保护装置技术规范 第7部分:变压器保护2024-11-01154GB/T 40344.3—2024真空技术 真空泵性能测量标准方法 第3部分:机械增压泵的特定参数2024-04-25155GB/T 40565.1—2024液压传动连接 快换接头 第1部分:通用型2024-11-01156GB/T 42126.5—2024基于蜂窝网络的工业无线通信规范 第5部分:应用要求2024-11-01157GB/T 42151.4—2024电力自动化通信网络和系统 第4部分:系统和项目管理2024-11-01158GB/T 42513.6—2024镍合金化学分析方法 第6部分:钼含量的测定 电感耦合等离子体原子发射光谱法2024-11-01159GB/T 42513.7—2024镍合金化学分析方法 第7部分:钴、铬、铜、铁和锰含量的测定 火焰原子吸收光谱法2024-11-01160GB/T 43130.2—2024液化天然气装置和设备 浮式液化天然气装置的设计 第2部分:浮式储存和再气化装置的特殊要求2024-08-01161GB/T 43259.556—2024能量管理系统应用程序接口(EMS-API)第556部分:基于CIM图形交换格式(CIM/G)2024-11-01162GB/T 43590.504—2024激光显示器件 第5-4部分:彩色散斑的光学测试方法2024-08-01163GB/T 43694—2024网络安全技术 证书应用综合服务接口规范2024-11-01164GB/T 43696—2024网络安全技术 零信任参考体系架构2024-11-01165GB/T 43698—2024网络安全技术 软件供应链安全要求2024-11-01166GB/T 43739—2024数据安全技术 应用商店的移动互联网应用程序(App)个人信息处理规范性审核与管理指南2024-11-01167GB/T 43741—2024网络安全技术 网络安全众测服务要求2024-11-01168GB/T 43746.1—2024钻孔和基础施工设备安全要求 第1部分:通用要求2024-11-01169GB/T 43746.2—2024钻孔和基础施工设备安全要求 第2部分:建筑施工用移动式钻机2024-11-01170GB/T 43746.3—2024钻孔和基础施工设备安全要求 第3部分:桩和其他基础施工设备2024-11-01171GB/T 43779—2024网络安全技术 基于密码令牌的主叫用户可信身份鉴别技术规范2024-11-01172GB/T 43843—2024网络协同制造平台数据服务要求2024-11-01173GB/T 43844—2024IPv6地址分配和编码规则 接口标识符2024-11-01174GB/T 43845—2024基于扫描氮-空位探针的微弱静磁场成像测量方法2024-11-01175GB/T 43846.1—2024显微镜 显微镜物镜的命名 第1部分:像场平面度/平场2024-11-01176GB/T 43846.2—2024显微镜 显微镜物镜的命名 第2部分:色差校正2024-11-01177GB/T 43846.3—2024显微镜 显微镜物镜的命名 第3部分:光谱透射率2024-11-01178GB/T 43847—2024光学和光子学 光谱波段2024-11-01179GB/T 43848—2024网络安全技术 软件产品开源代码安全评价方法2024-11-01180GB/T 43849—2024水下机器人整机及零部件基本环境试验方法 水静压力试验方法2024-04-25181GB/T 43850—2024面向装备制造业的研发设计资源分类及编码2024-11-01182GB/T 43851—2024制造物流系统互联互通通用要求2024-11-01183GB/T 43853—2024激光修复层高温摩擦磨损性能试验 球-盘法2024-04-25184GB/T 43855—2024衣物洗涤质量要求2024-04-25185GB/T 43856—2024印刷技术 印刷工作流程的颜色一致性2024-04-25186GB/T 43857—2024教学设施安全和管理要求2024-08-01187GB/T 43858—2024陆地生态系统生物长期监测规范2024-04-25188GB/T 43859—2024水分活度仪性能测定方法2024-04-25189GB/T 43860.1210—2024触摸和交互显示 第12-10部分:触摸显示测试方法 触摸和电性能2024-04-25190GB/T 43860.1220—2024触摸和交互显示 第12-20 部分:触摸显示测试方法 多点触摸性能2024-04-25191GB/T 43860.12—2024触摸和交互显示 第1-2部分:术语和文字符号2024-04-25192GB/T 43861—2024微波等离子体原子发射光谱方法通则2024-04-25193GB/T 43862—2024智能电视交互应用接口技术要求2024-11-01194GB/T 43863—2024大规模集成电路(LSI) 封装 印制电路板共通设计结构2024-08-01195GB/T 43864.12—2024显示光源组件 第1-2部分:术语和文字符号2024-08-01196GB/T 43865—2024直接进样测汞分析方法通则2024-04-25197GB/T 43866—2024企业能源计量器具配备率检查方法2024-11-01198GB/T 43867—2024电气运输设备 术语和分类2024-11-01199GB/T 43868—2024电化学储能电站启动验收规程2024-11-01200GB/T 43869—2024船舶交通管理系统监视雷达通用技术要求2024-11-01201GB/T 43870.1—2024磁性材料居里温度的测量方法 第1部分:永磁材料2024-11-01202GB/T 43870.2—2024磁性材料居里温度的测量方法 第2部分:软磁材料2024-11-01203GB/T 43872—2024水泥氯离子固化率检测方法2024-11-01204GB/T 43873—2024超薄玻璃退火上下限温度试验方法2024-11-01205GB/T 43874—2024玻璃材料及制品压缩性能试验方法2024-11-01206GB/T 43875—2024水泥原材料中总铬的测定方法2024-11-01207GB/T 43876—2024水泥净浆黏度测定方法2024-11-01208GB/T 43877—2024铁矿石 同化性能测定方法2024-11-01209GB/T 43878—2024旋挖钻机截齿2024-11-01210GB/T 43881—2024低膨胀玻璃线热膨胀系数试验方法 激光干涉法2024-11-01211GB/T 43882—2024净味沥青混凝土2024-11-01212GB/T 43883—2024微束分析 分析电子显微术 金属中纳米颗粒数密度的测定方法2024-11-01213GB/T 43884—2024金属覆盖层 钢铁制件的锌扩散层-渗锌 技术要求2024-11-01214GB/T 43885—2024碳化硅外延片2024-11-01215GB/T 43886—2024影像材料 已加工彩色照片 热稳定性测量方法2024-11-01216GB/T 43887—2024核级柔性石墨板材2024-11-01217GB/T 43888—2024钢轨超声检测方法2024-11-01218GB/T 43889—2024微束分析 电子探针显微分析仪(EPMA)质量保证程序实施导则2024-11-01219GB/T 43891—2024非金属化工设备 不透性石墨换热器传热系数和流阻性能测试方法2024-11-01220GB/T 43892—2024石英玻璃光谱透射比试验方法2024-11-01221GB/T 43893—2024装配式钢结构建筑用热轧型钢2024-11-01222GB/T 43894.1—2024半导体晶片近边缘几何形态评价 第1部分:高度径向二阶导数法(ZDD)2024-11-01223GB/T 43895—2024增材制造 材料 模具钢粉2024-11-01224GB/T 43896—2024金属材料 超高周疲劳 超声疲劳试验方法2024-11-01225GB/T 43897—2024铸造高温合金 母合金 单晶2024-11-01226GB/T 43898—2024工程机械液压缸用精密无缝钢管2024-11-01227GB/T 43899—2024生铁 多元素含量的测定 火花放电原子发射光谱法(常规法)2024-11-01228GB/T 43900—2024钢产品无损检测 轴类构件扭转残余应力分布状态超声检测方法2024-11-01229GB/T 43901—2024镍铁 砷、锡、锑、铅和铋含量 电感耦合等离子体质谱法(ICP-MS)2024-11-01230GB/T 43902—2024绿色制造 制造企业绿色供应链管理 实施指南2024-08-01231GB/T 43903—2024绿色制造 制造企业绿色供应链管理 信息追溯及披露要求2024-08-01232GB/T 