当前位置: 仪器信息网 > 行业主题 > >

后叶催产素

仪器信息网后叶催产素专题为您整合后叶催产素相关的最新文章,在后叶催产素专题,您不仅可以免费浏览后叶催产素的资讯, 同时您还可以浏览后叶催产素的相关资料、解决方案,参与社区后叶催产素话题讨论。

后叶催产素相关的论坛

  • 【转帖】后叶催产素强化儿时母爱记忆

    后叶催产素强化儿时母爱记忆一项研究发现,男性关于童年时期他们的母亲的关爱的回忆可能被一种在大脑中自然产生的化学物质强化。科学家长期以来认为被称为后叶催产素的神经递质能够积极地增强人们体验和回忆一大批社会互动,包括母亲的照顾和亲密。Jennifer Bartz及其同事调查了后叶催产素在社会感受方面的作用,方法是为成年男性注射这种药物,而这些男性在参与这项研究之前回答了关于他们在童年时期母亲照顾情况的问卷调查。在数周时间里,这组科学家追踪了这些男性的回忆在获得了一份后叶催产素或安慰剂之后如何发生变化。这组作者说,与那些获得安慰剂的男性相比,正面地回忆起他们的母亲的照顾的男性在接受了后叶催产素之后倾向于把他们的母亲评定为更多的照顾他们。另一方面,和母亲的关系引起焦虑的男性更多地把他们的母亲描述为较少照顾他们,这提示这种药物可能加强了预先存在的感受。这组作者说,这项研究还提出了一个问题,即后叶催产素是否能增加准确地回忆母亲的照顾的能力,或者这种化学物质是否启动了一种有偏见的对记忆的搜寻来支持当前的长期以来的印象。

  • 【情人节专题】亲吻可产生化学物质让人兴奋愉悦

    “我曾来过这里,我知道门那边的青草地上,有那让人渴望的甜蜜味道。”19世纪英国画家但丁·加布里埃尔·罗塞蒂在诗歌《顿悟》中说,“气味像久久不去的亲吻,那是永远的感觉。”动物们通过身体分泌液来确定同伴,人类也有相似的举动———我们靠的就是亲吻。近日,美国宾夕法尼亚州拉斐特大学的一项研究显示,亲吻并不局限于传达感情,它可以释放一系列化学物质,让人兴奋起来;通过唾液的交流,人们还能“记住”伴侣的“味道”。心理学教授温迪·希尔招募了15对成年伴侣。研究人员在这些伴侣牵手、亲吻后,检测其体内的后叶催产素和皮质醇水平。希尔发现,四唇交合就是一个电闸开关,能开启大脑连锁反应,让情侣瞬时间兴奋起来,并且感到放松和愉悦。这可能是因为唾液含有性刺激素,通过亲吻可以直接“输入”对方口中。这些信息素会在伴侣的身体和记忆中,留下各种痕迹。“这种感觉就好像婴儿对母乳无止境的需求,一段时间吃不着,就会焦虑和渴望。”希尔说。希尔还指出,亲吻时的特殊感觉不仅限于大脑,身体也会随之变化。研究表明,充满激情的亲吻,需要肌肉一步一步有节奏地运动,以刺激大脑中阿尔法波的产生,这和人在沉思时产生的波形是完全相同的。其原因在于,经验和记忆能使我们按照预想的方式创造一幅理想的图画,反过来,这幅图画也会影响心脑间的相互作用。

  • 研究显示男女DNA中或都含有“离婚基因”

    人们过去往往把现代社会不断攀高的离婚率归因于经济和科技的发展使人们的社交圈子变得更广阔,从而对家庭和婚姻的观念逐渐淡漠。科学家们如今通过研究给出了新答案:这有可能因为女性DNA中的“离婚基因”在起作用。  据英国媒体报道,来自瑞典的一个科学家小组首次鉴定出女性体内的“离婚基因”,拥有该基因的女性在婚姻中更易和伴侣争吵,也较难对另一半保持忠诚。  女性: 或源于催产素变异  本报讯 该项研究由斯德哥尔摩卡罗林斯卡医学院的生物学小组完成,该小组检测了超过1800名女性的DNA,并调查了她们的伴侣。参与研究的情侣或者已婚,或者同居,在一起的时间都超过5年。  研究发现,体内携带“离婚基因”的女性一般较难与他人保持亲密关系,也较难步入婚姻的殿堂。即使结婚了,她们和那些不携带该基因的女性相比,维持和谐稳定婚姻的可能性少50%,而她们的另一半也通常觉得不幸福。  对此,该研究小组负责人汉斯·瓦伦木解释说,“离婚基因”是催产素受体基因的变异。催产素不仅是女性生产和授乳时分泌的激素,还是人与人之间亲密的关系的起源,恋人们之所以会渴望拥抱亲吻正是由于催产素在起作用。如果女性不能正常生产催产素,她们也很可能不能和他人,包括父母、伴侣、朋友以及孩子,保持正常的良好的关系,甚至还会导致孤独症。  汉斯说: “我们找到了催产素在影响人类配对规律中的证据,不同的催产素受体会让女性与他人交往中有不同的表现。”  男性: 或因“离婚基因”作祟  本报讯 早在2008年,科学家就在男性身上发现了“离婚基因”,这项研究同样是由瑞典斯德哥尔摩卡罗林斯卡医学院的研究小组完成的。该项研究认为,这种“离婚基因”会影响大脑,增加男人对妻子不忠的倾向,从而大大提高夫妇婚变的风险。  研究发现,其中一种名叫“334”的变异基因,只在男士体内发现。含有这种变异基因的男士,婚姻出现危机的比率比其他男士高出两倍,而他们与另一半维系关系的质量指数也较低。  专家说,每个人的脑部都有一种很活跃的基因,会决定一个人的社交行为、与伴侣维系关系或追求性方面的满足。不过,一些男士体内出现基因变异,令大脑接受错误信息。  这项研究结果的报告发表在《全国科学院期刊》上,报告认为该项研究有助于科学家将来研制出专门针对这种基因的药物,说不定可以挽救很多濒临破裂的婚姻。  “偷情基因”使人外遇?  4年前,英国也有类似研究,认为女性的“红杏出墙”和基因有关。研究人员发现,女性双胞胎中,如果其中一人曾对配偶不忠,另外一个约有55%的几率也有类似情形。不过,这或许是由于都有喜欢冒险性格的基因。  美国波士顿大学的研究人员也比较过双胞胎的婚姻状况和离婚率。他们通过对8000对男性同卵双胞胎(有相同的基因)与异卵双胞胎的比较,发现前者比后者更可能有相同的婚姻状态。研究者因此怀疑,离婚也许受到基因的影响。  波士顿大学离婚和基因关系研究的主持人雷杨博士解释,基因对离婚的影响,其实是透过某些含有基因的行为或疾病进行的——这些疾病和行为比较容易引起亲密关系的冲突,例如,药物滥用、忧郁和酒瘾,“几乎任何一种心理病态性疾病,都会让婚姻变得更难维持。”

  • 【转帖】怀孕母畜临床用药原则

    怀孕母畜临床用药原则母畜怀孕后各器官系统发生一定的生理变化,对药物的反应与未孕母畜不完全相同,药物的分布和代谢也受妊娠的影响。因此,孕畜临床不合理用药将导致胚胎死亡、流产、死胎和胎儿畸形。通过几年的实践经验,总结孕畜合理用药的原则以供同行借鉴: 1、孕畜发生疾病治疗时,首先考虑药物对胎儿和胚胎有无直接或间接的严重危害作用。其次是药物对母体有无副作用与毒害作用。 2、怀孕早期用药要慎重,当发生疾病必须用药时,可选用没有引起胚胎死亡和致畸作用的常用药物。 3、孕畜用药剂量不宜过大,时间不宜过长;以免药物蓄积作用而危害胚胎或胎儿。 4、孕畜应慎用全身麻醉药、止泻药、驱虫剂和利尿剂,禁用有直接或间接影响生殖机能的药物,如前列腺素、肾上腺素和促肾上腺皮质激素、雌激素。严禁使用子宫收缩的药物如催产素、垂体后叶制剂、麦角制剂、氨甲酰胆碱和毛果芸香碱。使用中药时应禁用活血祛瘀、行气破滞、辛热、滑利中药如桃仁、红花、乌头等。云南白药、地塞米松也应慎重使用。 5、孕畜发生疾病时,须考虑药物对胚胎和胎儿有无潜在性危害作用,但要改变那种认为“孕畜用药都是有害的”的观点,为了胚胎和胎儿的安全而延误孕畜的治疗,反而损害母畜的健康,造成母畜与胎儿双亡的现象。因此,孕畜患病时应积极用药治疗,确保母体健康,力求所用药物对胚胎儿无严重危害作用。