43904—2024风能发电系统 风力发电机组运行评价指标体系2024-11-01233GB/T 43905.1—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第1部分:电弧焊中烟尘排放速率的测定和分析用烟尘的收集2024-11-01234GB/T 43905.2—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第2部分:电弧焊、切割及气刨中一氧化碳、二氧化碳、一氧化氮、二氧化氮排放速率的测定2024-11-01235GB/T 43905.3—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第3部分:电弧焊中臭氧排放速率的测定2024-11-01236GB/T 43905.4—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第4部分:焊接材料焊接烟尘排放限值2024-11-01237GB/T 43905.5—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第5部分:基于热解-气相色谱-质谱法的焊接或切割中有机材料热降解物的识别2024-11-01238GB/T 43905.6—2024焊接及相关工艺中烟尘和气体取样的实验室方法 第6部分:电阻点焊中烟尘和气体的定量化测定2024-11-01239GB/T 43906—2024金属材料硬钎焊质量要求2024-11-01240GB/T 43907.1—2024农林拖拉机和机械 拖拉机与机具间的摄像头接口 第1部分:模拟摄像头接口2024-11-01241GB/T 43908—2024水肥一体化设备2024-11-01242GB/T 43909—2024叉车属具 安全要求2024-11-01243GB/T 43910—2024物流仓储设备 术语2024-11-01244GB/T 43911—2024锅炉热工性能试验不确定度的评定方法2024-11-01245GB/T 43912—2024铸造机械 再制造 通用技术规范2024-11-01246GB/T 43913—2024钢制异径短节2024-11-01247GB/T 43914—2024绿色制造 评价指标2024-08-01248GB/T 43915—2024纳米几何量标准样板测试方法2024-11-01249GB/T 43916—2024真空技术 真空计 电容薄膜真空计的规范、校准和测量不确定度2024-04-25250GB/T 43917.1—2024焊接烟尘捕集和分离设备 第1部分:一般要求2024-11-01251GB/T 43917.2—2024焊接烟尘捕集和分离设备 第2部分:分离效率的测试和标记要求2024-11-01252GB/T 43917.3—2024焊接烟尘捕集和分离设备 第3部分:焊枪上烟尘吸气装置捕集效率的测定2024-11-01253GB/T 43917.4—2024焊接烟尘捕集和分离设备 第4部分:捕集装置最小风量的测定2024-11-01254GB/T 43918—2024交流标准电能表GB/T 17215.701—20112024-11-01255GB/T 43919—2024民用航空锻件数字化生产车间集成要求2024-11-01256GB/T 43920—2024压铸用铝液集中熔炼配送通用技术规范2024-04-25257GB/T 43921—2024无损检测 超声检测 全矩阵采集/全聚焦技术(FMC/TFM)2024-04-25258GB/T 43922—2024在役聚乙烯燃气管道检验与评价2024-04-25259GB/T 43923—2024工业车辆 操作手册2024-11-01260GB/T 43924.1—2024航空航天 MJ螺纹 第1部分:通用要求2024-08-01261GB/T 43924.2—2024航空航天 MJ螺纹 第2部分:螺栓和螺母螺纹的极限尺寸2024-08-01262GB/T 43924.3—2024航空航天 MJ螺纹 第3部分:流体系统管路件螺纹的极限尺寸2024-08-01263GB/T 43925—2024套管和油管全尺寸拉伸应力腐蚀试验方法2024-08-01264GB/T 43926—2024油气输送管道事故后状态评估技术规范2024-08-01265GB/T 43927—2024航天器用锂离子蓄电池组安全设计与控制要求2024-08-01266GB/T 43928—2024宇航用商业现货(COTS)器件保证指南2024-08-01267GB/T 43929—2024空间用纤维光学器件测试指南2024-08-01268GB/T 43930—2024宇航用电磁继电器通用规范2024-08-01269GB/T 43932—2024岩溶流域碳循环监测及增汇评价指南2024-08-01270GB/T 43933—2024金属矿土地复垦与生态修复技术规范2024-08-01271GB/T 43934—2024煤矿土地复垦与生态修复技术规范2024-08-01272GB/T 43935—2024矿山土地复垦与生态修复监测评价技术规范2024-08-01273GB/T 43936—2024石油天然气项目土地复垦与生态修复技术规范2024-08-01274GB/T 43937—2024岩溶区水土资源开发利用规范2024-08-01275GB/T 43938.1—2024碳纤维增强复合材料薄壁管件力学性能试验方法 第1部分:拉伸试验2024-08-01276GB/T 43938.2—2024碳纤维增强复合材料薄壁管件力学性能试验方法 第2部分:压缩试验2024-08-01277GB/T 43939—2024宇航用石英挠性加速度计伺服电路通用测试方法2024-08-01278GB/T 43940—20244Mb/s数字式时分制指令/响应型多路传输数据总线测试方法2024-08-01279GB/T 43941.1—2024星地数据传输中高速调制解调器技术要求和测试方法 第1部分:调制器2024-08-01280GB/T 43942—2024智能船舶风险评估方法2024-11-01281GB/T 43943—2024船舶环境噪声2024-08-01282GB/T 43944—2024船舶内装材料计权隔声指数测量方法2024-11-01283GB/T 43945—2024基于统计能量分析的船舶舱室噪声预报2024-08-01284GB/T 43947—2024低速线控底盘通用技术要求2024-11-01285GB/T 43948—2024小艇 操舵装置 缆索滑轮传动系统2025-05-01286GB/T 43949—2024海洋移动钻井平台钻井系统 配置和技术要求2024-11-01287GB/T 43950—2024工业浓盐水回用技术导则2024-08-01288GB/T 43951—2024食品容器用覆膜铁、覆膜铝质量通则2024-11-01289GB/T 43953—2024全生物降解聚乙醇酸(PGA)2024-11-01290GB/T 43954—2024重瓣红玫瑰精油2024-11-01291GB/T 43955—2024棉及化纤纯纺、混纺纱线检验、标志与包装2024-11-01292GB/T 43956—2024中尺度全球地表覆盖制图数据产品规范2024-08-01293GB/T 43957—2024林草物联网 面向视频的无线传感器网络媒体访问控制和物理层协议2024-04-25294GB/T 43958—2024林草物联网 面向视频的无线传感器网络技术要求2024-04-25295GB/T 43959—2024锅炉火焰检测系统技术规范2024-11-01296GB/T 43960—2024云制造服务平台开放接口要求2024-11-01297GB/T 43961—2024制造系统诊断维护技术与应用集成通用要求2024-11-01298GB/T 43962.1—2024动力电池数字化车间集成 第1部分:通用要求2024-11-01299GB/T 43964—2024家用和类似用途电自动控制器空中下载(OTA)技术要求2024-11-01300GB/T 43965—2024电子级正硅酸乙酯2024-11-01301GB/T 43966—2024高效液相色谱-四极杆电感耦合等离子体质谱联用法通则2024-04-25302GB/T 43967—2024空间环境 宇航用半导体器件单粒子效应脉冲激光试验方法2024-04-25303GB/T 43968—2024高效液相色谱-原子荧光光谱仪联用分析方法通则2024-11-01304GB/T 43969—2024智能语音控制器通用安全技术要求2024-11-01305GB/T 43970—2024化学蒸气发生-原子荧光光谱分析方法通则2024-11-01306GB/T 43971—2024遥感器定标用积分球光源测试规范2024-11-01307GB/T 43972—2024集成电路封装设备远程运维 状态监测2024-11-01308GB/T 43974—2024载物电气运输设备通用规范2024-11-01309GB/T 43975—2024船舶交通管理系统数据综合处理器技术规范2024-11-01310GB/T 43976—2024电子气体 四氟甲烷2024-11-01311GB/T 43977—2024电子气体 八氟环丁烷2024-11-01312GB/T 43978—2024室内LED显示屏光舒适度评价要求2024-04-25313GB/T 43979—2024室内LED显示屏光舒适度评价方法2024-04-25314GB/T 43980—2024口译服务 医疗口译要求2024-11-01315GB/T 43981—2024基层减灾能力评估技术规范2024-11-01316GB/T 43991—2024城市隧道运维服务规范2024-11-01317GB/T 43992—2024城市光环境建设服务质量评价规范2024-11-01318GB/T 43993—2024城市公共设施 电子围网系统 运行规范2024-11-01319GB/T 43994—2024粮食安全储存水分2024-11-01320GB/T 43997.1—2024地表温度热红外遥感反演 第1部分:单通道法2024-11-01321GB/T 43997.2—2024地表温度热红外遥感反演 第2部分:分裂窗法2024-11-01322GB/T 43999—2024应急呼吸道传染病患者转运设备技术要求2024-11-01323GB/T 44000—2024空间环境 材料空间环境效应地面模拟试验装置通用要求2024-04-25324GB/T 44001—2024空间环境 地磁场参考模型2024-04-25325GB/T 44003—2024力学性能测量 REBCO涂层导体(镀铜)脱层强度测试方法2024-11-01326GB/T 44004—2024纳米技术 有机晶体管和材料表征试验方法2024-11-01327GB/T 44006—2024红外图像温度表示规则 RGB法2024-11-01328GB/T 44007—2024纳米技术 纳米多孔材料储氢量测定 气体吸附法2024-08-01329GB/T 44008—2024应急医用模块化集成系统通用技术要求2024-08-01330GB/T 44009—2024绿色产品评价 染料2024-11-01331GB/T 44010—2024救灾帐篷 通用技术要求2024-11-01332GB/T 44011.1—2024自然灾害综合风险评估技术规范 第1部分:房屋建筑2024-11-01333GB/T 44012—2024应急避难场所 术语2024-04-25334GB/T 44013—2024应急避难场所 分级及分类2024-04-25335GB/T 44014—2024应急避难场所 标志2024-04-25336GB/T 44020—2024信息技术 计算机图形图像处理和环境数据表示 混合与增强现实中实时人物肖像和实体的表示2024-11-01337GB/T 44021.1—2024音视频及相关设备 功耗测量 第1部分:总则2024-11-01338GB/T 44021.2—2024音视频及相关设备 功耗测量 第2部分:测试信号和媒介2024-11-01339GB/T 44021.3—2024音视频及相关设备 功耗测量 第3部分:电视机2024-11-01340GB/T 44021.4—2024音视频及相关设备 功耗测量 第4部分:录像设备2024-11-01341GB/T 44021.5—2024音视频及相关设备 功耗测量 第5部分:机顶盒(STB)2024-11-01342GB/T 44021.6—2024音视频及相关设备 功耗测量 第6部分:音频设备2024-11-01343GB/Z 3480.4—2024直齿轮和斜齿轮承载能力计算 第4部分:齿面断裂承载能力计算2024-11-01344GB/Z 3480.22—2024直齿轮和斜齿轮承载能力计算 第22部分:微点蚀承载能力计算2024-11-01345GB/Z 14048.24—2024低压开关设备和控制设备 第7-5部分:辅助器件 铝导体的接线端子排2024-11-01346GB/Z 29014.3—2024切削刀具数据表达与交换 第3部分:刀具项目参考字典2024-11-01347GB/Z 42151.77—2024电力自动化通信网络和系统 第7-7部分:用于工具的IEC 61850相关数据模型机器可处理格式2024-04-25348GB/Z 43963—2024确定额定电压在交流1000V以上至2000V,直流1500V以上至3000V间设备的电气间隙、爬电距离的数值以及对固体绝缘要求的指南2024-11-01349GB/Z 43973—2024非介入式负荷监测(NILM)系统用感知装置2024-11-01350GB/Z 43996.2—2024微细气泡技术 农业应用 第2部分:评价大麦种子发芽促进作用的测试方法2024-11-01351GB/Z 43998—2024纳米技术 混合粉尘制造环境空气中纳米级炭黑和无定形二氧化硅浓度的测量方法2024-11-01352GB/Z 44002—2024空间环境 太阳能量质子注量和峰值通量的确定方法2024-04-25353GB/Z 44005.1—2024纳米技术 黏土纳米材料 第1部分:层状黏土的特性及测量方法2024-11-01二、国家标准修改单序列国家标准编号国 家 标 准 名 称代替标准号实施日期1GB/T 609—2018化学试剂 总氮量测定通用方法 《第1号修改单》GB/T 609—20062024-04-253GB/T 18369—2022玻璃纤维无捻粗纱 《第1号修改单》GB/T 18369—20082024-08-014GB/T 19624—2019在用含缺陷压力容器安全评定 《第1号修改单》GB/T 19624—20042024-04-25
  • 认监委实验室能力验证“粉丝、粉条产品中的铝元素含量测试”开始报名
    关于邀请参加2013 年国家认监委实验室能力验证计划“粉丝、粉条产品中的铝元素含量测试”的通知  各有关单位:  为加强重点领域实验室检测能力建设,在一些社会热点和重点关注的领域验证并提升实验室的检测水平,国家认监委决定,2013 年继续组织开展重点领域实验室的能力验证工作。受国家认监委的委托,中国计量科学研究院承担了“粉丝、粉条产品中的铝元素含量测试”(项目编号:CNCA-13-B10)的实施和协调工作。  根据国家认监委通知(国认实函[2013]12 号)的要求,为使此次能力验证工作更有序、顺利的开展,现将有关事项通知如下:  一、开展本次实验室检测能力验证工作的目的是了解该检测领域的整体水平,本次实验室检测能力验证的结果是实验室在相关领域检测能力的客观反映。取得满意结果的实验室,国家认监委将建议有关部门在相应领域指定、授权、委托检验任务时,优先选用 在2014 年度接受资质认定(计量认证、验收、授权)和认可评审时,免于对该项目的现场考核。  二、邀请具有本次能力验证计划相关项目检测能力,并通过了相应的实验室认可或计量认证/审查认可验收(授权)的实验室参加此次能力验证活动。欢迎凡具有食品中铝元素检测能力的社会实验室积极参加本次能力验证活动。  三、本次能力验证计划为B 类项目,报名参加此次能力验证的实验室需向项目承担单位交纳能力验证成本费用壹仟元(1000 元)。检测结果离群或可疑的实验室可有一次补测机会,但需交纳补测费用壹仟元(1000 元)。  四、为保证此次能力验证计划的顺利进行,请各实验室于2013 年6 月1 日前在能力验证提供者网站上完成报名程序(网址:http://www.ncrm.org.cn)。报名需要进行网站注册,在“能力验证”专栏下载报名表,填写相关信息,并将盖章后的报名表扫描件上传。请报名实验室务必于2013 年6 月15 日前将款项寄交下列帐户:  户名:中国计量科学研究院  开户行:交通银行北京和平里支行  帐号: 110060224018010008693  汇款请注明:“ CNCA-13-B10 能力验证费”, 汇款后请在http://www.ncrm.org.cn“能力验证”专栏相应条目处填写汇款及发票信息。  五、更为详尽的内容可在我单位网站上查询:http://www.ncrm.org.cn  各单位在参加能力验证过程中如遇到问题,请及时与我单位或认监委实验室与检测监管部联系。  中国计量科学研究院联系人姓名:韦超、赵博  联络地址:北京市朝阳区北三环东路18 号 中国计量科学研究院化学所  联系电话/手机:010-64524783/13520220444、010-64524721/13311065387  E-mail:weichao@nim.ac.cn、zhaobo@nim.ac.cn  国家认监委实验室部联系人:郭栋  电话:010-82262733  Email:guod@cnca.gov.cn  附件:CNCA-13-B10报名表.doc
  • 使用集成式XRF元素分析仪和采样技术自动测量活性炭中的金含量