  • 【资料】【分享】青霉素治畜禽病须注意

    青霉素治畜禽病须注意1.青霉素不能与碱性药物配合。在兽医临床中,常见的属于此种错误的配伍,为青霉素与碘胺类钠盐注射液或与碳酸氢钠注射液配伍。 2.青霉素不能与酸性药物配伍。有人把青霉素与土霉素、链霉素一起用蒸馏水溶解,给雏鸡喷雾,治疗传染性支气管炎。这是不对的。因土霉素溶液ph值为2~2.9,属于酸性较强的药物。ph值5以下的酸性药物还有很多,如四环素注射液、肾上腺素注射液、盐酸山梗菜碱注射液、注射用三磷酸腺苷、葡萄糖注射液、氯化钾注射液、氯化钙注射液、山梨醇注射液、甘露醇注射液、注射用促皮质素、杜冷丁注射液、盐酸氯丙嗪注射液、脑垂体后叶注射液、马来酸麦角新碱注射、催产素注射液等,都不可与青霉素配伍。 3.青霉素不能与氢化可的松注射液配伍。2%以下的醇,对青霉素无破坏作用;高于2%时,则有轻微破坏作用;25%以上的醇,可使青霉素失效。 4.青霉素不能与配伍后发生浑浊、沉淀和降低效价的注射剂配伍。如硫酸卡那霉素注射液、注射用辅酶a、注射用细胞色素c、氨茶碱注射液、盐酸异丙嗪注射液、注射用乳糖酸红霉素、注射用硫喷妥钠等。 5.青霉素不能与高浓度的盐酸普鲁卡因溶液配伍。盐酸普鲁卡因的最适宜浓度为0.25%~0.5%。浓度过高,则起相反作用。 6.单胃动物如猪、驴、骡、马,不能口服青霉素。多胃动物如牛和羊,可以口服青霉素。 7.青霉素必须重复使用。否则,那些漏网的和新繁殖的微生物,会产生抗药性,危害更烈。必须每隔4~6小时重复用药1次。用有延缓青霉素在体内作用时间的溶媒(如0.25%~0.5%的盐酸普鲁卡因)溶解青霉素,可每隔8~12小时重复用药1次。 8.家畜发生青霉素过敏反应的抢救。兽医界无作过敏试验的规定,用药前先询问畜主患畜有没有青霉素过敏史,如有,就改用其他抗菌素;如无,在注射青霉素后,要至少观察半小时,无反应时,方视作安全。家畜发生青霉素过敏,应立即抢救。可用0.1%盐酸肾上腺素注射液,皮下注射。用量:猪、羊、驹、犊0.2~1毫升,牛、马5毫升。也可稀释10倍静注,用量减半。也可静注10%葡萄糖酸钙注射液,猪、羊、驹、犊200毫升,牛、马500毫升。

  • 化学合成多肽有两类基本方法

    合成肽技术用化学手段将氨基酸依次定向地缩合成多肽或蛋白质的技术。大多数天然多肽和蛋白质都由a-氨基酸构成。氨基酸分子内可有3个化学活泼的基团即侧链、氨基及羧基,与a-碳原子共价连接。请移步百度搜“[b]合肥国肽生物[/b]”即可化学合成肽有两类基本方法液相法即反应物在完全溶解状态下作均相缩合。由于每步缩合产物都可经结晶或洗涤过程去除副产物,故液相合成肽的质量较高,但耗时多,手续繁,产率较低。1965年中国科学家以此法合成了结晶牛胰岛素。目甑助产药物——催产素(一个九肽)的工厂生产流程仍采取液相法工艺。固相法反应物之一取固相状态。反应产物因共价连接于树脂而可被过滤法回收并洗涤除去未反应物,故操作简单,易于规范化和机械化,事实上,固相多肽合成仪已被广泛采用。此法缺点在于副反应物会在树脂上不断积累,难以去除。且反应次数越多即目标肽越长则副产物积累越多,最后至造成主产物被淹没在杂质中无法被分离出来。所以这个方法的创立虽然促使迈利菲尔特(R.B.Merrifield)获得了诺贝尔化学奖,但实用中仍限于30肽左右的合成水平上。为了克服这一缺点,有人利用液相法合成高纯度的小肽进行固相缩合,使总的固相缩合次数减少,这就成为固相片段缩合法。中国利用此法已成功地合成了结晶胰岛高血糖素和蛇毒膜毒素等大肽和蛋白质。除化学方法外,利用蛋白水解酶的逆反应也可酶促合成某些特定的肽键。

  • [共享]:多肽的质谱文献

    转从:中国分析网,很不错的一网站。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16100]YYSWDB0021 肽降钙素的二硫键的确证飞行时间质谱法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16101]YYSWDB0036 多肽亮丙瑞林氨基酸序列的测定电喷雾串联质谱法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16102]YYSWDT0170 肽 胸腺十肽分子量的测定 基质辅助激光解析电离飞行时间质谱法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16103]YYSWDB0022 肽催产素的二硫键确证磁质谱法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16104]YYSWDT0239 肽 阿片拮抗肽测序分析 纳升电喷雾串联质谱法[/url]

  • 【情人节专题】科学家找到“爱情解药”:专治相思病

    新科学家报道,玫瑰是红色的,紫罗兰是蓝色的,当你拒绝我了,我能怎么办呢?随着我们了解到有关爱情的神经机制,我们距离研发治疗心碎的解药更进一步了。虽然很多人对治疗心碎的化学疗法仍有所提防,现在仍有不少人争辩这种抗爱情解药是否真的能够帮助那些因爱无回报而心存自杀或者妄想念头的人们。使用和滥用这类药物的道德标准是非常复杂的,先抛开伦理学不说,爱情解药究竟会是什么样的呢?首先,爱情是什么?对莎士比亚而言,“它就像永久存在的印记,无法撼动。”对神经科学家来说道,它则没有这么诗意:爱情在神经生物学上的表现分为三个子类:性欲、吸引和依恋——这些都会增加生殖和繁殖的成功率。每个方面都根植于大脑里一系列互相重叠的化学系统:减少每个方面的方式也是存在的,美国新泽西州罗格斯大学的人类学家海伦·费舍尔(Helen Fisher)这样说道,但它们并非总是愉快的。拿性欲为例,你是否曾发现自己对一个人最小的细节都迷恋不已?他的头发或者短信里的一个吻的符号?这些表现类似于强迫症(OCD)的某些症状。意大利比萨大学的精神病专家多那特拉·马拉辛提(Donatella Marazziti)对比了20名初坠爱河的人和20名患有强迫症的病人的大脑。两组人的大脑里都有异常罕见的低水平的某种蛋白质,后者会传输血清素,一种涉及调节情绪的荷尔蒙。一年之后对这些初坠爱河的人们进行的再次检查显示他们的血清素水平增加了,而他们报告称不再过度迷恋自己的伴侣。增加血清素的药物也能缓解患有OCD的病人,因此推测这些药物也能帮助抑制贪欲的感觉也是合理的。这些药物包括名为选择性5-羟色胺再摄取抑制剂的抗抑郁药,它能够抑制极端的情绪,使得形成浪漫的情感纽带变得更加困难。这是那些抑郁症患者不想要的副作用,但对于那些想要脱离对爱人迷恋的患者来说则是个好消息。那么如果你想要断绝的不是色欲,而是长久的迷恋呢?形成迷恋需要好几种化学物质的共同作用,动物研究显示了我们将如何操作这些药物以摆脱迷恋。草原田鼠是著名的一夫一妻制动物——它会形成一生一世的情感连接。然而,美国佐治亚州亚特兰大埃默里大学的拉里·杨(Larry Young)向草原田鼠注射了一种会抑制多巴胺(一种治脑神经病的药物)或催产素的药物后,草原田鼠就变得一夫多妻制了。[

  • 求助: 叶绿素测定中的问题

    你好,我在做用叶绿素表征水中藻类的含量,同时测定投加不同药剂时的去除率。用的是《水和废水中的生物监测方法〉中得叶绿素a的测定方法,但是同种的水样测出来得叶绿素值差别很大,或是投加杀藻剂后叶绿素含量反而上升。我想可能是一个水样研磨得充分,而另一个研磨的不够充分,那末在测定多个样的时候,如何才能让它的研磨程度达到一致,才能使各个样具备可比性。急切盼指教,谢谢

  • 你吃的豆芽有多毒???

    广州警方捣毁两个特大“毒豆芽”产销窝点,抓获8名犯罪嫌疑人,查获毒豆芽9吨。他们使用无根剂、AB粉等有毒有害的非食品类添加剂催产豆芽。 市民到市场里买菜,如果在菜摊上看见颜色白净、水分丰富、形态美观的豆芽时,可就要多长个心眼,这些“白富美”豆芽,有可能是添加激素和抗生素的毒豆芽。

  • 多肽polypeptide多肽

    多肽polypeptide多肽

    [font=Helvetica][size=10.5pt][color=#333333]国肽生物是一家专业从事多肽产品的研发、生产和销售以及多肽技术转让的高新技术企业。BP公司成立之初,便成功收购了国内几家多肽、抗体公司,是目前国内的专业多肽合成、抗体制备、蛋白表达的规模型生产企业。国肽生物专长于荧光标记肽、同位素标记肽、人工胰岛素、药物肽、化妆品肽、长肽困难肽等产品的合成与研发,致力于学术水平的科研提升,搭建学术交流平台,促进前沿、专业的学术知识推广,推动多肽在生物医学材料等领域的研究与应用[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]多肽是一种与生物体内各种细胞功能都相关的生物活性物质,它的分子结构介于氨基酸和蛋白质之间,是由多种氨基酸按照一定的排列顺序通过肽键结合而成的化合物。多肽是涉及生物体内各种细胞功能的生物活性物质的总称,常常被应用于功能分析、抗体研究、尤其是药物研发等领域。多肽合成技术的出现,让这些多肽的应用领域变得更宽。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]多肽的固相合成[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]多肽的合成是氨基酸重复添加的过程,通常从C端向N端(氨基端)进行合成。多肽固相合成的原理是将目的肽的第一个氨基酸C端通过共价键与固相载体连接,再以该氨基酸N端为合成起点,经过脱去氨基保护基和过量的已活化的第二个氨基酸进行反应,接长肽链,重复操作,达到理想的合成肽链长度,最后将肽链从树脂上裂解下来,分离纯化,获得目标多肽。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]1、Boc多肽合成法[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]Boc方法是经典的多肽固相合成法,以Boc作为氨基酸α-氨基的保护基,苄醇类作为侧链保护基,Boc的脱除通常采用三氟乙酸(TFA)进行。多肽合成时将已用Boc保护好的N-α-氨基酸共价交联到树脂上,TFA切除Boc保护基,N端用弱碱中和。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]肽链的延长通过二环己基碳二亚胺(DCC)活化、偶联进行,最终采用强酸氢氟酸(HF)法或三氟甲磺酸(TFMSA)将合成的目标多肽从树脂上解离。在Boc多肽合成法中,为了便于下一步的多肽合成,反复用酸进行脱保护,一些副反应被带入实验中,例如多肽容易从树脂上切除下来,氨基酸侧链在酸性条件不稳定等。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]2、Fmoc多肽合成法[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]Carpino和Han以Boc多肽合成法为基础发展起来一种多肽固相合成的新方法——Fmoc多肽合成法。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]Fmoc多肽合成法以Fmoc作为氨基酸α-氨基的保护基。其优势为在酸性条件下是稳定的,不受TFA等试剂的影响,应用温和的碱处理可脱保护,所以侧链可用易于酸脱除的Boc保护基进行保护。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]肽段的最后切除可采用TFA/二氯甲烷(DCM)从树脂上定量完成,避免了采用强酸。同时,与Boc法相比,Fmoc法反应条件温和,副反应少,产率高,并且Fmoc基团本身具有特征性紫外吸收,易于监测控制反应的进行。Fmoc法在多肽固相合成领域应用越来越广泛。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]肽是指由两个或两个以上的氨基酸脱水缩合而成的化合物。最简单的肽由两个氨基酸组成,称二肽。含多个氨基酸的肽称多肽。含50个氨基酸以上的多肽,通常称为蛋白质。肽广泛存在于动物、植物和微生物中,有重要的生理作用,对生物的生长发育、细胞分化、大脑活动、肿瘤病变、免疫防御、生殖控制以及抗衰老等方面都有特殊的功能。如谷胱甘肽是某些酶的辅酶,对体内的氧化还原过程起重要作用。许多激素属于多肽,如催产素、加压素、胰高血糖素以及促肾上腺皮质激素等,能调节机体代谢。由下丘脑分泌的激素调节因子也是多肽,它们控制着其他内分泌腺释放激素的活动。近年来在高等动物脑中发现的脑啡肽(五肽)有镇痛作用。微生物产生的许多抗生素如多粘菌素、短杆菌肽等都是肽类,有很强的抗菌作用。多肽指许多氨基酸单位用肽键互相连接构成的长链。肽和蛋白质没有严格的界限,一般把只含有数十个或更少个氨基酸单位的多肽叫做肽,把氨基酸单位比较多的多肽叫蛋白质。常把多肽中的氨基酸单位叫做氨基酸残基,因为这些单位在互相连接时已失去分子的一部分,而不是完整的氨基酸了。只有肽链两端的氨基酸残基才含有自由的α-氨基或自由的α-羧基。有自由α-氨基的末端残基叫做氨基末端(或N端)残基,有自由α-羧基的末端残基叫做羧基末端(或C端)残基。给多肽命名时按照从N端到C端残基的顺序,书写时也按这个顺序。如SerGlyTryAlaLeu这个五肽含有5个氨基酸残基和4个肽键,叫做丝氨酰甘氨酰酪氨酰丙氨酰亮氨酸。肽广泛存在于动植物组织中,其中有许多肽在生物体内有特殊的功能,统称生物活性肽。近年来发现:几乎所有生命科学的重大理论,如免疫防御、生殖控制、肿瘤病变、抗衰防老等都涉及有关的活性肽。这些理论问题无不与临床医学实践密切相关,所以生物活性肽在实际应用上也具有重要意义。生物活性肽的种类很多。如可刺激肾上腺皮质发育的促肾上腺皮质激素是39肽,可使子宫收缩的催产素为九肽,具有吗啡活性的两种重要的脑啡肽均为五肽。许多抗菌素也是肽类物质。又如生长因子受控于基因,在细胞发育过程中起调节和控制作用。这类重要物质为多肽。表皮生长因子含有50个氨基酸残基,神经生长因子由118个氨基酸残基组成。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333][img=,486,246]https://ng1.17img.cn/bbsfiles/images/2020/06/202006161554536697_4085_3531468_3.jpg!w486x246.jpg[/img][/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]国肽生物主要提供:多肽合成、多肽定制、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、美容肽、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。[/color][/size][/font][font=Helvetica][size=10.5pt][color=#333333]详情请咨询国肽生物[/color][/size][/font]

  • 光催化产氢光强校准

    [color=#444444]请问一下,做光催化产氢性能实验之前,是不是要校准氙灯(300W)的光强?用什么仪器校准?在什么位置处校准?校准到什么程度才算是校准成功?请各位前辈帮忙解答一下,谢谢![/color]