    碳浸法(CIL)和碳浆法(CIP)回路都是氰化取金法工艺,这项工艺通过将金转化为水溶性复合物来从矿石中提取金(Au)。然后,利用活性炭从氰化工艺产生的碳浆或溶液中吸附含黄金的水溶性复合物,从而实现黄金的回收。之后,将吸附在活性碳上的黄金剥离下来,对黄金进行电解沉积处理,再对黄金进行熔炼,制成金条。监测活性炭中的金含量对于高效回收黄金至关重要。凭借我们在X射线荧光(XRF)和集成方面的专业知识,Gekko Systems与Evident达成了合作,使其Carbon Scout装置能够对碳进行多元素分析,初步的重点是获得实时的黄金回路库存信息。Carbon Scout是一个独立的地面采样系统,通过测量碳浓度以及来自CIL和CIP回路的碳浆样品中的多元素分析、pH值、溶解氧(DO)和密度,实现碳运动自动化。这有助于金矿运营商优化加工厂的效率,并通过确定每个罐的活性碳在矿浆中的分布情况(准确度为每升矿浆±0.5克碳)来减少水溶性黄金的损失。Carbon Scout提高了CIL/CIP回路中碳密度测量的准确性、规律性和一致性。现在,Carbon Scout可以结合Vanta M系列手持式XRF元素分析仪。Vanta系列是采矿业常用的先进便携式XRF(pXRF)设备系列。Vanta pXRF元素分析仪以其在恶劣条件下的可靠性和可重复性著称,能为固体和液体样品中的30多种元素提供准确的化学分析——从痕量级到百分比级,贯穿整个矿物循环。集成了Vanta pXRF元素分析仪的Carbon Scout与化验室结果的数据对比而下图是Vanta pXRF数据与来自不同矿场和认证参考材料的活性炭中金(Au)的实验室结果对比。结果表明便携式XRF元素分析仪和实验室的检测结果高度吻合。这些结果还表明Vanta分析仪有能力监测碳内的金吸附趋势,从而为做出矿物加工决策和进行实验室操作提供支持。实时监测碳上的金负载量奥林巴斯Vanta M系列分析仪的速度、准确性和精度使Carbon Scout能够实时监测矿场内每个罐中碳上的金负载量。矿场经理可以使用实时数据来确认任何罐均未超过所需的设定最高金负载量,并根据需要移动和脱附碳。此外,这些数据还能清晰地展现生产成果,并提前了解是否能在进行月末金矿盘点之前完成回收目标。通过借助数据来确认日常的黄金生产计算,生产团队对于做出矿石混合、吞吐量和非计划停产等决策便更有信心。借助Carbon Scout和Vanta M系列分析仪的集成硬件和软件,所有这些有价值的数据都可以在金矿加工控制系统中得到无缝整合。
  • 岛津应用:ICPMS测定玻璃药包材中浸出金属元素含量
    玻璃药包材化学稳定性高,耐药物腐蚀性,与药物相容性好。同时卫生安全,无毒无异味,吸收小,可回收利用成本低。YBB00172005-2015 《药用玻璃砷、锑、铅、镉浸出量限度》中明确规定了元素测定金属元素的限度及相应的前处理方法,根据YBB00372004-2015 《砷、锑、铅、镉浸出量测定法》测试浸出元素,其中砷、锑采用紫外法,铅、镉采用原子吸收法。ICPMS测定快速快、灵敏度高等优点备受测试者的亲睐。本文采用岛津电感耦合等离子体质谱仪ICPMS-2030,建立了玻璃药包材中溶出的砷、钡、镉、铜、铅、锑和硒的ICP-MS 测定方法,该方法具有检出限低、灵敏度高、线性范围宽、基体效应小、准确度和精密度高、简便快捷、可同时多元素分析等优点。岛津电感耦合等离子体质谱仪ICPMS-2030 了解详情,敬请点击《ICPMS-2030 测定玻璃药包材中浸出金属元素含量》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 红外碳硫分析仪检测不锈钢中的常用元素
    红外碳硫分析仪检测不锈钢中的常用元素目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。 1).各种元素对不锈钢的性能和组织的影响和作用 1-1.铬在不锈钢中的决定作用:决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬。迄今为止,还没有不含铬的不锈钢。铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展。1-2. 碳在不锈钢中的两重性 碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成&mdash 系列复杂的碳化物。所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的。 为了能准确的检测不锈钢的多种元素:碳、硫、锰、磷、硅、镍、铬、钼、铜、钛、锌、钒、镁等。麒麟品牌QL-S3000C型电脑红外全能联测多元素分析仪是本公司独家拥有、国内最先进的一款多元素联测分析仪,QL-S3000C型全能元素分析仪经由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!在国内首创元素分析仪用衍射光栅数码电机波长可调光学系统。产品采用可由计算机控制的元素分析仪专用的衍射光栅单色体,实现波长数码可调,即任意输入所需波长,光学系统即调整至指定波长,从而使产品可以实现由计算机控制,根据被测材料元素的要求,方便的迅速设定所需波长,可用于不锈钢、钢铁、铜铝等各种金属、非金属材料及其合金的多种元素分析。红外碳硫分析仪参考网站:http://www.jqilin.com
  • 手持合金分析光谱仪可以检测铜合金材料吗
    铜合金具有出色的材料性能,可用于许多场景。在过去的数千年中,纯铜一直是最重要的金属之一,与其他金属相比,它的优点在于:导电性好、高导热率、强度和可塑性的杰出结合、在许多环境中的耐腐蚀性。  关于如何分类铜合金呢?  由于铜合金中的合金元素含量都不同,要测得准,光谱仪精度必须足够高,铜合金和铝合金、钢铁有所不同,它通常要对含量达到80%~90% 的材质进行检测。  手持光谱仪在铜合金材料检测中具有以下优势:  非破坏性检测:手持光谱仪可以通过物质的光谱特征来进行分析,而无需对样品进行破坏性测试或取样。这样可以保持材料的完整性和可用性,并节省时间和成本。  实时性和迅速性:手持光谱仪通常具备快速采集和处理数据的能力,可以在几秒钟内给出结果。这使得在现场或实时监测环境下,能够迅速获得铜合金材料的检测结果。  便携性和灵活性:手持光谱仪通常具有小巧轻便的设计,易于携带和操控。使用者可以随时随地进行检测,无需将材料送到实验室或专门设备的限制。  宽泛的应用范围:手持光谱仪可用于检测不同类型、形状和大小的铜合金材料,例如铜合金管、板、线等。同时,它也可用于其他材料的检测,具有较高的适用性。  数据准确性和可靠性:手持光谱仪通常采用先进的光谱分析技术,能够提供准确和可靠的检测结果。通过与预先建立的光谱数据库进行比对,可以准确确定铜合金材料的成分和特性。  赢洲科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。
  • 不同系列的Delta手持式合金分析仪都能分析哪些合金材料中常见元素?
    Delta手持式合金分析仪都 能分析哪些合金材料中常见元素?这是许多合金材料商最想了解的事情,甚至有些废旧金属回收厂商也十分关注Delta手持式合金分析仪是否能够满足其在繁杂 的废旧金属堆里识别区每一个不同的废旧金属的含量价值。那么今天,我们就将从Delta手持式合金分析仪的型号以及不同型号都主要支持哪些元素的分析做一 个简短的介绍。 Delta手持式合金分析仪型号主要有三种规格,分别是: 经典型,DCC-2000手持式合金分析仪。 标准型,DPO-2000手持式合金分析仪。 高端型,DP-2000手持式合金分析仪。 这三种型号是目前合金分析仪中最常见的型号,也是伊诺斯手持式合金分析仪系列中销量比较好的几款(与之前的Alpha系列合金分析仪、Omega系列合金分析仪以及Explore系列合金分析仪比较而言)。 经典型,DCC-2000手持式合金分析仪采 用了单光速、ALLOY软件模式,SI-PIN探测器,靶材可选配AU,4W电流,X射线管。它能支持包含:Ti钛、V钒、Cr铬、Fe铁、Co钴、Ni 镍、Cu铜、Zn锌、W钨、Hf锆、Ta钽、Re铼、Pb铅、Bi铋、Zr锆、Nb铌、Mo钼、Ag银、Sn锡、Sb锑、Pd钯、Cd镉。 标准型,DPO-2000手持式合金分析仪采 用了三光速、ALLOY puls软件模式,标准型SDD探测器,探测面积达25MM2,靶材精选Ag或Au,4W X射线管。它能支持包含:AI铝、Si硅、P磷、S硫、Mg镁、Ti钛、V钒、Cr铬、Fe铁、Co钴、Ni镍、Cu铜、Zn锌、W钨、Hf锆、Ta钽、 Re铼、Pb铅、Bi铋、Zr锆、Nb铌、Mo钼、Ag银、Sn锡、Sb锑、Pd钯、Cd镉。 高端型,DP-2000手持式合金分析仪采用了三光速、ALLOY puls软件模式,超大型SDD探测器,探测面积达30MM2,靶材精选R h或Au,数据率提高12.5%,超大型SDD极大地改善Mg、Ai、Si 、P、S测试精度。在可测元素范围上与DPO-2000手持式合金分析仪相同。 以上测试元素范围仅为例举,许多非常见的元素Delta手持式合金分析仪依然可以分析.
  • 空气监测(二):PM2.5 致命因素之重金属元素含量探究
    请即下载:PerkinElmer PM2.5 等颗粒物中重金属元素的 ICP-OES 快速分析解决方案作者:PerkinElmer, Inc. PM2.5 又称气溶胶,指的是直径小于或等于 2.5 微米的超细悬浮颗粒物,也称为可入肺颗粒物, 是人类身边隐形的致命“杀手”。调查显示,铅、铁、锌、钙、镁、钛、镉、锌、锰、砷、铬、铜、镍、硒、铍、钒或钴等有害金属或类金属元素也常能在 PM2.5 等细颗粒物中被检出。而这些元素会与大气中其它物质结合成 PM2.5 等颗粒物并被人体吸入,从而影响人体的呼吸系统、新血管系统、神经系统及生殖系统的正常生理机能。如铅,其会严重影响儿童的智力发育,对老年人造成痴呆、脑死亡等,而铅若进入孕妇体内则会影响胎儿发育,造成畸形等。这些元素主要来源于土壤、岩石风化的尘埃、建筑尘和海盐粒等 钢铁厂等工业燃煤烟尘、冶金尘及其它工业生产过程和汽车尾气等。国内测定空气中细微颗粒物中金属元素现在较常用的方法有火焰原子吸收法、石墨炉原子吸收法、X-射线荧光光谱法等。由于火焰原子吸收法灵敏度相对低,且样品中金属元素含量也一般较低,多需采用大流量采样器采集大量样品,并经分离富集,样品前处理过程非常耗时、费力,且只能单元素测量;石墨炉原子吸收法由于检出限低,一般可省去富集过程,但不能进行多元素的同时测定,仪器操作相对繁琐,分析周期较长,且测量线范围也相对窄;X-射线荧光光谱法属于非破坏性分析方法,但准确性需待提高,同时很难找到合适的颗粒物标准样品,其主要用于方法的探索阶段及样品的粗筛。PerkinElmer 作为原子光谱领域无可争议的领导者可提供 PM2.5 等颗粒物中金属元素电感耦合等离子体发射光谱仪 (ICP-OES) 快速分析解决方案。从 1993 年推出全球第一套全谱直读螺旋线圈式 ICP-OES 以来至 2011 年新一代的革命性的诱导平板 ICP-OES, PerkinElmer ICP-OES 检测方案已久经国内外权威机构的验证使用。如,国内正在起草制定的空气和废气颗粒物中金属元素的 ICP-OES / ICP-MS 测定的相关标准研究机构即为 PerkinElmer 的金属元素分析解决方案的仪器使用用户。 应用方案简介: 测量元素 70种之多,且可进行多元素的同时检测,符合 EPA IO-3.4 等国外空气颗粒物检测方法的要求 采用轴向观测及低信噪比的检测器,元素检出限可达亚 ppb 浓度水平 采用轴向和径向双向观测技术,线性范围从亚 ppb 至百分含量浓度水平,可减少样品制备时间 诱导平板等离子体技术的使用可节省氩气约 50% 分辨率优于0.007nm, 可最大限度地消除 ICP-OES 测量复杂基体样品谱线间的干扰问题,确保结果更准确 专利的 UDA 功能,可选择性地储存所有谱线,测量之后可任意调用,不管您在方法中是否设置相关元素或谱线,有利于获取更准确的结果或方便对更多的元素进行含量研究 OptimaTM 8X00 系列 ICP-OES自动采样器(选配):实现全自动样品测量,通量可达 200 个样品/小时 请即点击下载以下的三篇应用文章: ICP-OES 法与 AAS 法在质控滤膜多金属测定中的应用比较 使用全新的 CCD 双向观测电感耦合等离子体发射光谱仪确定空气过滤器和尿液中的主要和次要元素以进行风险评估 高样品处理量的电感耦合等离子体发射光谱仪在美国EPA 200.7方法上的运用 © 2011 PerkinElmer, Inc. 版权所有
  • 聚光科技ICP-OES直接进样检测汽油中硅元素含量
    2014年9月26日国家标准化管理委员会发布的2014年第一批国家标准制修订计划通知中,将《车用汽油中总硅含量的测定 电感耦合等离子体发射光谱法》、《电感耦合等离子体发射光谱法测定汽油中的氯和硅》列入了计划。 我国国家标准与石油化工行业标准中均无汽油中硅含量的测定方法。然而,在汽油的实际使用中,硅元素的含量多少对于汽车的行驶与养护有着关键的影响。车用汽油中硅含量过高会导致汽油火花塞堵塞、三元催化转化器中催化剂中毒等现象发生,对汽车本身性能造成较大的损害。 ICP-OES用于汽油等有机样品的检测一直存在着一些难点。基于油品的易挥发性及高度不稳定性,油品的前处理技术目前在国际上均没有很好的解决方案,传统的消解方式会改变甚至破坏油品本身的属性,这就要求在测定油品中的相关元素含量时必须做到油品直接进才能确保测量的准确性和真实性。但是,在ICP-OES汽油样品直接进样分析过程中,由于矩管、进样积炭堵塞引起进入等离子体气溶胶量的变化,使得分析线强度大大降低,随着分析时间的推移,这种现象会越来越严重,以至分析无法连续进行,也无法保证结果准确性,在积炭严重时甚至会引起等离子体意外熄灭。 为了满足汽油样品中硅元素的检测需求,聚光科技发布了ICP-5000应用于检测汽油中硅元素含量的解决方案——自主研发的全谱直读电感耦合等离子体发射光谱仪ICP-5000结合有机物直接进样系统;该方案的优势是无需对汽油样品进行复杂的前处理,直接通过有机进样系统进样测定;并且有机物直接进样系统之后,样品对进样系统的矩管和中心管不会产生积碳影响,影响进样系统的使用寿命。该方案提高了有机样品检测结果的准确性的同时保证了进样系统的部件和仪器的正常使用寿命。 有机物直接进样系统是通过氧气与有机物中高含量的碳的相互作用,消除了进样积碳对仪器持续运行的影响;针对挥发性大的有机物(如醚类、醇类),设计有恒温装置,保证了挥发性有机物的进样稳定性,实现了有机物样品直接进样的多元素分析方法。采用该有机物直接进样系统,不仅可提高分析检测限,降低背景信号的干扰,同时可以避免复杂的样品前处理过程对检测结果的影响,实现了真正意义上的直接进样分析。 ICP-5000 电感耦合等离子体发射光谱仪用于石油化工行业油品检测的六大优势:1、样品溶于有机溶剂后(简单稀释)直接进样,避免有机样品前处理过程的影响,有效的提高分析检测灵敏度和准确度,分析测试结果更加精准;2、四路气体均由质量流量器控制,等离子体更加稳定,提高测试结果的精密度和稳定性;3、可实现有机样品中多元素同时检测,且分析速度快;4、操作简单、快速、易于实现自动化。5、无需特制的炬管和中心管,使用维护成本低;6、具有加氧和恒温装置,有效防止积碳和拓展应用范围聚光科技除了推出汽油中的硅检测方案之外,目前还推出了食用油,润滑油,机油等样品的分析测试方案,全面关注化工企业、炼油厂、质检机构、食品加工企业等的应用。 链接请见:ICP-5000测定油品中Si含量ICP-5000测定食用油中12种金属元素含量ICP-5000测定方便面油包中的金属元素ICP-5000测定土壤中十种金属元素 聚光科技 聚光科技(杭州)股份有限公司是由归国留学人员创办的高新技术企业, 2002年1月注册成立于浙江省杭州市国家高新技术产业开发区, 2009年完成股份制改造,2011年4月上市,注册资金4.45亿元人民币,是世界领先的环境与安全分析检测仪器生产商与系统解决方案供应商。公司拥有国际一流的研发、营销、应用服务和供应链团队,致力于业界最前沿的各种分析检测技术研究与应用开发,产品广泛应用于环保、冶金、石化、化工、能源、食品、农业、交通、水利、建筑、制药、酿造、航空及科学研究等众多行业,并出口到美、日、英、俄罗斯等二十多个国家和地区。网址:www.fpi-inc.com