  • Proteonavi S5的溶出行为 2 ~与他社色谱柱的比较及柱温80℃下的耐久性及峰形考察~

    Proteonavi S5的溶出行为 2 ~与他社色谱柱的比较及柱温80℃下的耐久性及峰形考察~

    [align=center]Proteonavi S5的溶出行为 2[/align][align=center][color=#7d6a60]~与他社色谱柱的比较 及 [/color][color=#7d6a60]柱温80℃下的耐久性及峰形考察[/color][color=#7d6a60]~[/color][/align][align=center][color=#7d6a60][/color][/align][align=left][color=#7d6a60][b]Keywords :[/b][color=#7d6a60]Proteonavi, 肽类, 缓激肽, 后叶催产素, 血管紧缩素II, 神经降压素, 血管紧缩素I, 环孢菌素A, 表面活性肽, 0.1 vol% HCOOH, 柱温80℃, 耐久性, 峰形[/color][/color][/align][align=left][color=#7d6a60][/color][/align][align=center][color=#7d6a60][color=#7d6a60][color=#8f7947]~与他社色谱柱的比较~[/color][/color][/color][/align][align=center][color=#7d6a60][color=#7d6a60][color=#8f7947][/color][/color][/color][/align][color=#7d6a60][color=#7d6a60][color=#8f7947][/color][/color][/color][align=left][b][color=#cb9876]Proteonavi S5[/color][/b]是一款以孔径为30 nm的硅胶作为基材、键合C4基团的蛋白质・ 肽类化合物分析色谱柱。[/align][align=left][/align][align=left]上回的Proteonavi S5的溶出行为 1中介绍了以6种蛋白质作为样品,将[b][color=#cb9876]Proteonavi S5[/color][/b]与他社色谱柱进行溶出行为的比较的试验。([url=http://bbs.instrument.com.cn/topic/6450560]http://bbs.instrument.com.cn/topic/6450560[/url])[/align][align=left][/align][align=left]本次,我们以5种肽类化合物([color=#1751a0]缓激肽、后叶催产素、血管紧缩素II、神经降压素及血管紧缩素I[/color])作为样品,将[b][color=#cb9876]Proteonavi S5[/color][/b]与一款填料表面带有正电荷的他社杂化型色谱柱(孔径13 nm、粒径3.5 μm)的溶出行为进行比较,所得结果见图1。[/align][align=center][img=,690,385]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070914_01_2222981_3.png[/img][/align][align=center][color=#cb9876]▲[/color][color=#3e3e3e]图1 两款色谱柱分析所得色谱图[/color][/align][align=left][color=#3e3e3e][img=,530,169]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070915_01_2222981_3.png[/img][/color][/align][align=left]其中,流动相条件为添加0.1 vol%甲酸的水-乙腈系统,在梯度条件下进行分析,对这两款色谱柱进行了溶出行为的考察。如图1,他社色谱柱对5种肽类化合物的整体保留较弱,且[color=#1751a0]缓激肽[/color]峰未能得到确认(被吸附而未能溶出);与此相对,[b][color=#cb9876]Proteonavi S5[/color][/b][color=#000000]对这5种肽类化合物均得到了良好的色谱峰形及充分的保留与分离。[/color][/align][align=left][/align][align=center][color=#000000][color=#8f7947]~柱温与溶出行为~[/color][/color][/align][align=left][color=#000000]对肽类化合物进行分析时,有提高柱温的做法。例如,《第17改正日本药局方》中,环孢菌素是在柱温[/color][color=#ff0000]80 ℃[/color][color=#000000]附近的一定温度下进行分析的。[/color][color=#000000]在此,以[color=#1751a0]环孢菌素A[/color]作为原料,在等度条件下对色谱柱柱温变化及相应的溶出行为进行了考察。图2为所得结果。[/color][/align][align=center][/align][align=center][img=,690,477]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070918_01_2222981_3.png[/img][/align][align=center][color=#cb9876]▲[/color][color=#3e3e3e]图2 [/color][color=#3e3e3e]柱温与环孢菌素A溶出行为的关系[/color][/align][align=left][img=,561,152]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070919_02_2222981_3.png[/img][/align][align=left][color=#000000]如图2,随着柱温的上升,[color=#1751a0]环孢菌素A[/color]的保留逐渐减弱,峰形也愈发尖锐。[/color][color=#000000]一般,与小分子相比,大分子的扩散速度较慢,因此色谱峰形有展宽的趋势,而设定较高的柱温可以使峰形变得尖锐。[/color][color=#000000]就像这样,[/color][color=#1751a0]在对肽类化合物进行分析时,设定较高柱温可以使分析时间缩短,并提高定量准确性。[/color][/align][align=center][color=#1751a0][color=#000000][color=#8f7947]~80℃下的耐久性考察~[/color][/color][/color][/align][align=left][color=#000000]接下来,在柱温[/color][color=#ff0000]80 ℃[/color][color=#000000]条件下对[/color][b][color=#cb9876]Proteonavi S5[/color][/b][color=#000000]的耐久性进行了考察。[/color][color=#000000]图3为首次进样与连续进样第500针所得色谱图及[color=#1751a0]环孢菌素A[/color]保留时间维持率(%)。[/color][/align][align=center][img=,650,479]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070921_01_2222981_3.png[/img][/align][align=center][color=#cb9876]▲[/color][color=#3e3e3e]图3 环孢菌素A的保留时间维持率(%)[/color][/align][align=left][color=#3e3e3e][img=,572,153]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070924_01_2222981_3.png[/img][/color][/align][color=#3e3e3e][/color][align=center][/align][align=left][color=#000000]如图3,对Proteonavi S5进行80˚ C条件下的连续耐久性试验,在连续500次进样过程中(通液时间共计250小时),[color=#1751a0]环孢菌素A[/color]的峰形几乎没有变化(理论塔板数N及对称因子S),同时,保留时间维持率近乎100%(首次进样与第500次进样对比,具体数值为99.4%)。[/color][color=#000000]综上,[/color][b][color=#cb9876]Proteonavi S5[/color][/b][color=#000000]色谱柱即使在[/color][color=#ff0000]80 ℃[/color][color=#000000]的高柱温条件下也能得到非常稳定的分析结果。[/color]*[color=#1751a0]耐久性评价方法[/color]是将首次进样的保留时间视为100%,将连续进样第500次的保留时间与其对比,计算维持率(%)。*[color=#1751a0]理论塔板数、对称因子的计算方法[/color]根据《第17改正日本药局方 解说书》进行。对于[color=#005dac]环孢菌素A[/color]这样的大分子化合物,随着柱温的上升,其扩散速度加快,因而峰形会更尖锐。进一步,针对提高柱温的效果,以环状肽类化合物[color=#005dac]表面活性肽[/color](M.W. 1036.3)作为分析对象,将柱温分别设定为40 ℃和80 ℃进行分析,图5为分析所得结果。[/align][align=center][img=,690,438]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070923_01_2222981_3.png[/img][/align][align=center][color=#cb9876]▲[/color]图4 柱温40 ℃及80 ℃条件下对表面活性肽的分析色谱图[/align][align=left][img=,567,152]http://ng1.17img.cn/bbsfiles/images/2017/07/201707070923_02_2222981_3.png[/img][/align][color=#000000]如图4,将柱温由40 ℃提高到80 ℃,[color=#1751a0]表面活性肽[/color]在保留变弱的同时,峰形更尖锐,理论塔板数亦提高了1400。[/color][color=#000000]综上所述,在对肽类化合物进行分析时,在高柱温条件下使用耐久性良好的[/color][b][color=#cb9876]Proteonavi S5[/color][/b][color=#000000]色谱柱进行分析,[/color][color=#ff0000]提高柱温[color=#000000]是获得[/color]尖锐峰形[color=#000000]的技巧之一[/color][/color][color=#1751a0];[/color][color=#000000]在缩短分析时间的同时,检测灵敏度和定量准确性也能得到提高。[/color][color=#000000]同学们都记住了吗~[/color]

  • 光催化产氢出现的色谱峰

    光催化产氢出现的色谱峰

    大家好 我做光催化产氢 加的水和甲醇 没有加催化剂 但还是出现了两个峰 请问是什么原因呢?能否确定是哪种物质?色谱型号是福立GC9720 检测器是TCD 用了空气发生器 载气是氩气[img=,690,545]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081809066610_9574_5577143_3.png!w690x545.jpg[/img]

  • 多肽化学合成的基本介绍

    多肽化学合成的基本介绍

    多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。【请移步百度搜“合肥国肽生物”即可】与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因为吲哚性质比较稳定。当然在特殊的情况下,有些氨基酸也可以不保护,象,Asn,Gln ,Thr,Tyr。氨基酸侧链保护基团非常多,同一个侧链有多种不同的保护基,可以在不同的条件下选择性的脱除,这点在环肽以及多肽修饰上具有很重要的意义。而且侧链保护基和选择的合成方法有密切的关系,液相和固相不一样,固相中BOC和FMOC策略也不一样,从某种意义上看,多肽化学就是氨基酸保护基的灵活运用与搭配。关于侧链保护基的使用,请参考王德心的《固相有机合成——原理及应用指南》第四章,我们这里主要介绍Cys,Lys,Asp的几种保护基及其脱除方法。Cys最常见的保护基有三种,Trt,Acm,Mob,这三个保护基可以完成多对二硫键多肽的合成。Lys最常见的保护基有:Boc,Fmoc,Trt,Dde,Allyl,这对于固相合成环肽提供了很多正交的保护策略。Asp最常见的保护基有:Otbu,OBzl,OMe,OAll,OFm,同样也提供了多种正交的保护策略。2.多肽缩合试剂 目前多肽合成中,主要采用羧基活化方法来完成接肽反应,最早使用的是将氨基酸活化为酰氯,叠氮,对称酸酐以及混合酸酐的方法,但是由于这些条件下,存在氨基酸消旋,以及反应试剂危险以及制备比较复杂,逐渐被后来的缩合试剂取代,按照其结构可以分为两种:缩合试剂主要有:碳二亚胺型,鎓盐型(Uronium)。3.碳二亚胺型 主要包括:DCC,DIC,EDC.HCl等。采用DCC进行反应,由于反应中生成的DCU,在DMF中溶解度很小,产生白色沉淀,所以一般不用在固相合成中,但是由于其价格便宜,在液相合成中,可以通过过滤除去,应用仍然相当广泛。EDC.HCl因为其水溶解性的特点,在多肽与蛋白的连接中使用比较多,而且也相当成功。但是该类型的缩合试剂的一个最大的缺点,就是如果单独使用,会有比较多的副反应,但是研究表明如果在活化过程中添加HOBt,HOAt等试剂,可以将其副反应控制在很低的范围。多肽合成方法比较 1.液相多肽合成(solution phase synthesis) 液相多肽合成现在仍然广泛的使用,在合成短肽和多肽片段上具有合成规模大,合成成本低的显著优点,而且由于是在均相中进行反应,可以选择的反应条件更加丰富,象一些催化氢化,碱性水解等条件,都可以使用,这在固相中,使用却由于反应效率低,以及副反应等原因,无法应用。液相多肽合成中主要采用BOC和Z两种反应策略。2.固相多肽合成固相多肽合成现在使用的主要有两种策略:BOC和FMOC两种。BOC方法合成过程中,需要反复使用TFA脱BOC,而且在最后从树脂上切割下来需要使用HF,由于HF必须使用专门的仪器进行操作,而且切割过程中容易产生副反应,因此现在使用受到实验条件限制,使用也逐渐减少。FMOC方法反应条件温和,在一般的实验条件下就可以进行合成,因此,也得到了非常广泛的应用。[align=center][img=,770,348]https://ng1.17img.cn/bbsfiles/images/2019/03/201903151637572385_7105_3531468_3.jpg!w770x348.jpg[/img][/align]请移步百度搜“合肥国肽生物”即可我们主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。