  • 前沿应用∣SC-ICP-MS测定单细胞中纳米金属元素含量
    细胞中金属元素含量通常是将一定数量的细胞进行全消解测定得到金属元素总量,但是这并不能说明金属元素在细胞中的分布情况。由于细胞之间存在差异,研究细胞群体往往会掩盖这种差异。单细胞分析可以获得细胞在微环境中准确的个体信息,对于研究细胞的信号传导,生理病理和重大疾病的早期诊断具有十分重要的意义。 电感耦合等离子体质谱(ICP-MS)由于其超高的灵敏度,超低的检测限,成为痕量元素分析的重要工具,可以直接检测单细胞中的金属元素含量。金属纳米粒子以其优良的物理化学性质,被广泛应用于生物医学与生命科学等领域,ICP-MS亦成为单细胞中金属纳米粒子检测的重要手段。 常规的ICP-MS进样系统对于单细胞分析会存在细胞可能破裂、进样效率低等缺陷,为实现稳定的单细胞进样,减少细胞破裂的概率及提高进样效率,需要采用专门的单细胞进样系统,其与ICP-MS在线联用,可实现高效、稳定的单细胞金属元素分析。 岛津SC-ICP-MS系统 特点:★进样效率≥50%★标配具有加热功能★无需氩气吹扫气路 应用实例小鼠静脉注射15 nm金纳米颗粒悬浮液,暴露24小时后对小鼠的不同器官进行取样,得到肺、肝脏和脾脏组织后进行组织分解,经过细胞分离得到细胞悬浮液;样品经过红细胞去除后使用多聚甲醛溶液进行细胞固定,细胞样品经过三次离心清洗和再分散,控制细胞浓度在106个/mL直接上机测试。 根据ICP-MS采集得到的原始信号图,通过有效数据识别、统计及高斯分布拟合,可以得到如下结论:在同一个组织样品中,细胞摄取的纳米颗粒数是不相同的,对于脾脏细胞可以用高斯分布拟合数据得到7种细胞群,每种细胞群摄取的金纳米颗粒从363个到1040个不等。肝脏样品和肺组织样品也得到了类似的结果,细胞形态呈现多峰分布。总体来看,对纳米颗粒的摄取量:脾脏细胞 肝脏肺细胞 肺细胞。 岛津SC-ICP-MS单细胞分析技术,高通量雾室搭配微流量进样系统,可以快速准确的测量单个细胞中目标元素的浓度,得到细胞间的差异,并且可以以目标元素含量区分细胞群。SC-ICP-MS不需要对细胞进行荧光标记,前处理简单,为金属组学、纳米毒理学的研究提供新的分析手段。
  • 手持式合金分析仪测定常用不锈钢304和316
    不锈钢指耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢,又称不锈耐酸钢。不锈钢中不同的合金成分含量对不锈钢的耐蚀性、耐高温氧化性能和机械强度具有很大的影响。不锈钢基本合金元素有Fe、Cr、Ni、Mn、Mo、Cu、Nb、 Ti、 Si等元素,不同的配比成分用以满足不同用途对不锈钢组织和性能的要求。 以我们生产生活中常用的不锈钢304和316为例,介绍手持式合金分析仪在不锈钢牌号快速检测方面的应用。304不锈钢即18/8不锈钢,GB 牌号为0Cr18Ni9 316 不锈钢也是一-种得到较广泛应用的钢种,GB牌号为0Cr17Ni12Mo2,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。316中含有更高的镍和钼合金成分,导致316的价格比304高,在实际贸易时,不同种类的钢种难以快速区分,可能对用户带来重大损失,也会给带来一定的产品质量甚至安全隐患。在实际生产生活中由于316与304不锈钢在外观上不容易区分,常规的分析方法又比较繁琐耗时。手持式合金分析仪是一种专门用于现场的便携式光谱仪,能够快速、无损、准确地给出不锈钢材料的成分、含量和牌号信息,很适合用于现场大量原材料和产品的筛查和复检。 仪器简介赛谱司手持式合金分析仪x50是具有很高速元素分析能力的手持式合金分析仪,可满足多种金属基体材料以及土壤,塑胶,矿石等多种复杂材料的光谱化学成分分析需要。以其快速的分析速度,媲美实验室级的分析精度和便于操作的特点为同类型手持式光谱分析仪设立了新的标准。在大多数应用场合,如金属牌号鉴别,x50可以在区区两秒的分析时间内给出金属牌号以及实验室级的材料化学组成分析结果。而对于复杂基体分析如环境监测分析,x50无需复杂的样品前处理,即可取得同类设备无法取得的低的元素检测下限。 制样取样方法 该仪器对样品要求不高,可以直接对准样品表面进行测定。 测试结果 准确度(选取6块不锈钢样品进行准确度测试) 精密度(选取304和316两种牌号的不锈钢标样,进行多次重复测量(n=10),单次测量6s) 结论手持式合金分析仪x50能在2s内对不锈钢材料进行快速无损判别,方便简捷,精密度好,对样品制备要求较低,甚至可以不用样品前处理。本文中对304和316不锈钢的测试也说明了该仪器在实际鉴别中的应用效果是很好的,而且该方法与传统方法相比,省去了复杂的前处理过程,分析速度快,对样品表面无损,检测效率高,成本低,适合大量样品实时快速鉴别,以及原材料快速复检的生产需要。
  • 杜马斯法测定食品中氮/蛋白质含量的解决方案 | 德国元素Elementar
    在我们的日常包装食品中,都会看到这样的营养标识,可以有助于我们更清晰的营养摄入,更健康的生活。其中蛋白质是构成人体细胞和组织的重要成分,人体正常值一般是60~80 g/L。蛋白质含量的测定对于食品质量的掌握具有十分重要的现实意义,因为蛋白质不仅是食品中重要的营养物质,同时也是组成人体一切细胞和组织的重要成分,其含量的多少直接决定着食物的营养价值。特别对奶制品来说,蛋白质含量的高低对定价有直接影响。目前测定蛋白质的方法主要有凯式定氮法、杜马斯法。随着社会的发展,人类对环保、高效意识的增强,越来越多的企业对杜马斯法测定蛋白质含量越来越关注。德国元素Elementar在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出世界第一台杜马斯定氮仪后,公司响应食品、农产品、肥料等样品的分析需要更大样品量的需求,于1989年,进一步推出了全球首款克级样品量的杜马斯定氮仪,逐步推动了杜马斯定氮法在法规中的应用。
  • 目前测定石油产品中硫含量的主要仪器及测试方法有哪些?---X荧光硫元素分析仪,紫外荧光测硫仪等。
    简介得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。测定硫含量仪器列举及对应的测试方法!测定石油产品中硫含量的主要仪器:深色石油产品硫含量测定仪,轻质石油产品硫含量测定仪,微库仑硫氯分析仪,硫测定仪(紫外荧光测硫仪),石油产品硫含量测定仪,馏分燃料硫醇硫测定仪,X荧光硫元素分析仪对应测试方法:管式炉法,库仑硫,紫外荧光法,燃灯法,自动电位滴定法,X荧光法。DELITE相关仪器1A1320深色石油产品硫含量测定仪依据GB/T387《石油产品硫含量测定法》(管式炉法)、ASTM D1551设计制造的,适用于测定润滑油、重质石油产品、原油、石油焦、石蜡和含硫添加剂等石油产品中的硫含量。