  • 【分享】中药十香 香香神奇

    一 麝香 原动物属哺乳类,麝科。本品为原动物腺囊中之分泌物。芳香开窍药物,其性味辛 温。通行十二经,功能开窍镇惊,活血消肿。用量0、15—0、3克(多配丸散用或外用 )。方剂举例:《证治准绳》牛黄散;牛黄、朱砂、麝香、竹黄、蝎尾 、钩藤治昏迷抽搐。雷氏方》六神丸:牛黄、腰黄、麝香、冰片、朱砂、蟾酥、治痈疽肿毒。麝香保心丸(《中华人民共和国药典》1990年),麝香、人参、苏合香、蟾酥,功能芳香温通,益气强心,用于心肌缺血引起的心绞痛、胸闷及心肌梗死。犀黄丸(《全国中药成药处方集》1962年),牛黄、麝香、乳香、没药 。功能解毒散痈化结 。用于乳癌、瘰疬、肺痈、流注。麝香为辛温芳香开窍之药,善能辟秽化浊,尤利走窜通闭。其性虽温,往往与牛黄同用,适用于热病神昏,小儿惊厥,中风痰迷以及秽浊中恶。清窍不利等病急势危之症,用之每多殊功。用治痈肿毒及跌打瘀痛,不论内服外用,止痛消肿、疗效迅速可靠。其活血散结的功用,不仅为外科所重视,亦为妇人催产、通乳,化症方中所必用 。孕妇忌用,服之有堕胎之虞。

  • 【原创大赛】蛋鸡产蛋期复合鸡饲料中维生素B2的测定

    【原创大赛】蛋鸡产蛋期复合鸡饲料中维生素B2的测定

    蛋鸡产蛋期复合鸡饲料中维生素B2的测定简介 维生素B2又叫核黄素,微溶于水,在中性或酸性溶液中加热是稳定的。为体内黄酶类辅基的重要组成部分(黄酶在生物氧化还原中发挥递氢作用),当缺乏时,就影响机体的生物氧化,使代谢发生障碍。其病变多表现为嘴、眼和外生殖器部位的炎症,如口角炎、唇炎、舌炎、眼结膜炎和阴囊炎等,故本品可用于上述疾病的防治。体内维生素B2的储存是很有限的,因此每天都要由饮食提供。 鸡蛋中含有多种营养物质,功效很多,其中由于鸡蛋中含有较多的维生素B2具有保健功能,维生素B2可以分解和氧化人体内多种致癌物质从而达到预防癌症的功效。 鸡蛋中维生素B2的主要来源是产蛋母鸡通过鸡饲料所得,因此鸡饲料中维生素B2的合理含量非常重要,鸡饲料中维生素B2的检测理所当然也就非常的重要,也非常的必要。尤其是喂产蛋期产蛋母鸡的饲料,一定得严格把关。 维生素B2的分子式:C17H20O6N4 维生素B2的分子量:376.37 维生素B2的结构式:http://ng1.17img.cn/bbsfiles/images/2013/08/201308311219_461293_2369266_3.jpg维生素B2的显微照片http://ng1.17img.cn/bbsfiles/images/2013/08/201308311219_461294_2369266_3.png实验部分色谱条件色谱柱:Pgrandsil STC 色谱柱 C18 250*4.6mm,5um检测波长:267nm 流动相:在已经装入700ml去离子水的1000ml容量瓶中,加入50mg乙二胺四乙酸二钠,1.1g庚烷磺酸钠,待全部溶解后,加入25ml乙酸5ml三乙胺,用去离子水定容至刻度,摇匀。用乙酸或三乙胺调节该溶液的pH值为3.4,滤膜过滤后,取该溶液860ml与140ml甲醇混合,脫气,待用。流速:1mL/min柱温:室温进样量:10.0uL5 结果 采用上述方法测定饲料中的维生素A乙酸酯的含量两次平行测定所得结果的相对偏差不大于1%,结果准确。6 结论 以上检测蛋鸡产蛋期复合鸡饲料中维生素B2的方法操作简单,检出限低,结果准确、可靠。该方法适用检测蛋鸡产蛋期复合鸡饲料中维生素B2。

  • 关于萃取后萃余液离子含量高的问题

    大神们,就是我现在在做锂离子萃取实验,水相是800ppm的锂离子含量,然后用有机相萃取以后,因为萃取走的锂很少,需要用icp-oes测试萃余液中锂离子含量,icp测试又需要金属含量在100ppm以下,所以我就将萃余液稀释10倍后,用icp-oes进行测试,但是每次测试结果都是锂离子含量高于实际值很多很多,甚至达到90ppm,100多ppm。本来萃取完,稀释10倍后应该在80ppm以下的,或者即便是没有萃取走也是80ppm吧?因为我对自己配制好没有进行萃取的水相样品进行了同样操作,测出来的含量是79.9几ppm,很接近80ppm了。一直找不到原因,能帮我解决一下吗?是不是萃取造成了萃余液样品基质复杂了,或者其他原因啊?

  • 皮革甲醛中萃取液有色素

    各位老大,在做皮革甲醛的实验中,皮革的甲醛萃取液中经常会有色素和浑浊物,请问应该怎么处理?怎么样才能让溶液澄清不影响后面的仪器分析?

  • 关于真菌毒素分散液液微萃取的问题

    关于真菌毒素分散液液微萃取的问题

    各位大神求助啊,最近在用UPLC做小麦中呕吐毒素的实验,用的是分散液液微萃取的方法,是用250ul氯仿作萃取剂800ul乙腈作分散剂的,但是实际实验过程中发现,对呕吐毒素的萃取效率好像一直很低,加盐的方法也使用过了,0%-20%,但是都不高,请问有没有遇到过类似问题的呀,还有其他什么方法可以增加萃取效率的吗?http://ng1.17img.cn/bbsfiles/images/2015/04/201504241504_543420_1916297_3.jpg

  • 解读产志贺毒素大肠杆菌O26

    一、背景信息  近日,据美国食品安全新闻网消息,由美国墨西哥风味连锁餐厅Chipotle食物中毒引发的产志贺毒素大肠杆菌O26疫情在美国蔓延,导致20人住院。美国疾病预防和控制中心(CDC)称,近两年来由产志贺毒素大肠杆菌O26引发的食物中毒事件明显增多,在未来可能引发更多的疫情,尤其是引发溶血性尿毒综合症的病例数量可能会远超过产志贺毒素大肠杆菌O157。二、专家解读  (一)产志贺毒素大肠杆菌是全球最重要的新发高致病性食源性病原菌。  产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,简称STEC)是一类携带了前噬菌体编码一种或两种志贺毒素基因的新发高致病性食源性病原菌,包括大肠杆菌O26,以及O157、O45、O103、O104、O111、O121、O145等150多种其它血清型的大肠杆菌。该菌为革兰氏阴性杆菌,无芽胞,有鞭毛。可以在10—65℃生长,最适生长温度为33—42℃,具有较强的耐酸性(pH 2.5—3.0),可以抵抗胃酸的消化作用。  据不完全统计,美国1983—2002年发生的非O157的STEC感染者中,70%是由O26、O45、O103、O121、O111 和O145血清型所致;2011年9月,美国农业部食品安全检验局曾发布通告,强调大肠杆菌O26是美国最常见的非O157 STEC。爱尔兰对肉和乳制品中非O157 STEC的分布特征研究发现,血清型O26也是引起人类食源性疾病最主要的非O157血清型。STEC O26已逐渐成为美国、日本及部分欧盟发达国家引起暴发事件的主要病原菌。  (二)肉制品是引发食源性STEC感染的主要高危食品。  牛、羊等经济型动物是STEC的天然宿主,国际相关研究发现牛和羊中STEC携带率可高达71%甚至以上。美国农业部(USDA)和欧盟食品安全局(EFSA)也证实养殖场中存在高风险污染的STEC,并且可以通过环境、粪便、野生动物、土壤等在一定范围内循环存在,最终造成肉制品等污染。1982—2006年多个国家STEC暴发事件的归因分析表明,最主要原因是肉制品污染(42.2%),其次是乳制品(12.2%)。除此之外,生鲜果蔬及其制品等也可能是STEC O26重要的传播介质。通过对美国1992—2002年期间24起STEC暴发事件统计发现,67%的疫情是由牛肉制品导致的,其中O26是最主要致病血清型。  (三)国际组织及部分国家和地区已对肉制品中STEC污染给予高度重视。  1999年第32届食品卫生法典委员会(CCFH)会议上,各国政府对食品中的微生物风险应按“食品—病原”组合进行风险管理达成共识,其中就包括“牛肉中大肠杆菌O157”。联合国粮农组织/世界卫生组织(FAO/WHO)食品微生物风险评估联合专家组(JEMRA)于2011年发布了风险评估会议报告(Enterohaemorrhagic Escherichia coli in raw beef and beef products: approaches for the provision of scientific advice),为如何控制生牛肉及牛肉制品中的出血性大肠杆菌提供了科学建议。但是,迄今CCFH尚未对如何应用食品卫生通则控制牛肉中的出血性大肠杆菌制定相关科学导则,也未制定相关产品的限量标准。  2012年3月,USDA宣布强制执行在初加工的牛肉制品中不得检出六大类非O157 STEC(O26、O45、O103、O121、O111 和O145)。2011年德国发生STEC O104暴发事件后,欧盟也加强了对STEC的监测和评估工作,已连续5年对食品和病人中的STEC进行监测。

  • 【求助】液液萃取之后的计算

    比如,我称20克样品,添加浓度为0.2ppm,用3*25的有机溶剂进行萃取,合并萃取液,吹干,用另外一种有机溶剂定容至5毫升,取1微升上[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],那么最后如何计算结果呢?给个公式就行,呵呵,谢谢啦!