仪器特点:1、由水平型的管式电炉系统、数显温度控制系统、电动机驱动控制系统、空气净化流量调节系统等组成2、伺服电动机的运行由单片机自动控制,并有手动快进、快退、测定、停止的功能3、两支平行安装的带有磨口直管的石英管,同时对两个试样进行试验,一次可并行做两个结果4、单片机程序控制,具有造型小巧,设计合理,使用方便技术参数:电源电压:交流220V±10% 50Hz±10%电炉加热功率:1600W控制温度:900~950℃电炉行程:130mm流量计:60~600 ml/min空气流量计 试验时流量:500ml/min行程时间:25~65 min,可任意选择热电偶:分度号K环境温度: 5℃ ~ 40℃ 相对湿度:≤85%2A1330轻质石油产品硫含量测定仪是依据SH/T 0253设计制造的,应用微库仑分析技术,采用氧化法将样品通过裂解炉氧化为可滴定离子,在滴定池中滴定,根据电解滴定过程中所消耗的电量,依据法拉第定律,计算出样品中硫的含量,适用于沸点40~310℃的轻质石油产品。硫含量范围为0.5~1000ppm的试样,大于1000ppm的试样应稀释后测定。本仪器也可测氯的含量。仪器特点:1、人机直接对话,操作便捷。2、计算机控制整个分析、数据处理等过程,显示全过程工作状态,根据需要可将参数、结果存盘或打印。3、采用**元器件,减少了仪器噪声,提高了检测速度。4、具有性能稳定可靠,操作简便,分析精度高,重复性好等特点。技术参数:偏压范围:0 ~ 500mv测量范围:0.1~10000 ng/μl控温范围:室温~1000℃控温精度:±1℃测量精度:    样品浓度(ng/μl) 0.2 RSD(%)35   样品浓度(ng/μl) 1.0 RSD(%)10   样品浓度(ng/μl) 100 RSD(%)5   样品浓度(ng/μl)1000 RSD(%)2气源要求:普氮和普氧工作电源:AC220V±10% 50Hz功  率:3.5KW外形尺寸:主机:410×350×75(mm)     温控:530×420×360(mm)     搅拌器:290×270×360(mm) 进样器:350×130×140(mm)3A2070S 硫测定仪 (紫外荧光测硫仪)A2070S 硫测定仪是根据紫外荧光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准:SH/T 0689、ASTM D5453、GB/T11060.8仪器特点:1、系统采用紫外荧光法测定总硫含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。技术参数:样品种类液体、固体和气体测定方法紫外荧光法样品进样量固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围0.1-5000mg/L测量精度荧光测硫仪进样量(μL)RSD(%)0.2202551010501051001035000103控温范围室温~1300℃控温精度±1℃气源要求高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源AC220V±10% 50Hz功 率1500 W外形尺寸主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量主机:20kg 温控:40kg4A2071 石油产品硫含量测定仪适用于测定雷德蒸气压力不高于600毫米汞柱的轻质石油产品(汽油、煤油、柴油)等的硫含量。本仪器依据GB/T 380《石油产品硫含量测定法(燃灯法)》标准中的试验方式进行。仪器特点:1、设计为一体化结构,内置无噪声的真空泵,气量可每路任意调节,为适应用户的不同要求。2、本系列仪器设计有三套、五套组件,订货时用户可根据需要进行选择。技术参数:1、输入电压:220V±10% 50Hz2、消耗功率:每个吸气泵6W3、环境温度:室温25℃左右4、相对湿度:85%RH5A2130馏分燃料硫醇硫测定仪是依据GB/T 1792 《馏分燃料中硫醇硫测定法 (电位滴定法) 》 标准要求设计制造的,适用于测量含量在0.0003~0.01%(m/m)范围内,无硫化氢的喷气燃料、汽油、煤油和轻柴油中硫醇硫。仪器特点:1、具有自动吸液、自动注液、自动测定功能2、特制的精密计量泵确保滴定结果的准确性3、三通转换阀及液路部分选用特殊材料制成4、耐腐蚀性好,可保证长期连续工作5、系统密封良好确保液路中不产生气泡技术参数:测量范围:0~±1999 mv 0.00~14.00pH测量精度:0.1%F.S mv ±0.01pH 滴定精度:±0.02mL 输入阻抗:1012Ω环境温度:5~40℃相对湿度:≤85%电源电压:交流220V±10% 50Hz±10%消耗功率:20w外形尺寸:300mm×280mm×310mm重 量:3.6 kg6A2140 X荧光硫元素分析仪是为了适应油品中硫含量检测需要而开发制造的X荧光分析仪。它采用能量色散原理,机电一体微机化设计,分析快速、准确。其重复性、再现性都符合国家标准GB/T 17040《石油和石油产品硫含量的测定能量色散X射线荧光光谱法》和GB 11140《石油产品硫含量的测定波长色散X射线荧光光谱法》的相关要求,也符合美国国家标准D 4294-03的要求,它为原油或石油化工生产过程中硫含量的检测,提供了帮助。仪器特点:1、仪器机电一体微机化设计,8寸电容触摸屏(1027*768)显示,无需键盘,操作界面简洁美观。2、检测品种广,检测量程宽,分析速度快,标准样品耗量少。3、采用荧光强度比率分析方法, 温度、气压自动修正,碳氢比(C/H)亦可修正。4、仪器的自动诊断功能,判断仪器的工作状态和电气参数。5、采用一次性Mylar膜样品杯,可避免交叉污染 样品杯制作采用多功能压件,快捷方便。6、样品台定位准确,置放样品及更换防漏油部件方便,避免探测系统被污染的可能。7、仪器数据存储量大,默认存储4096个含量分析结果和8192个计数测量数据,16个仪器标定结果数据,数据皆可查询,也可通过RS-232标准串行通讯口上传到电脑。8、仪器具有自动稳定功能,当探测器性能下降时,系统自动调节高压,修正误差。9、仪器开机默认自动选择工作曲线,不需用户干预。技术参数:测硫范围:0.0007%ppm~5%精度:a重复性(r):<0.02894(X+0.1691) b再现性(R):<0.01215(X+0.05555)样品量:2~3ml(相当样品深度3mm~4mm)测量时间:30、60、90、120、150秒,任意设定单样品自动测量,测量次数: 1、2、3、5、10次任意设定,测量结束给出平均值和标准偏差仪器可存储10条标定曲线工作条件: 温度:5~35℃ 相对湿度:≤85%(30℃) 电源:AC220V±20V、50Hz;额定功率:30W尺寸和重量: 430mm×250mm×240mm 10kg主要用途测量原油、石油、重油、柴油、煤油、汽油、石脑油、等油品中的总硫质量百分比含量测量煤化工产品,例如初级苯中总硫含量测量固体细粉末样品中总硫或硫化物含量,如阳极碳块、石油焦、改质沥青等碳素类材料测量润滑油、石油添加剂中总硫或硫化物含量的测量测量其它液体中总硫或硫化物含量的测量
  • 研讨会预告| 一次分析,两种测试:全新在用润滑油粒径/颗粒计数和金属含量分析方法