  • CNS_08.009_叶绿素铜钠盐

    CNS_08.009_叶绿素铜钠盐

    [align=center][font='黑体'][size=29px]叶绿素铜钠盐[/size][/font][/align][align=center]杨宗琦[/align]叶绿素是植物进行光合作用所必需的催化剂,是由四个吡咯环与镁离子相互配合而形成的镁卟啉类化合物。它是天然生物活性物质之一,具有排毒养颜,抗病强身,抑菌除臭等功效,一方面被广泛应用于日用品、食品、色素、脱臭剂等方面,另一方面在医药上也可用来治疗多种疾病,并应用于各种牙膏的开发中。但游离的叶绿素卟啉环中的镁离子在酸性条件下容易被氢离子取代,生成脱镁叶绿素使色泽褪去,且对光、酸和热比较敏感,使叶绿素的应用受到严重限制。近年来,有不少研究者试图对叶绿素的结构进行修饰,使其变成相对稳定的金属卟啉结构,而叶绿素铜钠盐就是极其重要的一种。叶绿素铜钠盐具有很高的稳定性,在医学上,叶绿素铜钠盐是一类重要的药物,甚至可用叶绿素铜钠盐用于治疗白血病。本文将从基本性质、制备工艺、含量测定等方面介绍叶绿素铜钠盐。[font='黑体'][size=18px]一、基本性质[/size][/font] [align=left]叶绿素,英文名Chlorophyllin,中文别名叶绿素镁钠盐 、叶绿酸粉末、 叶绿素铜三钠,呈墨绿色粉末,着色力强,色泽亮丽,其水溶液呈蓝绿色澄清透明液,[font='宋体'][size=13px][color=#000000]易溶于水,几乎不溶于低醇,不溶于氯仿。水溶液透明、无沉淀。在酸性情况下([/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH 6.5 [/color][/size][/font][font='宋体'][size=13px][color=#000000]以下[/color][/size][/font][font='宋体'][size=9px][color=#000000])[/color][/size][/font][font='宋体'][size=13px][color=#000000]或钙离子存在时,则有沉淀析出。[/color][/size][/font]当其水溶液pH 值小于6 时,染液底部出现粉末状沉淀,这是由于平面空间结构的叶绿素铜钠分子在酸性条件下易于聚集 。叶绿素铜钠盐可以菠菜或蚕粪为原料,用丙酮或乙醇提取叶绿素,添加适量硫酸铜、叶绿素卟啉环中的镁原子被铜置换即生成。[/align]1.1物理化学性质沸点:801.6℃at 760 mmHg分子式:C[font='calibri'][size=13px]34[/size][/font]H[font='calibri'][size=13px]31[/size][/font]CuN[font='calibri'][size=13px]4[/size][/font]Na[font='calibri'][size=13px]3[/size][/font]O[font='calibri'][size=13px]6[/size][/font]分子量:724.148闪点:438.6℃储存条件:密封于2-8℃阴凉干燥处溶解性:易溶于水,略溶于醇和氯仿。[img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804161897_7669_1608728_3.png[/img] [img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108061804162109_5211_1608728_3.png[/img]1.2中毒症状和影响,急性和迟发效应系统性铜中毒症状包括:毛细血管损伤、头痛、冷汗、脉搏微弱、肝肾损伤、中枢神经系统兴奋继而抑制、黄疸、抽搐、麻痹和昏迷。休克和肾衰会导致死亡。慢性铜中毒包括肝硬化、脑损伤和脱髓鞘、肾损害;铜沉积在角膜引起人威尔逊病。还有报道铜毒性导致血红蛋白贫血和加剧动脉硬化。目前,其化学、物理和毒性性质尚未经完整的研究。1.3安全操作的注意事项在有粉尘生成的地方,提供合适的排风设备。1.4安全储存的条件,包括任何不兼容性贮存在阴凉处。 容器保持紧闭,储存在干燥通风处。建议的贮存温度:2 - 8℃,对光线敏感[font='黑体'][size=18px]二、制备工艺[/size][/font]工艺流程:原料→预处理→浸提→过滤→皂化→回收乙醇→石油醚洗涤→ 酸化铜代→抽滤水洗→ 溶解成盐→过滤→干燥→ 成品2.1方法一将富含叶绿素的原料( 国内生产以蚕沙为主) 于40~ 50℃烘干后,研细成粉末状。加粉末量3倍的乙醇丙酮混合液( 1/ 1)于40~45℃提取2.5h,抽滤,滤渣用同等体积乙醇丙酮的混合液再提取 一次。合并两次提取液并加NaOH 调pH 值为11,加热皂化( 50°C左右) 30min。皂化是否完全可用石油醚萃取来判断,上层液呈黄色即为皂化完全 。皂化完全后蒸馏浓缩回收混合液( 60°C左右) 直至体积为原来的1/4~ 1/ 3 即可。再用石油醚萃取4次。下层用盐酸调至pH 值为7,加硫酸铜后调pH值为2, 并在50℃下铜代2h。反应结束即有颗粒状沉淀形成,静置冷却。室温下收集沉淀, 先用50~ 60℃水洗涤,再用30% ~ 40% 的乙醇洗涤至乙醇层为浅绿色。再用石油醚洗涤至石油醚层为浅绿色。滤饼用丙酮溶解,用5%的NaOH 乙醇溶液沉淀,pH 值为12,收集沉淀,用无水乙醇洗涤即得产品。在制备过程中反应温度不易过高,调节pH 值时要小心,温度过高以及pH 值过大或过小都能使叶绿素分解 。此为百度文库提供的制备方法。通过查阅知网,我们了解到以下几种从不同原材料出发的制备叶绿素铜钠盐的方法。2.2方法二:螺旋藻制取叶绿素铜钠盐基本思路:利用硫酸铜对螺旋藻进行浸泡铜化,再用丙酮乙醇混合液浸提得到叶绿素的有机溶液,再经过皂化、萃取、浓缩、干燥等步骤将叶绿素改造为叶绿素铜钠盐。具体步骤:材料:螺旋藻主要试剂:AR乙醇(沸点 78.1℃),AR 丙酮(沸点 56.1℃),AR氢氧化钠,AR 石油醚,AR 盐酸,硫酸铜晶体(CuSO[font='calibri'][size=13px]4[/size][/font].5H[font='calibri'][size=13px]2[/size][/font]O),食盐,白砂糖,可溶性淀粉,用时配成各种所需浓度。工艺流程:螺旋藻→粉碎→铜化(5%CuSO[font='calibri'][size=13px]4[/size][/font]溶液)→洗涤、脱水→浸提(丙酮乙醇混合液)→过滤→浓缩→皂化(5%NaOH溶液)→萃取(石油醚)→干燥→叶绿素铜钠盐产品具体步骤:称量 5.0g 粉碎好的螺旋藻于试管中铜化 13h 后,洗涤脱水于锥形瓶中,加入 70:30 的丙酮乙醇混合液 300mL,加盖在室温下浸提 2h,过滤,浓缩,皂化(5%NaOH 溶液),萃取(石油醚),干燥,可制得墨绿色带金属光泽的叶绿素铜钠盐产品。该文献还对叶绿素铜钠盐的稳定性进行实验分析,实验结果表明,螺旋藻叶绿素铜钠盐的耐光性较较差,需在避光条件下保存;热稳定性较好,但不能高于85 ℃;不耐强酸;食盐、白砂糖、淀粉等食品添加剂无不良影响。2.3方法三:剑麻膏中叶绿素铜钠盐的制备基本思路:以从剑麻膏中萃取得到的叶绿素为原料,研究了酸化、铜代、皂化条件对叶绿素铜钠盐产率的影响。该文献指出,叶绿素铜钠盐的制备过程可分为两种,一种是先皂化,后铜代,目前大多数文献都采用这种方法,但由于叶绿素的耐酸性较差,所得产品纯度不够,产率不高 另一种是先铜代后皂化,即将提取出的叶绿素首先脱镁铜代,使叶绿素变成比较稳定的叶绿素铜,再经皂化成盐得到产品。这种方法对反应温度和时间的要求不太苛刻,有利于提高叶绿素的稳定性。故他们采用先铜代后皂化的方法,遵循节能降耗,提高效率的原则,对反应条件进行优化,并对所得叶绿素铜钠盐的性能和质量进行检测。实验试剂与仪器:剑麻膏,由广西武鸣东风农场提供 乙醇、丙酮、盐酸、氢氧化钠、石油醚、硫酸铜均为分析纯。BSA224S电子天平 FZ102 微型植物试样粉碎机 HH-2数显恒温水浴锅 723N可见分光光度计 R201L 旋转蒸发仪。具体步骤:[font='宋体']①[/font]叶绿素的提取称取30 g 剑麻膏于250 mL的三口烧瓶中,用 85% 的乙醇在 60 ℃水浴锅中提取3 h。提取液减压浓缩,得到含有叶绿素的提取膏状物。加入丙酮,萃取叶绿素,回收丙酮,得到叶绿素膏状物。[font='宋体']②[/font]叶绿素铜的制备 叶绿素加入少量乙醇溶解,用 10%的盐酸调 pH 为酸性,这时溶液由绿色变成黄褐色,酸化脱镁 45 min 后,边搅拌边加入10%CuSO[font='calibri'][size=13px]4[/size][/font]溶液进行铜代,有絮状沉淀生成,抽滤,用热水反复洗涤,得叶绿素铜。[font='宋体']③[/font]叶绿素铜钠盐的制备 叶绿素铜用少量乙醇溶解,加入 10% NaOH 溶液,75 ℃皂化 1 h,加入等量的石油醚,充分摇动,静置分层。除去上层黄色的叶黄素等脂溶性杂质,将下层深绿色的叶绿素铜钠盐收集于小烧杯中,水浴蒸干水分,在 60 ℃下烘干,即得目标产物。 该文献还讨论了酸化脱镁的条件优化,他们发现,叶绿素铜的产率随着溶液 pH 的增大而逐渐减小,pH>3时,产率下降。说明当 pH较大时,酸度不够,一部分叶绿素卟啉环中的镁离子没有脱落下来,导致叶绿素铜得率下降。所以,以pH =3 为宜。对于[font='fzktk--gbk1-00'][size=13px][color=#000000]酸化时间对叶绿素铜得率的影响[/color][/size][/font][font='fzktk--gbk1-00'][size=13px][color=#000000],研究发现[/color][/size][/font][font='ssj4'][size=13px][color=#000000],[/color][/size][/font]酸化时间超过 60 min 时,叶绿素铜的产率增大不太明显,说明酸化反应基本完成。为了节约实验时间,酸化时间以 60 min 为宜。对于酸化温度对叶绿素铜得率的影响,发现叶绿素铜得率在45-65℃随着酸化温度的升高呈上升趋势在65-85 ℃产率变化不大,超过85 ℃时,产率突然下降。可能是高温使叶绿素铜中的环状结构氧化,四吡咯环破坏而被降解,使叶绿素铜的产率降低。所以,酸化温度以65℃为宜。对于加铜量对叶绿素铜得率的影响,研究发现随着硫酸铜量的增加,叶绿素铜的得率增加,加入量大于 15 mL 时,增大幅度不明显,基本保持稳定。实验过程中还发现,加铜量太多时,溶液中游离铜的量也会增多,会延长叶绿素铜的洗涤时间。考虑到实验效率和能耗问题,加铜量以15 mL为宜。对于铜代时间对叶绿素铜得率的影响,研究发现叶绿素铜的得率随着铜代时间的延长呈增大趋势,铜代时间超过2h时,叶绿素铜得率的增大幅度不大。所以,铜代时间以2h为宜。对于皂化温度对叶绿素铜钠盐得率的影响,叶绿素铜钠盐的产率随着皂化温度的升高不断提高,当温度高于85℃时,产率稍有下降,这可能是因为生成的叶绿素铜钠盐在较高的温度下会部分分解,导致产率下降,为了保证叶绿素铜钠盐的质量,皂化温度选择75 ℃为宜。对于皂化时间对叶绿素铜钠盐得率的影响,研究发现叶绿素铜钠盐的得率随着皂化时 间的延长而增大,≥60 min 后得率趋于稳定。皂化时间较短时,用石油醚萃取的过程中,分层不明显,醚相呈绿色,说明没有皂化完全。所以,皂化时间以60 min 为宜。对于pH 对叶绿素铜钠盐得率的影响,研究发现,当pH>11 时,叶绿素铜钠盐的得率趋于稳定,在实验过程中发现,当 pH为9或10时,用石油醚萃取酯溶性物质时,界面会有固体颗粒,分层界面不清晰,醚相为绿色,这都是因加碱量不够,导致皂化不完全。所以,皂化时以pH = 12为宜。该文献还对叶绿素铜钠盐的性质进行了探究。对于耐光性,研究表明叶绿素铜钠盐在强光下不稳定,但与叶绿素相比,已经大大提高了耐光性。对于耐热性,实验结果为在90 ℃以内,叶绿素铜钠盐的吸光度基本保持不变,颜色均为绿色 温度高于90 ℃时,吸光度开始有下降趋势,但幅度不大,即使是在110 ℃时,叶绿素的保存率也为96.9%,说明叶绿素铜钠盐的耐热性还是比较理想的,可添加到处理温 度在100 ℃以内的食物中。对于耐酸碱性,从实验数据可以看出溶液的吸光度随着pH的增大而升高,pH在3~6 范围内,吸光度变化幅度不大,溶液颜色呈土绿色 pH = 7时,吸光度值有个比较大的跳跃 在 7~12 范围内,吸光度的变化幅度也不太大,溶液颜色呈碧绿色。在实验过程中发现,当 pH<3时,溶液中会出现大量沉淀,这可能是因为叶绿素铜钠盐在强酸条件下生成了不溶于水的叶绿素铜酸 当pH>11时,因碱性太强,加速脱酯反应,使叶绿素分解,溶液的吸光度迅速下降,但在碱性条件下,因不发生脱镁或碳环裂解反应,却能保持相对稳定的色泽,在使用中只要控制溶液 pH 值在近中性或偏碱水平,就能基本维持叶绿素铜钠盐的稳定性。综上可以得出,采用先铜代后皂化的方法制备叶绿素铜钠盐,即叶绿素提取出来后先脱镁铜代,增加中间产物的稳定性,在后续操作中,不必考虑因温度太高或时间太长而使叶绿素分解的问题,从而提高了产品的产率和纯度。从剑麻膏中萃取制备叶绿素铜钠盐的优化条件是: 酸化时 pH = 3,酸化时间 60 min,温 度 65 ℃ 铜代时硫酸铜加量1.5 g,时间2h 皂化时温度 75 ℃,时间 60 min,pH = 12。在此条件下,产率为 4.46% ,产品为墨绿色粉末,略带氨臭,易溶于水,水溶液呈绿色透明澄清液,微溶于或不溶于乙醇、乙醚、丙酮、氯仿等有机溶剂,有Ca[font='calibri'][size=13px]2+[/size][/font],Mg[font='calibri'][size=13px]2+[/size][/font]存在时,产品中会有少许白色沉淀,在空气中容易吸潮,应隔绝空气保存。[font='黑体'][size=18px]三、含量测定[/size][/font]3.1试剂与材料氢氧化钠乙酸铵甲醇冰乙酸聚酰胺粉:粒径0.150mm~0.180mm。3.2试剂配制氢氧化钠溶液(4mol/L):称取16.0g氢氧化钠,用水溶解并定容至100mL。氢氧化钠溶液(0.1mol/L):称取0.40g氢氧化钠,用水溶解并定容至100mL。乙酸铵缓冲溶液(0.2mol/L):称取7.708g乙酸铵,用水溶解并定容至500mL。解吸液:0.1mol/L氢氧化钠溶液+甲醇=1+10(体积比)。3.3标准溶液配制精确称取经105℃±1℃干燥至恒重并按其纯度折算为100%质量的叶绿素铜钠标准品0.0500g,用水溶解并定容至100mL棕色容量瓶中,此溶液浓度为500μg/mL,当天配制,避光保存。3.4标准工作溶液准确移取500μg/mL标准溶液10mL至100mL烧杯中,加入0.2mol/L的乙酸铵溶液30mL,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min,避光静置5min用约20mL蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。用75mL 解吸液分3次解吸色素:每次倒入约25mL解吸液,浸泡2min,再振摇2min,抽滤并用20mL解吸液洗净抽滤瓶中残液。收集滤液,用解吸液定容至100mL,配制成浓度为50μg/mL的标准溶液,此溶液临用时配制。[font='e-bz'][size=12px][color=#000000] [/color][/size][/font]3.5被测样品溶液后期处理向含有被测样品粉末或样品浆液的100mL烧杯中加入0.2mol/L的乙酸铵溶液30mL,溶解并混匀样液,用4mol/L氢氧化钠溶液和冰乙酸调pH5~6。加入3.0g聚酰胺粉,充分搅拌2min。将样品溶液用约20mL60 ℃±2 ℃蒸馏水转移至 G3砂芯漏斗中抽滤,弃去滤液。再用75mL 解吸液分3次解吸色素,抽滤并用20mL解吸液洗净抽滤瓶中残液,收集滤液,用解吸液定容至100mL。3.6仪器条件测定波长:405nm。比色皿:1cm。3.7标准曲线的制作分别取标准工作液0mL、5.0mL、10mL、20mL、30mL、40mL、50mL至100mL容量中,用解吸液稀释至刻度,配制成浓度为 0μg/mL、5μg/mL、10μg/mL、20μg/mL、30μg/mL、40μg/mL、50μg/mL的标准系列。以0μg/mL溶液为空白,测定其吸光值。以浓度为横坐标,以吸光值为纵坐标绘制标准曲线。试样溶液的测定取经过前处理的样品的制备液,以标准曲线的0μg/mL为空白,测定其吸光值,根据标准曲线获得样品溶液中叶绿素铜钠的浓度。本标准检出限为0.001g/kg,定量限为0.005g/kg。3.8总铜含量试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g [/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,精确至 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.000 2g[/color][/size][/font][font='宋体'][size=13px][color=#000000],置于硅皿中,在不超过 [/color][/size][/font][font='times new roman'][size=13px][color=#000000]500[/color][/size][/font][font='宋体'][size=13px][color=#000000]℃下灼烧至无碳,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1[/color][/size][/font][font='宋体'][size=13px][color=#000000]滴[/color][/size][/font][font='times new roman'][size=13px][color=#000000]~2 [/color][/size][/font][/align][font='宋体'][size=13px][color=#000000]滴硫酸湿润,再次灰化。用质量分数为[/color][/size][/font][font='times new roman'][size=13px][color=#000000]10%[/color][/size][/font][font='宋体'][size=13px][color=#000000]的盐酸溶液分[/color][/size][/font][font='times new roman'][size=13px][color=#000000]3[/color][/size][/font][font='宋体'][size=13px][color=#000000]次(每次[/color][/size][/font][font='times new roman'][size=13px][color=#000000]5mL[/color][/size][/font][font='宋体'][size=13px][color=#000000])煮沸溶解灰分,并过滤[/color][/size][/font]于100mL容量瓶中,冷却后用水定容至刻度,此为试样液。测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]游离铜含量3.9试样处理[align=left][font='宋体'][size=13px][color=#000000]准确称取[/color][/size][/font][font='times new roman'][size=13px][color=#000000]0.1g[/color][/size][/font][font='宋体'][size=13px][color=#000000]试样,加水约[/color][/size][/font][font='times new roman'][size=13px][color=#000000]50mL[/color][/size][/font][font='宋体'][size=13px][color=#000000]溶解后,用[/color][/size][/font][font='times new roman'][size=13px][color=#000000]1mol/L [/color][/size][/font][font='宋体'][size=13px][color=#000000]盐酸调节[/color][/size][/font][font='times new roman'][size=13px][color=#000000]pH[/color][/size][/font][font='宋体'][size=13px][color=#000000]至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]4.0[/color][/size][/font][font='宋体'][size=13px][color=#000000],定容至[/color][/size][/font][font='times new roman'][size=13px][color=#000000]100mL[/color][/size][/font][font='宋体'][size=13px][color=#000000],过 [/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]滤,此为试样液。[/color][/size][/font][/align]测定[align=left][font='宋体'][size=13px][color=#000000]除试样处理外,其他步骤按[/color][/size][/font][font='times new roman'][size=13px][color=#000000]GB/T 5009.13[/color][/size][/font][font='宋体'][size=13px][color=#000000]规定的方法测定。[/color][/size][/font][/align]参考文献[align=left][font='宋体'][size=13px][color=#000000]【1】韩敏.直接皂化法制备叶绿素铜钠盐[J].应用化工,:,2014.43(4):704-707.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【2】赖海涛.螺旋藻制取叶绿素铜钠盐的稳定性研究[J].化学工程与装备,:,2020.3(3):14-15.[/color][/size][/font][/align][align=left][font='宋体'][size=13px][color=#000000]【3】李祥.剑麻膏中叶绿素铜钠盐的制备及性能测定[J].应 用 化 工,:,2018.47(2):262-267.[/color][/size][/font][/align][align=left][/align][align=left][/align][align=left][/align]