    润滑油承担着减小机械摩擦、散热等重要功能,是重工业、军事、航空、基础建设等现代化工业发展中必不可少的用品。确定合适的更换润滑油的时机,既可以降低使用成本,还可以预防机械故障和严重事故。通常情况下油品中的金属元素代表了机械磨损情况,油品中的添加剂元素含量也能反映出在用油的降解情况,因此这两者都是在用润滑油监控的重要指标。除此之外,在用油中的颗粒普遍被认为是造成机械磨损的主要原因。因此,在用润滑油一般既要监测其中的元素含量,又要监测其颗粒数量及粒径的信息(ISO 4406代码)。在传统的方法里,粒径/颗粒计数测试和金属含量分析是两种完全独立的方法,需要对油样品进行两次样品制备,消耗的样品量大,前处理耗时长,产生的废液多。珀金埃尔默全新的LPC 500™ 液体颗粒计数器是业内体积最小的自动化颗粒计数系统,其与Avio 500电感耦合等离子体发射光谱仪油品系统联用,每个样品用量少于1毫升,仅需45秒就能够实现一次进样分析、完成粒径/颗粒计数和金属分析两种测试,并获得重复性优异的结果。为评估LPC 500的准确度,在全程8小时的分析中定期分析检定流体。通常采用ISO清洁度代码来评估油品颗粒数分布情况。表1列出了粒径大于4 μm、6 μm 和14 μm时,每毫升预期颗粒数以及对应的ISO 4406代码。表1. 检定流体COA结果和对应的ISO 4406代码粒径( μm(c))颗粒数(颗粒数/mL)ISO 4406代码412,5402165,186201444016图1. 检定流体的颗粒计数分析准确度,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图2. 齿轮油样的颗粒计数分析稳定性,其中,粒径大于4 μm、6 μm和14 μm的颗粒结果均在+/- 1 ISO代码范围内图3. 576份在用油样的整个8小时分析过程中,50 ppm QC稳定性为了让大家更好的了解LPC 500激光粒度仪新品的特点及润滑油分析解决方案,我们将于2019年11月29日下午举办《珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍》在线讲座。欢迎大家报名参加。研讨会详情主题:珀金埃尔默LPC500™ 及润滑油品分析解决方案介绍时间:2019年11月29日 14:00-15:00讲者:杨柳 珀金埃尔默产品专家立即报名扫描上方二维码,即可预约线上研讨会,在直播期间与讲师积极互动,还可获得精美礼品了解更多相关资料,扫描下方二维码,即可下载《分析在用润滑油粒径/颗粒计数和金属含量的新方法》。立即扫码
  • 一站式3D打印用原材料表征方案:从粒度分析到元素分析
    增材制造常被称作3D打印,是一种从无到有逐层构建三维结构或组件的制造工艺。其原理是以计算机三维设计模型为蓝本,通过软件分层离散和数控成形系统,将三维实体变为若干个二维平面,利用激光束、热熔喷嘴等方式将粉末、塑料等特殊材料进行逐层堆积黏结,最终叠加成形,制造出实体产品。目前增材制造应用行业日益增多,包括航空航天,汽车制造,消费电子,生物医疗,工业设备等。增材制造工艺包括:粉床熔融成型,立体光刻工艺,熔融沉积成型,喷胶粘粉工艺等。相比于传统的减材制造方式,增材制造工艺具有低成本、高效益等优势,越来越受到各行业的青睐。但要成功地进行增材制造,前提是必须对组件的原材料(如金属粉末和聚合物粉末)进行表征筛选。为什么材料表征很重要?使用增材制造工艺生产的组件在性能上高度依赖于其基本的微结构,而微结构又取决于原材料(金属、聚合物)的性能和所使用的工艺条件。在工艺条件固定的情况下,最大的不确定性就来自于材料;材料性能不一致会导致组件成品的性能不一致。因此,要生产出质量一致的增材制造组件,制造商必须了解并优化材料的特性,例如金属粉末、聚合物粉末或其他材料(如陶瓷和聚合物树脂)。材料的哪些特性很重要?这取决于所采用的增材制造工艺和使用的材料类型。例如,在喷胶粘粉工艺和粉床熔融成型等金属粉床工艺中,材料的粒度和粒形是其关键特性,因为它们会影响粉末的流动和填充度。而在这些工艺中,材料的化学成分同样重要,尤其是金属粉末;粉末材料需满足指定的合金成分,这会直接影响成品的性能。晶体结构是金属粉末的另一个重要特性。因为在某些增材制造过程中,快速加热 - 冷却循环会引起物相变化并产生残余应力,进而影响组件的疲劳寿命等机械性能。另外,对于增材制造使用的聚合物材料,聚合结构(支化度、结晶度)可能会影响材料的液态和固态性能,包括粘度、模量以及热性能等。增材制造原材料表征方案在粉床熔融过程中,金属粉末层分布于制造平台上,被激光或电子束等选择性地熔化或熔融。熔化后平台将被降低,此过程将持续重复,直到制造完成。未熔融粉末将被去除,根据其状态重复使用或回收。因此,粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动行为和堆积密度。从新合金或聚合物开发到粉末回收,制造商必须在供应链的各个阶段对粉末性能进行表征。其中,激光衍射、自动图像分析、X 射线荧光和 X 射线衍射是用于表征增材制造粉末的四种常用关键分析技术。粒度分布及大小在粉床式增材制造工艺中,粒度分布会影响粉床的填充度和流动性,进而影响生产质量和最终组件的性能。为了测定增材制造使用的金属、陶瓷和聚合体粉末的粒度分布,全球粉末生产商、组件制造商以及机器制造商通常使用激光衍射技术来鉴定和优化粉末性能。使用激光粒度衍射仪Mastersizer 3000 系统或在生产线上使用在线Insitec 粒度测量系统,可在实验室环境中提供完整的高分辨率粒度分布结果。激光粒度仪Mastersizer 3000颗粒形状粒度和粒形直接影响粉床的致密度和粉末流动性。形状平滑规则的颗粒比表面粗糙、形状不规则的颗粒更容易流动和填充。增材制造商为保证所用颗粒具有规则形状,可使用 Morphologi 4 自动成像系统对金属、陶瓷和聚合物粉末的粒度和粒形进行分类和鉴定。该系统可将颗粒的长度、宽度等大小测量结果与圆度、凸曲度(粗糙度)等形状特征评估结果相结合,帮助制造商完成上述工作。Morphologi 4快速自动化粒度和粒形分析仪元素组成元素组成对于合金材料尤其重要,合金元素含量的微小变化都会影响其化学和物理性能,包括强度、硬度、疲劳寿命和耐化学性。为了检测这些变化以及污染物或夹杂物,并确定这些金属合金和陶瓷的元素成分,可使用 X 射线荧光 (XRF) 系统,比如 Zetium 和 Epsilon 等系统。而且,与其他技术相比,XRF 还能显著节省时间和成本。X射线荧光光谱仪Zetium台式能谱仪一体机Epsilon1微结构诸如物相成分、残余应力、晶粒大小和晶粒取向分布(织构)等微结构特性,也会影响成品组件的化学和机械性能。 为了分析这些微结构特性并控制成品组件的性能,制造商通常使用台式 X 射线衍射 (XRD) 系统分析金属的物相,比如 Aeris 系统。 如需获取有关材料在各种条件下的织构、晶粒尺寸和残余应力的更多信息,则可以使用多用途衍射仪,比如 Empyrean 衍射仪。 XRD 还广泛用于研究聚合物和陶瓷的结构和结晶度。 如要确定聚合物粉末的分子量和分子结构,则大多会使用凝胶渗透色谱 (GPC) 系统,比如 Omnisec 系统。台式X射线衍射仪Aeris马尔文帕纳科增材制造表征解决方案可用于: 确保始终如一的粉末供应防止产品质量波动 为采用不同撒布器或耙式设计的机器确定合适粉末 优化雾化条件以实现所需的粉末特性 预测并优化粉末堆积密度和流动特性 确保粉末具有正确的元素组成和相结构 确定制造组件的残余应力、应变和织构作者:马尔文帕纳科
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制