  • 【讨论】奶牛靠打激素来产奶吗?

    【讨论】奶牛靠打激素来产奶吗?

    http://ng1.17img.cn/bbsfiles/images/2011/04/201104100100_288005_2185349_3.jpg流言: 你知道奶牛为什么会一直产奶?奶牛一直产奶只有一个原因,就是要不停地怀孕生小牛,但并不是所有奶牛在任何时候都能怀上孕。现代农场的解决方法是:给奶牛打高剂量的荷尔蒙,让其不自然泌乳——新闻里所说的 “各种激素” 就是这样来的 !

  • 【分享】噪音给胎儿带来的影响

    越来越多的研究表明,噪音会严重影响人类优生导致畸形胎儿增多。因此,专家们呼吁孕妈妈要警惕身边的噪音。  美国推进科学协会曾在芝加哥举行的年会上发出警告,噪音对胎儿危害非常大,因为高分贝噪音能损坏胎儿的听觉器官。  近年在加拿大进行的一次流行病学研究也证明,那些曾经接受过85分贝以上(重型卡车音响是90分贝)强噪音的胎儿,在出生前就已丧失了听觉的敏锐度。加拿大蒙特利尔大学的尼科尔• 拉兰特研究组对131名4~10岁男女儿童(他们的母亲怀孕时曾在声音极为嘈杂的工厂里工作)进行了检查,结果表明,那些出生前在母体内接受最大噪音量的儿童对400赫兹声音的感觉是没有接受过噪音儿童的1/3。  一些科学家研究指出,构成胎儿内耳一部分的耳蜗从孕妈妈妊娠第20周起开始成长发育,其成熟过程在宝宝出生后30多天时仍在继续进行。由于胎儿的内耳耳蜗正处于成长阶段,极易遭受低频率噪声损害,外环境中的低频率声音可传入子宫,并影响胎儿。有的研究表明,胎儿内耳受到噪音的刺激,能使脑的部分区域受损,并严重影响大脑的发育,致儿童期后出现智力低下。  美国有一位儿科医生对万余名新生儿做了研究,结果证实,在机场附近地区,新生儿畸形率从0.8%增到1.2%,主要属于脊椎畸形、腹部畸形和脑畸形。日本调查资料表明,在噪音污染区的新生儿体重在2 000克以下(正常新生儿体重为2 500克以上),相当于早产儿体重。  噪音能使孕妈妈内分泌腺体的功能紊乱,从而使脑垂体分泌的催产激素过剩,引起子宫强烈收缩,导致流产、早产。  噪音对胎儿有非常严重的影响,因此,孕妈妈要警惕身边的噪音,不要受噪音影响,更不要收听震耳欲聋的刺激性音乐。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制